Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0 OR MIT
0002 /*
0003  * Copyright 2014-2022 Advanced Micro Devices, Inc.
0004  *
0005  * Permission is hereby granted, free of charge, to any person obtaining a
0006  * copy of this software and associated documentation files (the "Software"),
0007  * to deal in the Software without restriction, including without limitation
0008  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0009  * and/or sell copies of the Software, and to permit persons to whom the
0010  * Software is furnished to do so, subject to the following conditions:
0011  *
0012  * The above copyright notice and this permission notice shall be included in
0013  * all copies or substantial portions of the Software.
0014  *
0015  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0016  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0017  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0018  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
0019  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
0020  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
0021  * OTHER DEALINGS IN THE SOFTWARE.
0022  *
0023  */
0024 
0025 #include "kfd_mqd_manager.h"
0026 #include "amdgpu_amdkfd.h"
0027 #include "kfd_device_queue_manager.h"
0028 
0029 /* Mapping queue priority to pipe priority, indexed by queue priority */
0030 int pipe_priority_map[] = {
0031     KFD_PIPE_PRIORITY_CS_LOW,
0032     KFD_PIPE_PRIORITY_CS_LOW,
0033     KFD_PIPE_PRIORITY_CS_LOW,
0034     KFD_PIPE_PRIORITY_CS_LOW,
0035     KFD_PIPE_PRIORITY_CS_LOW,
0036     KFD_PIPE_PRIORITY_CS_LOW,
0037     KFD_PIPE_PRIORITY_CS_LOW,
0038     KFD_PIPE_PRIORITY_CS_MEDIUM,
0039     KFD_PIPE_PRIORITY_CS_MEDIUM,
0040     KFD_PIPE_PRIORITY_CS_MEDIUM,
0041     KFD_PIPE_PRIORITY_CS_MEDIUM,
0042     KFD_PIPE_PRIORITY_CS_HIGH,
0043     KFD_PIPE_PRIORITY_CS_HIGH,
0044     KFD_PIPE_PRIORITY_CS_HIGH,
0045     KFD_PIPE_PRIORITY_CS_HIGH,
0046     KFD_PIPE_PRIORITY_CS_HIGH
0047 };
0048 
0049 struct kfd_mem_obj *allocate_hiq_mqd(struct kfd_dev *dev, struct queue_properties *q)
0050 {
0051     struct kfd_mem_obj *mqd_mem_obj = NULL;
0052 
0053     mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
0054     if (!mqd_mem_obj)
0055         return NULL;
0056 
0057     mqd_mem_obj->gtt_mem = dev->dqm->hiq_sdma_mqd.gtt_mem;
0058     mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr;
0059     mqd_mem_obj->cpu_ptr = dev->dqm->hiq_sdma_mqd.cpu_ptr;
0060 
0061     return mqd_mem_obj;
0062 }
0063 
0064 struct kfd_mem_obj *allocate_sdma_mqd(struct kfd_dev *dev,
0065                     struct queue_properties *q)
0066 {
0067     struct kfd_mem_obj *mqd_mem_obj = NULL;
0068     uint64_t offset;
0069 
0070     mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
0071     if (!mqd_mem_obj)
0072         return NULL;
0073 
0074     offset = (q->sdma_engine_id *
0075         dev->device_info.num_sdma_queues_per_engine +
0076         q->sdma_queue_id) *
0077         dev->dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size;
0078 
0079     offset += dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
0080 
0081     mqd_mem_obj->gtt_mem = (void *)((uint64_t)dev->dqm->hiq_sdma_mqd.gtt_mem
0082                 + offset);
0083     mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset;
0084     mqd_mem_obj->cpu_ptr = (uint32_t *)((uint64_t)
0085                 dev->dqm->hiq_sdma_mqd.cpu_ptr + offset);
0086 
0087     return mqd_mem_obj;
0088 }
0089 
0090 void free_mqd_hiq_sdma(struct mqd_manager *mm, void *mqd,
0091             struct kfd_mem_obj *mqd_mem_obj)
0092 {
0093     WARN_ON(!mqd_mem_obj->gtt_mem);
0094     kfree(mqd_mem_obj);
0095 }
0096 
0097 void mqd_symmetrically_map_cu_mask(struct mqd_manager *mm,
0098         const uint32_t *cu_mask, uint32_t cu_mask_count,
0099         uint32_t *se_mask)
0100 {
0101     struct kfd_cu_info cu_info;
0102     uint32_t cu_per_sh[KFD_MAX_NUM_SE][KFD_MAX_NUM_SH_PER_SE] = {0};
0103     bool wgp_mode_req = KFD_GC_VERSION(mm->dev) >= IP_VERSION(10, 0, 0);
0104     uint32_t en_mask = wgp_mode_req ? 0x3 : 0x1;
0105     int i, se, sh, cu, cu_bitmap_sh_mul, inc = wgp_mode_req ? 2 : 1;
0106 
0107     amdgpu_amdkfd_get_cu_info(mm->dev->adev, &cu_info);
0108 
0109     if (cu_mask_count > cu_info.cu_active_number)
0110         cu_mask_count = cu_info.cu_active_number;
0111 
0112     /* Exceeding these bounds corrupts the stack and indicates a coding error.
0113      * Returning with no CU's enabled will hang the queue, which should be
0114      * attention grabbing.
0115      */
0116     if (cu_info.num_shader_engines > KFD_MAX_NUM_SE) {
0117         pr_err("Exceeded KFD_MAX_NUM_SE, chip reports %d\n", cu_info.num_shader_engines);
0118         return;
0119     }
0120     if (cu_info.num_shader_arrays_per_engine > KFD_MAX_NUM_SH_PER_SE) {
0121         pr_err("Exceeded KFD_MAX_NUM_SH, chip reports %d\n",
0122             cu_info.num_shader_arrays_per_engine * cu_info.num_shader_engines);
0123         return;
0124     }
0125 
0126     cu_bitmap_sh_mul = (KFD_GC_VERSION(mm->dev) >= IP_VERSION(11, 0, 0) &&
0127                 KFD_GC_VERSION(mm->dev) < IP_VERSION(12, 0, 0)) ? 2 : 1;
0128 
0129     /* Count active CUs per SH.
0130      *
0131      * Some CUs in an SH may be disabled.   HW expects disabled CUs to be
0132      * represented in the high bits of each SH's enable mask (the upper and lower
0133      * 16 bits of se_mask) and will take care of the actual distribution of
0134      * disabled CUs within each SH automatically.
0135      * Each half of se_mask must be filled only on bits 0-cu_per_sh[se][sh]-1.
0136      *
0137      * See note on Arcturus cu_bitmap layout in gfx_v9_0_get_cu_info.
0138      * See note on GFX11 cu_bitmap layout in gfx_v11_0_get_cu_info.
0139      */
0140     for (se = 0; se < cu_info.num_shader_engines; se++)
0141         for (sh = 0; sh < cu_info.num_shader_arrays_per_engine; sh++)
0142             cu_per_sh[se][sh] = hweight32(
0143                 cu_info.cu_bitmap[se % 4][sh + (se / 4) * cu_bitmap_sh_mul]);
0144 
0145     /* Symmetrically map cu_mask to all SEs & SHs:
0146      * se_mask programs up to 2 SH in the upper and lower 16 bits.
0147      *
0148      * Examples
0149      * Assuming 1 SH/SE, 4 SEs:
0150      * cu_mask[0] bit0 -> se_mask[0] bit0
0151      * cu_mask[0] bit1 -> se_mask[1] bit0
0152      * ...
0153      * cu_mask[0] bit4 -> se_mask[0] bit1
0154      * ...
0155      *
0156      * Assuming 2 SH/SE, 4 SEs
0157      * cu_mask[0] bit0 -> se_mask[0] bit0 (SE0,SH0,CU0)
0158      * cu_mask[0] bit1 -> se_mask[1] bit0 (SE1,SH0,CU0)
0159      * ...
0160      * cu_mask[0] bit4 -> se_mask[0] bit16 (SE0,SH1,CU0)
0161      * cu_mask[0] bit5 -> se_mask[1] bit16 (SE1,SH1,CU0)
0162      * ...
0163      * cu_mask[0] bit8 -> se_mask[0] bit1 (SE0,SH0,CU1)
0164      * ...
0165      *
0166      * First ensure all CUs are disabled, then enable user specified CUs.
0167      */
0168     for (i = 0; i < cu_info.num_shader_engines; i++)
0169         se_mask[i] = 0;
0170 
0171     i = 0;
0172     for (cu = 0; cu < 16; cu += inc) {
0173         for (sh = 0; sh < cu_info.num_shader_arrays_per_engine; sh++) {
0174             for (se = 0; se < cu_info.num_shader_engines; se++) {
0175                 if (cu_per_sh[se][sh] > cu) {
0176                     if (cu_mask[i / 32] & (en_mask << (i % 32)))
0177                         se_mask[se] |= en_mask << (cu + sh * 16);
0178                     i += inc;
0179                     if (i == cu_mask_count)
0180                         return;
0181                 }
0182             }
0183         }
0184     }
0185 }
0186 
0187 int kfd_hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd,
0188              uint32_t pipe_id, uint32_t queue_id,
0189              struct queue_properties *p, struct mm_struct *mms)
0190 {
0191     return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->adev, mqd, pipe_id,
0192                           queue_id, p->doorbell_off);
0193 }
0194 
0195 int kfd_destroy_mqd_cp(struct mqd_manager *mm, void *mqd,
0196         enum kfd_preempt_type type, unsigned int timeout,
0197         uint32_t pipe_id, uint32_t queue_id)
0198 {
0199     return mm->dev->kfd2kgd->hqd_destroy(mm->dev->adev, mqd, type, timeout,
0200                         pipe_id, queue_id);
0201 }
0202 
0203 void kfd_free_mqd_cp(struct mqd_manager *mm, void *mqd,
0204           struct kfd_mem_obj *mqd_mem_obj)
0205 {
0206     if (mqd_mem_obj->gtt_mem) {
0207         amdgpu_amdkfd_free_gtt_mem(mm->dev->adev, mqd_mem_obj->gtt_mem);
0208         kfree(mqd_mem_obj);
0209     } else {
0210         kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
0211     }
0212 }
0213 
0214 bool kfd_is_occupied_cp(struct mqd_manager *mm, void *mqd,
0215          uint64_t queue_address, uint32_t pipe_id,
0216          uint32_t queue_id)
0217 {
0218     return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->adev, queue_address,
0219                         pipe_id, queue_id);
0220 }
0221 
0222 int kfd_load_mqd_sdma(struct mqd_manager *mm, void *mqd,
0223           uint32_t pipe_id, uint32_t queue_id,
0224           struct queue_properties *p, struct mm_struct *mms)
0225 {
0226     return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->adev, mqd,
0227                         (uint32_t __user *)p->write_ptr,
0228                         mms);
0229 }
0230 
0231 /*
0232  * preempt type here is ignored because there is only one way
0233  * to preempt sdma queue
0234  */
0235 int kfd_destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
0236              enum kfd_preempt_type type,
0237              unsigned int timeout, uint32_t pipe_id,
0238              uint32_t queue_id)
0239 {
0240     return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->adev, mqd, timeout);
0241 }
0242 
0243 bool kfd_is_occupied_sdma(struct mqd_manager *mm, void *mqd,
0244               uint64_t queue_address, uint32_t pipe_id,
0245               uint32_t queue_id)
0246 {
0247     return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->adev, mqd);
0248 }