0001
0002 #include <linux/types.h>
0003 #include <linux/string.h>
0004 #include <linux/init.h>
0005 #include <linux/module.h>
0006 #include <linux/ctype.h>
0007 #include <linux/dmi.h>
0008 #include <linux/efi.h>
0009 #include <linux/memblock.h>
0010 #include <linux/random.h>
0011 #include <asm/dmi.h>
0012 #include <asm/unaligned.h>
0013
0014 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
0015 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
0016 #endif
0017
0018 struct kobject *dmi_kobj;
0019 EXPORT_SYMBOL_GPL(dmi_kobj);
0020
0021
0022
0023
0024
0025
0026 static const char dmi_empty_string[] = "";
0027
0028 static u32 dmi_ver __initdata;
0029 static u32 dmi_len;
0030 static u16 dmi_num;
0031 static u8 smbios_entry_point[32];
0032 static int smbios_entry_point_size;
0033
0034
0035 static char dmi_ids_string[128] __initdata;
0036
0037 static struct dmi_memdev_info {
0038 const char *device;
0039 const char *bank;
0040 u64 size;
0041 u16 handle;
0042 u8 type;
0043 } *dmi_memdev;
0044 static int dmi_memdev_nr;
0045
0046 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
0047 {
0048 const u8 *bp = ((u8 *) dm) + dm->length;
0049 const u8 *nsp;
0050
0051 if (s) {
0052 while (--s > 0 && *bp)
0053 bp += strlen(bp) + 1;
0054
0055
0056 nsp = bp;
0057 while (*nsp == ' ')
0058 nsp++;
0059 if (*nsp != '\0')
0060 return bp;
0061 }
0062
0063 return dmi_empty_string;
0064 }
0065
0066 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
0067 {
0068 const char *bp = dmi_string_nosave(dm, s);
0069 char *str;
0070 size_t len;
0071
0072 if (bp == dmi_empty_string)
0073 return dmi_empty_string;
0074
0075 len = strlen(bp) + 1;
0076 str = dmi_alloc(len);
0077 if (str != NULL)
0078 strcpy(str, bp);
0079
0080 return str;
0081 }
0082
0083
0084
0085
0086
0087 static void dmi_decode_table(u8 *buf,
0088 void (*decode)(const struct dmi_header *, void *),
0089 void *private_data)
0090 {
0091 u8 *data = buf;
0092 int i = 0;
0093
0094
0095
0096
0097
0098
0099
0100 while ((!dmi_num || i < dmi_num) &&
0101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
0102 const struct dmi_header *dm = (const struct dmi_header *)data;
0103
0104
0105
0106
0107
0108
0109 data += dm->length;
0110 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
0111 data++;
0112 if (data - buf < dmi_len - 1)
0113 decode(dm, private_data);
0114
0115 data += 2;
0116 i++;
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
0127 break;
0128 }
0129
0130
0131 if (dmi_len > data - buf)
0132 dmi_len = data - buf;
0133 }
0134
0135 static phys_addr_t dmi_base;
0136
0137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
0138 void *))
0139 {
0140 u8 *buf;
0141 u32 orig_dmi_len = dmi_len;
0142
0143 buf = dmi_early_remap(dmi_base, orig_dmi_len);
0144 if (buf == NULL)
0145 return -ENOMEM;
0146
0147 dmi_decode_table(buf, decode, NULL);
0148
0149 add_device_randomness(buf, dmi_len);
0150
0151 dmi_early_unmap(buf, orig_dmi_len);
0152 return 0;
0153 }
0154
0155 static int __init dmi_checksum(const u8 *buf, u8 len)
0156 {
0157 u8 sum = 0;
0158 int a;
0159
0160 for (a = 0; a < len; a++)
0161 sum += buf[a];
0162
0163 return sum == 0;
0164 }
0165
0166 static const char *dmi_ident[DMI_STRING_MAX];
0167 static LIST_HEAD(dmi_devices);
0168 int dmi_available;
0169 EXPORT_SYMBOL_GPL(dmi_available);
0170
0171
0172
0173
0174 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
0175 int string)
0176 {
0177 const char *d = (const char *) dm;
0178 const char *p;
0179
0180 if (dmi_ident[slot] || dm->length <= string)
0181 return;
0182
0183 p = dmi_string(dm, d[string]);
0184 if (p == NULL)
0185 return;
0186
0187 dmi_ident[slot] = p;
0188 }
0189
0190 static void __init dmi_save_release(const struct dmi_header *dm, int slot,
0191 int index)
0192 {
0193 const u8 *minor, *major;
0194 char *s;
0195
0196
0197 if (dmi_ident[slot] || dm->length < index)
0198 return;
0199
0200 minor = (u8 *) dm + index;
0201 major = (u8 *) dm + index - 1;
0202
0203
0204
0205
0206 if (*major == 0xFF && *minor == 0xFF)
0207 return;
0208
0209 s = dmi_alloc(8);
0210 if (!s)
0211 return;
0212
0213 sprintf(s, "%u.%u", *major, *minor);
0214
0215 dmi_ident[slot] = s;
0216 }
0217
0218 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
0219 int index)
0220 {
0221 const u8 *d;
0222 char *s;
0223 int is_ff = 1, is_00 = 1, i;
0224
0225 if (dmi_ident[slot] || dm->length < index + 16)
0226 return;
0227
0228 d = (u8 *) dm + index;
0229 for (i = 0; i < 16 && (is_ff || is_00); i++) {
0230 if (d[i] != 0x00)
0231 is_00 = 0;
0232 if (d[i] != 0xFF)
0233 is_ff = 0;
0234 }
0235
0236 if (is_ff || is_00)
0237 return;
0238
0239 s = dmi_alloc(16*2+4+1);
0240 if (!s)
0241 return;
0242
0243
0244
0245
0246
0247
0248 if (dmi_ver >= 0x020600)
0249 sprintf(s, "%pUl", d);
0250 else
0251 sprintf(s, "%pUb", d);
0252
0253 dmi_ident[slot] = s;
0254 }
0255
0256 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
0257 int index)
0258 {
0259 const u8 *d;
0260 char *s;
0261
0262 if (dmi_ident[slot] || dm->length <= index)
0263 return;
0264
0265 s = dmi_alloc(4);
0266 if (!s)
0267 return;
0268
0269 d = (u8 *) dm + index;
0270 sprintf(s, "%u", *d & 0x7F);
0271 dmi_ident[slot] = s;
0272 }
0273
0274 static void __init dmi_save_one_device(int type, const char *name)
0275 {
0276 struct dmi_device *dev;
0277
0278
0279 if (dmi_find_device(type, name, NULL))
0280 return;
0281
0282 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
0283 if (!dev)
0284 return;
0285
0286 dev->type = type;
0287 strcpy((char *)(dev + 1), name);
0288 dev->name = (char *)(dev + 1);
0289 dev->device_data = NULL;
0290 list_add(&dev->list, &dmi_devices);
0291 }
0292
0293 static void __init dmi_save_devices(const struct dmi_header *dm)
0294 {
0295 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
0296
0297 for (i = 0; i < count; i++) {
0298 const char *d = (char *)(dm + 1) + (i * 2);
0299
0300
0301 if ((*d & 0x80) == 0)
0302 continue;
0303
0304 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
0305 }
0306 }
0307
0308 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
0309 {
0310 int i, count;
0311 struct dmi_device *dev;
0312
0313 if (dm->length < 0x05)
0314 return;
0315
0316 count = *(u8 *)(dm + 1);
0317 for (i = 1; i <= count; i++) {
0318 const char *devname = dmi_string(dm, i);
0319
0320 if (devname == dmi_empty_string)
0321 continue;
0322
0323 dev = dmi_alloc(sizeof(*dev));
0324 if (!dev)
0325 break;
0326
0327 dev->type = DMI_DEV_TYPE_OEM_STRING;
0328 dev->name = devname;
0329 dev->device_data = NULL;
0330
0331 list_add(&dev->list, &dmi_devices);
0332 }
0333 }
0334
0335 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
0336 {
0337 struct dmi_device *dev;
0338 void *data;
0339
0340 data = dmi_alloc(dm->length);
0341 if (data == NULL)
0342 return;
0343
0344 memcpy(data, dm, dm->length);
0345
0346 dev = dmi_alloc(sizeof(*dev));
0347 if (!dev)
0348 return;
0349
0350 dev->type = DMI_DEV_TYPE_IPMI;
0351 dev->name = "IPMI controller";
0352 dev->device_data = data;
0353
0354 list_add_tail(&dev->list, &dmi_devices);
0355 }
0356
0357 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
0358 int devfn, const char *name, int type)
0359 {
0360 struct dmi_dev_onboard *dev;
0361
0362
0363 if (type == DMI_DEV_TYPE_DEV_SLOT &&
0364 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
0365 return;
0366
0367 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
0368 if (!dev)
0369 return;
0370
0371 dev->instance = instance;
0372 dev->segment = segment;
0373 dev->bus = bus;
0374 dev->devfn = devfn;
0375
0376 strcpy((char *)&dev[1], name);
0377 dev->dev.type = type;
0378 dev->dev.name = (char *)&dev[1];
0379 dev->dev.device_data = dev;
0380
0381 list_add(&dev->dev.list, &dmi_devices);
0382 }
0383
0384 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
0385 {
0386 const char *name;
0387 const u8 *d = (u8 *)dm;
0388
0389 if (dm->length < 0x0B)
0390 return;
0391
0392
0393 if ((d[0x5] & 0x80) == 0)
0394 return;
0395
0396 name = dmi_string_nosave(dm, d[0x4]);
0397 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
0398 DMI_DEV_TYPE_DEV_ONBOARD);
0399 dmi_save_one_device(d[0x5] & 0x7f, name);
0400 }
0401
0402 static void __init dmi_save_system_slot(const struct dmi_header *dm)
0403 {
0404 const u8 *d = (u8 *)dm;
0405
0406
0407 if (dm->length < 0x11)
0408 return;
0409 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
0410 d[0x10], dmi_string_nosave(dm, d[0x4]),
0411 DMI_DEV_TYPE_DEV_SLOT);
0412 }
0413
0414 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
0415 {
0416 if (dm->type != DMI_ENTRY_MEM_DEVICE)
0417 return;
0418 dmi_memdev_nr++;
0419 }
0420
0421 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
0422 {
0423 const char *d = (const char *)dm;
0424 static int nr;
0425 u64 bytes;
0426 u16 size;
0427
0428 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
0429 return;
0430 if (nr >= dmi_memdev_nr) {
0431 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
0432 return;
0433 }
0434 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
0435 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
0436 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
0437 dmi_memdev[nr].type = d[0x12];
0438
0439 size = get_unaligned((u16 *)&d[0xC]);
0440 if (size == 0)
0441 bytes = 0;
0442 else if (size == 0xffff)
0443 bytes = ~0ull;
0444 else if (size & 0x8000)
0445 bytes = (u64)(size & 0x7fff) << 10;
0446 else if (size != 0x7fff || dm->length < 0x20)
0447 bytes = (u64)size << 20;
0448 else
0449 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
0450
0451 dmi_memdev[nr].size = bytes;
0452 nr++;
0453 }
0454
0455 static void __init dmi_memdev_walk(void)
0456 {
0457 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
0458 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
0459 if (dmi_memdev)
0460 dmi_walk_early(save_mem_devices);
0461 }
0462 }
0463
0464
0465
0466
0467
0468
0469 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
0470 {
0471 switch (dm->type) {
0472 case 0:
0473 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
0474 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
0475 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
0476 dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
0477 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
0478 break;
0479 case 1:
0480 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
0481 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
0482 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
0483 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
0484 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
0485 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
0486 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
0487 break;
0488 case 2:
0489 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
0490 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
0491 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
0492 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
0493 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
0494 break;
0495 case 3:
0496 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
0497 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
0498 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
0499 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
0500 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
0501 break;
0502 case 9:
0503 dmi_save_system_slot(dm);
0504 break;
0505 case 10:
0506 dmi_save_devices(dm);
0507 break;
0508 case 11:
0509 dmi_save_oem_strings_devices(dm);
0510 break;
0511 case 38:
0512 dmi_save_ipmi_device(dm);
0513 break;
0514 case 41:
0515 dmi_save_extended_devices(dm);
0516 }
0517 }
0518
0519 static int __init print_filtered(char *buf, size_t len, const char *info)
0520 {
0521 int c = 0;
0522 const char *p;
0523
0524 if (!info)
0525 return c;
0526
0527 for (p = info; *p; p++)
0528 if (isprint(*p))
0529 c += scnprintf(buf + c, len - c, "%c", *p);
0530 else
0531 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
0532 return c;
0533 }
0534
0535 static void __init dmi_format_ids(char *buf, size_t len)
0536 {
0537 int c = 0;
0538 const char *board;
0539
0540 c += print_filtered(buf + c, len - c,
0541 dmi_get_system_info(DMI_SYS_VENDOR));
0542 c += scnprintf(buf + c, len - c, " ");
0543 c += print_filtered(buf + c, len - c,
0544 dmi_get_system_info(DMI_PRODUCT_NAME));
0545
0546 board = dmi_get_system_info(DMI_BOARD_NAME);
0547 if (board) {
0548 c += scnprintf(buf + c, len - c, "/");
0549 c += print_filtered(buf + c, len - c, board);
0550 }
0551 c += scnprintf(buf + c, len - c, ", BIOS ");
0552 c += print_filtered(buf + c, len - c,
0553 dmi_get_system_info(DMI_BIOS_VERSION));
0554 c += scnprintf(buf + c, len - c, " ");
0555 c += print_filtered(buf + c, len - c,
0556 dmi_get_system_info(DMI_BIOS_DATE));
0557 }
0558
0559
0560
0561
0562
0563
0564
0565
0566 static int __init dmi_present(const u8 *buf)
0567 {
0568 u32 smbios_ver;
0569
0570 if (memcmp(buf, "_SM_", 4) == 0 &&
0571 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
0572 smbios_ver = get_unaligned_be16(buf + 6);
0573 smbios_entry_point_size = buf[5];
0574 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
0575
0576
0577 switch (smbios_ver) {
0578 case 0x021F:
0579 case 0x0221:
0580 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
0581 smbios_ver & 0xFF, 3);
0582 smbios_ver = 0x0203;
0583 break;
0584 case 0x0233:
0585 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
0586 smbios_ver = 0x0206;
0587 break;
0588 }
0589 } else {
0590 smbios_ver = 0;
0591 }
0592
0593 buf += 16;
0594
0595 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
0596 if (smbios_ver)
0597 dmi_ver = smbios_ver;
0598 else
0599 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
0600 dmi_ver <<= 8;
0601 dmi_num = get_unaligned_le16(buf + 12);
0602 dmi_len = get_unaligned_le16(buf + 6);
0603 dmi_base = get_unaligned_le32(buf + 8);
0604
0605 if (dmi_walk_early(dmi_decode) == 0) {
0606 if (smbios_ver) {
0607 pr_info("SMBIOS %d.%d present.\n",
0608 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
0609 } else {
0610 smbios_entry_point_size = 15;
0611 memcpy(smbios_entry_point, buf,
0612 smbios_entry_point_size);
0613 pr_info("Legacy DMI %d.%d present.\n",
0614 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
0615 }
0616 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
0617 pr_info("DMI: %s\n", dmi_ids_string);
0618 return 0;
0619 }
0620 }
0621
0622 return 1;
0623 }
0624
0625
0626
0627
0628
0629 static int __init dmi_smbios3_present(const u8 *buf)
0630 {
0631 if (memcmp(buf, "_SM3_", 5) == 0 &&
0632 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
0633 dmi_ver = get_unaligned_be24(buf + 7);
0634 dmi_num = 0;
0635 dmi_len = get_unaligned_le32(buf + 12);
0636 dmi_base = get_unaligned_le64(buf + 16);
0637 smbios_entry_point_size = buf[6];
0638 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
0639
0640 if (dmi_walk_early(dmi_decode) == 0) {
0641 pr_info("SMBIOS %d.%d.%d present.\n",
0642 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
0643 dmi_ver & 0xFF);
0644 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
0645 pr_info("DMI: %s\n", dmi_ids_string);
0646 return 0;
0647 }
0648 }
0649 return 1;
0650 }
0651
0652 static void __init dmi_scan_machine(void)
0653 {
0654 char __iomem *p, *q;
0655 char buf[32];
0656
0657 if (efi_enabled(EFI_CONFIG_TABLES)) {
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
0672 p = dmi_early_remap(efi.smbios3, 32);
0673 if (p == NULL)
0674 goto error;
0675 memcpy_fromio(buf, p, 32);
0676 dmi_early_unmap(p, 32);
0677
0678 if (!dmi_smbios3_present(buf)) {
0679 dmi_available = 1;
0680 return;
0681 }
0682 }
0683 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
0684 goto error;
0685
0686
0687
0688
0689
0690 p = dmi_early_remap(efi.smbios, 32);
0691 if (p == NULL)
0692 goto error;
0693 memcpy_fromio(buf, p, 32);
0694 dmi_early_unmap(p, 32);
0695
0696 if (!dmi_present(buf)) {
0697 dmi_available = 1;
0698 return;
0699 }
0700 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
0701 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
0702 if (p == NULL)
0703 goto error;
0704
0705
0706
0707
0708
0709 memcpy_fromio(buf, p, 16);
0710 for (q = p + 16; q < p + 0x10000; q += 16) {
0711 memcpy_fromio(buf + 16, q, 16);
0712 if (!dmi_smbios3_present(buf)) {
0713 dmi_available = 1;
0714 dmi_early_unmap(p, 0x10000);
0715 return;
0716 }
0717 memcpy(buf, buf + 16, 16);
0718 }
0719
0720
0721
0722
0723
0724
0725
0726
0727 memset(buf, 0, 16);
0728 for (q = p; q < p + 0x10000; q += 16) {
0729 memcpy_fromio(buf + 16, q, 16);
0730 if (!dmi_present(buf)) {
0731 dmi_available = 1;
0732 dmi_early_unmap(p, 0x10000);
0733 return;
0734 }
0735 memcpy(buf, buf + 16, 16);
0736 }
0737 dmi_early_unmap(p, 0x10000);
0738 }
0739 error:
0740 pr_info("DMI not present or invalid.\n");
0741 }
0742
0743 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
0744 struct bin_attribute *attr, char *buf,
0745 loff_t pos, size_t count)
0746 {
0747 memcpy(buf, attr->private + pos, count);
0748 return count;
0749 }
0750
0751 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
0752 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
0753
0754 static int __init dmi_init(void)
0755 {
0756 struct kobject *tables_kobj;
0757 u8 *dmi_table;
0758 int ret = -ENOMEM;
0759
0760 if (!dmi_available)
0761 return 0;
0762
0763
0764
0765
0766
0767
0768 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
0769 if (!dmi_kobj)
0770 goto err;
0771
0772 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
0773 if (!tables_kobj)
0774 goto err;
0775
0776 dmi_table = dmi_remap(dmi_base, dmi_len);
0777 if (!dmi_table)
0778 goto err_tables;
0779
0780 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
0781 bin_attr_smbios_entry_point.private = smbios_entry_point;
0782 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
0783 if (ret)
0784 goto err_unmap;
0785
0786 bin_attr_DMI.size = dmi_len;
0787 bin_attr_DMI.private = dmi_table;
0788 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
0789 if (!ret)
0790 return 0;
0791
0792 sysfs_remove_bin_file(tables_kobj,
0793 &bin_attr_smbios_entry_point);
0794 err_unmap:
0795 dmi_unmap(dmi_table);
0796 err_tables:
0797 kobject_del(tables_kobj);
0798 kobject_put(tables_kobj);
0799 err:
0800 pr_err("dmi: Firmware registration failed.\n");
0801
0802 return ret;
0803 }
0804 subsys_initcall(dmi_init);
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814 void __init dmi_setup(void)
0815 {
0816 dmi_scan_machine();
0817 if (!dmi_available)
0818 return;
0819
0820 dmi_memdev_walk();
0821 dump_stack_set_arch_desc("%s", dmi_ids_string);
0822 }
0823
0824
0825
0826
0827
0828 static bool dmi_matches(const struct dmi_system_id *dmi)
0829 {
0830 int i;
0831
0832 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
0833 int s = dmi->matches[i].slot;
0834 if (s == DMI_NONE)
0835 break;
0836 if (s == DMI_OEM_STRING) {
0837
0838 const struct dmi_device *valid;
0839
0840 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
0841 dmi->matches[i].substr, NULL);
0842 if (valid)
0843 continue;
0844 } else if (dmi_ident[s]) {
0845 if (dmi->matches[i].exact_match) {
0846 if (!strcmp(dmi_ident[s],
0847 dmi->matches[i].substr))
0848 continue;
0849 } else {
0850 if (strstr(dmi_ident[s],
0851 dmi->matches[i].substr))
0852 continue;
0853 }
0854 }
0855
0856
0857 return false;
0858 }
0859 return true;
0860 }
0861
0862
0863
0864
0865
0866 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
0867 {
0868 return dmi->matches[0].slot == DMI_NONE;
0869 }
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886 int dmi_check_system(const struct dmi_system_id *list)
0887 {
0888 int count = 0;
0889 const struct dmi_system_id *d;
0890
0891 for (d = list; !dmi_is_end_of_table(d); d++)
0892 if (dmi_matches(d)) {
0893 count++;
0894 if (d->callback && d->callback(d))
0895 break;
0896 }
0897
0898 return count;
0899 }
0900 EXPORT_SYMBOL(dmi_check_system);
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
0917 {
0918 const struct dmi_system_id *d;
0919
0920 for (d = list; !dmi_is_end_of_table(d); d++)
0921 if (dmi_matches(d))
0922 return d;
0923
0924 return NULL;
0925 }
0926 EXPORT_SYMBOL(dmi_first_match);
0927
0928
0929
0930
0931
0932
0933
0934
0935 const char *dmi_get_system_info(int field)
0936 {
0937 return dmi_ident[field];
0938 }
0939 EXPORT_SYMBOL(dmi_get_system_info);
0940
0941
0942
0943
0944
0945 int dmi_name_in_serial(const char *str)
0946 {
0947 int f = DMI_PRODUCT_SERIAL;
0948 if (dmi_ident[f] && strstr(dmi_ident[f], str))
0949 return 1;
0950 return 0;
0951 }
0952
0953
0954
0955
0956
0957 int dmi_name_in_vendors(const char *str)
0958 {
0959 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
0960 int i;
0961 for (i = 0; fields[i] != DMI_NONE; i++) {
0962 int f = fields[i];
0963 if (dmi_ident[f] && strstr(dmi_ident[f], str))
0964 return 1;
0965 }
0966 return 0;
0967 }
0968 EXPORT_SYMBOL(dmi_name_in_vendors);
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982 const struct dmi_device *dmi_find_device(int type, const char *name,
0983 const struct dmi_device *from)
0984 {
0985 const struct list_head *head = from ? &from->list : &dmi_devices;
0986 struct list_head *d;
0987
0988 for (d = head->next; d != &dmi_devices; d = d->next) {
0989 const struct dmi_device *dev =
0990 list_entry(d, struct dmi_device, list);
0991
0992 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
0993 ((name == NULL) || (strcmp(dev->name, name) == 0)))
0994 return dev;
0995 }
0996
0997 return NULL;
0998 }
0999 EXPORT_SYMBOL(dmi_find_device);
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1020 {
1021 int year = 0, month = 0, day = 0;
1022 bool exists;
1023 const char *s, *y;
1024 char *e;
1025
1026 s = dmi_get_system_info(field);
1027 exists = s;
1028 if (!exists)
1029 goto out;
1030
1031
1032
1033
1034
1035
1036
1037 y = strrchr(s, '/');
1038 if (!y)
1039 goto out;
1040
1041 y++;
1042 year = simple_strtoul(y, &e, 10);
1043 if (y != e && year < 100) {
1044 year += 1900;
1045 if (year < 1996)
1046 year += 100;
1047 }
1048 if (year > 9999)
1049 year = 0;
1050
1051
1052 month = simple_strtoul(s, &e, 10);
1053 if (s == e || *e != '/' || !month || month > 12) {
1054 month = 0;
1055 goto out;
1056 }
1057
1058 s = e + 1;
1059 day = simple_strtoul(s, &e, 10);
1060 if (s == y || s == e || *e != '/' || day > 31)
1061 day = 0;
1062 out:
1063 if (yearp)
1064 *yearp = year;
1065 if (monthp)
1066 *monthp = month;
1067 if (dayp)
1068 *dayp = day;
1069 return exists;
1070 }
1071 EXPORT_SYMBOL(dmi_get_date);
1072
1073
1074
1075
1076
1077
1078
1079
1080 int dmi_get_bios_year(void)
1081 {
1082 bool exists;
1083 int year;
1084
1085 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1086 if (!exists)
1087 return -ENODATA;
1088
1089 return year ? year : -ERANGE;
1090 }
1091 EXPORT_SYMBOL(dmi_get_bios_year);
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1102 void *private_data)
1103 {
1104 u8 *buf;
1105
1106 if (!dmi_available)
1107 return -ENXIO;
1108
1109 buf = dmi_remap(dmi_base, dmi_len);
1110 if (buf == NULL)
1111 return -ENOMEM;
1112
1113 dmi_decode_table(buf, decode, private_data);
1114
1115 dmi_unmap(buf);
1116 return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(dmi_walk);
1119
1120
1121
1122
1123
1124
1125
1126
1127 bool dmi_match(enum dmi_field f, const char *str)
1128 {
1129 const char *info = dmi_get_system_info(f);
1130
1131 if (info == NULL || str == NULL)
1132 return info == str;
1133
1134 return !strcmp(info, str);
1135 }
1136 EXPORT_SYMBOL_GPL(dmi_match);
1137
1138 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1139 {
1140 int n;
1141
1142 if (dmi_memdev == NULL)
1143 return;
1144
1145 for (n = 0; n < dmi_memdev_nr; n++) {
1146 if (handle == dmi_memdev[n].handle) {
1147 *bank = dmi_memdev[n].bank;
1148 *device = dmi_memdev[n].device;
1149 break;
1150 }
1151 }
1152 }
1153 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1154
1155 u64 dmi_memdev_size(u16 handle)
1156 {
1157 int n;
1158
1159 if (dmi_memdev) {
1160 for (n = 0; n < dmi_memdev_nr; n++) {
1161 if (handle == dmi_memdev[n].handle)
1162 return dmi_memdev[n].size;
1163 }
1164 }
1165 return ~0ull;
1166 }
1167 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1168
1169
1170
1171
1172
1173
1174
1175
1176 u8 dmi_memdev_type(u16 handle)
1177 {
1178 int n;
1179
1180 if (dmi_memdev) {
1181 for (n = 0; n < dmi_memdev_nr; n++) {
1182 if (handle == dmi_memdev[n].handle)
1183 return dmi_memdev[n].type;
1184 }
1185 }
1186 return 0x0;
1187 }
1188 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1189
1190
1191
1192
1193
1194
1195
1196
1197 u16 dmi_memdev_handle(int slot)
1198 {
1199 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1200 return dmi_memdev[slot].handle;
1201
1202 return 0xffff;
1203 }
1204 EXPORT_SYMBOL_GPL(dmi_memdev_handle);