Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright 2015 Advanced Micro Devices, Inc.
0003  *
0004  * Permission is hereby granted, free of charge, to any person obtaining a
0005  * copy of this software and associated documentation files (the "Software"),
0006  * to deal in the Software without restriction, including without limitation
0007  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0008  * and/or sell copies of the Software, and to permit persons to whom the
0009  * Software is furnished to do so, subject to the following conditions:
0010  *
0011  * The above copyright notice and this permission notice shall be included in
0012  * all copies or substantial portions of the Software.
0013  *
0014  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0015  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0016  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0017  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
0018  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
0019  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
0020  * OTHER DEALINGS IN THE SOFTWARE.
0021  *
0022  * Authors: AMD
0023  *
0024  */
0025 
0026 #include "dm_services.h"
0027 #include "dc.h"
0028 #include "dc_bios_types.h"
0029 #include "core_types.h"
0030 #include "core_status.h"
0031 #include "resource.h"
0032 #include "dm_helpers.h"
0033 #include "dce110_timing_generator.h"
0034 #include "dce/dce_hwseq.h"
0035 #include "gpio_service_interface.h"
0036 
0037 #include "dce110_compressor.h"
0038 
0039 #include "bios/bios_parser_helper.h"
0040 #include "timing_generator.h"
0041 #include "mem_input.h"
0042 #include "opp.h"
0043 #include "ipp.h"
0044 #include "transform.h"
0045 #include "stream_encoder.h"
0046 #include "link_encoder.h"
0047 #include "link_enc_cfg.h"
0048 #include "link_hwss.h"
0049 #include "dc_link_dp.h"
0050 #include "dccg.h"
0051 #include "clock_source.h"
0052 #include "clk_mgr.h"
0053 #include "abm.h"
0054 #include "audio.h"
0055 #include "reg_helper.h"
0056 #include "panel_cntl.h"
0057 #include "inc/link_dpcd.h"
0058 #include "dpcd_defs.h"
0059 /* include DCE11 register header files */
0060 #include "dce/dce_11_0_d.h"
0061 #include "dce/dce_11_0_sh_mask.h"
0062 #include "custom_float.h"
0063 
0064 #include "atomfirmware.h"
0065 
0066 #include "dcn10/dcn10_hw_sequencer.h"
0067 
0068 #include "link/link_dp_trace.h"
0069 #include "dce110_hw_sequencer.h"
0070 
0071 #define GAMMA_HW_POINTS_NUM 256
0072 
0073 /*
0074  * All values are in milliseconds;
0075  * For eDP, after power-up/power/down,
0076  * 300/500 msec max. delay from LCDVCC to black video generation
0077  */
0078 #define PANEL_POWER_UP_TIMEOUT 300
0079 #define PANEL_POWER_DOWN_TIMEOUT 500
0080 #define HPD_CHECK_INTERVAL 10
0081 #define OLED_POST_T7_DELAY 100
0082 #define OLED_PRE_T11_DELAY 150
0083 
0084 #define CTX \
0085     hws->ctx
0086 
0087 #define DC_LOGGER_INIT()
0088 
0089 #define REG(reg)\
0090     hws->regs->reg
0091 
0092 #undef FN
0093 #define FN(reg_name, field_name) \
0094     hws->shifts->field_name, hws->masks->field_name
0095 
0096 struct dce110_hw_seq_reg_offsets {
0097     uint32_t crtc;
0098 };
0099 
0100 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
0101 {
0102     .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
0103 },
0104 {
0105     .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
0106 },
0107 {
0108     .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
0109 },
0110 {
0111     .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
0112 }
0113 };
0114 
0115 #define HW_REG_BLND(reg, id)\
0116     (reg + reg_offsets[id].blnd)
0117 
0118 #define HW_REG_CRTC(reg, id)\
0119     (reg + reg_offsets[id].crtc)
0120 
0121 #define MAX_WATERMARK 0xFFFF
0122 #define SAFE_NBP_MARK 0x7FFF
0123 
0124 /*******************************************************************************
0125  * Private definitions
0126  ******************************************************************************/
0127 /***************************PIPE_CONTROL***********************************/
0128 static void dce110_init_pte(struct dc_context *ctx)
0129 {
0130     uint32_t addr;
0131     uint32_t value = 0;
0132     uint32_t chunk_int = 0;
0133     uint32_t chunk_mul = 0;
0134 
0135     addr = mmUNP_DVMM_PTE_CONTROL;
0136     value = dm_read_reg(ctx, addr);
0137 
0138     set_reg_field_value(
0139         value,
0140         0,
0141         DVMM_PTE_CONTROL,
0142         DVMM_USE_SINGLE_PTE);
0143 
0144     set_reg_field_value(
0145         value,
0146         1,
0147         DVMM_PTE_CONTROL,
0148         DVMM_PTE_BUFFER_MODE0);
0149 
0150     set_reg_field_value(
0151         value,
0152         1,
0153         DVMM_PTE_CONTROL,
0154         DVMM_PTE_BUFFER_MODE1);
0155 
0156     dm_write_reg(ctx, addr, value);
0157 
0158     addr = mmDVMM_PTE_REQ;
0159     value = dm_read_reg(ctx, addr);
0160 
0161     chunk_int = get_reg_field_value(
0162         value,
0163         DVMM_PTE_REQ,
0164         HFLIP_PTEREQ_PER_CHUNK_INT);
0165 
0166     chunk_mul = get_reg_field_value(
0167         value,
0168         DVMM_PTE_REQ,
0169         HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
0170 
0171     if (chunk_int != 0x4 || chunk_mul != 0x4) {
0172 
0173         set_reg_field_value(
0174             value,
0175             255,
0176             DVMM_PTE_REQ,
0177             MAX_PTEREQ_TO_ISSUE);
0178 
0179         set_reg_field_value(
0180             value,
0181             4,
0182             DVMM_PTE_REQ,
0183             HFLIP_PTEREQ_PER_CHUNK_INT);
0184 
0185         set_reg_field_value(
0186             value,
0187             4,
0188             DVMM_PTE_REQ,
0189             HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
0190 
0191         dm_write_reg(ctx, addr, value);
0192     }
0193 }
0194 /**************************************************************************/
0195 
0196 static void enable_display_pipe_clock_gating(
0197     struct dc_context *ctx,
0198     bool clock_gating)
0199 {
0200     /*TODO*/
0201 }
0202 
0203 static bool dce110_enable_display_power_gating(
0204     struct dc *dc,
0205     uint8_t controller_id,
0206     struct dc_bios *dcb,
0207     enum pipe_gating_control power_gating)
0208 {
0209     enum bp_result bp_result = BP_RESULT_OK;
0210     enum bp_pipe_control_action cntl;
0211     struct dc_context *ctx = dc->ctx;
0212     unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
0213 
0214     if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
0215         return true;
0216 
0217     if (power_gating == PIPE_GATING_CONTROL_INIT)
0218         cntl = ASIC_PIPE_INIT;
0219     else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
0220         cntl = ASIC_PIPE_ENABLE;
0221     else
0222         cntl = ASIC_PIPE_DISABLE;
0223 
0224     if (controller_id == underlay_idx)
0225         controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
0226 
0227     if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
0228 
0229         bp_result = dcb->funcs->enable_disp_power_gating(
0230                         dcb, controller_id + 1, cntl);
0231 
0232         /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
0233          * by default when command table is called
0234          *
0235          * Bios parser accepts controller_id = 6 as indicative of
0236          * underlay pipe in dce110. But we do not support more
0237          * than 3.
0238          */
0239         if (controller_id < CONTROLLER_ID_MAX - 1)
0240             dm_write_reg(ctx,
0241                 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
0242                 0);
0243     }
0244 
0245     if (power_gating != PIPE_GATING_CONTROL_ENABLE)
0246         dce110_init_pte(ctx);
0247 
0248     if (bp_result == BP_RESULT_OK)
0249         return true;
0250     else
0251         return false;
0252 }
0253 
0254 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
0255         const struct dc_plane_state *plane_state)
0256 {
0257     prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
0258 
0259     switch (plane_state->format) {
0260     case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
0261         prescale_params->scale = 0x2082;
0262         break;
0263     case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
0264     case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
0265         prescale_params->scale = 0x2020;
0266         break;
0267     case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
0268     case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
0269         prescale_params->scale = 0x2008;
0270         break;
0271     case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
0272     case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
0273     case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
0274         prescale_params->scale = 0x2000;
0275         break;
0276     default:
0277         ASSERT(false);
0278         break;
0279     }
0280 }
0281 
0282 static bool
0283 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
0284                    const struct dc_plane_state *plane_state)
0285 {
0286     struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
0287     const struct dc_transfer_func *tf = NULL;
0288     struct ipp_prescale_params prescale_params = { 0 };
0289     bool result = true;
0290 
0291     if (ipp == NULL)
0292         return false;
0293 
0294     if (plane_state->in_transfer_func)
0295         tf = plane_state->in_transfer_func;
0296 
0297     build_prescale_params(&prescale_params, plane_state);
0298     ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
0299 
0300     if (plane_state->gamma_correction &&
0301             !plane_state->gamma_correction->is_identity &&
0302             dce_use_lut(plane_state->format))
0303         ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
0304 
0305     if (tf == NULL) {
0306         /* Default case if no input transfer function specified */
0307         ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
0308     } else if (tf->type == TF_TYPE_PREDEFINED) {
0309         switch (tf->tf) {
0310         case TRANSFER_FUNCTION_SRGB:
0311             ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
0312             break;
0313         case TRANSFER_FUNCTION_BT709:
0314             ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
0315             break;
0316         case TRANSFER_FUNCTION_LINEAR:
0317             ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
0318             break;
0319         case TRANSFER_FUNCTION_PQ:
0320         default:
0321             result = false;
0322             break;
0323         }
0324     } else if (tf->type == TF_TYPE_BYPASS) {
0325         ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
0326     } else {
0327         /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
0328         result = false;
0329     }
0330 
0331     return result;
0332 }
0333 
0334 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
0335                     struct curve_points *arr_points,
0336                     uint32_t hw_points_num)
0337 {
0338     struct custom_float_format fmt;
0339 
0340     struct pwl_result_data *rgb = rgb_resulted;
0341 
0342     uint32_t i = 0;
0343 
0344     fmt.exponenta_bits = 6;
0345     fmt.mantissa_bits = 12;
0346     fmt.sign = true;
0347 
0348     if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
0349                         &arr_points[0].custom_float_x)) {
0350         BREAK_TO_DEBUGGER();
0351         return false;
0352     }
0353 
0354     if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
0355                         &arr_points[0].custom_float_offset)) {
0356         BREAK_TO_DEBUGGER();
0357         return false;
0358     }
0359 
0360     if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
0361                         &arr_points[0].custom_float_slope)) {
0362         BREAK_TO_DEBUGGER();
0363         return false;
0364     }
0365 
0366     fmt.mantissa_bits = 10;
0367     fmt.sign = false;
0368 
0369     if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
0370                         &arr_points[1].custom_float_x)) {
0371         BREAK_TO_DEBUGGER();
0372         return false;
0373     }
0374 
0375     if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
0376                         &arr_points[1].custom_float_y)) {
0377         BREAK_TO_DEBUGGER();
0378         return false;
0379     }
0380 
0381     if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
0382                         &arr_points[1].custom_float_slope)) {
0383         BREAK_TO_DEBUGGER();
0384         return false;
0385     }
0386 
0387     fmt.mantissa_bits = 12;
0388     fmt.sign = true;
0389 
0390     while (i != hw_points_num) {
0391         if (!convert_to_custom_float_format(rgb->red, &fmt,
0392                             &rgb->red_reg)) {
0393             BREAK_TO_DEBUGGER();
0394             return false;
0395         }
0396 
0397         if (!convert_to_custom_float_format(rgb->green, &fmt,
0398                             &rgb->green_reg)) {
0399             BREAK_TO_DEBUGGER();
0400             return false;
0401         }
0402 
0403         if (!convert_to_custom_float_format(rgb->blue, &fmt,
0404                             &rgb->blue_reg)) {
0405             BREAK_TO_DEBUGGER();
0406             return false;
0407         }
0408 
0409         if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
0410                             &rgb->delta_red_reg)) {
0411             BREAK_TO_DEBUGGER();
0412             return false;
0413         }
0414 
0415         if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
0416                             &rgb->delta_green_reg)) {
0417             BREAK_TO_DEBUGGER();
0418             return false;
0419         }
0420 
0421         if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
0422                             &rgb->delta_blue_reg)) {
0423             BREAK_TO_DEBUGGER();
0424             return false;
0425         }
0426 
0427         ++rgb;
0428         ++i;
0429     }
0430 
0431     return true;
0432 }
0433 
0434 #define MAX_LOW_POINT      25
0435 #define NUMBER_REGIONS     16
0436 #define NUMBER_SW_SEGMENTS 16
0437 
0438 static bool
0439 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
0440                       struct pwl_params *regamma_params)
0441 {
0442     struct curve_points *arr_points;
0443     struct pwl_result_data *rgb_resulted;
0444     struct pwl_result_data *rgb;
0445     struct pwl_result_data *rgb_plus_1;
0446     struct fixed31_32 y_r;
0447     struct fixed31_32 y_g;
0448     struct fixed31_32 y_b;
0449     struct fixed31_32 y1_min;
0450     struct fixed31_32 y3_max;
0451 
0452     int32_t region_start, region_end;
0453     uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
0454 
0455     if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
0456         return false;
0457 
0458     arr_points = regamma_params->arr_points;
0459     rgb_resulted = regamma_params->rgb_resulted;
0460     hw_points = 0;
0461 
0462     memset(regamma_params, 0, sizeof(struct pwl_params));
0463 
0464     if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
0465         /* 16 segments
0466          * segments are from 2^-11 to 2^5
0467          */
0468         region_start = -11;
0469         region_end = region_start + NUMBER_REGIONS;
0470 
0471         for (i = 0; i < NUMBER_REGIONS; i++)
0472             seg_distr[i] = 4;
0473 
0474     } else {
0475         /* 10 segments
0476          * segment is from 2^-10 to 2^1
0477          * We include an extra segment for range [2^0, 2^1). This is to
0478          * ensure that colors with normalized values of 1 don't miss the
0479          * LUT.
0480          */
0481         region_start = -10;
0482         region_end = 1;
0483 
0484         seg_distr[0] = 4;
0485         seg_distr[1] = 4;
0486         seg_distr[2] = 4;
0487         seg_distr[3] = 4;
0488         seg_distr[4] = 4;
0489         seg_distr[5] = 4;
0490         seg_distr[6] = 4;
0491         seg_distr[7] = 4;
0492         seg_distr[8] = 4;
0493         seg_distr[9] = 4;
0494         seg_distr[10] = 0;
0495         seg_distr[11] = -1;
0496         seg_distr[12] = -1;
0497         seg_distr[13] = -1;
0498         seg_distr[14] = -1;
0499         seg_distr[15] = -1;
0500     }
0501 
0502     for (k = 0; k < 16; k++) {
0503         if (seg_distr[k] != -1)
0504             hw_points += (1 << seg_distr[k]);
0505     }
0506 
0507     j = 0;
0508     for (k = 0; k < (region_end - region_start); k++) {
0509         increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
0510         start_index = (region_start + k + MAX_LOW_POINT) *
0511                 NUMBER_SW_SEGMENTS;
0512         for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
0513                 i += increment) {
0514             if (j == hw_points - 1)
0515                 break;
0516             rgb_resulted[j].red = output_tf->tf_pts.red[i];
0517             rgb_resulted[j].green = output_tf->tf_pts.green[i];
0518             rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
0519             j++;
0520         }
0521     }
0522 
0523     /* last point */
0524     start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
0525     rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
0526     rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
0527     rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
0528 
0529     arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
0530                          dc_fixpt_from_int(region_start));
0531     arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
0532                          dc_fixpt_from_int(region_end));
0533 
0534     y_r = rgb_resulted[0].red;
0535     y_g = rgb_resulted[0].green;
0536     y_b = rgb_resulted[0].blue;
0537 
0538     y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
0539 
0540     arr_points[0].y = y1_min;
0541     arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
0542                          arr_points[0].x);
0543 
0544     y_r = rgb_resulted[hw_points - 1].red;
0545     y_g = rgb_resulted[hw_points - 1].green;
0546     y_b = rgb_resulted[hw_points - 1].blue;
0547 
0548     /* see comment above, m_arrPoints[1].y should be the Y value for the
0549      * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
0550      */
0551     y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
0552 
0553     arr_points[1].y = y3_max;
0554 
0555     arr_points[1].slope = dc_fixpt_zero;
0556 
0557     if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
0558         /* for PQ, we want to have a straight line from last HW X point,
0559          * and the slope to be such that we hit 1.0 at 10000 nits.
0560          */
0561         const struct fixed31_32 end_value = dc_fixpt_from_int(125);
0562 
0563         arr_points[1].slope = dc_fixpt_div(
0564                 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
0565                 dc_fixpt_sub(end_value, arr_points[1].x));
0566     }
0567 
0568     regamma_params->hw_points_num = hw_points;
0569 
0570     k = 0;
0571     for (i = 1; i < 16; i++) {
0572         if (seg_distr[k] != -1) {
0573             regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
0574             regamma_params->arr_curve_points[i].offset =
0575                     regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
0576         }
0577         k++;
0578     }
0579 
0580     if (seg_distr[k] != -1)
0581         regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
0582 
0583     rgb = rgb_resulted;
0584     rgb_plus_1 = rgb_resulted + 1;
0585 
0586     i = 1;
0587 
0588     while (i != hw_points + 1) {
0589         if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
0590             rgb_plus_1->red = rgb->red;
0591         if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
0592             rgb_plus_1->green = rgb->green;
0593         if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
0594             rgb_plus_1->blue = rgb->blue;
0595 
0596         rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
0597         rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
0598         rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
0599 
0600         ++rgb_plus_1;
0601         ++rgb;
0602         ++i;
0603     }
0604 
0605     convert_to_custom_float(rgb_resulted, arr_points, hw_points);
0606 
0607     return true;
0608 }
0609 
0610 static bool
0611 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
0612                 const struct dc_stream_state *stream)
0613 {
0614     struct transform *xfm = pipe_ctx->plane_res.xfm;
0615 
0616     xfm->funcs->opp_power_on_regamma_lut(xfm, true);
0617     xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
0618 
0619     if (stream->out_transfer_func &&
0620         stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
0621         stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
0622         xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
0623     } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
0624                              &xfm->regamma_params)) {
0625         xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
0626         xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
0627     } else {
0628         xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
0629     }
0630 
0631     xfm->funcs->opp_power_on_regamma_lut(xfm, false);
0632 
0633     return true;
0634 }
0635 
0636 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
0637 {
0638     bool is_hdmi_tmds;
0639     bool is_dp;
0640 
0641     ASSERT(pipe_ctx->stream);
0642 
0643     if (pipe_ctx->stream_res.stream_enc == NULL)
0644         return;  /* this is not root pipe */
0645 
0646     is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
0647     is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
0648 
0649     if (!is_hdmi_tmds && !is_dp)
0650         return;
0651 
0652     if (is_hdmi_tmds)
0653         pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
0654             pipe_ctx->stream_res.stream_enc,
0655             &pipe_ctx->stream_res.encoder_info_frame);
0656     else
0657         pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
0658             pipe_ctx->stream_res.stream_enc,
0659             &pipe_ctx->stream_res.encoder_info_frame);
0660 }
0661 
0662 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
0663 {
0664     enum dc_lane_count lane_count =
0665         pipe_ctx->stream->link->cur_link_settings.lane_count;
0666     struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
0667     struct dc_link *link = pipe_ctx->stream->link;
0668     const struct dc *dc = link->dc;
0669     const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
0670     uint32_t active_total_with_borders;
0671     uint32_t early_control = 0;
0672     struct timing_generator *tg = pipe_ctx->stream_res.tg;
0673 
0674     link_hwss->setup_stream_encoder(pipe_ctx);
0675 
0676     dc->hwss.update_info_frame(pipe_ctx);
0677 
0678     /* enable early control to avoid corruption on DP monitor*/
0679     active_total_with_borders =
0680             timing->h_addressable
0681                 + timing->h_border_left
0682                 + timing->h_border_right;
0683 
0684     if (lane_count != 0)
0685         early_control = active_total_with_borders % lane_count;
0686 
0687     if (early_control == 0)
0688         early_control = lane_count;
0689 
0690     tg->funcs->set_early_control(tg, early_control);
0691 
0692     /* enable audio only within mode set */
0693     if (pipe_ctx->stream_res.audio != NULL) {
0694         if (dc_is_dp_signal(pipe_ctx->stream->signal))
0695             pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
0696     }
0697 
0698 
0699 
0700 
0701 }
0702 
0703 static enum bp_result link_transmitter_control(
0704         struct dc_bios *bios,
0705     struct bp_transmitter_control *cntl)
0706 {
0707     enum bp_result result;
0708 
0709     result = bios->funcs->transmitter_control(bios, cntl);
0710 
0711     return result;
0712 }
0713 
0714 /*
0715  * @brief
0716  * eDP only.
0717  */
0718 void dce110_edp_wait_for_hpd_ready(
0719         struct dc_link *link,
0720         bool power_up)
0721 {
0722     struct dc_context *ctx = link->ctx;
0723     struct graphics_object_id connector = link->link_enc->connector;
0724     struct gpio *hpd;
0725     struct dc_sink *sink = link->local_sink;
0726     bool edp_hpd_high = false;
0727     uint32_t time_elapsed = 0;
0728     uint32_t timeout = power_up ?
0729         PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
0730 
0731     if (dal_graphics_object_id_get_connector_id(connector)
0732             != CONNECTOR_ID_EDP) {
0733         BREAK_TO_DEBUGGER();
0734         return;
0735     }
0736 
0737     if (!power_up)
0738         /*
0739          * From KV, we will not HPD low after turning off VCC -
0740          * instead, we will check the SW timer in power_up().
0741          */
0742         return;
0743 
0744     /*
0745      * When we power on/off the eDP panel,
0746      * we need to wait until SENSE bit is high/low.
0747      */
0748 
0749     /* obtain HPD */
0750     /* TODO what to do with this? */
0751     hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
0752 
0753     if (!hpd) {
0754         BREAK_TO_DEBUGGER();
0755         return;
0756     }
0757 
0758     if (sink != NULL) {
0759         if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
0760             int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
0761 
0762             msleep(extra_t3_in_ms);
0763         }
0764     }
0765 
0766     dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
0767 
0768     /* wait until timeout or panel detected */
0769 
0770     do {
0771         uint32_t detected = 0;
0772 
0773         dal_gpio_get_value(hpd, &detected);
0774 
0775         if (!(detected ^ power_up)) {
0776             edp_hpd_high = true;
0777             break;
0778         }
0779 
0780         msleep(HPD_CHECK_INTERVAL);
0781 
0782         time_elapsed += HPD_CHECK_INTERVAL;
0783     } while (time_elapsed < timeout);
0784 
0785     dal_gpio_close(hpd);
0786 
0787     dal_gpio_destroy_irq(&hpd);
0788 
0789     if (false == edp_hpd_high) {
0790         DC_LOG_WARNING(
0791                 "%s: wait timed out!\n", __func__);
0792     }
0793 }
0794 
0795 void dce110_edp_power_control(
0796         struct dc_link *link,
0797         bool power_up)
0798 {
0799     struct dc_context *ctx = link->ctx;
0800     struct bp_transmitter_control cntl = { 0 };
0801     enum bp_result bp_result;
0802     uint8_t panel_instance;
0803 
0804 
0805     if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
0806             != CONNECTOR_ID_EDP) {
0807         BREAK_TO_DEBUGGER();
0808         return;
0809     }
0810 
0811     if (!link->panel_cntl)
0812         return;
0813     if (power_up !=
0814         link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
0815 
0816         unsigned long long current_ts = dm_get_timestamp(ctx);
0817         unsigned long long time_since_edp_poweroff_ms =
0818                 div64_u64(dm_get_elapse_time_in_ns(
0819                         ctx,
0820                         current_ts,
0821                         dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
0822         unsigned long long time_since_edp_poweron_ms =
0823                 div64_u64(dm_get_elapse_time_in_ns(
0824                         ctx,
0825                         current_ts,
0826                         dp_trace_get_edp_poweron_timestamp(link)), 1000000);
0827         DC_LOG_HW_RESUME_S3(
0828                 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
0829                 __func__,
0830                 power_up,
0831                 current_ts,
0832                 dp_trace_get_edp_poweroff_timestamp(link),
0833                 dp_trace_get_edp_poweron_timestamp(link),
0834                 time_since_edp_poweroff_ms,
0835                 time_since_edp_poweron_ms);
0836 
0837         /* Send VBIOS command to prompt eDP panel power */
0838         if (power_up) {
0839             /* edp requires a min of 500ms from LCDVDD off to on */
0840             unsigned long long remaining_min_edp_poweroff_time_ms = 500;
0841 
0842             /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
0843             if (link->local_sink != NULL)
0844                 remaining_min_edp_poweroff_time_ms +=
0845                     link->local_sink->edid_caps.panel_patch.extra_t12_ms;
0846 
0847             /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
0848             if (dp_trace_get_edp_poweroff_timestamp(link) != 0) {
0849                 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
0850                     remaining_min_edp_poweroff_time_ms =
0851                         remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
0852                 else
0853                     remaining_min_edp_poweroff_time_ms = 0;
0854             }
0855 
0856             if (remaining_min_edp_poweroff_time_ms) {
0857                 DC_LOG_HW_RESUME_S3(
0858                         "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
0859                         __func__, remaining_min_edp_poweroff_time_ms);
0860                 msleep(remaining_min_edp_poweroff_time_ms);
0861                 DC_LOG_HW_RESUME_S3(
0862                         "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
0863                         __func__, remaining_min_edp_poweroff_time_ms);
0864                 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
0865                         __func__, remaining_min_edp_poweroff_time_ms);
0866             } else {
0867                 DC_LOG_HW_RESUME_S3(
0868                         "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
0869                         __func__, remaining_min_edp_poweroff_time_ms);
0870             }
0871         }
0872 
0873         DC_LOG_HW_RESUME_S3(
0874                 "%s: BEGIN: Panel Power action: %s\n",
0875                 __func__, (power_up ? "On":"Off"));
0876 
0877         cntl.action = power_up ?
0878             TRANSMITTER_CONTROL_POWER_ON :
0879             TRANSMITTER_CONTROL_POWER_OFF;
0880         cntl.transmitter = link->link_enc->transmitter;
0881         cntl.connector_obj_id = link->link_enc->connector;
0882         cntl.coherent = false;
0883         cntl.lanes_number = LANE_COUNT_FOUR;
0884         cntl.hpd_sel = link->link_enc->hpd_source;
0885         panel_instance = link->panel_cntl->inst;
0886 
0887         if (ctx->dc->ctx->dmub_srv &&
0888                 ctx->dc->debug.dmub_command_table) {
0889             if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
0890                 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
0891                         LVTMA_CONTROL_POWER_ON,
0892                         panel_instance);
0893             else
0894                 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
0895                         LVTMA_CONTROL_POWER_OFF,
0896                         panel_instance);
0897         }
0898 
0899         bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
0900 
0901         DC_LOG_HW_RESUME_S3(
0902                 "%s: END: Panel Power action: %s bp_result=%u\n",
0903                 __func__, (power_up ? "On":"Off"),
0904                 bp_result);
0905 
0906         dp_trace_set_edp_power_timestamp(link, power_up);
0907 
0908         DC_LOG_HW_RESUME_S3(
0909                 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
0910                 __func__,
0911                 dp_trace_get_edp_poweroff_timestamp(link),
0912                 dp_trace_get_edp_poweron_timestamp(link));
0913 
0914         if (bp_result != BP_RESULT_OK)
0915             DC_LOG_ERROR(
0916                     "%s: Panel Power bp_result: %d\n",
0917                     __func__, bp_result);
0918     } else {
0919         DC_LOG_HW_RESUME_S3(
0920                 "%s: Skipping Panel Power action: %s\n",
0921                 __func__, (power_up ? "On":"Off"));
0922     }
0923 }
0924 
0925 void dce110_edp_wait_for_T12(
0926         struct dc_link *link)
0927 {
0928     struct dc_context *ctx = link->ctx;
0929 
0930     if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
0931             != CONNECTOR_ID_EDP) {
0932         BREAK_TO_DEBUGGER();
0933         return;
0934     }
0935 
0936     if (!link->panel_cntl)
0937         return;
0938 
0939     if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
0940             dp_trace_get_edp_poweroff_timestamp(link) != 0) {
0941         unsigned int t12_duration = 500; // Default T12 as per spec
0942         unsigned long long current_ts = dm_get_timestamp(ctx);
0943         unsigned long long time_since_edp_poweroff_ms =
0944                 div64_u64(dm_get_elapse_time_in_ns(
0945                         ctx,
0946                         current_ts,
0947                         dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
0948 
0949         t12_duration += link->local_sink->edid_caps.panel_patch.extra_t12_ms; // Add extra T12
0950 
0951         if (time_since_edp_poweroff_ms < t12_duration)
0952             msleep(t12_duration - time_since_edp_poweroff_ms);
0953     }
0954 }
0955 
0956 /*todo: cloned in stream enc, fix*/
0957 /*
0958  * @brief
0959  * eDP only. Control the backlight of the eDP panel
0960  */
0961 void dce110_edp_backlight_control(
0962         struct dc_link *link,
0963         bool enable)
0964 {
0965     struct dc_context *ctx = link->ctx;
0966     struct bp_transmitter_control cntl = { 0 };
0967     uint8_t panel_instance;
0968 
0969     if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
0970         != CONNECTOR_ID_EDP) {
0971         BREAK_TO_DEBUGGER();
0972         return;
0973     }
0974 
0975     if (link->panel_cntl) {
0976         bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
0977 
0978         if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
0979             DC_LOG_HW_RESUME_S3(
0980                 "%s: panel already powered up/off. Do nothing.\n",
0981                 __func__);
0982             return;
0983         }
0984     }
0985 
0986     /* Send VBIOS command to control eDP panel backlight */
0987 
0988     DC_LOG_HW_RESUME_S3(
0989             "%s: backlight action: %s\n",
0990             __func__, (enable ? "On":"Off"));
0991 
0992     cntl.action = enable ?
0993         TRANSMITTER_CONTROL_BACKLIGHT_ON :
0994         TRANSMITTER_CONTROL_BACKLIGHT_OFF;
0995 
0996     /*cntl.engine_id = ctx->engine;*/
0997     cntl.transmitter = link->link_enc->transmitter;
0998     cntl.connector_obj_id = link->link_enc->connector;
0999     /*todo: unhardcode*/
1000     cntl.lanes_number = LANE_COUNT_FOUR;
1001     cntl.hpd_sel = link->link_enc->hpd_source;
1002     cntl.signal = SIGNAL_TYPE_EDP;
1003 
1004     /* For eDP, the following delays might need to be considered
1005      * after link training completed:
1006      * idle period - min. accounts for required BS-Idle pattern,
1007      * max. allows for source frame synchronization);
1008      * 50 msec max. delay from valid video data from source
1009      * to video on dislpay or backlight enable.
1010      *
1011      * Disable the delay for now.
1012      * Enable it in the future if necessary.
1013      */
1014     /* dc_service_sleep_in_milliseconds(50); */
1015         /*edp 1.2*/
1016     panel_instance = link->panel_cntl->inst;
1017 
1018     if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1019         if (!link->dc->config.edp_no_power_sequencing)
1020         /*
1021          * Sometimes, DP receiver chip power-controlled externally by an
1022          * Embedded Controller could be treated and used as eDP,
1023          * if it drives mobile display. In this case,
1024          * we shouldn't be doing power-sequencing, hence we can skip
1025          * waiting for T7-ready.
1026          */
1027             edp_receiver_ready_T7(link);
1028         else
1029             DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1030     }
1031 
1032     if (ctx->dc->ctx->dmub_srv &&
1033             ctx->dc->debug.dmub_command_table) {
1034         if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1035             ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1036                     LVTMA_CONTROL_LCD_BLON,
1037                     panel_instance);
1038         else
1039             ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1040                     LVTMA_CONTROL_LCD_BLOFF,
1041                     panel_instance);
1042     }
1043 
1044     link_transmitter_control(ctx->dc_bios, &cntl);
1045 
1046     if (enable && link->dpcd_sink_ext_caps.bits.oled)
1047         msleep(OLED_POST_T7_DELAY);
1048 
1049     if (link->dpcd_sink_ext_caps.bits.oled ||
1050         link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051         link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052         dc_link_backlight_enable_aux(link, enable);
1053 
1054     /*edp 1.2*/
1055     if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056         if (!link->dc->config.edp_no_power_sequencing)
1057         /*
1058          * Sometimes, DP receiver chip power-controlled externally by an
1059          * Embedded Controller could be treated and used as eDP,
1060          * if it drives mobile display. In this case,
1061          * we shouldn't be doing power-sequencing, hence we can skip
1062          * waiting for T9-ready.
1063          */
1064             edp_add_delay_for_T9(link);
1065         else
1066             DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067     }
1068 
1069     if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1070         msleep(OLED_PRE_T11_DELAY);
1071 }
1072 
1073 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1074 {
1075     /* notify audio driver for audio modes of monitor */
1076     struct dc *dc;
1077     struct clk_mgr *clk_mgr;
1078     unsigned int i, num_audio = 1;
1079 
1080     if (!pipe_ctx->stream)
1081         return;
1082 
1083     dc = pipe_ctx->stream->ctx->dc;
1084     clk_mgr = dc->clk_mgr;
1085 
1086     if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1087         return;
1088 
1089     if (pipe_ctx->stream_res.audio) {
1090         for (i = 0; i < MAX_PIPES; i++) {
1091             /*current_state not updated yet*/
1092             if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1093                 num_audio++;
1094         }
1095 
1096         pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1097 
1098         if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1099             /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1100             clk_mgr->funcs->enable_pme_wa(clk_mgr);
1101         /* un-mute audio */
1102         /* TODO: audio should be per stream rather than per link */
1103         if (is_dp_128b_132b_signal(pipe_ctx))
1104             pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1105                     pipe_ctx->stream_res.hpo_dp_stream_enc, false);
1106         else
1107             pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1108                     pipe_ctx->stream_res.stream_enc, false);
1109         if (pipe_ctx->stream_res.audio)
1110             pipe_ctx->stream_res.audio->enabled = true;
1111     }
1112 
1113     if (dc_is_dp_signal(pipe_ctx->stream->signal))
1114         dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_ENABLE_AUDIO_STREAM);
1115 }
1116 
1117 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1118 {
1119     struct dc *dc;
1120     struct clk_mgr *clk_mgr;
1121 
1122     if (!pipe_ctx || !pipe_ctx->stream)
1123         return;
1124 
1125     dc = pipe_ctx->stream->ctx->dc;
1126     clk_mgr = dc->clk_mgr;
1127 
1128     if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1129         return;
1130 
1131     if (is_dp_128b_132b_signal(pipe_ctx))
1132         pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1133                 pipe_ctx->stream_res.hpo_dp_stream_enc, true);
1134     else
1135         pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1136                 pipe_ctx->stream_res.stream_enc, true);
1137     if (pipe_ctx->stream_res.audio) {
1138         pipe_ctx->stream_res.audio->enabled = false;
1139 
1140         if (dc_is_dp_signal(pipe_ctx->stream->signal))
1141             if (is_dp_128b_132b_signal(pipe_ctx))
1142                 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_disable(
1143                         pipe_ctx->stream_res.hpo_dp_stream_enc);
1144             else
1145                 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1146                         pipe_ctx->stream_res.stream_enc);
1147         else
1148             pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1149                     pipe_ctx->stream_res.stream_enc);
1150 
1151         if (clk_mgr->funcs->enable_pme_wa)
1152             /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1153             clk_mgr->funcs->enable_pme_wa(clk_mgr);
1154 
1155         /* TODO: notify audio driver for if audio modes list changed
1156          * add audio mode list change flag */
1157         /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1158          * stream->stream_engine_id);
1159          */
1160     }
1161 
1162     if (dc_is_dp_signal(pipe_ctx->stream->signal))
1163         dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_DISABLE_AUDIO_STREAM);
1164 }
1165 
1166 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1167 {
1168     struct dc_stream_state *stream = pipe_ctx->stream;
1169     struct dc_link *link = stream->link;
1170     struct dc *dc = pipe_ctx->stream->ctx->dc;
1171     const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1172 
1173     if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1174         pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1175             pipe_ctx->stream_res.stream_enc);
1176         pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1177             pipe_ctx->stream_res.stream_enc);
1178     }
1179 
1180     if (is_dp_128b_132b_signal(pipe_ctx)) {
1181         pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1182                     pipe_ctx->stream_res.hpo_dp_stream_enc);
1183     } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1184         pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1185             pipe_ctx->stream_res.stream_enc);
1186 
1187     dc->hwss.disable_audio_stream(pipe_ctx);
1188 
1189     link_hwss->reset_stream_encoder(pipe_ctx);
1190 
1191     if (is_dp_128b_132b_signal(pipe_ctx)) {
1192         /* TODO: This looks like a bug to me as we are disabling HPO IO when
1193          * we are just disabling a single HPO stream. Shouldn't we disable HPO
1194          * HW control only when HPOs for all streams are disabled?
1195          */
1196         if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1197             pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1198                     pipe_ctx->stream->ctx->dc->hwseq, false);
1199     }
1200 }
1201 
1202 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1203         struct dc_link_settings *link_settings)
1204 {
1205     struct encoder_unblank_param params = { { 0 } };
1206     struct dc_stream_state *stream = pipe_ctx->stream;
1207     struct dc_link *link = stream->link;
1208     struct dce_hwseq *hws = link->dc->hwseq;
1209 
1210     /* only 3 items below are used by unblank */
1211     params.timing = pipe_ctx->stream->timing;
1212     params.link_settings.link_rate = link_settings->link_rate;
1213 
1214     if (dc_is_dp_signal(pipe_ctx->stream->signal))
1215         pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1216 
1217     if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1218         hws->funcs.edp_backlight_control(link, true);
1219     }
1220 }
1221 
1222 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1223 {
1224     struct dc_stream_state *stream = pipe_ctx->stream;
1225     struct dc_link *link = stream->link;
1226     struct dce_hwseq *hws = link->dc->hwseq;
1227 
1228     if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229         hws->funcs.edp_backlight_control(link, false);
1230         link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1231     }
1232 
1233     if (is_dp_128b_132b_signal(pipe_ctx)) {
1234         /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1235         pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1236                 pipe_ctx->stream_res.hpo_dp_stream_enc);
1237     } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1238         pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1239 
1240         if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1241             /*
1242              * After output is idle pattern some sinks need time to recognize the stream
1243              * has changed or they enter protection state and hang.
1244              */
1245             msleep(60);
1246         } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1247             if (!link->dc->config.edp_no_power_sequencing) {
1248                 /*
1249                  * Sometimes, DP receiver chip power-controlled externally by an
1250                  * Embedded Controller could be treated and used as eDP,
1251                  * if it drives mobile display. In this case,
1252                  * we shouldn't be doing power-sequencing, hence we can skip
1253                  * waiting for T9-ready.
1254                  */
1255                 edp_receiver_ready_T9(link);
1256             }
1257         }
1258     }
1259 
1260 }
1261 
1262 
1263 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1264 {
1265     if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1266         pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1267 }
1268 
1269 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1270 {
1271     switch (crtc_id) {
1272     case CONTROLLER_ID_D0:
1273         return DTO_SOURCE_ID0;
1274     case CONTROLLER_ID_D1:
1275         return DTO_SOURCE_ID1;
1276     case CONTROLLER_ID_D2:
1277         return DTO_SOURCE_ID2;
1278     case CONTROLLER_ID_D3:
1279         return DTO_SOURCE_ID3;
1280     case CONTROLLER_ID_D4:
1281         return DTO_SOURCE_ID4;
1282     case CONTROLLER_ID_D5:
1283         return DTO_SOURCE_ID5;
1284     default:
1285         return DTO_SOURCE_UNKNOWN;
1286     }
1287 }
1288 
1289 static void build_audio_output(
1290     struct dc_state *state,
1291     const struct pipe_ctx *pipe_ctx,
1292     struct audio_output *audio_output)
1293 {
1294     const struct dc_stream_state *stream = pipe_ctx->stream;
1295     audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1296 
1297     audio_output->signal = pipe_ctx->stream->signal;
1298 
1299     /* audio_crtc_info  */
1300 
1301     audio_output->crtc_info.h_total =
1302         stream->timing.h_total;
1303 
1304     /*
1305      * Audio packets are sent during actual CRTC blank physical signal, we
1306      * need to specify actual active signal portion
1307      */
1308     audio_output->crtc_info.h_active =
1309             stream->timing.h_addressable
1310             + stream->timing.h_border_left
1311             + stream->timing.h_border_right;
1312 
1313     audio_output->crtc_info.v_active =
1314             stream->timing.v_addressable
1315             + stream->timing.v_border_top
1316             + stream->timing.v_border_bottom;
1317 
1318     audio_output->crtc_info.pixel_repetition = 1;
1319 
1320     audio_output->crtc_info.interlaced =
1321             stream->timing.flags.INTERLACE;
1322 
1323     audio_output->crtc_info.refresh_rate =
1324         (stream->timing.pix_clk_100hz*100)/
1325         (stream->timing.h_total*stream->timing.v_total);
1326 
1327     audio_output->crtc_info.color_depth =
1328         stream->timing.display_color_depth;
1329 
1330     audio_output->crtc_info.requested_pixel_clock_100Hz =
1331             pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1332 
1333     audio_output->crtc_info.calculated_pixel_clock_100Hz =
1334             pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1335 
1336 /*for HDMI, audio ACR is with deep color ratio factor*/
1337     if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1338         audio_output->crtc_info.requested_pixel_clock_100Hz ==
1339                 (stream->timing.pix_clk_100hz)) {
1340         if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1341             audio_output->crtc_info.requested_pixel_clock_100Hz =
1342                     audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1343             audio_output->crtc_info.calculated_pixel_clock_100Hz =
1344                     pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1345 
1346         }
1347     }
1348 
1349     if (state->clk_mgr &&
1350         (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1351             pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1352         audio_output->pll_info.dp_dto_source_clock_in_khz =
1353                 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1354                         state->clk_mgr);
1355     }
1356 
1357     audio_output->pll_info.feed_back_divider =
1358             pipe_ctx->pll_settings.feedback_divider;
1359 
1360     audio_output->pll_info.dto_source =
1361         translate_to_dto_source(
1362             pipe_ctx->stream_res.tg->inst + 1);
1363 
1364     /* TODO hard code to enable for now. Need get from stream */
1365     audio_output->pll_info.ss_enabled = true;
1366 
1367     audio_output->pll_info.ss_percentage =
1368             pipe_ctx->pll_settings.ss_percentage;
1369 }
1370 
1371 static void program_scaler(const struct dc *dc,
1372         const struct pipe_ctx *pipe_ctx)
1373 {
1374     struct tg_color color = {0};
1375 
1376     /* TOFPGA */
1377     if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1378         return;
1379 
1380     if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1381         get_surface_visual_confirm_color(pipe_ctx, &color);
1382     else
1383         color_space_to_black_color(dc,
1384                 pipe_ctx->stream->output_color_space,
1385                 &color);
1386 
1387     pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1388         pipe_ctx->plane_res.xfm,
1389         pipe_ctx->plane_res.scl_data.lb_params.depth,
1390         &pipe_ctx->stream->bit_depth_params);
1391 
1392     if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1393         /*
1394          * The way 420 is packed, 2 channels carry Y component, 1 channel
1395          * alternate between Cb and Cr, so both channels need the pixel
1396          * value for Y
1397          */
1398         if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1399             color.color_r_cr = color.color_g_y;
1400 
1401         pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1402                 pipe_ctx->stream_res.tg,
1403                 &color);
1404     }
1405 
1406     pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1407         &pipe_ctx->plane_res.scl_data);
1408 }
1409 
1410 static enum dc_status dce110_enable_stream_timing(
1411         struct pipe_ctx *pipe_ctx,
1412         struct dc_state *context,
1413         struct dc *dc)
1414 {
1415     struct dc_stream_state *stream = pipe_ctx->stream;
1416     struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1417             pipe_ctx[pipe_ctx->pipe_idx];
1418     struct tg_color black_color = {0};
1419 
1420     if (!pipe_ctx_old->stream) {
1421 
1422         /* program blank color */
1423         color_space_to_black_color(dc,
1424                 stream->output_color_space, &black_color);
1425         pipe_ctx->stream_res.tg->funcs->set_blank_color(
1426                 pipe_ctx->stream_res.tg,
1427                 &black_color);
1428 
1429         /*
1430          * Must blank CRTC after disabling power gating and before any
1431          * programming, otherwise CRTC will be hung in bad state
1432          */
1433         pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1434 
1435         if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1436                 pipe_ctx->clock_source,
1437                 &pipe_ctx->stream_res.pix_clk_params,
1438                 dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1439                 &pipe_ctx->pll_settings)) {
1440             BREAK_TO_DEBUGGER();
1441             return DC_ERROR_UNEXPECTED;
1442         }
1443 
1444         pipe_ctx->stream_res.tg->funcs->program_timing(
1445                 pipe_ctx->stream_res.tg,
1446                 &stream->timing,
1447                 0,
1448                 0,
1449                 0,
1450                 0,
1451                 pipe_ctx->stream->signal,
1452                 true);
1453     }
1454 
1455     if (!pipe_ctx_old->stream) {
1456         if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1457                 pipe_ctx->stream_res.tg)) {
1458             BREAK_TO_DEBUGGER();
1459             return DC_ERROR_UNEXPECTED;
1460         }
1461     }
1462 
1463     return DC_OK;
1464 }
1465 
1466 static enum dc_status apply_single_controller_ctx_to_hw(
1467         struct pipe_ctx *pipe_ctx,
1468         struct dc_state *context,
1469         struct dc *dc)
1470 {
1471     struct dc_stream_state *stream = pipe_ctx->stream;
1472     struct dc_link *link = stream->link;
1473     struct drr_params params = {0};
1474     unsigned int event_triggers = 0;
1475     struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1476     struct dce_hwseq *hws = dc->hwseq;
1477 
1478     if (hws->funcs.disable_stream_gating) {
1479         hws->funcs.disable_stream_gating(dc, pipe_ctx);
1480     }
1481 
1482     if (pipe_ctx->stream_res.audio != NULL) {
1483         struct audio_output audio_output;
1484 
1485         build_audio_output(context, pipe_ctx, &audio_output);
1486 
1487         if (dc_is_dp_signal(pipe_ctx->stream->signal))
1488             if (is_dp_128b_132b_signal(pipe_ctx))
1489                 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_setup(
1490                         pipe_ctx->stream_res.hpo_dp_stream_enc,
1491                         pipe_ctx->stream_res.audio->inst,
1492                         &pipe_ctx->stream->audio_info);
1493             else
1494                 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1495                         pipe_ctx->stream_res.stream_enc,
1496                         pipe_ctx->stream_res.audio->inst,
1497                         &pipe_ctx->stream->audio_info);
1498         else
1499             pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1500                     pipe_ctx->stream_res.stream_enc,
1501                     pipe_ctx->stream_res.audio->inst,
1502                     &pipe_ctx->stream->audio_info,
1503                     &audio_output.crtc_info);
1504 
1505         pipe_ctx->stream_res.audio->funcs->az_configure(
1506                 pipe_ctx->stream_res.audio,
1507                 pipe_ctx->stream->signal,
1508                 &audio_output.crtc_info,
1509                 &pipe_ctx->stream->audio_info);
1510     }
1511 
1512     /* make sure no pipes syncd to the pipe being enabled */
1513     if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1514         check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1515 
1516     pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1517         pipe_ctx->stream_res.opp,
1518         &stream->bit_depth_params,
1519         &stream->clamping);
1520 
1521     pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1522             pipe_ctx->stream_res.opp,
1523             COLOR_SPACE_YCBCR601,
1524             stream->timing.display_color_depth,
1525             stream->signal);
1526 
1527     while (odm_pipe) {
1528         odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1529                 odm_pipe->stream_res.opp,
1530                 COLOR_SPACE_YCBCR601,
1531                 stream->timing.display_color_depth,
1532                 stream->signal);
1533 
1534         odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1535                 odm_pipe->stream_res.opp,
1536                 &stream->bit_depth_params,
1537                 &stream->clamping);
1538         odm_pipe = odm_pipe->next_odm_pipe;
1539     }
1540 
1541     /* DCN3.1 FPGA Workaround
1542      * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1543      * To do so, move calling function enable_stream_timing to only be done AFTER calling
1544      * function core_link_enable_stream
1545      */
1546     if (!(hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)))
1547         /*  */
1548         /* Do not touch stream timing on seamless boot optimization. */
1549         if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1550             hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1551 
1552     if (hws->funcs.setup_vupdate_interrupt)
1553         hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1554 
1555     params.vertical_total_min = stream->adjust.v_total_min;
1556     params.vertical_total_max = stream->adjust.v_total_max;
1557     if (pipe_ctx->stream_res.tg->funcs->set_drr)
1558         pipe_ctx->stream_res.tg->funcs->set_drr(
1559             pipe_ctx->stream_res.tg, &params);
1560 
1561     // DRR should set trigger event to monitor surface update event
1562     if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1563         event_triggers = 0x80;
1564     /* Event triggers and num frames initialized for DRR, but can be
1565      * later updated for PSR use. Note DRR trigger events are generated
1566      * regardless of whether num frames met.
1567      */
1568     if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1569         pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1570                 pipe_ctx->stream_res.tg, event_triggers, 2);
1571 
1572     if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1573         pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1574             pipe_ctx->stream_res.stream_enc,
1575             pipe_ctx->stream_res.tg->inst);
1576 
1577     if (dc_is_dp_signal(pipe_ctx->stream->signal))
1578         dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1579 
1580     if (!stream->dpms_off)
1581         core_link_enable_stream(context, pipe_ctx);
1582 
1583     /* DCN3.1 FPGA Workaround
1584      * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1585      * To do so, move calling function enable_stream_timing to only be done AFTER calling
1586      * function core_link_enable_stream
1587      */
1588     if (hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)) {
1589         if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1590             hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1591     }
1592 
1593     pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1594 
1595     pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1596 
1597     return DC_OK;
1598 }
1599 
1600 /******************************************************************************/
1601 
1602 static void power_down_encoders(struct dc *dc)
1603 {
1604     int i;
1605 
1606     for (i = 0; i < dc->link_count; i++) {
1607         enum signal_type signal = dc->links[i]->connector_signal;
1608 
1609         dc_link_blank_dp_stream(dc->links[i], false);
1610 
1611         if (signal != SIGNAL_TYPE_EDP)
1612             signal = SIGNAL_TYPE_NONE;
1613 
1614         if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1615             dc->links[i]->link_enc->funcs->disable_output(
1616                     dc->links[i]->link_enc, signal);
1617 
1618         dc->links[i]->link_status.link_active = false;
1619         memset(&dc->links[i]->cur_link_settings, 0,
1620                 sizeof(dc->links[i]->cur_link_settings));
1621     }
1622 }
1623 
1624 static void power_down_controllers(struct dc *dc)
1625 {
1626     int i;
1627 
1628     for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1629         dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1630                 dc->res_pool->timing_generators[i]);
1631     }
1632 }
1633 
1634 static void power_down_clock_sources(struct dc *dc)
1635 {
1636     int i;
1637 
1638     if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1639         dc->res_pool->dp_clock_source) == false)
1640         dm_error("Failed to power down pll! (dp clk src)\n");
1641 
1642     for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1643         if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1644                 dc->res_pool->clock_sources[i]) == false)
1645             dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1646     }
1647 }
1648 
1649 static void power_down_all_hw_blocks(struct dc *dc)
1650 {
1651     power_down_encoders(dc);
1652 
1653     power_down_controllers(dc);
1654 
1655     power_down_clock_sources(dc);
1656 
1657     if (dc->fbc_compressor)
1658         dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1659 }
1660 
1661 static void disable_vga_and_power_gate_all_controllers(
1662         struct dc *dc)
1663 {
1664     int i;
1665     struct timing_generator *tg;
1666     struct dc_context *ctx = dc->ctx;
1667 
1668     for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1669         tg = dc->res_pool->timing_generators[i];
1670 
1671         if (tg->funcs->disable_vga)
1672             tg->funcs->disable_vga(tg);
1673     }
1674     for (i = 0; i < dc->res_pool->pipe_count; i++) {
1675         /* Enable CLOCK gating for each pipe BEFORE controller
1676          * powergating. */
1677         enable_display_pipe_clock_gating(ctx,
1678                 true);
1679 
1680         dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1681         dc->hwss.disable_plane(dc,
1682             &dc->current_state->res_ctx.pipe_ctx[i]);
1683     }
1684 }
1685 
1686 
1687 static void get_edp_streams(struct dc_state *context,
1688         struct dc_stream_state **edp_streams,
1689         int *edp_stream_num)
1690 {
1691     int i;
1692 
1693     *edp_stream_num = 0;
1694     for (i = 0; i < context->stream_count; i++) {
1695         if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1696             edp_streams[*edp_stream_num] = context->streams[i];
1697             if (++(*edp_stream_num) == MAX_NUM_EDP)
1698                 return;
1699         }
1700     }
1701 }
1702 
1703 static void get_edp_links_with_sink(
1704         struct dc *dc,
1705         struct dc_link **edp_links_with_sink,
1706         int *edp_with_sink_num)
1707 {
1708     int i;
1709 
1710     /* check if there is an eDP panel not in use */
1711     *edp_with_sink_num = 0;
1712     for (i = 0; i < dc->link_count; i++) {
1713         if (dc->links[i]->local_sink &&
1714             dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1715             edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1716             if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1717                 return;
1718         }
1719     }
1720 }
1721 
1722 /*
1723  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1724  *  1. Power down all DC HW blocks
1725  *  2. Disable VGA engine on all controllers
1726  *  3. Enable power gating for controller
1727  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1728  */
1729 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1730 {
1731     struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1732     struct dc_link *edp_links[MAX_NUM_EDP];
1733     struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1734     struct dc_link *edp_link_with_sink = NULL;
1735     struct dc_link *edp_link = NULL;
1736     struct dce_hwseq *hws = dc->hwseq;
1737     int edp_with_sink_num;
1738     int edp_num;
1739     int edp_stream_num;
1740     int i;
1741     bool can_apply_edp_fast_boot = false;
1742     bool can_apply_seamless_boot = false;
1743     bool keep_edp_vdd_on = false;
1744     DC_LOGGER_INIT();
1745 
1746 
1747     get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1748     get_edp_links(dc, edp_links, &edp_num);
1749 
1750     if (hws->funcs.init_pipes)
1751         hws->funcs.init_pipes(dc, context);
1752 
1753     get_edp_streams(context, edp_streams, &edp_stream_num);
1754 
1755     // Check fastboot support, disable on DCE8 because of blank screens
1756     if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1757             dc->ctx->dce_version != DCE_VERSION_8_1 &&
1758             dc->ctx->dce_version != DCE_VERSION_8_3) {
1759         for (i = 0; i < edp_num; i++) {
1760             edp_link = edp_links[i];
1761             if (edp_link != edp_streams[0]->link)
1762                 continue;
1763             // enable fastboot if backend is enabled on eDP
1764             if (edp_link->link_enc->funcs->is_dig_enabled &&
1765                 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1766                 edp_link->link_status.link_active) {
1767                 struct dc_stream_state *edp_stream = edp_streams[0];
1768 
1769                 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1770                     edp_stream->sink, &edp_stream->timing);
1771                 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1772                 if (can_apply_edp_fast_boot)
1773                     DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1774 
1775                 break;
1776             }
1777         }
1778         // We are trying to enable eDP, don't power down VDD
1779         if (can_apply_edp_fast_boot)
1780             keep_edp_vdd_on = true;
1781     }
1782 
1783     // Check seamless boot support
1784     for (i = 0; i < context->stream_count; i++) {
1785         if (context->streams[i]->apply_seamless_boot_optimization) {
1786             can_apply_seamless_boot = true;
1787             break;
1788         }
1789     }
1790 
1791     /* eDP should not have stream in resume from S4 and so even with VBios post
1792      * it should get turned off
1793      */
1794     if (edp_with_sink_num)
1795         edp_link_with_sink = edp_links_with_sink[0];
1796 
1797     if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1798         if (edp_link_with_sink && !keep_edp_vdd_on) {
1799             /*turn off backlight before DP_blank and encoder powered down*/
1800             hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1801         }
1802         /*resume from S3, no vbios posting, no need to power down again*/
1803         power_down_all_hw_blocks(dc);
1804         disable_vga_and_power_gate_all_controllers(dc);
1805         if (edp_link_with_sink && !keep_edp_vdd_on)
1806             dc->hwss.edp_power_control(edp_link_with_sink, false);
1807     }
1808     bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1809 }
1810 
1811 static uint32_t compute_pstate_blackout_duration(
1812     struct bw_fixed blackout_duration,
1813     const struct dc_stream_state *stream)
1814 {
1815     uint32_t total_dest_line_time_ns;
1816     uint32_t pstate_blackout_duration_ns;
1817 
1818     pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1819 
1820     total_dest_line_time_ns = 1000000UL *
1821         (stream->timing.h_total * 10) /
1822         stream->timing.pix_clk_100hz +
1823         pstate_blackout_duration_ns;
1824 
1825     return total_dest_line_time_ns;
1826 }
1827 
1828 static void dce110_set_displaymarks(
1829     const struct dc *dc,
1830     struct dc_state *context)
1831 {
1832     uint8_t i, num_pipes;
1833     unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1834 
1835     for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1836         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1837         uint32_t total_dest_line_time_ns;
1838 
1839         if (pipe_ctx->stream == NULL)
1840             continue;
1841 
1842         total_dest_line_time_ns = compute_pstate_blackout_duration(
1843             dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1844         pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1845             pipe_ctx->plane_res.mi,
1846             context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1847             context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1848             context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1849             context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1850             total_dest_line_time_ns);
1851         if (i == underlay_idx) {
1852             num_pipes++;
1853             pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1854                 pipe_ctx->plane_res.mi,
1855                 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1856                 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1857                 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1858                 total_dest_line_time_ns);
1859         }
1860         num_pipes++;
1861     }
1862 }
1863 
1864 void dce110_set_safe_displaymarks(
1865         struct resource_context *res_ctx,
1866         const struct resource_pool *pool)
1867 {
1868     int i;
1869     int underlay_idx = pool->underlay_pipe_index;
1870     struct dce_watermarks max_marks = {
1871         MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1872     struct dce_watermarks nbp_marks = {
1873         SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1874     struct dce_watermarks min_marks = { 0, 0, 0, 0};
1875 
1876     for (i = 0; i < MAX_PIPES; i++) {
1877         if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1878             continue;
1879 
1880         res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1881                 res_ctx->pipe_ctx[i].plane_res.mi,
1882                 nbp_marks,
1883                 max_marks,
1884                 min_marks,
1885                 max_marks,
1886                 MAX_WATERMARK);
1887 
1888         if (i == underlay_idx)
1889             res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1890                 res_ctx->pipe_ctx[i].plane_res.mi,
1891                 nbp_marks,
1892                 max_marks,
1893                 max_marks,
1894                 MAX_WATERMARK);
1895 
1896     }
1897 }
1898 
1899 /*******************************************************************************
1900  * Public functions
1901  ******************************************************************************/
1902 
1903 static void set_drr(struct pipe_ctx **pipe_ctx,
1904         int num_pipes, struct dc_crtc_timing_adjust adjust)
1905 {
1906     int i = 0;
1907     struct drr_params params = {0};
1908     // DRR should set trigger event to monitor surface update event
1909     unsigned int event_triggers = 0x80;
1910     // Note DRR trigger events are generated regardless of whether num frames met.
1911     unsigned int num_frames = 2;
1912 
1913     params.vertical_total_max = adjust.v_total_max;
1914     params.vertical_total_min = adjust.v_total_min;
1915 
1916     /* TODO: If multiple pipes are to be supported, you need
1917      * some GSL stuff. Static screen triggers may be programmed differently
1918      * as well.
1919      */
1920     for (i = 0; i < num_pipes; i++) {
1921         pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1922             pipe_ctx[i]->stream_res.tg, &params);
1923 
1924         if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1925             pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1926                     pipe_ctx[i]->stream_res.tg,
1927                     event_triggers, num_frames);
1928     }
1929 }
1930 
1931 static void get_position(struct pipe_ctx **pipe_ctx,
1932         int num_pipes,
1933         struct crtc_position *position)
1934 {
1935     int i = 0;
1936 
1937     /* TODO: handle pipes > 1
1938      */
1939     for (i = 0; i < num_pipes; i++)
1940         pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1941 }
1942 
1943 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1944         int num_pipes, const struct dc_static_screen_params *params)
1945 {
1946     unsigned int i;
1947     unsigned int triggers = 0;
1948 
1949     if (params->triggers.overlay_update)
1950         triggers |= 0x100;
1951     if (params->triggers.surface_update)
1952         triggers |= 0x80;
1953     if (params->triggers.cursor_update)
1954         triggers |= 0x2;
1955     if (params->triggers.force_trigger)
1956         triggers |= 0x1;
1957 
1958     if (num_pipes) {
1959         struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1960 
1961         if (dc->fbc_compressor)
1962             triggers |= 0x84;
1963     }
1964 
1965     for (i = 0; i < num_pipes; i++)
1966         pipe_ctx[i]->stream_res.tg->funcs->
1967             set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1968                     triggers, params->num_frames);
1969 }
1970 
1971 /*
1972  *  Check if FBC can be enabled
1973  */
1974 static bool should_enable_fbc(struct dc *dc,
1975         struct dc_state *context,
1976         uint32_t *pipe_idx)
1977 {
1978     uint32_t i;
1979     struct pipe_ctx *pipe_ctx = NULL;
1980     struct resource_context *res_ctx = &context->res_ctx;
1981     unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1982 
1983 
1984     ASSERT(dc->fbc_compressor);
1985 
1986     /* FBC memory should be allocated */
1987     if (!dc->ctx->fbc_gpu_addr)
1988         return false;
1989 
1990     /* Only supports single display */
1991     if (context->stream_count != 1)
1992         return false;
1993 
1994     for (i = 0; i < dc->res_pool->pipe_count; i++) {
1995         if (res_ctx->pipe_ctx[i].stream) {
1996 
1997             pipe_ctx = &res_ctx->pipe_ctx[i];
1998 
1999             if (!pipe_ctx)
2000                 continue;
2001 
2002             /* fbc not applicable on underlay pipe */
2003             if (pipe_ctx->pipe_idx != underlay_idx) {
2004                 *pipe_idx = i;
2005                 break;
2006             }
2007         }
2008     }
2009 
2010     if (i == dc->res_pool->pipe_count)
2011         return false;
2012 
2013     if (!pipe_ctx->stream->link)
2014         return false;
2015 
2016     /* Only supports eDP */
2017     if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2018         return false;
2019 
2020     /* PSR should not be enabled */
2021     if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2022         return false;
2023 
2024     /* Nothing to compress */
2025     if (!pipe_ctx->plane_state)
2026         return false;
2027 
2028     /* Only for non-linear tiling */
2029     if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2030         return false;
2031 
2032     return true;
2033 }
2034 
2035 /*
2036  *  Enable FBC
2037  */
2038 static void enable_fbc(
2039         struct dc *dc,
2040         struct dc_state *context)
2041 {
2042     uint32_t pipe_idx = 0;
2043 
2044     if (should_enable_fbc(dc, context, &pipe_idx)) {
2045         /* Program GRPH COMPRESSED ADDRESS and PITCH */
2046         struct compr_addr_and_pitch_params params = {0, 0, 0};
2047         struct compressor *compr = dc->fbc_compressor;
2048         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2049 
2050         params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2051         params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2052         params.inst = pipe_ctx->stream_res.tg->inst;
2053         compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2054 
2055         compr->funcs->surface_address_and_pitch(compr, &params);
2056         compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2057 
2058         compr->funcs->enable_fbc(compr, &params);
2059     }
2060 }
2061 
2062 static void dce110_reset_hw_ctx_wrap(
2063         struct dc *dc,
2064         struct dc_state *context)
2065 {
2066     int i;
2067 
2068     /* Reset old context */
2069     /* look up the targets that have been removed since last commit */
2070     for (i = 0; i < MAX_PIPES; i++) {
2071         struct pipe_ctx *pipe_ctx_old =
2072             &dc->current_state->res_ctx.pipe_ctx[i];
2073         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2074 
2075         /* Note: We need to disable output if clock sources change,
2076          * since bios does optimization and doesn't apply if changing
2077          * PHY when not already disabled.
2078          */
2079 
2080         /* Skip underlay pipe since it will be handled in commit surface*/
2081         if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2082             continue;
2083 
2084         if (!pipe_ctx->stream ||
2085                 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2086             struct clock_source *old_clk = pipe_ctx_old->clock_source;
2087 
2088             /* Disable if new stream is null. O/w, if stream is
2089              * disabled already, no need to disable again.
2090              */
2091             if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2092                 core_link_disable_stream(pipe_ctx_old);
2093 
2094                 /* free acquired resources*/
2095                 if (pipe_ctx_old->stream_res.audio) {
2096                     /*disable az_endpoint*/
2097                     pipe_ctx_old->stream_res.audio->funcs->
2098                             az_disable(pipe_ctx_old->stream_res.audio);
2099 
2100                     /*free audio*/
2101                     if (dc->caps.dynamic_audio == true) {
2102                         /*we have to dynamic arbitrate the audio endpoints*/
2103                         /*we free the resource, need reset is_audio_acquired*/
2104                         update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2105                                 pipe_ctx_old->stream_res.audio, false);
2106                         pipe_ctx_old->stream_res.audio = NULL;
2107                     }
2108                 }
2109             }
2110 
2111             pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2112             if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2113                 dm_error("DC: failed to blank crtc!\n");
2114                 BREAK_TO_DEBUGGER();
2115             }
2116             pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2117             pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2118                     pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2119 
2120             if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2121                                         dc->res_pool,
2122                                         old_clk))
2123                 old_clk->funcs->cs_power_down(old_clk);
2124 
2125             dc->hwss.disable_plane(dc, pipe_ctx_old);
2126 
2127             pipe_ctx_old->stream = NULL;
2128         }
2129     }
2130 }
2131 
2132 static void dce110_setup_audio_dto(
2133         struct dc *dc,
2134         struct dc_state *context)
2135 {
2136     int i;
2137 
2138     /* program audio wall clock. use HDMI as clock source if HDMI
2139      * audio active. Otherwise, use DP as clock source
2140      * first, loop to find any HDMI audio, if not, loop find DP audio
2141      */
2142     /* Setup audio rate clock source */
2143     /* Issue:
2144     * Audio lag happened on DP monitor when unplug a HDMI monitor
2145     *
2146     * Cause:
2147     * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2148     * is set to either dto0 or dto1, audio should work fine.
2149     * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2150     * set to dto0 will cause audio lag.
2151     *
2152     * Solution:
2153     * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2154     * find first available pipe with audio, setup audio wall DTO per topology
2155     * instead of per pipe.
2156     */
2157     for (i = 0; i < dc->res_pool->pipe_count; i++) {
2158         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2159 
2160         if (pipe_ctx->stream == NULL)
2161             continue;
2162 
2163         if (pipe_ctx->top_pipe)
2164             continue;
2165         if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2166             continue;
2167         if (pipe_ctx->stream_res.audio != NULL) {
2168             struct audio_output audio_output;
2169 
2170             build_audio_output(context, pipe_ctx, &audio_output);
2171 
2172             if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2173                 struct dtbclk_dto_params dto_params = {0};
2174 
2175                 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2176                     dc->res_pool->dccg, &dto_params);
2177 
2178                 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2179                         pipe_ctx->stream_res.audio,
2180                         pipe_ctx->stream->signal,
2181                         &audio_output.crtc_info,
2182                         &audio_output.pll_info);
2183             } else
2184                 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2185                     pipe_ctx->stream_res.audio,
2186                     pipe_ctx->stream->signal,
2187                     &audio_output.crtc_info,
2188                     &audio_output.pll_info);
2189             break;
2190         }
2191     }
2192 
2193     /* no HDMI audio is found, try DP audio */
2194     if (i == dc->res_pool->pipe_count) {
2195         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2196             struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2197 
2198             if (pipe_ctx->stream == NULL)
2199                 continue;
2200 
2201             if (pipe_ctx->top_pipe)
2202                 continue;
2203 
2204             if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2205                 continue;
2206 
2207             if (pipe_ctx->stream_res.audio != NULL) {
2208                 struct audio_output audio_output;
2209 
2210                 build_audio_output(context, pipe_ctx, &audio_output);
2211 
2212                 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2213                     pipe_ctx->stream_res.audio,
2214                     pipe_ctx->stream->signal,
2215                     &audio_output.crtc_info,
2216                     &audio_output.pll_info);
2217                 break;
2218             }
2219         }
2220     }
2221 }
2222 
2223 enum dc_status dce110_apply_ctx_to_hw(
2224         struct dc *dc,
2225         struct dc_state *context)
2226 {
2227     struct dce_hwseq *hws = dc->hwseq;
2228     struct dc_bios *dcb = dc->ctx->dc_bios;
2229     enum dc_status status;
2230     int i;
2231 
2232     /* reset syncd pipes from disabled pipes */
2233     if (dc->config.use_pipe_ctx_sync_logic)
2234         reset_syncd_pipes_from_disabled_pipes(dc, context);
2235 
2236     /* Reset old context */
2237     /* look up the targets that have been removed since last commit */
2238     hws->funcs.reset_hw_ctx_wrap(dc, context);
2239 
2240     /* Skip applying if no targets */
2241     if (context->stream_count <= 0)
2242         return DC_OK;
2243 
2244     /* Apply new context */
2245     dcb->funcs->set_scratch_critical_state(dcb, true);
2246 
2247     /* below is for real asic only */
2248     for (i = 0; i < dc->res_pool->pipe_count; i++) {
2249         struct pipe_ctx *pipe_ctx_old =
2250                     &dc->current_state->res_ctx.pipe_ctx[i];
2251         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2252 
2253         if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2254             continue;
2255 
2256         if (pipe_ctx->stream == pipe_ctx_old->stream) {
2257             if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2258                 dce_crtc_switch_to_clk_src(dc->hwseq,
2259                         pipe_ctx->clock_source, i);
2260             continue;
2261         }
2262 
2263         hws->funcs.enable_display_power_gating(
2264                 dc, i, dc->ctx->dc_bios,
2265                 PIPE_GATING_CONTROL_DISABLE);
2266     }
2267 
2268     if (dc->fbc_compressor)
2269         dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2270 
2271     dce110_setup_audio_dto(dc, context);
2272 
2273     for (i = 0; i < dc->res_pool->pipe_count; i++) {
2274         struct pipe_ctx *pipe_ctx_old =
2275                     &dc->current_state->res_ctx.pipe_ctx[i];
2276         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2277 
2278         if (pipe_ctx->stream == NULL)
2279             continue;
2280 
2281         if (pipe_ctx->stream == pipe_ctx_old->stream &&
2282             pipe_ctx->stream->link->link_state_valid) {
2283             continue;
2284         }
2285 
2286         if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2287             continue;
2288 
2289         if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2290             continue;
2291 
2292         status = apply_single_controller_ctx_to_hw(
2293                 pipe_ctx,
2294                 context,
2295                 dc);
2296 
2297         if (DC_OK != status)
2298             return status;
2299     }
2300 
2301     if (dc->fbc_compressor)
2302         enable_fbc(dc, dc->current_state);
2303 
2304     dcb->funcs->set_scratch_critical_state(dcb, false);
2305 
2306     return DC_OK;
2307 }
2308 
2309 /*******************************************************************************
2310  * Front End programming
2311  ******************************************************************************/
2312 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2313 {
2314     struct default_adjustment default_adjust = { 0 };
2315 
2316     default_adjust.force_hw_default = false;
2317     default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2318     default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2319     default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2320     default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2321 
2322     /* display color depth */
2323     default_adjust.color_depth =
2324         pipe_ctx->stream->timing.display_color_depth;
2325 
2326     /* Lb color depth */
2327     default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2328 
2329     pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2330                     pipe_ctx->plane_res.xfm, &default_adjust);
2331 }
2332 
2333 
2334 /*******************************************************************************
2335  * In order to turn on/off specific surface we will program
2336  * Blender + CRTC
2337  *
2338  * In case that we have two surfaces and they have a different visibility
2339  * we can't turn off the CRTC since it will turn off the entire display
2340  *
2341  * |----------------------------------------------- |
2342  * |bottom pipe|curr pipe  |              |         |
2343  * |Surface    |Surface    | Blender      |  CRCT   |
2344  * |visibility |visibility | Configuration|         |
2345  * |------------------------------------------------|
2346  * |   off     |    off    | CURRENT_PIPE | blank   |
2347  * |   off     |    on     | CURRENT_PIPE | unblank |
2348  * |   on      |    off    | OTHER_PIPE   | unblank |
2349  * |   on      |    on     | BLENDING     | unblank |
2350  * -------------------------------------------------|
2351  *
2352  ******************************************************************************/
2353 static void program_surface_visibility(const struct dc *dc,
2354         struct pipe_ctx *pipe_ctx)
2355 {
2356     enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2357     bool blank_target = false;
2358 
2359     if (pipe_ctx->bottom_pipe) {
2360 
2361         /* For now we are supporting only two pipes */
2362         ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2363 
2364         if (pipe_ctx->bottom_pipe->plane_state->visible) {
2365             if (pipe_ctx->plane_state->visible)
2366                 blender_mode = BLND_MODE_BLENDING;
2367             else
2368                 blender_mode = BLND_MODE_OTHER_PIPE;
2369 
2370         } else if (!pipe_ctx->plane_state->visible)
2371             blank_target = true;
2372 
2373     } else if (!pipe_ctx->plane_state->visible)
2374         blank_target = true;
2375 
2376     dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2377     pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2378 
2379 }
2380 
2381 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2382 {
2383     int i = 0;
2384     struct xfm_grph_csc_adjustment adjust;
2385     memset(&adjust, 0, sizeof(adjust));
2386     adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2387 
2388 
2389     if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2390         adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2391 
2392         for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2393             adjust.temperature_matrix[i] =
2394                 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2395     }
2396 
2397     pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2398 }
2399 static void update_plane_addr(const struct dc *dc,
2400         struct pipe_ctx *pipe_ctx)
2401 {
2402     struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2403 
2404     if (plane_state == NULL)
2405         return;
2406 
2407     pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2408             pipe_ctx->plane_res.mi,
2409             &plane_state->address,
2410             plane_state->flip_immediate);
2411 
2412     plane_state->status.requested_address = plane_state->address;
2413 }
2414 
2415 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2416 {
2417     struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2418 
2419     if (plane_state == NULL)
2420         return;
2421 
2422     plane_state->status.is_flip_pending =
2423             pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2424                     pipe_ctx->plane_res.mi);
2425 
2426     if (plane_state->status.is_flip_pending && !plane_state->visible)
2427         pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2428 
2429     plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2430     if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2431             pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2432         plane_state->status.is_right_eye =\
2433                 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2434     }
2435 }
2436 
2437 void dce110_power_down(struct dc *dc)
2438 {
2439     power_down_all_hw_blocks(dc);
2440     disable_vga_and_power_gate_all_controllers(dc);
2441 }
2442 
2443 static bool wait_for_reset_trigger_to_occur(
2444     struct dc_context *dc_ctx,
2445     struct timing_generator *tg)
2446 {
2447     bool rc = false;
2448 
2449     /* To avoid endless loop we wait at most
2450      * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2451     const uint32_t frames_to_wait_on_triggered_reset = 10;
2452     uint32_t i;
2453 
2454     for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2455 
2456         if (!tg->funcs->is_counter_moving(tg)) {
2457             DC_ERROR("TG counter is not moving!\n");
2458             break;
2459         }
2460 
2461         if (tg->funcs->did_triggered_reset_occur(tg)) {
2462             rc = true;
2463             /* usually occurs at i=1 */
2464             DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2465                     i);
2466             break;
2467         }
2468 
2469         /* Wait for one frame. */
2470         tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2471         tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2472     }
2473 
2474     if (false == rc)
2475         DC_ERROR("GSL: Timeout on reset trigger!\n");
2476 
2477     return rc;
2478 }
2479 
2480 /* Enable timing synchronization for a group of Timing Generators. */
2481 static void dce110_enable_timing_synchronization(
2482         struct dc *dc,
2483         int group_index,
2484         int group_size,
2485         struct pipe_ctx *grouped_pipes[])
2486 {
2487     struct dc_context *dc_ctx = dc->ctx;
2488     struct dcp_gsl_params gsl_params = { 0 };
2489     int i;
2490 
2491     DC_SYNC_INFO("GSL: Setting-up...\n");
2492 
2493     /* Designate a single TG in the group as a master.
2494      * Since HW doesn't care which one, we always assign
2495      * the 1st one in the group. */
2496     gsl_params.gsl_group = 0;
2497     gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2498 
2499     for (i = 0; i < group_size; i++)
2500         grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2501                     grouped_pipes[i]->stream_res.tg, &gsl_params);
2502 
2503     /* Reset slave controllers on master VSync */
2504     DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2505 
2506     for (i = 1 /* skip the master */; i < group_size; i++)
2507         grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2508                 grouped_pipes[i]->stream_res.tg,
2509                 gsl_params.gsl_group);
2510 
2511     for (i = 1 /* skip the master */; i < group_size; i++) {
2512         DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2513         wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2514         grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2515                 grouped_pipes[i]->stream_res.tg);
2516     }
2517 
2518     /* GSL Vblank synchronization is a one time sync mechanism, assumption
2519      * is that the sync'ed displays will not drift out of sync over time*/
2520     DC_SYNC_INFO("GSL: Restoring register states.\n");
2521     for (i = 0; i < group_size; i++)
2522         grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2523 
2524     DC_SYNC_INFO("GSL: Set-up complete.\n");
2525 }
2526 
2527 static void dce110_enable_per_frame_crtc_position_reset(
2528         struct dc *dc,
2529         int group_size,
2530         struct pipe_ctx *grouped_pipes[])
2531 {
2532     struct dc_context *dc_ctx = dc->ctx;
2533     struct dcp_gsl_params gsl_params = { 0 };
2534     int i;
2535 
2536     gsl_params.gsl_group = 0;
2537     gsl_params.gsl_master = 0;
2538 
2539     for (i = 0; i < group_size; i++)
2540         grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2541                     grouped_pipes[i]->stream_res.tg, &gsl_params);
2542 
2543     DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2544 
2545     for (i = 1; i < group_size; i++)
2546         grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2547                 grouped_pipes[i]->stream_res.tg,
2548                 gsl_params.gsl_master,
2549                 &grouped_pipes[i]->stream->triggered_crtc_reset);
2550 
2551     DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2552     for (i = 1; i < group_size; i++)
2553         wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2554 
2555     for (i = 0; i < group_size; i++)
2556         grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2557 
2558 }
2559 
2560 static void init_pipes(struct dc *dc, struct dc_state *context)
2561 {
2562     // Do nothing
2563 }
2564 
2565 static void init_hw(struct dc *dc)
2566 {
2567     int i;
2568     struct dc_bios *bp;
2569     struct transform *xfm;
2570     struct abm *abm;
2571     struct dmcu *dmcu;
2572     struct dce_hwseq *hws = dc->hwseq;
2573     uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2574 
2575     bp = dc->ctx->dc_bios;
2576     for (i = 0; i < dc->res_pool->pipe_count; i++) {
2577         xfm = dc->res_pool->transforms[i];
2578         xfm->funcs->transform_reset(xfm);
2579 
2580         hws->funcs.enable_display_power_gating(
2581                 dc, i, bp,
2582                 PIPE_GATING_CONTROL_INIT);
2583         hws->funcs.enable_display_power_gating(
2584                 dc, i, bp,
2585                 PIPE_GATING_CONTROL_DISABLE);
2586         hws->funcs.enable_display_pipe_clock_gating(
2587             dc->ctx,
2588             true);
2589     }
2590 
2591     dce_clock_gating_power_up(dc->hwseq, false);
2592     /***************************************/
2593 
2594     for (i = 0; i < dc->link_count; i++) {
2595         /****************************************/
2596         /* Power up AND update implementation according to the
2597          * required signal (which may be different from the
2598          * default signal on connector). */
2599         struct dc_link *link = dc->links[i];
2600 
2601         link->link_enc->funcs->hw_init(link->link_enc);
2602     }
2603 
2604     for (i = 0; i < dc->res_pool->pipe_count; i++) {
2605         struct timing_generator *tg = dc->res_pool->timing_generators[i];
2606 
2607         tg->funcs->disable_vga(tg);
2608 
2609         /* Blank controller using driver code instead of
2610          * command table. */
2611         tg->funcs->set_blank(tg, true);
2612         hwss_wait_for_blank_complete(tg);
2613     }
2614 
2615     for (i = 0; i < dc->res_pool->audio_count; i++) {
2616         struct audio *audio = dc->res_pool->audios[i];
2617         audio->funcs->hw_init(audio);
2618     }
2619 
2620     for (i = 0; i < dc->link_count; i++) {
2621         struct dc_link *link = dc->links[i];
2622 
2623         if (link->panel_cntl)
2624             backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2625     }
2626 
2627     abm = dc->res_pool->abm;
2628     if (abm != NULL)
2629         abm->funcs->abm_init(abm, backlight);
2630 
2631     dmcu = dc->res_pool->dmcu;
2632     if (dmcu != NULL && abm != NULL)
2633         abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2634 
2635     if (dc->fbc_compressor)
2636         dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2637 
2638 }
2639 
2640 
2641 void dce110_prepare_bandwidth(
2642         struct dc *dc,
2643         struct dc_state *context)
2644 {
2645     struct clk_mgr *dccg = dc->clk_mgr;
2646 
2647     dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2648 
2649     dccg->funcs->update_clocks(
2650             dccg,
2651             context,
2652             false);
2653 }
2654 
2655 void dce110_optimize_bandwidth(
2656         struct dc *dc,
2657         struct dc_state *context)
2658 {
2659     struct clk_mgr *dccg = dc->clk_mgr;
2660 
2661     dce110_set_displaymarks(dc, context);
2662 
2663     dccg->funcs->update_clocks(
2664             dccg,
2665             context,
2666             true);
2667 }
2668 
2669 static void dce110_program_front_end_for_pipe(
2670         struct dc *dc, struct pipe_ctx *pipe_ctx)
2671 {
2672     struct mem_input *mi = pipe_ctx->plane_res.mi;
2673     struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2674     struct xfm_grph_csc_adjustment adjust;
2675     struct out_csc_color_matrix tbl_entry;
2676     unsigned int i;
2677     struct dce_hwseq *hws = dc->hwseq;
2678 
2679     DC_LOGGER_INIT();
2680     memset(&tbl_entry, 0, sizeof(tbl_entry));
2681 
2682     memset(&adjust, 0, sizeof(adjust));
2683     adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2684 
2685     dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2686 
2687     set_default_colors(pipe_ctx);
2688     if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2689             == true) {
2690         tbl_entry.color_space =
2691             pipe_ctx->stream->output_color_space;
2692 
2693         for (i = 0; i < 12; i++)
2694             tbl_entry.regval[i] =
2695             pipe_ctx->stream->csc_color_matrix.matrix[i];
2696 
2697         pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2698                 (pipe_ctx->plane_res.xfm, &tbl_entry);
2699     }
2700 
2701     if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2702         adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2703 
2704         for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2705             adjust.temperature_matrix[i] =
2706                 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2707     }
2708 
2709     pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2710 
2711     pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2712 
2713     program_scaler(dc, pipe_ctx);
2714 
2715     mi->funcs->mem_input_program_surface_config(
2716             mi,
2717             plane_state->format,
2718             &plane_state->tiling_info,
2719             &plane_state->plane_size,
2720             plane_state->rotation,
2721             NULL,
2722             false);
2723     if (mi->funcs->set_blank)
2724         mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2725 
2726     if (dc->config.gpu_vm_support)
2727         mi->funcs->mem_input_program_pte_vm(
2728                 pipe_ctx->plane_res.mi,
2729                 plane_state->format,
2730                 &plane_state->tiling_info,
2731                 plane_state->rotation);
2732 
2733     /* Moved programming gamma from dc to hwss */
2734     if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2735             pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2736             pipe_ctx->plane_state->update_flags.bits.gamma_change)
2737         hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2738 
2739     if (pipe_ctx->plane_state->update_flags.bits.full_update)
2740         hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2741 
2742     DC_LOG_SURFACE(
2743             "Pipe:%d %p: addr hi:0x%x, "
2744             "addr low:0x%x, "
2745             "src: %d, %d, %d,"
2746             " %d; dst: %d, %d, %d, %d;"
2747             "clip: %d, %d, %d, %d\n",
2748             pipe_ctx->pipe_idx,
2749             (void *) pipe_ctx->plane_state,
2750             pipe_ctx->plane_state->address.grph.addr.high_part,
2751             pipe_ctx->plane_state->address.grph.addr.low_part,
2752             pipe_ctx->plane_state->src_rect.x,
2753             pipe_ctx->plane_state->src_rect.y,
2754             pipe_ctx->plane_state->src_rect.width,
2755             pipe_ctx->plane_state->src_rect.height,
2756             pipe_ctx->plane_state->dst_rect.x,
2757             pipe_ctx->plane_state->dst_rect.y,
2758             pipe_ctx->plane_state->dst_rect.width,
2759             pipe_ctx->plane_state->dst_rect.height,
2760             pipe_ctx->plane_state->clip_rect.x,
2761             pipe_ctx->plane_state->clip_rect.y,
2762             pipe_ctx->plane_state->clip_rect.width,
2763             pipe_ctx->plane_state->clip_rect.height);
2764 
2765     DC_LOG_SURFACE(
2766             "Pipe %d: width, height, x, y\n"
2767             "viewport:%d, %d, %d, %d\n"
2768             "recout:  %d, %d, %d, %d\n",
2769             pipe_ctx->pipe_idx,
2770             pipe_ctx->plane_res.scl_data.viewport.width,
2771             pipe_ctx->plane_res.scl_data.viewport.height,
2772             pipe_ctx->plane_res.scl_data.viewport.x,
2773             pipe_ctx->plane_res.scl_data.viewport.y,
2774             pipe_ctx->plane_res.scl_data.recout.width,
2775             pipe_ctx->plane_res.scl_data.recout.height,
2776             pipe_ctx->plane_res.scl_data.recout.x,
2777             pipe_ctx->plane_res.scl_data.recout.y);
2778 }
2779 
2780 static void dce110_apply_ctx_for_surface(
2781         struct dc *dc,
2782         const struct dc_stream_state *stream,
2783         int num_planes,
2784         struct dc_state *context)
2785 {
2786     int i;
2787 
2788     if (num_planes == 0)
2789         return;
2790 
2791     if (dc->fbc_compressor)
2792         dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2793 
2794     for (i = 0; i < dc->res_pool->pipe_count; i++) {
2795         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2796 
2797         if (pipe_ctx->stream != stream)
2798             continue;
2799 
2800         /* Need to allocate mem before program front end for Fiji */
2801         pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2802                 pipe_ctx->plane_res.mi,
2803                 pipe_ctx->stream->timing.h_total,
2804                 pipe_ctx->stream->timing.v_total,
2805                 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2806                 context->stream_count);
2807 
2808         dce110_program_front_end_for_pipe(dc, pipe_ctx);
2809 
2810         dc->hwss.update_plane_addr(dc, pipe_ctx);
2811 
2812         program_surface_visibility(dc, pipe_ctx);
2813 
2814     }
2815 
2816     if (dc->fbc_compressor)
2817         enable_fbc(dc, context);
2818 }
2819 
2820 static void dce110_post_unlock_program_front_end(
2821         struct dc *dc,
2822         struct dc_state *context)
2823 {
2824 }
2825 
2826 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2827 {
2828     struct dce_hwseq *hws = dc->hwseq;
2829     int fe_idx = pipe_ctx->plane_res.mi ?
2830         pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2831 
2832     /* Do not power down fe when stream is active on dce*/
2833     if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2834         return;
2835 
2836     hws->funcs.enable_display_power_gating(
2837         dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2838 
2839     dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2840                 dc->res_pool->transforms[fe_idx]);
2841 }
2842 
2843 static void dce110_wait_for_mpcc_disconnect(
2844         struct dc *dc,
2845         struct resource_pool *res_pool,
2846         struct pipe_ctx *pipe_ctx)
2847 {
2848     /* do nothing*/
2849 }
2850 
2851 static void program_output_csc(struct dc *dc,
2852         struct pipe_ctx *pipe_ctx,
2853         enum dc_color_space colorspace,
2854         uint16_t *matrix,
2855         int opp_id)
2856 {
2857     int i;
2858     struct out_csc_color_matrix tbl_entry;
2859 
2860     if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2861         enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2862 
2863         for (i = 0; i < 12; i++)
2864             tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2865 
2866         tbl_entry.color_space = color_space;
2867 
2868         pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2869                 pipe_ctx->plane_res.xfm, &tbl_entry);
2870     }
2871 }
2872 
2873 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2874 {
2875     struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2876     struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2877     struct mem_input *mi = pipe_ctx->plane_res.mi;
2878     struct dc_cursor_mi_param param = {
2879         .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2880         .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2881         .viewport = pipe_ctx->plane_res.scl_data.viewport,
2882         .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2883         .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2884         .rotation = pipe_ctx->plane_state->rotation,
2885         .mirror = pipe_ctx->plane_state->horizontal_mirror
2886     };
2887 
2888     /**
2889      * If the cursor's source viewport is clipped then we need to
2890      * translate the cursor to appear in the correct position on
2891      * the screen.
2892      *
2893      * This translation isn't affected by scaling so it needs to be
2894      * done *after* we adjust the position for the scale factor.
2895      *
2896      * This is only done by opt-in for now since there are still
2897      * some usecases like tiled display that might enable the
2898      * cursor on both streams while expecting dc to clip it.
2899      */
2900     if (pos_cpy.translate_by_source) {
2901         pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2902         pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2903     }
2904 
2905     if (pipe_ctx->plane_state->address.type
2906             == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2907         pos_cpy.enable = false;
2908 
2909     if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2910         pos_cpy.enable = false;
2911 
2912     if (ipp->funcs->ipp_cursor_set_position)
2913         ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2914     if (mi->funcs->set_cursor_position)
2915         mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2916 }
2917 
2918 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2919 {
2920     struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2921 
2922     if (pipe_ctx->plane_res.ipp &&
2923         pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2924         pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2925                 pipe_ctx->plane_res.ipp, attributes);
2926 
2927     if (pipe_ctx->plane_res.mi &&
2928         pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2929         pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2930                 pipe_ctx->plane_res.mi, attributes);
2931 
2932     if (pipe_ctx->plane_res.xfm &&
2933         pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2934         pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2935                 pipe_ctx->plane_res.xfm, attributes);
2936 }
2937 
2938 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2939         uint32_t backlight_pwm_u16_16,
2940         uint32_t frame_ramp)
2941 {
2942     struct dc_link *link = pipe_ctx->stream->link;
2943     struct dc  *dc = link->ctx->dc;
2944     struct abm *abm = pipe_ctx->stream_res.abm;
2945     struct panel_cntl *panel_cntl = link->panel_cntl;
2946     struct dmcu *dmcu = dc->res_pool->dmcu;
2947     bool fw_set_brightness = true;
2948     /* DMCU -1 for all controller id values,
2949      * therefore +1 here
2950      */
2951     uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2952 
2953     if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2954         return false;
2955 
2956     if (dmcu)
2957         fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2958 
2959     if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2960         panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2961     else
2962         abm->funcs->set_backlight_level_pwm(
2963                 abm,
2964                 backlight_pwm_u16_16,
2965                 frame_ramp,
2966                 controller_id,
2967                 link->panel_cntl->inst);
2968 
2969     return true;
2970 }
2971 
2972 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2973 {
2974     struct abm *abm = pipe_ctx->stream_res.abm;
2975     struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2976 
2977     if (abm)
2978         abm->funcs->set_abm_immediate_disable(abm,
2979                 pipe_ctx->stream->link->panel_cntl->inst);
2980 
2981     if (panel_cntl)
2982         panel_cntl->funcs->store_backlight_level(panel_cntl);
2983 }
2984 
2985 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2986 {
2987     struct abm *abm = pipe_ctx->stream_res.abm;
2988     struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2989     uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
2990 
2991     if (abm && panel_cntl)
2992         abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
2993 }
2994 
2995 static const struct hw_sequencer_funcs dce110_funcs = {
2996     .program_gamut_remap = program_gamut_remap,
2997     .program_output_csc = program_output_csc,
2998     .init_hw = init_hw,
2999     .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3000     .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3001     .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3002     .update_plane_addr = update_plane_addr,
3003     .update_pending_status = dce110_update_pending_status,
3004     .enable_accelerated_mode = dce110_enable_accelerated_mode,
3005     .enable_timing_synchronization = dce110_enable_timing_synchronization,
3006     .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3007     .update_info_frame = dce110_update_info_frame,
3008     .enable_stream = dce110_enable_stream,
3009     .disable_stream = dce110_disable_stream,
3010     .unblank_stream = dce110_unblank_stream,
3011     .blank_stream = dce110_blank_stream,
3012     .enable_audio_stream = dce110_enable_audio_stream,
3013     .disable_audio_stream = dce110_disable_audio_stream,
3014     .disable_plane = dce110_power_down_fe,
3015     .pipe_control_lock = dce_pipe_control_lock,
3016     .interdependent_update_lock = NULL,
3017     .cursor_lock = dce_pipe_control_lock,
3018     .prepare_bandwidth = dce110_prepare_bandwidth,
3019     .optimize_bandwidth = dce110_optimize_bandwidth,
3020     .set_drr = set_drr,
3021     .get_position = get_position,
3022     .set_static_screen_control = set_static_screen_control,
3023     .setup_stereo = NULL,
3024     .set_avmute = dce110_set_avmute,
3025     .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3026     .edp_backlight_control = dce110_edp_backlight_control,
3027     .edp_power_control = dce110_edp_power_control,
3028     .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3029     .set_cursor_position = dce110_set_cursor_position,
3030     .set_cursor_attribute = dce110_set_cursor_attribute,
3031     .set_backlight_level = dce110_set_backlight_level,
3032     .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3033     .set_pipe = dce110_set_pipe,
3034 };
3035 
3036 static const struct hwseq_private_funcs dce110_private_funcs = {
3037     .init_pipes = init_pipes,
3038     .update_plane_addr = update_plane_addr,
3039     .set_input_transfer_func = dce110_set_input_transfer_func,
3040     .set_output_transfer_func = dce110_set_output_transfer_func,
3041     .power_down = dce110_power_down,
3042     .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3043     .enable_display_power_gating = dce110_enable_display_power_gating,
3044     .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3045     .enable_stream_timing = dce110_enable_stream_timing,
3046     .disable_stream_gating = NULL,
3047     .enable_stream_gating = NULL,
3048     .edp_backlight_control = dce110_edp_backlight_control,
3049 };
3050 
3051 void dce110_hw_sequencer_construct(struct dc *dc)
3052 {
3053     dc->hwss = dce110_funcs;
3054     dc->hwseq->funcs = dce110_private_funcs;
3055 }
3056