Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright 2016 Advanced Micro Devices, Inc.
0003  *
0004  * Permission is hereby granted, free of charge, to any person obtaining a
0005  * copy of this software and associated documentation files (the "Software"),
0006  * to deal in the Software without restriction, including without limitation
0007  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
0008  * and/or sell copies of the Software, and to permit persons to whom the
0009  * Software is furnished to do so, subject to the following conditions:
0010  *
0011  * The above copyright notice and this permission notice shall be included in
0012  * all copies or substantial portions of the Software.
0013  *
0014  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0015  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0016  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
0017  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
0018  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
0019  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
0020  * OTHER DEALINGS IN THE SOFTWARE.
0021  *
0022  */
0023 
0024 #include <linux/delay.h>
0025 #include <linux/firmware.h>
0026 #include <linux/module.h>
0027 #include <linux/pci.h>
0028 
0029 #include "amdgpu.h"
0030 #include "amdgpu_ucode.h"
0031 #include "amdgpu_trace.h"
0032 
0033 #include "sdma0/sdma0_4_2_offset.h"
0034 #include "sdma0/sdma0_4_2_sh_mask.h"
0035 #include "sdma1/sdma1_4_2_offset.h"
0036 #include "sdma1/sdma1_4_2_sh_mask.h"
0037 #include "sdma2/sdma2_4_2_2_offset.h"
0038 #include "sdma2/sdma2_4_2_2_sh_mask.h"
0039 #include "sdma3/sdma3_4_2_2_offset.h"
0040 #include "sdma3/sdma3_4_2_2_sh_mask.h"
0041 #include "sdma4/sdma4_4_2_2_offset.h"
0042 #include "sdma4/sdma4_4_2_2_sh_mask.h"
0043 #include "sdma5/sdma5_4_2_2_offset.h"
0044 #include "sdma5/sdma5_4_2_2_sh_mask.h"
0045 #include "sdma6/sdma6_4_2_2_offset.h"
0046 #include "sdma6/sdma6_4_2_2_sh_mask.h"
0047 #include "sdma7/sdma7_4_2_2_offset.h"
0048 #include "sdma7/sdma7_4_2_2_sh_mask.h"
0049 #include "sdma0/sdma0_4_1_default.h"
0050 
0051 #include "soc15_common.h"
0052 #include "soc15.h"
0053 #include "vega10_sdma_pkt_open.h"
0054 
0055 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
0056 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
0057 
0058 #include "amdgpu_ras.h"
0059 #include "sdma_v4_4.h"
0060 
0061 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
0062 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
0063 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
0064 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
0065 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
0066 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
0067 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
0068 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
0069 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
0070 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
0071 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
0072 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
0073 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
0074 
0075 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
0076 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
0077 
0078 #define WREG32_SDMA(instance, offset, value) \
0079     WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
0080 #define RREG32_SDMA(instance, offset) \
0081     RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
0082 
0083 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
0084 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
0085 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
0086 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
0087 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
0088 
0089 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
0090     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
0091     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
0092     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
0093     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0094     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
0095     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
0096     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
0097     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
0098     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
0099     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
0100     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
0101     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
0102     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
0103     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
0104     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
0105     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
0106     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
0107     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
0108     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
0109     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
0110     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
0111     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
0112     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
0113     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
0114     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
0115 };
0116 
0117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
0118     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
0119     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
0120     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0121     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
0122     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
0123     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
0124     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0125 };
0126 
0127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
0128     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
0129     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
0130     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0131     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
0132     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
0133     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
0134     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0135 };
0136 
0137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
0138     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
0139     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
0140     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
0141     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0142     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
0143     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
0144     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0145     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
0146     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0147     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
0148     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
0149 };
0150 
0151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
0152     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
0153 };
0154 
0155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
0156 {
0157     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0158     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
0159     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0160     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0161     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0162     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0163     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0164     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0165     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
0166     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0167     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
0168     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0169     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0170     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0171     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0172     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0173     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0174     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0175     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0176     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0177     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0178     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0179     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0180     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0181     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0182     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
0183     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0184 };
0185 
0186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
0187     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0188     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
0189     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0190     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0191     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0192     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0193     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0194     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0195     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
0196     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0197     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
0198     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0199     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0200     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0201     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0202     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0203     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0204     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0205     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0206     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0207     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0208     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0209     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0210     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
0211     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0212     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
0213     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0214 };
0215 
0216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
0217 {
0218     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
0219     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
0220 };
0221 
0222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
0223 {
0224     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
0225     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
0226 };
0227 
0228 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
0229 {
0230     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0231     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0232     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0233     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0234     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0235     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0236     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0237     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0238     SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0239     SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0240     SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0241     SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0242     SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0243     SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0244     SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0245     SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0246     SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0247     SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0248     SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0249     SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0250     SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0251     SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0252     SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0253     SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0254     SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0255     SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0256     SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0257     SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0258     SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0259     SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
0260     SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
0261     SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
0262 };
0263 
0264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
0265     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
0266     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
0267     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0268     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
0269     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
0270     SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0271     SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
0272     SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
0273     SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0274     SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
0275     SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
0276     SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0277     SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
0278     SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
0279     SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
0280 };
0281 
0282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
0283     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
0284     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
0285     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
0286     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
0287     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0288     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
0289     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0290     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
0291     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
0292     SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
0293 };
0294 
0295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
0296     { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0297     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
0298     0, 0,
0299     },
0300     { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0301     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
0302     0, 0,
0303     },
0304     { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0305     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
0306     0, 0,
0307     },
0308     { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0309     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
0310     0, 0,
0311     },
0312     { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0313     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
0314     0, 0,
0315     },
0316     { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0317     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
0318     0, 0,
0319     },
0320     { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0321     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
0322     0, 0,
0323     },
0324     { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0325     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
0326     0, 0,
0327     },
0328     { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0329     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
0330     0, 0,
0331     },
0332     { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0333     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
0334     0, 0,
0335     },
0336     { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0337     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
0338     0, 0,
0339     },
0340     { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0341     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
0342     0, 0,
0343     },
0344     { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0345     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
0346     0, 0,
0347     },
0348     { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0349     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
0350     0, 0,
0351     },
0352     { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0353     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
0354     0, 0,
0355     },
0356     { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0357     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
0358     0, 0,
0359     },
0360     { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0361     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
0362     0, 0,
0363     },
0364     { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0365     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
0366     0, 0,
0367     },
0368     { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0369     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
0370     0, 0,
0371     },
0372     { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0373     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
0374     0, 0,
0375     },
0376     { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0377     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
0378     0, 0,
0379     },
0380     { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0381     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
0382     0, 0,
0383     },
0384     { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0385     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
0386     0, 0,
0387     },
0388     { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
0389     SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
0390     0, 0,
0391     },
0392 };
0393 
0394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
0395         u32 instance, u32 offset)
0396 {
0397     switch (instance) {
0398     case 0:
0399         return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
0400     case 1:
0401         return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
0402     case 2:
0403         return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
0404     case 3:
0405         return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
0406     case 4:
0407         return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
0408     case 5:
0409         return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
0410     case 6:
0411         return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
0412     case 7:
0413         return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
0414     default:
0415         break;
0416     }
0417     return 0;
0418 }
0419 
0420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
0421 {
0422     switch (seq_num) {
0423     case 0:
0424         return SOC15_IH_CLIENTID_SDMA0;
0425     case 1:
0426         return SOC15_IH_CLIENTID_SDMA1;
0427     case 2:
0428         return SOC15_IH_CLIENTID_SDMA2;
0429     case 3:
0430         return SOC15_IH_CLIENTID_SDMA3;
0431     case 4:
0432         return SOC15_IH_CLIENTID_SDMA4;
0433     case 5:
0434         return SOC15_IH_CLIENTID_SDMA5;
0435     case 6:
0436         return SOC15_IH_CLIENTID_SDMA6;
0437     case 7:
0438         return SOC15_IH_CLIENTID_SDMA7;
0439     default:
0440         break;
0441     }
0442     return -EINVAL;
0443 }
0444 
0445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
0446 {
0447     switch (client_id) {
0448     case SOC15_IH_CLIENTID_SDMA0:
0449         return 0;
0450     case SOC15_IH_CLIENTID_SDMA1:
0451         return 1;
0452     case SOC15_IH_CLIENTID_SDMA2:
0453         return 2;
0454     case SOC15_IH_CLIENTID_SDMA3:
0455         return 3;
0456     case SOC15_IH_CLIENTID_SDMA4:
0457         return 4;
0458     case SOC15_IH_CLIENTID_SDMA5:
0459         return 5;
0460     case SOC15_IH_CLIENTID_SDMA6:
0461         return 6;
0462     case SOC15_IH_CLIENTID_SDMA7:
0463         return 7;
0464     default:
0465         break;
0466     }
0467     return -EINVAL;
0468 }
0469 
0470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
0471 {
0472     switch (adev->ip_versions[SDMA0_HWIP][0]) {
0473     case IP_VERSION(4, 0, 0):
0474         soc15_program_register_sequence(adev,
0475                         golden_settings_sdma_4,
0476                         ARRAY_SIZE(golden_settings_sdma_4));
0477         soc15_program_register_sequence(adev,
0478                         golden_settings_sdma_vg10,
0479                         ARRAY_SIZE(golden_settings_sdma_vg10));
0480         break;
0481     case IP_VERSION(4, 0, 1):
0482         soc15_program_register_sequence(adev,
0483                         golden_settings_sdma_4,
0484                         ARRAY_SIZE(golden_settings_sdma_4));
0485         soc15_program_register_sequence(adev,
0486                         golden_settings_sdma_vg12,
0487                         ARRAY_SIZE(golden_settings_sdma_vg12));
0488         break;
0489     case IP_VERSION(4, 2, 0):
0490         soc15_program_register_sequence(adev,
0491                         golden_settings_sdma0_4_2_init,
0492                         ARRAY_SIZE(golden_settings_sdma0_4_2_init));
0493         soc15_program_register_sequence(adev,
0494                         golden_settings_sdma0_4_2,
0495                         ARRAY_SIZE(golden_settings_sdma0_4_2));
0496         soc15_program_register_sequence(adev,
0497                         golden_settings_sdma1_4_2,
0498                         ARRAY_SIZE(golden_settings_sdma1_4_2));
0499         break;
0500     case IP_VERSION(4, 2, 2):
0501         soc15_program_register_sequence(adev,
0502                         golden_settings_sdma_arct,
0503                         ARRAY_SIZE(golden_settings_sdma_arct));
0504         break;
0505     case IP_VERSION(4, 4, 0):
0506         soc15_program_register_sequence(adev,
0507                         golden_settings_sdma_aldebaran,
0508                         ARRAY_SIZE(golden_settings_sdma_aldebaran));
0509         break;
0510     case IP_VERSION(4, 1, 0):
0511     case IP_VERSION(4, 1, 1):
0512         soc15_program_register_sequence(adev,
0513                         golden_settings_sdma_4_1,
0514                         ARRAY_SIZE(golden_settings_sdma_4_1));
0515         if (adev->apu_flags & AMD_APU_IS_RAVEN2)
0516             soc15_program_register_sequence(adev,
0517                             golden_settings_sdma_rv2,
0518                             ARRAY_SIZE(golden_settings_sdma_rv2));
0519         else
0520             soc15_program_register_sequence(adev,
0521                             golden_settings_sdma_rv1,
0522                             ARRAY_SIZE(golden_settings_sdma_rv1));
0523         break;
0524     case IP_VERSION(4, 1, 2):
0525         soc15_program_register_sequence(adev,
0526                         golden_settings_sdma_4_3,
0527                         ARRAY_SIZE(golden_settings_sdma_4_3));
0528         break;
0529     default:
0530         break;
0531     }
0532 }
0533 
0534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
0535 {
0536     int i;
0537 
0538     /*
0539      * The only chips with SDMAv4 and ULV are VG10 and VG20.
0540      * Server SKUs take a different hysteresis setting from other SKUs.
0541      */
0542     switch (adev->ip_versions[SDMA0_HWIP][0]) {
0543     case IP_VERSION(4, 0, 0):
0544         if (adev->pdev->device == 0x6860)
0545             break;
0546         return;
0547     case IP_VERSION(4, 2, 0):
0548         if (adev->pdev->device == 0x66a1)
0549             break;
0550         return;
0551     default:
0552         return;
0553     }
0554 
0555     for (i = 0; i < adev->sdma.num_instances; i++) {
0556         uint32_t temp;
0557 
0558         temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
0559         temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
0560         WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
0561     }
0562 }
0563 
0564 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
0565 {
0566     int err = 0;
0567     const struct sdma_firmware_header_v1_0 *hdr;
0568 
0569     err = amdgpu_ucode_validate(sdma_inst->fw);
0570     if (err)
0571         return err;
0572 
0573     hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
0574     sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
0575     sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
0576 
0577     if (sdma_inst->feature_version >= 20)
0578         sdma_inst->burst_nop = true;
0579 
0580     return 0;
0581 }
0582 
0583 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
0584 {
0585     int i;
0586 
0587     for (i = 0; i < adev->sdma.num_instances; i++) {
0588         release_firmware(adev->sdma.instance[i].fw);
0589         adev->sdma.instance[i].fw = NULL;
0590 
0591         /* arcturus shares the same FW memory across
0592            all SDMA isntances */
0593         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
0594             adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0))
0595             break;
0596     }
0597 
0598     memset((void *)adev->sdma.instance, 0,
0599         sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
0600 }
0601 
0602 /**
0603  * sdma_v4_0_init_microcode - load ucode images from disk
0604  *
0605  * @adev: amdgpu_device pointer
0606  *
0607  * Use the firmware interface to load the ucode images into
0608  * the driver (not loaded into hw).
0609  * Returns 0 on success, error on failure.
0610  */
0611 
0612 // emulation only, won't work on real chip
0613 // vega10 real chip need to use PSP to load firmware
0614 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
0615 {
0616     const char *chip_name;
0617     char fw_name[30];
0618     int err = 0, i;
0619     struct amdgpu_firmware_info *info = NULL;
0620     const struct common_firmware_header *header = NULL;
0621 
0622     DRM_DEBUG("\n");
0623 
0624     switch (adev->ip_versions[SDMA0_HWIP][0]) {
0625     case IP_VERSION(4, 0, 0):
0626         chip_name = "vega10";
0627         break;
0628     case IP_VERSION(4, 0, 1):
0629         chip_name = "vega12";
0630         break;
0631     case IP_VERSION(4, 2, 0):
0632         chip_name = "vega20";
0633         break;
0634     case IP_VERSION(4, 1, 0):
0635     case IP_VERSION(4, 1, 1):
0636         if (adev->apu_flags & AMD_APU_IS_RAVEN2)
0637             chip_name = "raven2";
0638         else if (adev->apu_flags & AMD_APU_IS_PICASSO)
0639             chip_name = "picasso";
0640         else
0641             chip_name = "raven";
0642         break;
0643     case IP_VERSION(4, 2, 2):
0644         chip_name = "arcturus";
0645         break;
0646     case IP_VERSION(4, 1, 2):
0647         if (adev->apu_flags & AMD_APU_IS_RENOIR)
0648             chip_name = "renoir";
0649         else
0650             chip_name = "green_sardine";
0651         break;
0652     case IP_VERSION(4, 4, 0):
0653         chip_name = "aldebaran";
0654         break;
0655     default:
0656         BUG();
0657     }
0658 
0659     snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
0660 
0661     err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
0662     if (err)
0663         goto out;
0664 
0665     err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
0666     if (err)
0667         goto out;
0668 
0669     for (i = 1; i < adev->sdma.num_instances; i++) {
0670         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
0671                     adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) {
0672             /* Acturus & Aldebaran will leverage the same FW memory
0673                for every SDMA instance */
0674             memcpy((void *)&adev->sdma.instance[i],
0675                    (void *)&adev->sdma.instance[0],
0676                    sizeof(struct amdgpu_sdma_instance));
0677         }
0678         else {
0679             snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
0680 
0681             err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
0682             if (err)
0683                 goto out;
0684 
0685             err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
0686             if (err)
0687                 goto out;
0688         }
0689     }
0690 
0691     DRM_DEBUG("psp_load == '%s'\n",
0692         adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
0693 
0694     if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
0695         for (i = 0; i < adev->sdma.num_instances; i++) {
0696             info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
0697             info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
0698             info->fw = adev->sdma.instance[i].fw;
0699             header = (const struct common_firmware_header *)info->fw->data;
0700             adev->firmware.fw_size +=
0701                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
0702         }
0703     }
0704 
0705 out:
0706     if (err) {
0707         DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
0708         sdma_v4_0_destroy_inst_ctx(adev);
0709     }
0710     return err;
0711 }
0712 
0713 /**
0714  * sdma_v4_0_ring_get_rptr - get the current read pointer
0715  *
0716  * @ring: amdgpu ring pointer
0717  *
0718  * Get the current rptr from the hardware (VEGA10+).
0719  */
0720 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
0721 {
0722     u64 *rptr;
0723 
0724     /* XXX check if swapping is necessary on BE */
0725     rptr = ((u64 *)ring->rptr_cpu_addr);
0726 
0727     DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
0728     return ((*rptr) >> 2);
0729 }
0730 
0731 /**
0732  * sdma_v4_0_ring_get_wptr - get the current write pointer
0733  *
0734  * @ring: amdgpu ring pointer
0735  *
0736  * Get the current wptr from the hardware (VEGA10+).
0737  */
0738 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
0739 {
0740     struct amdgpu_device *adev = ring->adev;
0741     u64 wptr;
0742 
0743     if (ring->use_doorbell) {
0744         /* XXX check if swapping is necessary on BE */
0745         wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
0746         DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
0747     } else {
0748         wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
0749         wptr = wptr << 32;
0750         wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
0751         DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
0752                 ring->me, wptr);
0753     }
0754 
0755     return wptr >> 2;
0756 }
0757 
0758 /**
0759  * sdma_v4_0_ring_set_wptr - commit the write pointer
0760  *
0761  * @ring: amdgpu ring pointer
0762  *
0763  * Write the wptr back to the hardware (VEGA10+).
0764  */
0765 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
0766 {
0767     struct amdgpu_device *adev = ring->adev;
0768 
0769     DRM_DEBUG("Setting write pointer\n");
0770     if (ring->use_doorbell) {
0771         u64 *wb = (u64 *)ring->wptr_cpu_addr;
0772 
0773         DRM_DEBUG("Using doorbell -- "
0774                 "wptr_offs == 0x%08x "
0775                 "lower_32_bits(ring->wptr << 2) == 0x%08x "
0776                 "upper_32_bits(ring->wptr << 2) == 0x%08x\n",
0777                 ring->wptr_offs,
0778                 lower_32_bits(ring->wptr << 2),
0779                 upper_32_bits(ring->wptr << 2));
0780         /* XXX check if swapping is necessary on BE */
0781         WRITE_ONCE(*wb, (ring->wptr << 2));
0782         DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
0783                 ring->doorbell_index, ring->wptr << 2);
0784         WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
0785     } else {
0786         DRM_DEBUG("Not using doorbell -- "
0787                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
0788                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
0789                 ring->me,
0790                 lower_32_bits(ring->wptr << 2),
0791                 ring->me,
0792                 upper_32_bits(ring->wptr << 2));
0793         WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
0794                 lower_32_bits(ring->wptr << 2));
0795         WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
0796                 upper_32_bits(ring->wptr << 2));
0797     }
0798 }
0799 
0800 /**
0801  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
0802  *
0803  * @ring: amdgpu ring pointer
0804  *
0805  * Get the current wptr from the hardware (VEGA10+).
0806  */
0807 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
0808 {
0809     struct amdgpu_device *adev = ring->adev;
0810     u64 wptr;
0811 
0812     if (ring->use_doorbell) {
0813         /* XXX check if swapping is necessary on BE */
0814         wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
0815     } else {
0816         wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
0817         wptr = wptr << 32;
0818         wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
0819     }
0820 
0821     return wptr >> 2;
0822 }
0823 
0824 /**
0825  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
0826  *
0827  * @ring: amdgpu ring pointer
0828  *
0829  * Write the wptr back to the hardware (VEGA10+).
0830  */
0831 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
0832 {
0833     struct amdgpu_device *adev = ring->adev;
0834 
0835     if (ring->use_doorbell) {
0836         u64 *wb = (u64 *)ring->wptr_cpu_addr;
0837 
0838         /* XXX check if swapping is necessary on BE */
0839         WRITE_ONCE(*wb, (ring->wptr << 2));
0840         WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
0841     } else {
0842         uint64_t wptr = ring->wptr << 2;
0843 
0844         WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
0845                 lower_32_bits(wptr));
0846         WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
0847                 upper_32_bits(wptr));
0848     }
0849 }
0850 
0851 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
0852 {
0853     struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
0854     int i;
0855 
0856     for (i = 0; i < count; i++)
0857         if (sdma && sdma->burst_nop && (i == 0))
0858             amdgpu_ring_write(ring, ring->funcs->nop |
0859                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
0860         else
0861             amdgpu_ring_write(ring, ring->funcs->nop);
0862 }
0863 
0864 /**
0865  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
0866  *
0867  * @ring: amdgpu ring pointer
0868  * @job: job to retrieve vmid from
0869  * @ib: IB object to schedule
0870  * @flags: unused
0871  *
0872  * Schedule an IB in the DMA ring (VEGA10).
0873  */
0874 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
0875                    struct amdgpu_job *job,
0876                    struct amdgpu_ib *ib,
0877                    uint32_t flags)
0878 {
0879     unsigned vmid = AMDGPU_JOB_GET_VMID(job);
0880 
0881     /* IB packet must end on a 8 DW boundary */
0882     sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
0883 
0884     amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
0885               SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
0886     /* base must be 32 byte aligned */
0887     amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
0888     amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
0889     amdgpu_ring_write(ring, ib->length_dw);
0890     amdgpu_ring_write(ring, 0);
0891     amdgpu_ring_write(ring, 0);
0892 
0893 }
0894 
0895 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
0896                    int mem_space, int hdp,
0897                    uint32_t addr0, uint32_t addr1,
0898                    uint32_t ref, uint32_t mask,
0899                    uint32_t inv)
0900 {
0901     amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
0902               SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
0903               SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
0904               SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
0905     if (mem_space) {
0906         /* memory */
0907         amdgpu_ring_write(ring, addr0);
0908         amdgpu_ring_write(ring, addr1);
0909     } else {
0910         /* registers */
0911         amdgpu_ring_write(ring, addr0 << 2);
0912         amdgpu_ring_write(ring, addr1 << 2);
0913     }
0914     amdgpu_ring_write(ring, ref); /* reference */
0915     amdgpu_ring_write(ring, mask); /* mask */
0916     amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
0917               SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
0918 }
0919 
0920 /**
0921  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
0922  *
0923  * @ring: amdgpu ring pointer
0924  *
0925  * Emit an hdp flush packet on the requested DMA ring.
0926  */
0927 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
0928 {
0929     struct amdgpu_device *adev = ring->adev;
0930     u32 ref_and_mask = 0;
0931     const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
0932 
0933     ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
0934 
0935     sdma_v4_0_wait_reg_mem(ring, 0, 1,
0936                    adev->nbio.funcs->get_hdp_flush_done_offset(adev),
0937                    adev->nbio.funcs->get_hdp_flush_req_offset(adev),
0938                    ref_and_mask, ref_and_mask, 10);
0939 }
0940 
0941 /**
0942  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
0943  *
0944  * @ring: amdgpu ring pointer
0945  * @addr: address
0946  * @seq: sequence number
0947  * @flags: fence related flags
0948  *
0949  * Add a DMA fence packet to the ring to write
0950  * the fence seq number and DMA trap packet to generate
0951  * an interrupt if needed (VEGA10).
0952  */
0953 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
0954                       unsigned flags)
0955 {
0956     bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
0957     /* write the fence */
0958     amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
0959     /* zero in first two bits */
0960     BUG_ON(addr & 0x3);
0961     amdgpu_ring_write(ring, lower_32_bits(addr));
0962     amdgpu_ring_write(ring, upper_32_bits(addr));
0963     amdgpu_ring_write(ring, lower_32_bits(seq));
0964 
0965     /* optionally write high bits as well */
0966     if (write64bit) {
0967         addr += 4;
0968         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
0969         /* zero in first two bits */
0970         BUG_ON(addr & 0x3);
0971         amdgpu_ring_write(ring, lower_32_bits(addr));
0972         amdgpu_ring_write(ring, upper_32_bits(addr));
0973         amdgpu_ring_write(ring, upper_32_bits(seq));
0974     }
0975 
0976     /* generate an interrupt */
0977     amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
0978     amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
0979 }
0980 
0981 
0982 /**
0983  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
0984  *
0985  * @adev: amdgpu_device pointer
0986  *
0987  * Stop the gfx async dma ring buffers (VEGA10).
0988  */
0989 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
0990 {
0991     struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
0992     u32 rb_cntl, ib_cntl;
0993     int i, unset = 0;
0994 
0995     for (i = 0; i < adev->sdma.num_instances; i++) {
0996         sdma[i] = &adev->sdma.instance[i].ring;
0997 
0998         if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
0999             amdgpu_ttm_set_buffer_funcs_status(adev, false);
1000             unset = 1;
1001         }
1002 
1003         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1004         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
1005         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1006         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1007         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
1008         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1009     }
1010 }
1011 
1012 /**
1013  * sdma_v4_0_rlc_stop - stop the compute async dma engines
1014  *
1015  * @adev: amdgpu_device pointer
1016  *
1017  * Stop the compute async dma queues (VEGA10).
1018  */
1019 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
1020 {
1021     /* XXX todo */
1022 }
1023 
1024 /**
1025  * sdma_v4_0_page_stop - stop the page async dma engines
1026  *
1027  * @adev: amdgpu_device pointer
1028  *
1029  * Stop the page async dma ring buffers (VEGA10).
1030  */
1031 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
1032 {
1033     struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
1034     u32 rb_cntl, ib_cntl;
1035     int i;
1036     bool unset = false;
1037 
1038     for (i = 0; i < adev->sdma.num_instances; i++) {
1039         sdma[i] = &adev->sdma.instance[i].page;
1040 
1041         if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1042             (!unset)) {
1043             amdgpu_ttm_set_buffer_funcs_status(adev, false);
1044             unset = true;
1045         }
1046 
1047         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1048         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1049                     RB_ENABLE, 0);
1050         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1051         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1052         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1053                     IB_ENABLE, 0);
1054         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1055     }
1056 }
1057 
1058 /**
1059  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1060  *
1061  * @adev: amdgpu_device pointer
1062  * @enable: enable/disable the DMA MEs context switch.
1063  *
1064  * Halt or unhalt the async dma engines context switch (VEGA10).
1065  */
1066 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1067 {
1068     u32 f32_cntl, phase_quantum = 0;
1069     int i;
1070 
1071     if (amdgpu_sdma_phase_quantum) {
1072         unsigned value = amdgpu_sdma_phase_quantum;
1073         unsigned unit = 0;
1074 
1075         while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1076                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1077             value = (value + 1) >> 1;
1078             unit++;
1079         }
1080         if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1081                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1082             value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1083                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1084             unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1085                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1086             WARN_ONCE(1,
1087             "clamping sdma_phase_quantum to %uK clock cycles\n",
1088                   value << unit);
1089         }
1090         phase_quantum =
1091             value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1092             unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1093     }
1094 
1095     for (i = 0; i < adev->sdma.num_instances; i++) {
1096         f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1097         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1098                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1099         if (enable && amdgpu_sdma_phase_quantum) {
1100             WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1101             WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1102             WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1103         }
1104         WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1105 
1106         /*
1107          * Enable SDMA utilization. Its only supported on
1108          * Arcturus for the moment and firmware version 14
1109          * and above.
1110          */
1111         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) &&
1112             adev->sdma.instance[i].fw_version >= 14)
1113             WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1114         /* Extend page fault timeout to avoid interrupt storm */
1115         WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
1116     }
1117 
1118 }
1119 
1120 /**
1121  * sdma_v4_0_enable - stop the async dma engines
1122  *
1123  * @adev: amdgpu_device pointer
1124  * @enable: enable/disable the DMA MEs.
1125  *
1126  * Halt or unhalt the async dma engines (VEGA10).
1127  */
1128 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1129 {
1130     u32 f32_cntl;
1131     int i;
1132 
1133     if (!enable) {
1134         sdma_v4_0_gfx_stop(adev);
1135         sdma_v4_0_rlc_stop(adev);
1136         if (adev->sdma.has_page_queue)
1137             sdma_v4_0_page_stop(adev);
1138     }
1139 
1140     for (i = 0; i < adev->sdma.num_instances; i++) {
1141         f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1142         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1143         WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1144     }
1145 }
1146 
1147 /*
1148  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1149  */
1150 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1151 {
1152     /* Set ring buffer size in dwords */
1153     uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1154 
1155     rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1156 #ifdef __BIG_ENDIAN
1157     rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1158     rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1159                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1160 #endif
1161     return rb_cntl;
1162 }
1163 
1164 /**
1165  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1166  *
1167  * @adev: amdgpu_device pointer
1168  * @i: instance to resume
1169  *
1170  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1171  * Returns 0 for success, error for failure.
1172  */
1173 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1174 {
1175     struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1176     u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1177     u32 doorbell;
1178     u32 doorbell_offset;
1179     u64 wptr_gpu_addr;
1180 
1181     rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1182     rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1183     WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1184 
1185     /* Initialize the ring buffer's read and write pointers */
1186     WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1187     WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1188     WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1189     WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1190 
1191     /* set the wb address whether it's enabled or not */
1192     WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1193            upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1194     WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1195            lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1196 
1197     rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1198                 RPTR_WRITEBACK_ENABLE, 1);
1199 
1200     WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1201     WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1202 
1203     ring->wptr = 0;
1204 
1205     /* before programing wptr to a less value, need set minor_ptr_update first */
1206     WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1207 
1208     doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1209     doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1210 
1211     doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1212                  ring->use_doorbell);
1213     doorbell_offset = REG_SET_FIELD(doorbell_offset,
1214                     SDMA0_GFX_DOORBELL_OFFSET,
1215                     OFFSET, ring->doorbell_index);
1216     WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1217     WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1218 
1219     sdma_v4_0_ring_set_wptr(ring);
1220 
1221     /* set minor_ptr_update to 0 after wptr programed */
1222     WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1223 
1224     /* setup the wptr shadow polling */
1225     wptr_gpu_addr = ring->wptr_gpu_addr;
1226     WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1227             lower_32_bits(wptr_gpu_addr));
1228     WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1229             upper_32_bits(wptr_gpu_addr));
1230     wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1231     wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1232                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
1233                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1234     WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1235 
1236     /* enable DMA RB */
1237     rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1238     WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1239 
1240     ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1241     ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1242 #ifdef __BIG_ENDIAN
1243     ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1244 #endif
1245     /* enable DMA IBs */
1246     WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1247 
1248     ring->sched.ready = true;
1249 }
1250 
1251 /**
1252  * sdma_v4_0_page_resume - setup and start the async dma engines
1253  *
1254  * @adev: amdgpu_device pointer
1255  * @i: instance to resume
1256  *
1257  * Set up the page DMA ring buffers and enable them (VEGA10).
1258  * Returns 0 for success, error for failure.
1259  */
1260 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1261 {
1262     struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1263     u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1264     u32 doorbell;
1265     u32 doorbell_offset;
1266     u64 wptr_gpu_addr;
1267 
1268     rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1269     rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1270     WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1271 
1272     /* Initialize the ring buffer's read and write pointers */
1273     WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1274     WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1275     WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1276     WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1277 
1278     /* set the wb address whether it's enabled or not */
1279     WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1280            upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1281     WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1282            lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1283 
1284     rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1285                 RPTR_WRITEBACK_ENABLE, 1);
1286 
1287     WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1288     WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1289 
1290     ring->wptr = 0;
1291 
1292     /* before programing wptr to a less value, need set minor_ptr_update first */
1293     WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1294 
1295     doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1296     doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1297 
1298     doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1299                  ring->use_doorbell);
1300     doorbell_offset = REG_SET_FIELD(doorbell_offset,
1301                     SDMA0_PAGE_DOORBELL_OFFSET,
1302                     OFFSET, ring->doorbell_index);
1303     WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1304     WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1305 
1306     /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1307     sdma_v4_0_page_ring_set_wptr(ring);
1308 
1309     /* set minor_ptr_update to 0 after wptr programed */
1310     WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1311 
1312     /* setup the wptr shadow polling */
1313     wptr_gpu_addr = ring->wptr_gpu_addr;
1314     WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1315             lower_32_bits(wptr_gpu_addr));
1316     WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1317             upper_32_bits(wptr_gpu_addr));
1318     wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1319     wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1320                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1321                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1322     WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1323 
1324     /* enable DMA RB */
1325     rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1326     WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1327 
1328     ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1329     ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1330 #ifdef __BIG_ENDIAN
1331     ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1332 #endif
1333     /* enable DMA IBs */
1334     WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1335 
1336     ring->sched.ready = true;
1337 }
1338 
1339 static void
1340 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1341 {
1342     uint32_t def, data;
1343 
1344     if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1345         /* enable idle interrupt */
1346         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1347         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1348 
1349         if (data != def)
1350             WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1351     } else {
1352         /* disable idle interrupt */
1353         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1354         data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1355         if (data != def)
1356             WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1357     }
1358 }
1359 
1360 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1361 {
1362     uint32_t def, data;
1363 
1364     /* Enable HW based PG. */
1365     def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1366     data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1367     if (data != def)
1368         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1369 
1370     /* enable interrupt */
1371     def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1372     data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1373     if (data != def)
1374         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1375 
1376     /* Configure hold time to filter in-valid power on/off request. Use default right now */
1377     def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1378     data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1379     data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1380     /* Configure switch time for hysteresis purpose. Use default right now */
1381     data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1382     data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1383     if(data != def)
1384         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1385 }
1386 
1387 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1388 {
1389     if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1390         return;
1391 
1392     switch (adev->ip_versions[SDMA0_HWIP][0]) {
1393     case IP_VERSION(4, 1, 0):
1394         case IP_VERSION(4, 1, 1):
1395     case IP_VERSION(4, 1, 2):
1396         sdma_v4_1_init_power_gating(adev);
1397         sdma_v4_1_update_power_gating(adev, true);
1398         break;
1399     default:
1400         break;
1401     }
1402 }
1403 
1404 /**
1405  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1406  *
1407  * @adev: amdgpu_device pointer
1408  *
1409  * Set up the compute DMA queues and enable them (VEGA10).
1410  * Returns 0 for success, error for failure.
1411  */
1412 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1413 {
1414     sdma_v4_0_init_pg(adev);
1415 
1416     return 0;
1417 }
1418 
1419 /**
1420  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1421  *
1422  * @adev: amdgpu_device pointer
1423  *
1424  * Loads the sDMA0/1 ucode.
1425  * Returns 0 for success, -EINVAL if the ucode is not available.
1426  */
1427 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1428 {
1429     const struct sdma_firmware_header_v1_0 *hdr;
1430     const __le32 *fw_data;
1431     u32 fw_size;
1432     int i, j;
1433 
1434     /* halt the MEs */
1435     sdma_v4_0_enable(adev, false);
1436 
1437     for (i = 0; i < adev->sdma.num_instances; i++) {
1438         if (!adev->sdma.instance[i].fw)
1439             return -EINVAL;
1440 
1441         hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1442         amdgpu_ucode_print_sdma_hdr(&hdr->header);
1443         fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1444 
1445         fw_data = (const __le32 *)
1446             (adev->sdma.instance[i].fw->data +
1447                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1448 
1449         WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1450 
1451         for (j = 0; j < fw_size; j++)
1452             WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1453                     le32_to_cpup(fw_data++));
1454 
1455         WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1456                 adev->sdma.instance[i].fw_version);
1457     }
1458 
1459     return 0;
1460 }
1461 
1462 /**
1463  * sdma_v4_0_start - setup and start the async dma engines
1464  *
1465  * @adev: amdgpu_device pointer
1466  *
1467  * Set up the DMA engines and enable them (VEGA10).
1468  * Returns 0 for success, error for failure.
1469  */
1470 static int sdma_v4_0_start(struct amdgpu_device *adev)
1471 {
1472     struct amdgpu_ring *ring;
1473     int i, r = 0;
1474 
1475     if (amdgpu_sriov_vf(adev)) {
1476         sdma_v4_0_ctx_switch_enable(adev, false);
1477         sdma_v4_0_enable(adev, false);
1478     } else {
1479 
1480         if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1481             r = sdma_v4_0_load_microcode(adev);
1482             if (r)
1483                 return r;
1484         }
1485 
1486         /* unhalt the MEs */
1487         sdma_v4_0_enable(adev, true);
1488         /* enable sdma ring preemption */
1489         sdma_v4_0_ctx_switch_enable(adev, true);
1490     }
1491 
1492     /* start the gfx rings and rlc compute queues */
1493     for (i = 0; i < adev->sdma.num_instances; i++) {
1494         uint32_t temp;
1495 
1496         WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1497         sdma_v4_0_gfx_resume(adev, i);
1498         if (adev->sdma.has_page_queue)
1499             sdma_v4_0_page_resume(adev, i);
1500 
1501         /* set utc l1 enable flag always to 1 */
1502         temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1503         temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1504         WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1505 
1506         if (!amdgpu_sriov_vf(adev)) {
1507             ring = &adev->sdma.instance[i].ring;
1508             adev->nbio.funcs->sdma_doorbell_range(adev, i,
1509                 ring->use_doorbell, ring->doorbell_index,
1510                 adev->doorbell_index.sdma_doorbell_range);
1511 
1512             /* unhalt engine */
1513             temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1514             temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1515             WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1516         }
1517     }
1518 
1519     if (amdgpu_sriov_vf(adev)) {
1520         sdma_v4_0_ctx_switch_enable(adev, true);
1521         sdma_v4_0_enable(adev, true);
1522     } else {
1523         r = sdma_v4_0_rlc_resume(adev);
1524         if (r)
1525             return r;
1526     }
1527 
1528     for (i = 0; i < adev->sdma.num_instances; i++) {
1529         ring = &adev->sdma.instance[i].ring;
1530 
1531         r = amdgpu_ring_test_helper(ring);
1532         if (r)
1533             return r;
1534 
1535         if (adev->sdma.has_page_queue) {
1536             struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1537 
1538             r = amdgpu_ring_test_helper(page);
1539             if (r)
1540                 return r;
1541 
1542             if (adev->mman.buffer_funcs_ring == page)
1543                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1544         }
1545 
1546         if (adev->mman.buffer_funcs_ring == ring)
1547             amdgpu_ttm_set_buffer_funcs_status(adev, true);
1548     }
1549 
1550     return r;
1551 }
1552 
1553 /**
1554  * sdma_v4_0_ring_test_ring - simple async dma engine test
1555  *
1556  * @ring: amdgpu_ring structure holding ring information
1557  *
1558  * Test the DMA engine by writing using it to write an
1559  * value to memory. (VEGA10).
1560  * Returns 0 for success, error for failure.
1561  */
1562 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1563 {
1564     struct amdgpu_device *adev = ring->adev;
1565     unsigned i;
1566     unsigned index;
1567     int r;
1568     u32 tmp;
1569     u64 gpu_addr;
1570 
1571     r = amdgpu_device_wb_get(adev, &index);
1572     if (r)
1573         return r;
1574 
1575     gpu_addr = adev->wb.gpu_addr + (index * 4);
1576     tmp = 0xCAFEDEAD;
1577     adev->wb.wb[index] = cpu_to_le32(tmp);
1578 
1579     r = amdgpu_ring_alloc(ring, 5);
1580     if (r)
1581         goto error_free_wb;
1582 
1583     amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1584               SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1585     amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1586     amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1587     amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1588     amdgpu_ring_write(ring, 0xDEADBEEF);
1589     amdgpu_ring_commit(ring);
1590 
1591     for (i = 0; i < adev->usec_timeout; i++) {
1592         tmp = le32_to_cpu(adev->wb.wb[index]);
1593         if (tmp == 0xDEADBEEF)
1594             break;
1595         udelay(1);
1596     }
1597 
1598     if (i >= adev->usec_timeout)
1599         r = -ETIMEDOUT;
1600 
1601 error_free_wb:
1602     amdgpu_device_wb_free(adev, index);
1603     return r;
1604 }
1605 
1606 /**
1607  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1608  *
1609  * @ring: amdgpu_ring structure holding ring information
1610  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1611  *
1612  * Test a simple IB in the DMA ring (VEGA10).
1613  * Returns 0 on success, error on failure.
1614  */
1615 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1616 {
1617     struct amdgpu_device *adev = ring->adev;
1618     struct amdgpu_ib ib;
1619     struct dma_fence *f = NULL;
1620     unsigned index;
1621     long r;
1622     u32 tmp = 0;
1623     u64 gpu_addr;
1624 
1625     r = amdgpu_device_wb_get(adev, &index);
1626     if (r)
1627         return r;
1628 
1629     gpu_addr = adev->wb.gpu_addr + (index * 4);
1630     tmp = 0xCAFEDEAD;
1631     adev->wb.wb[index] = cpu_to_le32(tmp);
1632     memset(&ib, 0, sizeof(ib));
1633     r = amdgpu_ib_get(adev, NULL, 256,
1634                     AMDGPU_IB_POOL_DIRECT, &ib);
1635     if (r)
1636         goto err0;
1637 
1638     ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1639         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1640     ib.ptr[1] = lower_32_bits(gpu_addr);
1641     ib.ptr[2] = upper_32_bits(gpu_addr);
1642     ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1643     ib.ptr[4] = 0xDEADBEEF;
1644     ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1645     ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1646     ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1647     ib.length_dw = 8;
1648 
1649     r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1650     if (r)
1651         goto err1;
1652 
1653     r = dma_fence_wait_timeout(f, false, timeout);
1654     if (r == 0) {
1655         r = -ETIMEDOUT;
1656         goto err1;
1657     } else if (r < 0) {
1658         goto err1;
1659     }
1660     tmp = le32_to_cpu(adev->wb.wb[index]);
1661     if (tmp == 0xDEADBEEF)
1662         r = 0;
1663     else
1664         r = -EINVAL;
1665 
1666 err1:
1667     amdgpu_ib_free(adev, &ib, NULL);
1668     dma_fence_put(f);
1669 err0:
1670     amdgpu_device_wb_free(adev, index);
1671     return r;
1672 }
1673 
1674 
1675 /**
1676  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1677  *
1678  * @ib: indirect buffer to fill with commands
1679  * @pe: addr of the page entry
1680  * @src: src addr to copy from
1681  * @count: number of page entries to update
1682  *
1683  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1684  */
1685 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1686                   uint64_t pe, uint64_t src,
1687                   unsigned count)
1688 {
1689     unsigned bytes = count * 8;
1690 
1691     ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1692         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1693     ib->ptr[ib->length_dw++] = bytes - 1;
1694     ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1695     ib->ptr[ib->length_dw++] = lower_32_bits(src);
1696     ib->ptr[ib->length_dw++] = upper_32_bits(src);
1697     ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1698     ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1699 
1700 }
1701 
1702 /**
1703  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1704  *
1705  * @ib: indirect buffer to fill with commands
1706  * @pe: addr of the page entry
1707  * @value: dst addr to write into pe
1708  * @count: number of page entries to update
1709  * @incr: increase next addr by incr bytes
1710  *
1711  * Update PTEs by writing them manually using sDMA (VEGA10).
1712  */
1713 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1714                    uint64_t value, unsigned count,
1715                    uint32_t incr)
1716 {
1717     unsigned ndw = count * 2;
1718 
1719     ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1720         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1721     ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1722     ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1723     ib->ptr[ib->length_dw++] = ndw - 1;
1724     for (; ndw > 0; ndw -= 2) {
1725         ib->ptr[ib->length_dw++] = lower_32_bits(value);
1726         ib->ptr[ib->length_dw++] = upper_32_bits(value);
1727         value += incr;
1728     }
1729 }
1730 
1731 /**
1732  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1733  *
1734  * @ib: indirect buffer to fill with commands
1735  * @pe: addr of the page entry
1736  * @addr: dst addr to write into pe
1737  * @count: number of page entries to update
1738  * @incr: increase next addr by incr bytes
1739  * @flags: access flags
1740  *
1741  * Update the page tables using sDMA (VEGA10).
1742  */
1743 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1744                      uint64_t pe,
1745                      uint64_t addr, unsigned count,
1746                      uint32_t incr, uint64_t flags)
1747 {
1748     /* for physically contiguous pages (vram) */
1749     ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1750     ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1751     ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1752     ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1753     ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1754     ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1755     ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1756     ib->ptr[ib->length_dw++] = incr; /* increment size */
1757     ib->ptr[ib->length_dw++] = 0;
1758     ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1759 }
1760 
1761 /**
1762  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1763  *
1764  * @ring: amdgpu_ring structure holding ring information
1765  * @ib: indirect buffer to fill with padding
1766  */
1767 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1768 {
1769     struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1770     u32 pad_count;
1771     int i;
1772 
1773     pad_count = (-ib->length_dw) & 7;
1774     for (i = 0; i < pad_count; i++)
1775         if (sdma && sdma->burst_nop && (i == 0))
1776             ib->ptr[ib->length_dw++] =
1777                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1778                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1779         else
1780             ib->ptr[ib->length_dw++] =
1781                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1782 }
1783 
1784 
1785 /**
1786  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1787  *
1788  * @ring: amdgpu_ring pointer
1789  *
1790  * Make sure all previous operations are completed (CIK).
1791  */
1792 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1793 {
1794     uint32_t seq = ring->fence_drv.sync_seq;
1795     uint64_t addr = ring->fence_drv.gpu_addr;
1796 
1797     /* wait for idle */
1798     sdma_v4_0_wait_reg_mem(ring, 1, 0,
1799                    addr & 0xfffffffc,
1800                    upper_32_bits(addr) & 0xffffffff,
1801                    seq, 0xffffffff, 4);
1802 }
1803 
1804 
1805 /**
1806  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1807  *
1808  * @ring: amdgpu_ring pointer
1809  * @vmid: vmid number to use
1810  * @pd_addr: address
1811  *
1812  * Update the page table base and flush the VM TLB
1813  * using sDMA (VEGA10).
1814  */
1815 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1816                      unsigned vmid, uint64_t pd_addr)
1817 {
1818     amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1819 }
1820 
1821 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1822                      uint32_t reg, uint32_t val)
1823 {
1824     amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1825               SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1826     amdgpu_ring_write(ring, reg);
1827     amdgpu_ring_write(ring, val);
1828 }
1829 
1830 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1831                      uint32_t val, uint32_t mask)
1832 {
1833     sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1834 }
1835 
1836 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1837 {
1838     uint fw_version = adev->sdma.instance[0].fw_version;
1839 
1840     switch (adev->ip_versions[SDMA0_HWIP][0]) {
1841     case IP_VERSION(4, 0, 0):
1842         return fw_version >= 430;
1843     case IP_VERSION(4, 0, 1):
1844         /*return fw_version >= 31;*/
1845         return false;
1846     case IP_VERSION(4, 2, 0):
1847         return fw_version >= 123;
1848     default:
1849         return false;
1850     }
1851 }
1852 
1853 static int sdma_v4_0_early_init(void *handle)
1854 {
1855     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1856     int r;
1857 
1858     r = sdma_v4_0_init_microcode(adev);
1859     if (r) {
1860         DRM_ERROR("Failed to load sdma firmware!\n");
1861         return r;
1862     }
1863 
1864     /* TODO: Page queue breaks driver reload under SRIOV */
1865     if ((adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 0, 0)) &&
1866         amdgpu_sriov_vf((adev)))
1867         adev->sdma.has_page_queue = false;
1868     else if (sdma_v4_0_fw_support_paging_queue(adev))
1869         adev->sdma.has_page_queue = true;
1870 
1871     sdma_v4_0_set_ring_funcs(adev);
1872     sdma_v4_0_set_buffer_funcs(adev);
1873     sdma_v4_0_set_vm_pte_funcs(adev);
1874     sdma_v4_0_set_irq_funcs(adev);
1875     sdma_v4_0_set_ras_funcs(adev);
1876 
1877     return 0;
1878 }
1879 
1880 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1881         void *err_data,
1882         struct amdgpu_iv_entry *entry);
1883 
1884 static int sdma_v4_0_late_init(void *handle)
1885 {
1886     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1887 
1888     sdma_v4_0_setup_ulv(adev);
1889 
1890     if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1891         if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops &&
1892             adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count)
1893             adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev);
1894     }
1895 
1896     return 0;
1897 }
1898 
1899 static int sdma_v4_0_sw_init(void *handle)
1900 {
1901     struct amdgpu_ring *ring;
1902     int r, i;
1903     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1904 
1905     /* SDMA trap event */
1906     for (i = 0; i < adev->sdma.num_instances; i++) {
1907         r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1908                       SDMA0_4_0__SRCID__SDMA_TRAP,
1909                       &adev->sdma.trap_irq);
1910         if (r)
1911             return r;
1912     }
1913 
1914     /* SDMA SRAM ECC event */
1915     for (i = 0; i < adev->sdma.num_instances; i++) {
1916         r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1917                       SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1918                       &adev->sdma.ecc_irq);
1919         if (r)
1920             return r;
1921     }
1922 
1923     /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1924     for (i = 0; i < adev->sdma.num_instances; i++) {
1925         r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1926                       SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1927                       &adev->sdma.vm_hole_irq);
1928         if (r)
1929             return r;
1930 
1931         r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1932                       SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1933                       &adev->sdma.doorbell_invalid_irq);
1934         if (r)
1935             return r;
1936 
1937         r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1938                       SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1939                       &adev->sdma.pool_timeout_irq);
1940         if (r)
1941             return r;
1942 
1943         r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1944                       SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1945                       &adev->sdma.srbm_write_irq);
1946         if (r)
1947             return r;
1948     }
1949 
1950     for (i = 0; i < adev->sdma.num_instances; i++) {
1951         ring = &adev->sdma.instance[i].ring;
1952         ring->ring_obj = NULL;
1953         ring->use_doorbell = true;
1954 
1955         DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1956                 ring->use_doorbell?"true":"false");
1957 
1958         /* doorbell size is 2 dwords, get DWORD offset */
1959         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1960 
1961         sprintf(ring->name, "sdma%d", i);
1962         r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1963                      AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1964                      AMDGPU_RING_PRIO_DEFAULT, NULL);
1965         if (r)
1966             return r;
1967 
1968         if (adev->sdma.has_page_queue) {
1969             ring = &adev->sdma.instance[i].page;
1970             ring->ring_obj = NULL;
1971             ring->use_doorbell = true;
1972 
1973             /* paging queue use same doorbell index/routing as gfx queue
1974              * with 0x400 (4096 dwords) offset on second doorbell page
1975              */
1976             ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1977             ring->doorbell_index += 0x400;
1978 
1979             sprintf(ring->name, "page%d", i);
1980             r = amdgpu_ring_init(adev, ring, 1024,
1981                          &adev->sdma.trap_irq,
1982                          AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1983                          AMDGPU_RING_PRIO_DEFAULT, NULL);
1984             if (r)
1985                 return r;
1986         }
1987     }
1988 
1989     return r;
1990 }
1991 
1992 static int sdma_v4_0_sw_fini(void *handle)
1993 {
1994     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1995     int i;
1996 
1997     for (i = 0; i < adev->sdma.num_instances; i++) {
1998         amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1999         if (adev->sdma.has_page_queue)
2000             amdgpu_ring_fini(&adev->sdma.instance[i].page);
2001     }
2002 
2003     sdma_v4_0_destroy_inst_ctx(adev);
2004 
2005     return 0;
2006 }
2007 
2008 static int sdma_v4_0_hw_init(void *handle)
2009 {
2010     int r;
2011     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2012 
2013     if (adev->flags & AMD_IS_APU)
2014         amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
2015 
2016     if (!amdgpu_sriov_vf(adev))
2017         sdma_v4_0_init_golden_registers(adev);
2018 
2019     r = sdma_v4_0_start(adev);
2020 
2021     return r;
2022 }
2023 
2024 static int sdma_v4_0_hw_fini(void *handle)
2025 {
2026     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2027     int i;
2028 
2029     if (amdgpu_sriov_vf(adev))
2030         return 0;
2031 
2032     for (i = 0; i < adev->sdma.num_instances; i++) {
2033         amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2034                    AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2035     }
2036 
2037     sdma_v4_0_ctx_switch_enable(adev, false);
2038     sdma_v4_0_enable(adev, false);
2039 
2040     if (adev->flags & AMD_IS_APU)
2041         amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
2042 
2043     return 0;
2044 }
2045 
2046 static int sdma_v4_0_suspend(void *handle)
2047 {
2048     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2049 
2050     /* SMU saves SDMA state for us */
2051     if (adev->in_s0ix)
2052         return 0;
2053 
2054     return sdma_v4_0_hw_fini(adev);
2055 }
2056 
2057 static int sdma_v4_0_resume(void *handle)
2058 {
2059     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2060 
2061     /* SMU restores SDMA state for us */
2062     if (adev->in_s0ix)
2063         return 0;
2064 
2065     return sdma_v4_0_hw_init(adev);
2066 }
2067 
2068 static bool sdma_v4_0_is_idle(void *handle)
2069 {
2070     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2071     u32 i;
2072 
2073     for (i = 0; i < adev->sdma.num_instances; i++) {
2074         u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2075 
2076         if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2077             return false;
2078     }
2079 
2080     return true;
2081 }
2082 
2083 static int sdma_v4_0_wait_for_idle(void *handle)
2084 {
2085     unsigned i, j;
2086     u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2087     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2088 
2089     for (i = 0; i < adev->usec_timeout; i++) {
2090         for (j = 0; j < adev->sdma.num_instances; j++) {
2091             sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2092             if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2093                 break;
2094         }
2095         if (j == adev->sdma.num_instances)
2096             return 0;
2097         udelay(1);
2098     }
2099     return -ETIMEDOUT;
2100 }
2101 
2102 static int sdma_v4_0_soft_reset(void *handle)
2103 {
2104     /* todo */
2105 
2106     return 0;
2107 }
2108 
2109 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2110                     struct amdgpu_irq_src *source,
2111                     unsigned type,
2112                     enum amdgpu_interrupt_state state)
2113 {
2114     u32 sdma_cntl;
2115 
2116     sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2117     sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2118                state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2119     WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2120 
2121     return 0;
2122 }
2123 
2124 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2125                       struct amdgpu_irq_src *source,
2126                       struct amdgpu_iv_entry *entry)
2127 {
2128     uint32_t instance;
2129 
2130     DRM_DEBUG("IH: SDMA trap\n");
2131     instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2132     switch (entry->ring_id) {
2133     case 0:
2134         amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2135         break;
2136     case 1:
2137         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0))
2138             amdgpu_fence_process(&adev->sdma.instance[instance].page);
2139         break;
2140     case 2:
2141         /* XXX compute */
2142         break;
2143     case 3:
2144         if (adev->ip_versions[SDMA0_HWIP][0] != IP_VERSION(4, 2, 0))
2145             amdgpu_fence_process(&adev->sdma.instance[instance].page);
2146         break;
2147     }
2148     return 0;
2149 }
2150 
2151 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2152         void *err_data,
2153         struct amdgpu_iv_entry *entry)
2154 {
2155     int instance;
2156 
2157     /* When “Full RAS” is enabled, the per-IP interrupt sources should
2158      * be disabled and the driver should only look for the aggregated
2159      * interrupt via sync flood
2160      */
2161     if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2162         goto out;
2163 
2164     instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2165     if (instance < 0)
2166         goto out;
2167 
2168     amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2169 
2170 out:
2171     return AMDGPU_RAS_SUCCESS;
2172 }
2173 
2174 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2175                           struct amdgpu_irq_src *source,
2176                           struct amdgpu_iv_entry *entry)
2177 {
2178     int instance;
2179 
2180     DRM_ERROR("Illegal instruction in SDMA command stream\n");
2181 
2182     instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2183     if (instance < 0)
2184         return 0;
2185 
2186     switch (entry->ring_id) {
2187     case 0:
2188         drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2189         break;
2190     }
2191     return 0;
2192 }
2193 
2194 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2195                     struct amdgpu_irq_src *source,
2196                     unsigned type,
2197                     enum amdgpu_interrupt_state state)
2198 {
2199     u32 sdma_edc_config;
2200 
2201     sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2202     sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2203                state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2204     WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2205 
2206     return 0;
2207 }
2208 
2209 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2210                           struct amdgpu_iv_entry *entry)
2211 {
2212     int instance;
2213     struct amdgpu_task_info task_info;
2214     u64 addr;
2215 
2216     instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2217     if (instance < 0 || instance >= adev->sdma.num_instances) {
2218         dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2219         return -EINVAL;
2220     }
2221 
2222     addr = (u64)entry->src_data[0] << 12;
2223     addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2224 
2225     memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2226     amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2227 
2228     dev_dbg_ratelimited(adev->dev,
2229            "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2230            "pasid:%u, for process %s pid %d thread %s pid %d\n",
2231            instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2232            entry->pasid, task_info.process_name, task_info.tgid,
2233            task_info.task_name, task_info.pid);
2234     return 0;
2235 }
2236 
2237 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2238                           struct amdgpu_irq_src *source,
2239                           struct amdgpu_iv_entry *entry)
2240 {
2241     dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2242     sdma_v4_0_print_iv_entry(adev, entry);
2243     return 0;
2244 }
2245 
2246 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2247                           struct amdgpu_irq_src *source,
2248                           struct amdgpu_iv_entry *entry)
2249 {
2250     dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2251     sdma_v4_0_print_iv_entry(adev, entry);
2252     return 0;
2253 }
2254 
2255 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2256                           struct amdgpu_irq_src *source,
2257                           struct amdgpu_iv_entry *entry)
2258 {
2259     dev_dbg_ratelimited(adev->dev,
2260         "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2261     sdma_v4_0_print_iv_entry(adev, entry);
2262     return 0;
2263 }
2264 
2265 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2266                           struct amdgpu_irq_src *source,
2267                           struct amdgpu_iv_entry *entry)
2268 {
2269     dev_dbg_ratelimited(adev->dev,
2270         "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2271     sdma_v4_0_print_iv_entry(adev, entry);
2272     return 0;
2273 }
2274 
2275 static void sdma_v4_0_update_medium_grain_clock_gating(
2276         struct amdgpu_device *adev,
2277         bool enable)
2278 {
2279     uint32_t data, def;
2280     int i;
2281 
2282     if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2283         for (i = 0; i < adev->sdma.num_instances; i++) {
2284             def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2285             data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2286                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2287                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2288                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2289                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2290                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2291                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2292                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2293             if (def != data)
2294                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2295         }
2296     } else {
2297         for (i = 0; i < adev->sdma.num_instances; i++) {
2298             def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2299             data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2300                  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2301                  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2302                  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2303                  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2304                  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2305                  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2306                  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2307             if (def != data)
2308                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2309         }
2310     }
2311 }
2312 
2313 
2314 static void sdma_v4_0_update_medium_grain_light_sleep(
2315         struct amdgpu_device *adev,
2316         bool enable)
2317 {
2318     uint32_t data, def;
2319     int i;
2320 
2321     if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2322         for (i = 0; i < adev->sdma.num_instances; i++) {
2323             /* 1-not override: enable sdma mem light sleep */
2324             def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2325             data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2326             if (def != data)
2327                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2328         }
2329     } else {
2330         for (i = 0; i < adev->sdma.num_instances; i++) {
2331         /* 0-override:disable sdma mem light sleep */
2332             def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2333             data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2334             if (def != data)
2335                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2336         }
2337     }
2338 }
2339 
2340 static int sdma_v4_0_set_clockgating_state(void *handle,
2341                       enum amd_clockgating_state state)
2342 {
2343     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2344 
2345     if (amdgpu_sriov_vf(adev))
2346         return 0;
2347 
2348     sdma_v4_0_update_medium_grain_clock_gating(adev,
2349             state == AMD_CG_STATE_GATE);
2350     sdma_v4_0_update_medium_grain_light_sleep(adev,
2351             state == AMD_CG_STATE_GATE);
2352     return 0;
2353 }
2354 
2355 static int sdma_v4_0_set_powergating_state(void *handle,
2356                       enum amd_powergating_state state)
2357 {
2358     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2359 
2360     switch (adev->ip_versions[SDMA0_HWIP][0]) {
2361     case IP_VERSION(4, 1, 0):
2362     case IP_VERSION(4, 1, 1):
2363     case IP_VERSION(4, 1, 2):
2364         sdma_v4_1_update_power_gating(adev,
2365                 state == AMD_PG_STATE_GATE);
2366         break;
2367     default:
2368         break;
2369     }
2370 
2371     return 0;
2372 }
2373 
2374 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2375 {
2376     struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2377     int data;
2378 
2379     if (amdgpu_sriov_vf(adev))
2380         *flags = 0;
2381 
2382     /* AMD_CG_SUPPORT_SDMA_MGCG */
2383     data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2384     if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2385         *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2386 
2387     /* AMD_CG_SUPPORT_SDMA_LS */
2388     data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2389     if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2390         *flags |= AMD_CG_SUPPORT_SDMA_LS;
2391 }
2392 
2393 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2394     .name = "sdma_v4_0",
2395     .early_init = sdma_v4_0_early_init,
2396     .late_init = sdma_v4_0_late_init,
2397     .sw_init = sdma_v4_0_sw_init,
2398     .sw_fini = sdma_v4_0_sw_fini,
2399     .hw_init = sdma_v4_0_hw_init,
2400     .hw_fini = sdma_v4_0_hw_fini,
2401     .suspend = sdma_v4_0_suspend,
2402     .resume = sdma_v4_0_resume,
2403     .is_idle = sdma_v4_0_is_idle,
2404     .wait_for_idle = sdma_v4_0_wait_for_idle,
2405     .soft_reset = sdma_v4_0_soft_reset,
2406     .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2407     .set_powergating_state = sdma_v4_0_set_powergating_state,
2408     .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2409 };
2410 
2411 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2412     .type = AMDGPU_RING_TYPE_SDMA,
2413     .align_mask = 0xf,
2414     .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2415     .support_64bit_ptrs = true,
2416     .secure_submission_supported = true,
2417     .vmhub = AMDGPU_MMHUB_0,
2418     .get_rptr = sdma_v4_0_ring_get_rptr,
2419     .get_wptr = sdma_v4_0_ring_get_wptr,
2420     .set_wptr = sdma_v4_0_ring_set_wptr,
2421     .emit_frame_size =
2422         6 + /* sdma_v4_0_ring_emit_hdp_flush */
2423         3 + /* hdp invalidate */
2424         6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2425         /* sdma_v4_0_ring_emit_vm_flush */
2426         SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2427         SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2428         10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2429     .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2430     .emit_ib = sdma_v4_0_ring_emit_ib,
2431     .emit_fence = sdma_v4_0_ring_emit_fence,
2432     .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2433     .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2434     .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2435     .test_ring = sdma_v4_0_ring_test_ring,
2436     .test_ib = sdma_v4_0_ring_test_ib,
2437     .insert_nop = sdma_v4_0_ring_insert_nop,
2438     .pad_ib = sdma_v4_0_ring_pad_ib,
2439     .emit_wreg = sdma_v4_0_ring_emit_wreg,
2440     .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2441     .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2442 };
2443 
2444 /*
2445  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2446  * So create a individual constant ring_funcs for those instances.
2447  */
2448 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2449     .type = AMDGPU_RING_TYPE_SDMA,
2450     .align_mask = 0xf,
2451     .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2452     .support_64bit_ptrs = true,
2453     .secure_submission_supported = true,
2454     .vmhub = AMDGPU_MMHUB_1,
2455     .get_rptr = sdma_v4_0_ring_get_rptr,
2456     .get_wptr = sdma_v4_0_ring_get_wptr,
2457     .set_wptr = sdma_v4_0_ring_set_wptr,
2458     .emit_frame_size =
2459         6 + /* sdma_v4_0_ring_emit_hdp_flush */
2460         3 + /* hdp invalidate */
2461         6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2462         /* sdma_v4_0_ring_emit_vm_flush */
2463         SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2464         SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2465         10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2466     .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2467     .emit_ib = sdma_v4_0_ring_emit_ib,
2468     .emit_fence = sdma_v4_0_ring_emit_fence,
2469     .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2470     .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2471     .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2472     .test_ring = sdma_v4_0_ring_test_ring,
2473     .test_ib = sdma_v4_0_ring_test_ib,
2474     .insert_nop = sdma_v4_0_ring_insert_nop,
2475     .pad_ib = sdma_v4_0_ring_pad_ib,
2476     .emit_wreg = sdma_v4_0_ring_emit_wreg,
2477     .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2478     .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2479 };
2480 
2481 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2482     .type = AMDGPU_RING_TYPE_SDMA,
2483     .align_mask = 0xf,
2484     .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2485     .support_64bit_ptrs = true,
2486     .secure_submission_supported = true,
2487     .vmhub = AMDGPU_MMHUB_0,
2488     .get_rptr = sdma_v4_0_ring_get_rptr,
2489     .get_wptr = sdma_v4_0_page_ring_get_wptr,
2490     .set_wptr = sdma_v4_0_page_ring_set_wptr,
2491     .emit_frame_size =
2492         6 + /* sdma_v4_0_ring_emit_hdp_flush */
2493         3 + /* hdp invalidate */
2494         6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2495         /* sdma_v4_0_ring_emit_vm_flush */
2496         SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2497         SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2498         10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2499     .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2500     .emit_ib = sdma_v4_0_ring_emit_ib,
2501     .emit_fence = sdma_v4_0_ring_emit_fence,
2502     .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2503     .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2504     .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2505     .test_ring = sdma_v4_0_ring_test_ring,
2506     .test_ib = sdma_v4_0_ring_test_ib,
2507     .insert_nop = sdma_v4_0_ring_insert_nop,
2508     .pad_ib = sdma_v4_0_ring_pad_ib,
2509     .emit_wreg = sdma_v4_0_ring_emit_wreg,
2510     .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2511     .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2512 };
2513 
2514 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2515     .type = AMDGPU_RING_TYPE_SDMA,
2516     .align_mask = 0xf,
2517     .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2518     .support_64bit_ptrs = true,
2519     .secure_submission_supported = true,
2520     .vmhub = AMDGPU_MMHUB_1,
2521     .get_rptr = sdma_v4_0_ring_get_rptr,
2522     .get_wptr = sdma_v4_0_page_ring_get_wptr,
2523     .set_wptr = sdma_v4_0_page_ring_set_wptr,
2524     .emit_frame_size =
2525         6 + /* sdma_v4_0_ring_emit_hdp_flush */
2526         3 + /* hdp invalidate */
2527         6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2528         /* sdma_v4_0_ring_emit_vm_flush */
2529         SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2530         SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2531         10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2532     .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2533     .emit_ib = sdma_v4_0_ring_emit_ib,
2534     .emit_fence = sdma_v4_0_ring_emit_fence,
2535     .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2536     .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2537     .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2538     .test_ring = sdma_v4_0_ring_test_ring,
2539     .test_ib = sdma_v4_0_ring_test_ib,
2540     .insert_nop = sdma_v4_0_ring_insert_nop,
2541     .pad_ib = sdma_v4_0_ring_pad_ib,
2542     .emit_wreg = sdma_v4_0_ring_emit_wreg,
2543     .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2544     .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2545 };
2546 
2547 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2548 {
2549     int i;
2550 
2551     for (i = 0; i < adev->sdma.num_instances; i++) {
2552         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
2553             adev->sdma.instance[i].ring.funcs =
2554                     &sdma_v4_0_ring_funcs_2nd_mmhub;
2555         else
2556             adev->sdma.instance[i].ring.funcs =
2557                     &sdma_v4_0_ring_funcs;
2558         adev->sdma.instance[i].ring.me = i;
2559         if (adev->sdma.has_page_queue) {
2560             if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
2561                 adev->sdma.instance[i].page.funcs =
2562                     &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2563             else
2564                 adev->sdma.instance[i].page.funcs =
2565                     &sdma_v4_0_page_ring_funcs;
2566             adev->sdma.instance[i].page.me = i;
2567         }
2568     }
2569 }
2570 
2571 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2572     .set = sdma_v4_0_set_trap_irq_state,
2573     .process = sdma_v4_0_process_trap_irq,
2574 };
2575 
2576 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2577     .process = sdma_v4_0_process_illegal_inst_irq,
2578 };
2579 
2580 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2581     .set = sdma_v4_0_set_ecc_irq_state,
2582     .process = amdgpu_sdma_process_ecc_irq,
2583 };
2584 
2585 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2586     .process = sdma_v4_0_process_vm_hole_irq,
2587 };
2588 
2589 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2590     .process = sdma_v4_0_process_doorbell_invalid_irq,
2591 };
2592 
2593 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2594     .process = sdma_v4_0_process_pool_timeout_irq,
2595 };
2596 
2597 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2598     .process = sdma_v4_0_process_srbm_write_irq,
2599 };
2600 
2601 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2602 {
2603     adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2604     adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2605     /*For Arcturus and Aldebaran, add another 4 irq handler*/
2606     switch (adev->sdma.num_instances) {
2607     case 5:
2608     case 8:
2609         adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2610         adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2611         adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2612         adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2613         break;
2614     default:
2615         break;
2616     }
2617     adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2618     adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2619     adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2620     adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2621     adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2622     adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2623     adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2624 }
2625 
2626 /**
2627  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2628  *
2629  * @ib: indirect buffer to copy to
2630  * @src_offset: src GPU address
2631  * @dst_offset: dst GPU address
2632  * @byte_count: number of bytes to xfer
2633  * @tmz: if a secure copy should be used
2634  *
2635  * Copy GPU buffers using the DMA engine (VEGA10/12).
2636  * Used by the amdgpu ttm implementation to move pages if
2637  * registered as the asic copy callback.
2638  */
2639 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2640                        uint64_t src_offset,
2641                        uint64_t dst_offset,
2642                        uint32_t byte_count,
2643                        bool tmz)
2644 {
2645     ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2646         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2647         SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2648     ib->ptr[ib->length_dw++] = byte_count - 1;
2649     ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2650     ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2651     ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2652     ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2653     ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2654 }
2655 
2656 /**
2657  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2658  *
2659  * @ib: indirect buffer to copy to
2660  * @src_data: value to write to buffer
2661  * @dst_offset: dst GPU address
2662  * @byte_count: number of bytes to xfer
2663  *
2664  * Fill GPU buffers using the DMA engine (VEGA10/12).
2665  */
2666 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2667                        uint32_t src_data,
2668                        uint64_t dst_offset,
2669                        uint32_t byte_count)
2670 {
2671     ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2672     ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2673     ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2674     ib->ptr[ib->length_dw++] = src_data;
2675     ib->ptr[ib->length_dw++] = byte_count - 1;
2676 }
2677 
2678 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2679     .copy_max_bytes = 0x400000,
2680     .copy_num_dw = 7,
2681     .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2682 
2683     .fill_max_bytes = 0x400000,
2684     .fill_num_dw = 5,
2685     .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2686 };
2687 
2688 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2689 {
2690     adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2691     if (adev->sdma.has_page_queue)
2692         adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2693     else
2694         adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2695 }
2696 
2697 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2698     .copy_pte_num_dw = 7,
2699     .copy_pte = sdma_v4_0_vm_copy_pte,
2700 
2701     .write_pte = sdma_v4_0_vm_write_pte,
2702     .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2703 };
2704 
2705 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2706 {
2707     struct drm_gpu_scheduler *sched;
2708     unsigned i;
2709 
2710     adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2711     for (i = 0; i < adev->sdma.num_instances; i++) {
2712         if (adev->sdma.has_page_queue)
2713             sched = &adev->sdma.instance[i].page.sched;
2714         else
2715             sched = &adev->sdma.instance[i].ring.sched;
2716         adev->vm_manager.vm_pte_scheds[i] = sched;
2717     }
2718     adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2719 }
2720 
2721 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2722                     uint32_t instance,
2723                     uint32_t *sec_count)
2724 {
2725     uint32_t i;
2726     uint32_t sec_cnt;
2727 
2728     /* double bits error (multiple bits) error detection is not supported */
2729     for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2730         /* the SDMA_EDC_COUNTER register in each sdma instance
2731          * shares the same sed shift_mask
2732          * */
2733         sec_cnt = (value &
2734             sdma_v4_0_ras_fields[i].sec_count_mask) >>
2735             sdma_v4_0_ras_fields[i].sec_count_shift;
2736         if (sec_cnt) {
2737             DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2738                 sdma_v4_0_ras_fields[i].name,
2739                 instance, sec_cnt);
2740             *sec_count += sec_cnt;
2741         }
2742     }
2743 }
2744 
2745 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2746             uint32_t instance, void *ras_error_status)
2747 {
2748     struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2749     uint32_t sec_count = 0;
2750     uint32_t reg_value = 0;
2751 
2752     reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2753     /* double bit error is not supported */
2754     if (reg_value)
2755         sdma_v4_0_get_ras_error_count(reg_value,
2756                 instance, &sec_count);
2757     /* err_data->ce_count should be initialized to 0
2758      * before calling into this function */
2759     err_data->ce_count += sec_count;
2760     /* double bit error is not supported
2761      * set ue count to 0 */
2762     err_data->ue_count = 0;
2763 
2764     return 0;
2765 };
2766 
2767 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,  void *ras_error_status)
2768 {
2769     int i = 0;
2770 
2771     for (i = 0; i < adev->sdma.num_instances; i++) {
2772         if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2773             dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2774             return;
2775         }
2776     }
2777 }
2778 
2779 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2780 {
2781     int i;
2782 
2783     /* read back edc counter registers to clear the counters */
2784     if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2785         for (i = 0; i < adev->sdma.num_instances; i++)
2786             RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2787     }
2788 }
2789 
2790 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2791     .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2792     .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2793 };
2794 
2795 static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2796     .ras_block = {
2797         .hw_ops = &sdma_v4_0_ras_hw_ops,
2798         .ras_cb = sdma_v4_0_process_ras_data_cb,
2799     },
2800 };
2801 
2802 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2803 {
2804     switch (adev->ip_versions[SDMA0_HWIP][0]) {
2805     case IP_VERSION(4, 2, 0):
2806     case IP_VERSION(4, 2, 2):
2807         adev->sdma.ras = &sdma_v4_0_ras;
2808         break;
2809     case IP_VERSION(4, 4, 0):
2810         adev->sdma.ras = &sdma_v4_4_ras;
2811         break;
2812     default:
2813         break;
2814     }
2815 
2816     if (adev->sdma.ras) {
2817         amdgpu_ras_register_ras_block(adev, &adev->sdma.ras->ras_block);
2818 
2819         strcpy(adev->sdma.ras->ras_block.ras_comm.name, "sdma");
2820         adev->sdma.ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__SDMA;
2821         adev->sdma.ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
2822         adev->sdma.ras_if = &adev->sdma.ras->ras_block.ras_comm;
2823 
2824         /* If don't define special ras_late_init function, use default ras_late_init */
2825         if (!adev->sdma.ras->ras_block.ras_late_init)
2826             adev->sdma.ras->ras_block.ras_late_init = amdgpu_sdma_ras_late_init;
2827 
2828         /* If not defined special ras_cb function, use default ras_cb */
2829         if (!adev->sdma.ras->ras_block.ras_cb)
2830             adev->sdma.ras->ras_block.ras_cb = amdgpu_sdma_process_ras_data_cb;
2831     }
2832 }
2833 
2834 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2835     .type = AMD_IP_BLOCK_TYPE_SDMA,
2836     .major = 4,
2837     .minor = 0,
2838     .rev = 0,
2839     .funcs = &sdma_v4_0_ip_funcs,
2840 };