Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Driver for OHCI 1394 controllers
0004  *
0005  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
0006  */
0007 
0008 #include <linux/bitops.h>
0009 #include <linux/bug.h>
0010 #include <linux/compiler.h>
0011 #include <linux/delay.h>
0012 #include <linux/device.h>
0013 #include <linux/dma-mapping.h>
0014 #include <linux/firewire.h>
0015 #include <linux/firewire-constants.h>
0016 #include <linux/init.h>
0017 #include <linux/interrupt.h>
0018 #include <linux/io.h>
0019 #include <linux/kernel.h>
0020 #include <linux/list.h>
0021 #include <linux/mm.h>
0022 #include <linux/module.h>
0023 #include <linux/moduleparam.h>
0024 #include <linux/mutex.h>
0025 #include <linux/pci.h>
0026 #include <linux/pci_ids.h>
0027 #include <linux/slab.h>
0028 #include <linux/spinlock.h>
0029 #include <linux/string.h>
0030 #include <linux/time.h>
0031 #include <linux/vmalloc.h>
0032 #include <linux/workqueue.h>
0033 
0034 #include <asm/byteorder.h>
0035 #include <asm/page.h>
0036 
0037 #ifdef CONFIG_PPC_PMAC
0038 #include <asm/pmac_feature.h>
0039 #endif
0040 
0041 #include "core.h"
0042 #include "ohci.h"
0043 
0044 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
0045 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
0046 #define ohci_err(ohci, f, args...)  dev_err(ohci->card.device, f, ##args)
0047 
0048 #define DESCRIPTOR_OUTPUT_MORE      0
0049 #define DESCRIPTOR_OUTPUT_LAST      (1 << 12)
0050 #define DESCRIPTOR_INPUT_MORE       (2 << 12)
0051 #define DESCRIPTOR_INPUT_LAST       (3 << 12)
0052 #define DESCRIPTOR_STATUS       (1 << 11)
0053 #define DESCRIPTOR_KEY_IMMEDIATE    (2 << 8)
0054 #define DESCRIPTOR_PING         (1 << 7)
0055 #define DESCRIPTOR_YY           (1 << 6)
0056 #define DESCRIPTOR_NO_IRQ       (0 << 4)
0057 #define DESCRIPTOR_IRQ_ERROR        (1 << 4)
0058 #define DESCRIPTOR_IRQ_ALWAYS       (3 << 4)
0059 #define DESCRIPTOR_BRANCH_ALWAYS    (3 << 2)
0060 #define DESCRIPTOR_WAIT         (3 << 0)
0061 
0062 #define DESCRIPTOR_CMD          (0xf << 12)
0063 
0064 struct descriptor {
0065     __le16 req_count;
0066     __le16 control;
0067     __le32 data_address;
0068     __le32 branch_address;
0069     __le16 res_count;
0070     __le16 transfer_status;
0071 } __attribute__((aligned(16)));
0072 
0073 #define CONTROL_SET(regs)   (regs)
0074 #define CONTROL_CLEAR(regs) ((regs) + 4)
0075 #define COMMAND_PTR(regs)   ((regs) + 12)
0076 #define CONTEXT_MATCH(regs) ((regs) + 16)
0077 
0078 #define AR_BUFFER_SIZE  (32*1024)
0079 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
0080 /* we need at least two pages for proper list management */
0081 #define AR_BUFFERS  (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
0082 
0083 #define MAX_ASYNC_PAYLOAD   4096
0084 #define MAX_AR_PACKET_SIZE  (16 + MAX_ASYNC_PAYLOAD + 4)
0085 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
0086 
0087 struct ar_context {
0088     struct fw_ohci *ohci;
0089     struct page *pages[AR_BUFFERS];
0090     void *buffer;
0091     struct descriptor *descriptors;
0092     dma_addr_t descriptors_bus;
0093     void *pointer;
0094     unsigned int last_buffer_index;
0095     u32 regs;
0096     struct tasklet_struct tasklet;
0097 };
0098 
0099 struct context;
0100 
0101 typedef int (*descriptor_callback_t)(struct context *ctx,
0102                      struct descriptor *d,
0103                      struct descriptor *last);
0104 
0105 /*
0106  * A buffer that contains a block of DMA-able coherent memory used for
0107  * storing a portion of a DMA descriptor program.
0108  */
0109 struct descriptor_buffer {
0110     struct list_head list;
0111     dma_addr_t buffer_bus;
0112     size_t buffer_size;
0113     size_t used;
0114     struct descriptor buffer[];
0115 };
0116 
0117 struct context {
0118     struct fw_ohci *ohci;
0119     u32 regs;
0120     int total_allocation;
0121     u32 current_bus;
0122     bool running;
0123     bool flushing;
0124 
0125     /*
0126      * List of page-sized buffers for storing DMA descriptors.
0127      * Head of list contains buffers in use and tail of list contains
0128      * free buffers.
0129      */
0130     struct list_head buffer_list;
0131 
0132     /*
0133      * Pointer to a buffer inside buffer_list that contains the tail
0134      * end of the current DMA program.
0135      */
0136     struct descriptor_buffer *buffer_tail;
0137 
0138     /*
0139      * The descriptor containing the branch address of the first
0140      * descriptor that has not yet been filled by the device.
0141      */
0142     struct descriptor *last;
0143 
0144     /*
0145      * The last descriptor block in the DMA program. It contains the branch
0146      * address that must be updated upon appending a new descriptor.
0147      */
0148     struct descriptor *prev;
0149     int prev_z;
0150 
0151     descriptor_callback_t callback;
0152 
0153     struct tasklet_struct tasklet;
0154 };
0155 
0156 #define IT_HEADER_SY(v)          ((v) <<  0)
0157 #define IT_HEADER_TCODE(v)       ((v) <<  4)
0158 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
0159 #define IT_HEADER_TAG(v)         ((v) << 14)
0160 #define IT_HEADER_SPEED(v)       ((v) << 16)
0161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
0162 
0163 struct iso_context {
0164     struct fw_iso_context base;
0165     struct context context;
0166     void *header;
0167     size_t header_length;
0168     unsigned long flushing_completions;
0169     u32 mc_buffer_bus;
0170     u16 mc_completed;
0171     u16 last_timestamp;
0172     u8 sync;
0173     u8 tags;
0174 };
0175 
0176 #define CONFIG_ROM_SIZE 1024
0177 
0178 struct fw_ohci {
0179     struct fw_card card;
0180 
0181     __iomem char *registers;
0182     int node_id;
0183     int generation;
0184     int request_generation; /* for timestamping incoming requests */
0185     unsigned quirks;
0186     unsigned int pri_req_max;
0187     u32 bus_time;
0188     bool bus_time_running;
0189     bool is_root;
0190     bool csr_state_setclear_abdicate;
0191     int n_ir;
0192     int n_it;
0193     /*
0194      * Spinlock for accessing fw_ohci data.  Never call out of
0195      * this driver with this lock held.
0196      */
0197     spinlock_t lock;
0198 
0199     struct mutex phy_reg_mutex;
0200 
0201     void *misc_buffer;
0202     dma_addr_t misc_buffer_bus;
0203 
0204     struct ar_context ar_request_ctx;
0205     struct ar_context ar_response_ctx;
0206     struct context at_request_ctx;
0207     struct context at_response_ctx;
0208 
0209     u32 it_context_support;
0210     u32 it_context_mask;     /* unoccupied IT contexts */
0211     struct iso_context *it_context_list;
0212     u64 ir_context_channels; /* unoccupied channels */
0213     u32 ir_context_support;
0214     u32 ir_context_mask;     /* unoccupied IR contexts */
0215     struct iso_context *ir_context_list;
0216     u64 mc_channels; /* channels in use by the multichannel IR context */
0217     bool mc_allocated;
0218 
0219     __be32    *config_rom;
0220     dma_addr_t config_rom_bus;
0221     __be32    *next_config_rom;
0222     dma_addr_t next_config_rom_bus;
0223     __be32     next_header;
0224 
0225     __le32    *self_id;
0226     dma_addr_t self_id_bus;
0227     struct work_struct bus_reset_work;
0228 
0229     u32 self_id_buffer[512];
0230 };
0231 
0232 static struct workqueue_struct *selfid_workqueue;
0233 
0234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
0235 {
0236     return container_of(card, struct fw_ohci, card);
0237 }
0238 
0239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
0240 #define IR_CONTEXT_BUFFER_FILL      0x80000000
0241 #define IR_CONTEXT_ISOCH_HEADER     0x40000000
0242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
0243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
0244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
0245 
0246 #define CONTEXT_RUN 0x8000
0247 #define CONTEXT_WAKE    0x1000
0248 #define CONTEXT_DEAD    0x0800
0249 #define CONTEXT_ACTIVE  0x0400
0250 
0251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
0252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
0253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
0254 
0255 #define OHCI1394_REGISTER_SIZE      0x800
0256 #define OHCI1394_PCI_HCI_Control    0x40
0257 #define SELF_ID_BUF_SIZE        0x800
0258 #define OHCI_TCODE_PHY_PACKET       0x0e
0259 #define OHCI_VERSION_1_1        0x010010
0260 
0261 static char ohci_driver_name[] = KBUILD_MODNAME;
0262 
0263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
0264 #define PCI_DEVICE_ID_AGERE_FW643   0x5901
0265 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
0266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
0267 #define PCI_DEVICE_ID_TI_TSB12LV22  0x8009
0268 #define PCI_DEVICE_ID_TI_TSB12LV26  0x8020
0269 #define PCI_DEVICE_ID_TI_TSB82AA2   0x8025
0270 #define PCI_DEVICE_ID_VIA_VT630X    0x3044
0271 #define PCI_REV_ID_VIA_VT6306       0x46
0272 #define PCI_DEVICE_ID_VIA_VT6315    0x3403
0273 
0274 #define QUIRK_CYCLE_TIMER       0x1
0275 #define QUIRK_RESET_PACKET      0x2
0276 #define QUIRK_BE_HEADERS        0x4
0277 #define QUIRK_NO_1394A          0x8
0278 #define QUIRK_NO_MSI            0x10
0279 #define QUIRK_TI_SLLZ059        0x20
0280 #define QUIRK_IR_WAKE           0x40
0281 
0282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
0283 static const struct {
0284     unsigned short vendor, device, revision, flags;
0285 } ohci_quirks[] = {
0286     {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
0287         QUIRK_CYCLE_TIMER},
0288 
0289     {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
0290         QUIRK_BE_HEADERS},
0291 
0292     {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
0293         QUIRK_NO_MSI},
0294 
0295     {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
0296         QUIRK_RESET_PACKET},
0297 
0298     {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
0299         QUIRK_NO_MSI},
0300 
0301     {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
0302         QUIRK_CYCLE_TIMER},
0303 
0304     {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
0305         QUIRK_NO_MSI},
0306 
0307     {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
0308         QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
0309 
0310     {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
0311         QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
0312 
0313     {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
0314         QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
0315 
0316     {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
0317         QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
0318 
0319     {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
0320         QUIRK_RESET_PACKET},
0321 
0322     {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
0323         QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
0324 
0325     {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
0326         QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
0327 
0328     {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
0329         QUIRK_NO_MSI},
0330 
0331     {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
0332         QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
0333 };
0334 
0335 /* This overrides anything that was found in ohci_quirks[]. */
0336 static int param_quirks;
0337 module_param_named(quirks, param_quirks, int, 0644);
0338 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
0339     ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
0340     ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
0341     ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
0342     ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
0343     ", disable MSI = "      __stringify(QUIRK_NO_MSI)
0344     ", TI SLLZ059 erratum = "   __stringify(QUIRK_TI_SLLZ059)
0345     ", IR wake unreliable = "   __stringify(QUIRK_IR_WAKE)
0346     ")");
0347 
0348 #define OHCI_PARAM_DEBUG_AT_AR      1
0349 #define OHCI_PARAM_DEBUG_SELFIDS    2
0350 #define OHCI_PARAM_DEBUG_IRQS       4
0351 #define OHCI_PARAM_DEBUG_BUSRESETS  8 /* only effective before chip init */
0352 
0353 static int param_debug;
0354 module_param_named(debug, param_debug, int, 0644);
0355 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
0356     ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
0357     ", self-IDs = "     __stringify(OHCI_PARAM_DEBUG_SELFIDS)
0358     ", IRQs = "     __stringify(OHCI_PARAM_DEBUG_IRQS)
0359     ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
0360     ", or a combination, or all = -1)");
0361 
0362 static bool param_remote_dma;
0363 module_param_named(remote_dma, param_remote_dma, bool, 0444);
0364 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
0365 
0366 static void log_irqs(struct fw_ohci *ohci, u32 evt)
0367 {
0368     if (likely(!(param_debug &
0369             (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
0370         return;
0371 
0372     if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
0373         !(evt & OHCI1394_busReset))
0374         return;
0375 
0376     ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
0377         evt & OHCI1394_selfIDComplete   ? " selfID"     : "",
0378         evt & OHCI1394_RQPkt        ? " AR_req"     : "",
0379         evt & OHCI1394_RSPkt        ? " AR_resp"        : "",
0380         evt & OHCI1394_reqTxComplete    ? " AT_req"     : "",
0381         evt & OHCI1394_respTxComplete   ? " AT_resp"        : "",
0382         evt & OHCI1394_isochRx      ? " IR"         : "",
0383         evt & OHCI1394_isochTx      ? " IT"         : "",
0384         evt & OHCI1394_postedWriteErr   ? " postedWriteErr" : "",
0385         evt & OHCI1394_cycleTooLong     ? " cycleTooLong"   : "",
0386         evt & OHCI1394_cycle64Seconds   ? " cycle64Seconds" : "",
0387         evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
0388         evt & OHCI1394_regAccessFail    ? " regAccessFail"  : "",
0389         evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
0390         evt & OHCI1394_busReset     ? " busReset"       : "",
0391         evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
0392             OHCI1394_RSPkt | OHCI1394_reqTxComplete |
0393             OHCI1394_respTxComplete | OHCI1394_isochRx |
0394             OHCI1394_isochTx | OHCI1394_postedWriteErr |
0395             OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
0396             OHCI1394_cycleInconsistent |
0397             OHCI1394_regAccessFail | OHCI1394_busReset)
0398                         ? " ?"          : "");
0399 }
0400 
0401 static const char *speed[] = {
0402     [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
0403 };
0404 static const char *power[] = {
0405     [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
0406     [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
0407 };
0408 static const char port[] = { '.', '-', 'p', 'c', };
0409 
0410 static char _p(u32 *s, int shift)
0411 {
0412     return port[*s >> shift & 3];
0413 }
0414 
0415 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
0416 {
0417     u32 *s;
0418 
0419     if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
0420         return;
0421 
0422     ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
0423             self_id_count, generation, ohci->node_id);
0424 
0425     for (s = ohci->self_id_buffer; self_id_count--; ++s)
0426         if ((*s & 1 << 23) == 0)
0427             ohci_notice(ohci,
0428                 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
0429                 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
0430                 speed[*s >> 14 & 3], *s >> 16 & 63,
0431                 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
0432                 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
0433         else
0434             ohci_notice(ohci,
0435                 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
0436                 *s, *s >> 24 & 63,
0437                 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
0438                 _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
0439 }
0440 
0441 static const char *evts[] = {
0442     [0x00] = "evt_no_status",   [0x01] = "-reserved-",
0443     [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
0444     [0x04] = "evt_underrun",    [0x05] = "evt_overrun",
0445     [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
0446     [0x08] = "evt_data_write",  [0x09] = "evt_bus_reset",
0447     [0x0a] = "evt_timeout",     [0x0b] = "evt_tcode_err",
0448     [0x0c] = "-reserved-",      [0x0d] = "-reserved-",
0449     [0x0e] = "evt_unknown",     [0x0f] = "evt_flushed",
0450     [0x10] = "-reserved-",      [0x11] = "ack_complete",
0451     [0x12] = "ack_pending ",    [0x13] = "-reserved-",
0452     [0x14] = "ack_busy_X",      [0x15] = "ack_busy_A",
0453     [0x16] = "ack_busy_B",      [0x17] = "-reserved-",
0454     [0x18] = "-reserved-",      [0x19] = "-reserved-",
0455     [0x1a] = "-reserved-",      [0x1b] = "ack_tardy",
0456     [0x1c] = "-reserved-",      [0x1d] = "ack_data_error",
0457     [0x1e] = "ack_type_error",  [0x1f] = "-reserved-",
0458     [0x20] = "pending/cancelled",
0459 };
0460 static const char *tcodes[] = {
0461     [0x0] = "QW req",       [0x1] = "BW req",
0462     [0x2] = "W resp",       [0x3] = "-reserved-",
0463     [0x4] = "QR req",       [0x5] = "BR req",
0464     [0x6] = "QR resp",      [0x7] = "BR resp",
0465     [0x8] = "cycle start",      [0x9] = "Lk req",
0466     [0xa] = "async stream packet",  [0xb] = "Lk resp",
0467     [0xc] = "-reserved-",       [0xd] = "-reserved-",
0468     [0xe] = "link internal",    [0xf] = "-reserved-",
0469 };
0470 
0471 static void log_ar_at_event(struct fw_ohci *ohci,
0472                 char dir, int speed, u32 *header, int evt)
0473 {
0474     int tcode = header[0] >> 4 & 0xf;
0475     char specific[12];
0476 
0477     if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
0478         return;
0479 
0480     if (unlikely(evt >= ARRAY_SIZE(evts)))
0481             evt = 0x1f;
0482 
0483     if (evt == OHCI1394_evt_bus_reset) {
0484         ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
0485                 dir, (header[2] >> 16) & 0xff);
0486         return;
0487     }
0488 
0489     switch (tcode) {
0490     case 0x0: case 0x6: case 0x8:
0491         snprintf(specific, sizeof(specific), " = %08x",
0492              be32_to_cpu((__force __be32)header[3]));
0493         break;
0494     case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
0495         snprintf(specific, sizeof(specific), " %x,%x",
0496              header[3] >> 16, header[3] & 0xffff);
0497         break;
0498     default:
0499         specific[0] = '\0';
0500     }
0501 
0502     switch (tcode) {
0503     case 0xa:
0504         ohci_notice(ohci, "A%c %s, %s\n",
0505                 dir, evts[evt], tcodes[tcode]);
0506         break;
0507     case 0xe:
0508         ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
0509                 dir, evts[evt], header[1], header[2]);
0510         break;
0511     case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
0512         ohci_notice(ohci,
0513                 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
0514                 dir, speed, header[0] >> 10 & 0x3f,
0515                 header[1] >> 16, header[0] >> 16, evts[evt],
0516                 tcodes[tcode], header[1] & 0xffff, header[2], specific);
0517         break;
0518     default:
0519         ohci_notice(ohci,
0520                 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
0521                 dir, speed, header[0] >> 10 & 0x3f,
0522                 header[1] >> 16, header[0] >> 16, evts[evt],
0523                 tcodes[tcode], specific);
0524     }
0525 }
0526 
0527 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
0528 {
0529     writel(data, ohci->registers + offset);
0530 }
0531 
0532 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
0533 {
0534     return readl(ohci->registers + offset);
0535 }
0536 
0537 static inline void flush_writes(const struct fw_ohci *ohci)
0538 {
0539     /* Do a dummy read to flush writes. */
0540     reg_read(ohci, OHCI1394_Version);
0541 }
0542 
0543 /*
0544  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
0545  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
0546  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
0547  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
0548  */
0549 static int read_phy_reg(struct fw_ohci *ohci, int addr)
0550 {
0551     u32 val;
0552     int i;
0553 
0554     reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
0555     for (i = 0; i < 3 + 100; i++) {
0556         val = reg_read(ohci, OHCI1394_PhyControl);
0557         if (!~val)
0558             return -ENODEV; /* Card was ejected. */
0559 
0560         if (val & OHCI1394_PhyControl_ReadDone)
0561             return OHCI1394_PhyControl_ReadData(val);
0562 
0563         /*
0564          * Try a few times without waiting.  Sleeping is necessary
0565          * only when the link/PHY interface is busy.
0566          */
0567         if (i >= 3)
0568             msleep(1);
0569     }
0570     ohci_err(ohci, "failed to read phy reg %d\n", addr);
0571     dump_stack();
0572 
0573     return -EBUSY;
0574 }
0575 
0576 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
0577 {
0578     int i;
0579 
0580     reg_write(ohci, OHCI1394_PhyControl,
0581           OHCI1394_PhyControl_Write(addr, val));
0582     for (i = 0; i < 3 + 100; i++) {
0583         val = reg_read(ohci, OHCI1394_PhyControl);
0584         if (!~val)
0585             return -ENODEV; /* Card was ejected. */
0586 
0587         if (!(val & OHCI1394_PhyControl_WritePending))
0588             return 0;
0589 
0590         if (i >= 3)
0591             msleep(1);
0592     }
0593     ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
0594     dump_stack();
0595 
0596     return -EBUSY;
0597 }
0598 
0599 static int update_phy_reg(struct fw_ohci *ohci, int addr,
0600               int clear_bits, int set_bits)
0601 {
0602     int ret = read_phy_reg(ohci, addr);
0603     if (ret < 0)
0604         return ret;
0605 
0606     /*
0607      * The interrupt status bits are cleared by writing a one bit.
0608      * Avoid clearing them unless explicitly requested in set_bits.
0609      */
0610     if (addr == 5)
0611         clear_bits |= PHY_INT_STATUS_BITS;
0612 
0613     return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
0614 }
0615 
0616 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
0617 {
0618     int ret;
0619 
0620     ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
0621     if (ret < 0)
0622         return ret;
0623 
0624     return read_phy_reg(ohci, addr);
0625 }
0626 
0627 static int ohci_read_phy_reg(struct fw_card *card, int addr)
0628 {
0629     struct fw_ohci *ohci = fw_ohci(card);
0630     int ret;
0631 
0632     mutex_lock(&ohci->phy_reg_mutex);
0633     ret = read_phy_reg(ohci, addr);
0634     mutex_unlock(&ohci->phy_reg_mutex);
0635 
0636     return ret;
0637 }
0638 
0639 static int ohci_update_phy_reg(struct fw_card *card, int addr,
0640                    int clear_bits, int set_bits)
0641 {
0642     struct fw_ohci *ohci = fw_ohci(card);
0643     int ret;
0644 
0645     mutex_lock(&ohci->phy_reg_mutex);
0646     ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
0647     mutex_unlock(&ohci->phy_reg_mutex);
0648 
0649     return ret;
0650 }
0651 
0652 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
0653 {
0654     return page_private(ctx->pages[i]);
0655 }
0656 
0657 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
0658 {
0659     struct descriptor *d;
0660 
0661     d = &ctx->descriptors[index];
0662     d->branch_address  &= cpu_to_le32(~0xf);
0663     d->res_count       =  cpu_to_le16(PAGE_SIZE);
0664     d->transfer_status =  0;
0665 
0666     wmb(); /* finish init of new descriptors before branch_address update */
0667     d = &ctx->descriptors[ctx->last_buffer_index];
0668     d->branch_address  |= cpu_to_le32(1);
0669 
0670     ctx->last_buffer_index = index;
0671 
0672     reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
0673 }
0674 
0675 static void ar_context_release(struct ar_context *ctx)
0676 {
0677     struct device *dev = ctx->ohci->card.device;
0678     unsigned int i;
0679 
0680     vunmap(ctx->buffer);
0681 
0682     for (i = 0; i < AR_BUFFERS; i++) {
0683         if (ctx->pages[i])
0684             dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
0685                        ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
0686     }
0687 }
0688 
0689 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
0690 {
0691     struct fw_ohci *ohci = ctx->ohci;
0692 
0693     if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
0694         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
0695         flush_writes(ohci);
0696 
0697         ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
0698     }
0699     /* FIXME: restart? */
0700 }
0701 
0702 static inline unsigned int ar_next_buffer_index(unsigned int index)
0703 {
0704     return (index + 1) % AR_BUFFERS;
0705 }
0706 
0707 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
0708 {
0709     return ar_next_buffer_index(ctx->last_buffer_index);
0710 }
0711 
0712 /*
0713  * We search for the buffer that contains the last AR packet DMA data written
0714  * by the controller.
0715  */
0716 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
0717                          unsigned int *buffer_offset)
0718 {
0719     unsigned int i, next_i, last = ctx->last_buffer_index;
0720     __le16 res_count, next_res_count;
0721 
0722     i = ar_first_buffer_index(ctx);
0723     res_count = READ_ONCE(ctx->descriptors[i].res_count);
0724 
0725     /* A buffer that is not yet completely filled must be the last one. */
0726     while (i != last && res_count == 0) {
0727 
0728         /* Peek at the next descriptor. */
0729         next_i = ar_next_buffer_index(i);
0730         rmb(); /* read descriptors in order */
0731         next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
0732         /*
0733          * If the next descriptor is still empty, we must stop at this
0734          * descriptor.
0735          */
0736         if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
0737             /*
0738              * The exception is when the DMA data for one packet is
0739              * split over three buffers; in this case, the middle
0740              * buffer's descriptor might be never updated by the
0741              * controller and look still empty, and we have to peek
0742              * at the third one.
0743              */
0744             if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
0745                 next_i = ar_next_buffer_index(next_i);
0746                 rmb();
0747                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
0748                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
0749                     goto next_buffer_is_active;
0750             }
0751 
0752             break;
0753         }
0754 
0755 next_buffer_is_active:
0756         i = next_i;
0757         res_count = next_res_count;
0758     }
0759 
0760     rmb(); /* read res_count before the DMA data */
0761 
0762     *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
0763     if (*buffer_offset > PAGE_SIZE) {
0764         *buffer_offset = 0;
0765         ar_context_abort(ctx, "corrupted descriptor");
0766     }
0767 
0768     return i;
0769 }
0770 
0771 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
0772                     unsigned int end_buffer_index,
0773                     unsigned int end_buffer_offset)
0774 {
0775     unsigned int i;
0776 
0777     i = ar_first_buffer_index(ctx);
0778     while (i != end_buffer_index) {
0779         dma_sync_single_for_cpu(ctx->ohci->card.device,
0780                     ar_buffer_bus(ctx, i),
0781                     PAGE_SIZE, DMA_FROM_DEVICE);
0782         i = ar_next_buffer_index(i);
0783     }
0784     if (end_buffer_offset > 0)
0785         dma_sync_single_for_cpu(ctx->ohci->card.device,
0786                     ar_buffer_bus(ctx, i),
0787                     end_buffer_offset, DMA_FROM_DEVICE);
0788 }
0789 
0790 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
0791 #define cond_le32_to_cpu(v) \
0792     (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
0793 #else
0794 #define cond_le32_to_cpu(v) le32_to_cpu(v)
0795 #endif
0796 
0797 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
0798 {
0799     struct fw_ohci *ohci = ctx->ohci;
0800     struct fw_packet p;
0801     u32 status, length, tcode;
0802     int evt;
0803 
0804     p.header[0] = cond_le32_to_cpu(buffer[0]);
0805     p.header[1] = cond_le32_to_cpu(buffer[1]);
0806     p.header[2] = cond_le32_to_cpu(buffer[2]);
0807 
0808     tcode = (p.header[0] >> 4) & 0x0f;
0809     switch (tcode) {
0810     case TCODE_WRITE_QUADLET_REQUEST:
0811     case TCODE_READ_QUADLET_RESPONSE:
0812         p.header[3] = (__force __u32) buffer[3];
0813         p.header_length = 16;
0814         p.payload_length = 0;
0815         break;
0816 
0817     case TCODE_READ_BLOCK_REQUEST :
0818         p.header[3] = cond_le32_to_cpu(buffer[3]);
0819         p.header_length = 16;
0820         p.payload_length = 0;
0821         break;
0822 
0823     case TCODE_WRITE_BLOCK_REQUEST:
0824     case TCODE_READ_BLOCK_RESPONSE:
0825     case TCODE_LOCK_REQUEST:
0826     case TCODE_LOCK_RESPONSE:
0827         p.header[3] = cond_le32_to_cpu(buffer[3]);
0828         p.header_length = 16;
0829         p.payload_length = p.header[3] >> 16;
0830         if (p.payload_length > MAX_ASYNC_PAYLOAD) {
0831             ar_context_abort(ctx, "invalid packet length");
0832             return NULL;
0833         }
0834         break;
0835 
0836     case TCODE_WRITE_RESPONSE:
0837     case TCODE_READ_QUADLET_REQUEST:
0838     case OHCI_TCODE_PHY_PACKET:
0839         p.header_length = 12;
0840         p.payload_length = 0;
0841         break;
0842 
0843     default:
0844         ar_context_abort(ctx, "invalid tcode");
0845         return NULL;
0846     }
0847 
0848     p.payload = (void *) buffer + p.header_length;
0849 
0850     /* FIXME: What to do about evt_* errors? */
0851     length = (p.header_length + p.payload_length + 3) / 4;
0852     status = cond_le32_to_cpu(buffer[length]);
0853     evt    = (status >> 16) & 0x1f;
0854 
0855     p.ack        = evt - 16;
0856     p.speed      = (status >> 21) & 0x7;
0857     p.timestamp  = status & 0xffff;
0858     p.generation = ohci->request_generation;
0859 
0860     log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
0861 
0862     /*
0863      * Several controllers, notably from NEC and VIA, forget to
0864      * write ack_complete status at PHY packet reception.
0865      */
0866     if (evt == OHCI1394_evt_no_status &&
0867         (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
0868         p.ack = ACK_COMPLETE;
0869 
0870     /*
0871      * The OHCI bus reset handler synthesizes a PHY packet with
0872      * the new generation number when a bus reset happens (see
0873      * section 8.4.2.3).  This helps us determine when a request
0874      * was received and make sure we send the response in the same
0875      * generation.  We only need this for requests; for responses
0876      * we use the unique tlabel for finding the matching
0877      * request.
0878      *
0879      * Alas some chips sometimes emit bus reset packets with a
0880      * wrong generation.  We set the correct generation for these
0881      * at a slightly incorrect time (in bus_reset_work).
0882      */
0883     if (evt == OHCI1394_evt_bus_reset) {
0884         if (!(ohci->quirks & QUIRK_RESET_PACKET))
0885             ohci->request_generation = (p.header[2] >> 16) & 0xff;
0886     } else if (ctx == &ohci->ar_request_ctx) {
0887         fw_core_handle_request(&ohci->card, &p);
0888     } else {
0889         fw_core_handle_response(&ohci->card, &p);
0890     }
0891 
0892     return buffer + length + 1;
0893 }
0894 
0895 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
0896 {
0897     void *next;
0898 
0899     while (p < end) {
0900         next = handle_ar_packet(ctx, p);
0901         if (!next)
0902             return p;
0903         p = next;
0904     }
0905 
0906     return p;
0907 }
0908 
0909 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
0910 {
0911     unsigned int i;
0912 
0913     i = ar_first_buffer_index(ctx);
0914     while (i != end_buffer) {
0915         dma_sync_single_for_device(ctx->ohci->card.device,
0916                        ar_buffer_bus(ctx, i),
0917                        PAGE_SIZE, DMA_FROM_DEVICE);
0918         ar_context_link_page(ctx, i);
0919         i = ar_next_buffer_index(i);
0920     }
0921 }
0922 
0923 static void ar_context_tasklet(unsigned long data)
0924 {
0925     struct ar_context *ctx = (struct ar_context *)data;
0926     unsigned int end_buffer_index, end_buffer_offset;
0927     void *p, *end;
0928 
0929     p = ctx->pointer;
0930     if (!p)
0931         return;
0932 
0933     end_buffer_index = ar_search_last_active_buffer(ctx,
0934                             &end_buffer_offset);
0935     ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
0936     end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
0937 
0938     if (end_buffer_index < ar_first_buffer_index(ctx)) {
0939         /*
0940          * The filled part of the overall buffer wraps around; handle
0941          * all packets up to the buffer end here.  If the last packet
0942          * wraps around, its tail will be visible after the buffer end
0943          * because the buffer start pages are mapped there again.
0944          */
0945         void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
0946         p = handle_ar_packets(ctx, p, buffer_end);
0947         if (p < buffer_end)
0948             goto error;
0949         /* adjust p to point back into the actual buffer */
0950         p -= AR_BUFFERS * PAGE_SIZE;
0951     }
0952 
0953     p = handle_ar_packets(ctx, p, end);
0954     if (p != end) {
0955         if (p > end)
0956             ar_context_abort(ctx, "inconsistent descriptor");
0957         goto error;
0958     }
0959 
0960     ctx->pointer = p;
0961     ar_recycle_buffers(ctx, end_buffer_index);
0962 
0963     return;
0964 
0965 error:
0966     ctx->pointer = NULL;
0967 }
0968 
0969 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
0970                unsigned int descriptors_offset, u32 regs)
0971 {
0972     struct device *dev = ohci->card.device;
0973     unsigned int i;
0974     dma_addr_t dma_addr;
0975     struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
0976     struct descriptor *d;
0977 
0978     ctx->regs        = regs;
0979     ctx->ohci        = ohci;
0980     tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
0981 
0982     for (i = 0; i < AR_BUFFERS; i++) {
0983         ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
0984                         DMA_FROM_DEVICE, GFP_KERNEL);
0985         if (!ctx->pages[i])
0986             goto out_of_memory;
0987         set_page_private(ctx->pages[i], dma_addr);
0988         dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
0989                        DMA_FROM_DEVICE);
0990     }
0991 
0992     for (i = 0; i < AR_BUFFERS; i++)
0993         pages[i]              = ctx->pages[i];
0994     for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
0995         pages[AR_BUFFERS + i] = ctx->pages[i];
0996     ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
0997     if (!ctx->buffer)
0998         goto out_of_memory;
0999 
1000     ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1001     ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1002 
1003     for (i = 0; i < AR_BUFFERS; i++) {
1004         d = &ctx->descriptors[i];
1005         d->req_count      = cpu_to_le16(PAGE_SIZE);
1006         d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1007                         DESCRIPTOR_STATUS |
1008                         DESCRIPTOR_BRANCH_ALWAYS);
1009         d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1010         d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1011             ar_next_buffer_index(i) * sizeof(struct descriptor));
1012     }
1013 
1014     return 0;
1015 
1016 out_of_memory:
1017     ar_context_release(ctx);
1018 
1019     return -ENOMEM;
1020 }
1021 
1022 static void ar_context_run(struct ar_context *ctx)
1023 {
1024     unsigned int i;
1025 
1026     for (i = 0; i < AR_BUFFERS; i++)
1027         ar_context_link_page(ctx, i);
1028 
1029     ctx->pointer = ctx->buffer;
1030 
1031     reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1032     reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1033 }
1034 
1035 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1036 {
1037     __le16 branch;
1038 
1039     branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1040 
1041     /* figure out which descriptor the branch address goes in */
1042     if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1043         return d;
1044     else
1045         return d + z - 1;
1046 }
1047 
1048 static void context_tasklet(unsigned long data)
1049 {
1050     struct context *ctx = (struct context *) data;
1051     struct descriptor *d, *last;
1052     u32 address;
1053     int z;
1054     struct descriptor_buffer *desc;
1055 
1056     desc = list_entry(ctx->buffer_list.next,
1057             struct descriptor_buffer, list);
1058     last = ctx->last;
1059     while (last->branch_address != 0) {
1060         struct descriptor_buffer *old_desc = desc;
1061         address = le32_to_cpu(last->branch_address);
1062         z = address & 0xf;
1063         address &= ~0xf;
1064         ctx->current_bus = address;
1065 
1066         /* If the branch address points to a buffer outside of the
1067          * current buffer, advance to the next buffer. */
1068         if (address < desc->buffer_bus ||
1069                 address >= desc->buffer_bus + desc->used)
1070             desc = list_entry(desc->list.next,
1071                     struct descriptor_buffer, list);
1072         d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1073         last = find_branch_descriptor(d, z);
1074 
1075         if (!ctx->callback(ctx, d, last))
1076             break;
1077 
1078         if (old_desc != desc) {
1079             /* If we've advanced to the next buffer, move the
1080              * previous buffer to the free list. */
1081             unsigned long flags;
1082             old_desc->used = 0;
1083             spin_lock_irqsave(&ctx->ohci->lock, flags);
1084             list_move_tail(&old_desc->list, &ctx->buffer_list);
1085             spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1086         }
1087         ctx->last = last;
1088     }
1089 }
1090 
1091 /*
1092  * Allocate a new buffer and add it to the list of free buffers for this
1093  * context.  Must be called with ohci->lock held.
1094  */
1095 static int context_add_buffer(struct context *ctx)
1096 {
1097     struct descriptor_buffer *desc;
1098     dma_addr_t bus_addr;
1099     int offset;
1100 
1101     /*
1102      * 16MB of descriptors should be far more than enough for any DMA
1103      * program.  This will catch run-away userspace or DoS attacks.
1104      */
1105     if (ctx->total_allocation >= 16*1024*1024)
1106         return -ENOMEM;
1107 
1108     desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1109             &bus_addr, GFP_ATOMIC);
1110     if (!desc)
1111         return -ENOMEM;
1112 
1113     offset = (void *)&desc->buffer - (void *)desc;
1114     /*
1115      * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1116      * for descriptors, even 0x10-byte ones. This can cause page faults when
1117      * an IOMMU is in use and the oversized read crosses a page boundary.
1118      * Work around this by always leaving at least 0x10 bytes of padding.
1119      */
1120     desc->buffer_size = PAGE_SIZE - offset - 0x10;
1121     desc->buffer_bus = bus_addr + offset;
1122     desc->used = 0;
1123 
1124     list_add_tail(&desc->list, &ctx->buffer_list);
1125     ctx->total_allocation += PAGE_SIZE;
1126 
1127     return 0;
1128 }
1129 
1130 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1131             u32 regs, descriptor_callback_t callback)
1132 {
1133     ctx->ohci = ohci;
1134     ctx->regs = regs;
1135     ctx->total_allocation = 0;
1136 
1137     INIT_LIST_HEAD(&ctx->buffer_list);
1138     if (context_add_buffer(ctx) < 0)
1139         return -ENOMEM;
1140 
1141     ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1142             struct descriptor_buffer, list);
1143 
1144     tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1145     ctx->callback = callback;
1146 
1147     /*
1148      * We put a dummy descriptor in the buffer that has a NULL
1149      * branch address and looks like it's been sent.  That way we
1150      * have a descriptor to append DMA programs to.
1151      */
1152     memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1153     ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1154     ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1155     ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1156     ctx->last = ctx->buffer_tail->buffer;
1157     ctx->prev = ctx->buffer_tail->buffer;
1158     ctx->prev_z = 1;
1159 
1160     return 0;
1161 }
1162 
1163 static void context_release(struct context *ctx)
1164 {
1165     struct fw_card *card = &ctx->ohci->card;
1166     struct descriptor_buffer *desc, *tmp;
1167 
1168     list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1169         dma_free_coherent(card->device, PAGE_SIZE, desc,
1170             desc->buffer_bus -
1171             ((void *)&desc->buffer - (void *)desc));
1172 }
1173 
1174 /* Must be called with ohci->lock held */
1175 static struct descriptor *context_get_descriptors(struct context *ctx,
1176                           int z, dma_addr_t *d_bus)
1177 {
1178     struct descriptor *d = NULL;
1179     struct descriptor_buffer *desc = ctx->buffer_tail;
1180 
1181     if (z * sizeof(*d) > desc->buffer_size)
1182         return NULL;
1183 
1184     if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1185         /* No room for the descriptor in this buffer, so advance to the
1186          * next one. */
1187 
1188         if (desc->list.next == &ctx->buffer_list) {
1189             /* If there is no free buffer next in the list,
1190              * allocate one. */
1191             if (context_add_buffer(ctx) < 0)
1192                 return NULL;
1193         }
1194         desc = list_entry(desc->list.next,
1195                 struct descriptor_buffer, list);
1196         ctx->buffer_tail = desc;
1197     }
1198 
1199     d = desc->buffer + desc->used / sizeof(*d);
1200     memset(d, 0, z * sizeof(*d));
1201     *d_bus = desc->buffer_bus + desc->used;
1202 
1203     return d;
1204 }
1205 
1206 static void context_run(struct context *ctx, u32 extra)
1207 {
1208     struct fw_ohci *ohci = ctx->ohci;
1209 
1210     reg_write(ohci, COMMAND_PTR(ctx->regs),
1211           le32_to_cpu(ctx->last->branch_address));
1212     reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1213     reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214     ctx->running = true;
1215     flush_writes(ohci);
1216 }
1217 
1218 static void context_append(struct context *ctx,
1219                struct descriptor *d, int z, int extra)
1220 {
1221     dma_addr_t d_bus;
1222     struct descriptor_buffer *desc = ctx->buffer_tail;
1223     struct descriptor *d_branch;
1224 
1225     d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1226 
1227     desc->used += (z + extra) * sizeof(*d);
1228 
1229     wmb(); /* finish init of new descriptors before branch_address update */
1230 
1231     d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1232     d_branch->branch_address = cpu_to_le32(d_bus | z);
1233 
1234     /*
1235      * VT6306 incorrectly checks only the single descriptor at the
1236      * CommandPtr when the wake bit is written, so if it's a
1237      * multi-descriptor block starting with an INPUT_MORE, put a copy of
1238      * the branch address in the first descriptor.
1239      *
1240      * Not doing this for transmit contexts since not sure how it interacts
1241      * with skip addresses.
1242      */
1243     if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1244         d_branch != ctx->prev &&
1245         (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1246          cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1247         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1248     }
1249 
1250     ctx->prev = d;
1251     ctx->prev_z = z;
1252 }
1253 
1254 static void context_stop(struct context *ctx)
1255 {
1256     struct fw_ohci *ohci = ctx->ohci;
1257     u32 reg;
1258     int i;
1259 
1260     reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1261     ctx->running = false;
1262 
1263     for (i = 0; i < 1000; i++) {
1264         reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1265         if ((reg & CONTEXT_ACTIVE) == 0)
1266             return;
1267 
1268         if (i)
1269             udelay(10);
1270     }
1271     ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1272 }
1273 
1274 struct driver_data {
1275     u8 inline_data[8];
1276     struct fw_packet *packet;
1277 };
1278 
1279 /*
1280  * This function apppends a packet to the DMA queue for transmission.
1281  * Must always be called with the ochi->lock held to ensure proper
1282  * generation handling and locking around packet queue manipulation.
1283  */
1284 static int at_context_queue_packet(struct context *ctx,
1285                    struct fw_packet *packet)
1286 {
1287     struct fw_ohci *ohci = ctx->ohci;
1288     dma_addr_t d_bus, payload_bus;
1289     struct driver_data *driver_data;
1290     struct descriptor *d, *last;
1291     __le32 *header;
1292     int z, tcode;
1293 
1294     d = context_get_descriptors(ctx, 4, &d_bus);
1295     if (d == NULL) {
1296         packet->ack = RCODE_SEND_ERROR;
1297         return -1;
1298     }
1299 
1300     d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1301     d[0].res_count = cpu_to_le16(packet->timestamp);
1302 
1303     /*
1304      * The DMA format for asynchronous link packets is different
1305      * from the IEEE1394 layout, so shift the fields around
1306      * accordingly.
1307      */
1308 
1309     tcode = (packet->header[0] >> 4) & 0x0f;
1310     header = (__le32 *) &d[1];
1311     switch (tcode) {
1312     case TCODE_WRITE_QUADLET_REQUEST:
1313     case TCODE_WRITE_BLOCK_REQUEST:
1314     case TCODE_WRITE_RESPONSE:
1315     case TCODE_READ_QUADLET_REQUEST:
1316     case TCODE_READ_BLOCK_REQUEST:
1317     case TCODE_READ_QUADLET_RESPONSE:
1318     case TCODE_READ_BLOCK_RESPONSE:
1319     case TCODE_LOCK_REQUEST:
1320     case TCODE_LOCK_RESPONSE:
1321         header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1322                     (packet->speed << 16));
1323         header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1324                     (packet->header[0] & 0xffff0000));
1325         header[2] = cpu_to_le32(packet->header[2]);
1326 
1327         if (TCODE_IS_BLOCK_PACKET(tcode))
1328             header[3] = cpu_to_le32(packet->header[3]);
1329         else
1330             header[3] = (__force __le32) packet->header[3];
1331 
1332         d[0].req_count = cpu_to_le16(packet->header_length);
1333         break;
1334 
1335     case TCODE_LINK_INTERNAL:
1336         header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1337                     (packet->speed << 16));
1338         header[1] = cpu_to_le32(packet->header[1]);
1339         header[2] = cpu_to_le32(packet->header[2]);
1340         d[0].req_count = cpu_to_le16(12);
1341 
1342         if (is_ping_packet(&packet->header[1]))
1343             d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1344         break;
1345 
1346     case TCODE_STREAM_DATA:
1347         header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1348                     (packet->speed << 16));
1349         header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1350         d[0].req_count = cpu_to_le16(8);
1351         break;
1352 
1353     default:
1354         /* BUG(); */
1355         packet->ack = RCODE_SEND_ERROR;
1356         return -1;
1357     }
1358 
1359     BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1360     driver_data = (struct driver_data *) &d[3];
1361     driver_data->packet = packet;
1362     packet->driver_data = driver_data;
1363 
1364     if (packet->payload_length > 0) {
1365         if (packet->payload_length > sizeof(driver_data->inline_data)) {
1366             payload_bus = dma_map_single(ohci->card.device,
1367                              packet->payload,
1368                              packet->payload_length,
1369                              DMA_TO_DEVICE);
1370             if (dma_mapping_error(ohci->card.device, payload_bus)) {
1371                 packet->ack = RCODE_SEND_ERROR;
1372                 return -1;
1373             }
1374             packet->payload_bus = payload_bus;
1375             packet->payload_mapped  = true;
1376         } else {
1377             memcpy(driver_data->inline_data, packet->payload,
1378                    packet->payload_length);
1379             payload_bus = d_bus + 3 * sizeof(*d);
1380         }
1381 
1382         d[2].req_count    = cpu_to_le16(packet->payload_length);
1383         d[2].data_address = cpu_to_le32(payload_bus);
1384         last = &d[2];
1385         z = 3;
1386     } else {
1387         last = &d[0];
1388         z = 2;
1389     }
1390 
1391     last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1392                      DESCRIPTOR_IRQ_ALWAYS |
1393                      DESCRIPTOR_BRANCH_ALWAYS);
1394 
1395     /* FIXME: Document how the locking works. */
1396     if (ohci->generation != packet->generation) {
1397         if (packet->payload_mapped)
1398             dma_unmap_single(ohci->card.device, payload_bus,
1399                      packet->payload_length, DMA_TO_DEVICE);
1400         packet->ack = RCODE_GENERATION;
1401         return -1;
1402     }
1403 
1404     context_append(ctx, d, z, 4 - z);
1405 
1406     if (ctx->running)
1407         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1408     else
1409         context_run(ctx, 0);
1410 
1411     return 0;
1412 }
1413 
1414 static void at_context_flush(struct context *ctx)
1415 {
1416     tasklet_disable(&ctx->tasklet);
1417 
1418     ctx->flushing = true;
1419     context_tasklet((unsigned long)ctx);
1420     ctx->flushing = false;
1421 
1422     tasklet_enable(&ctx->tasklet);
1423 }
1424 
1425 static int handle_at_packet(struct context *context,
1426                 struct descriptor *d,
1427                 struct descriptor *last)
1428 {
1429     struct driver_data *driver_data;
1430     struct fw_packet *packet;
1431     struct fw_ohci *ohci = context->ohci;
1432     int evt;
1433 
1434     if (last->transfer_status == 0 && !context->flushing)
1435         /* This descriptor isn't done yet, stop iteration. */
1436         return 0;
1437 
1438     driver_data = (struct driver_data *) &d[3];
1439     packet = driver_data->packet;
1440     if (packet == NULL)
1441         /* This packet was cancelled, just continue. */
1442         return 1;
1443 
1444     if (packet->payload_mapped)
1445         dma_unmap_single(ohci->card.device, packet->payload_bus,
1446                  packet->payload_length, DMA_TO_DEVICE);
1447 
1448     evt = le16_to_cpu(last->transfer_status) & 0x1f;
1449     packet->timestamp = le16_to_cpu(last->res_count);
1450 
1451     log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1452 
1453     switch (evt) {
1454     case OHCI1394_evt_timeout:
1455         /* Async response transmit timed out. */
1456         packet->ack = RCODE_CANCELLED;
1457         break;
1458 
1459     case OHCI1394_evt_flushed:
1460         /*
1461          * The packet was flushed should give same error as
1462          * when we try to use a stale generation count.
1463          */
1464         packet->ack = RCODE_GENERATION;
1465         break;
1466 
1467     case OHCI1394_evt_missing_ack:
1468         if (context->flushing)
1469             packet->ack = RCODE_GENERATION;
1470         else {
1471             /*
1472              * Using a valid (current) generation count, but the
1473              * node is not on the bus or not sending acks.
1474              */
1475             packet->ack = RCODE_NO_ACK;
1476         }
1477         break;
1478 
1479     case ACK_COMPLETE + 0x10:
1480     case ACK_PENDING + 0x10:
1481     case ACK_BUSY_X + 0x10:
1482     case ACK_BUSY_A + 0x10:
1483     case ACK_BUSY_B + 0x10:
1484     case ACK_DATA_ERROR + 0x10:
1485     case ACK_TYPE_ERROR + 0x10:
1486         packet->ack = evt - 0x10;
1487         break;
1488 
1489     case OHCI1394_evt_no_status:
1490         if (context->flushing) {
1491             packet->ack = RCODE_GENERATION;
1492             break;
1493         }
1494         fallthrough;
1495 
1496     default:
1497         packet->ack = RCODE_SEND_ERROR;
1498         break;
1499     }
1500 
1501     packet->callback(packet, &ohci->card, packet->ack);
1502 
1503     return 1;
1504 }
1505 
1506 #define HEADER_GET_DESTINATION(q)   (((q) >> 16) & 0xffff)
1507 #define HEADER_GET_TCODE(q)     (((q) >> 4) & 0x0f)
1508 #define HEADER_GET_OFFSET_HIGH(q)   (((q) >> 0) & 0xffff)
1509 #define HEADER_GET_DATA_LENGTH(q)   (((q) >> 16) & 0xffff)
1510 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1511 
1512 static void handle_local_rom(struct fw_ohci *ohci,
1513                  struct fw_packet *packet, u32 csr)
1514 {
1515     struct fw_packet response;
1516     int tcode, length, i;
1517 
1518     tcode = HEADER_GET_TCODE(packet->header[0]);
1519     if (TCODE_IS_BLOCK_PACKET(tcode))
1520         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1521     else
1522         length = 4;
1523 
1524     i = csr - CSR_CONFIG_ROM;
1525     if (i + length > CONFIG_ROM_SIZE) {
1526         fw_fill_response(&response, packet->header,
1527                  RCODE_ADDRESS_ERROR, NULL, 0);
1528     } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1529         fw_fill_response(&response, packet->header,
1530                  RCODE_TYPE_ERROR, NULL, 0);
1531     } else {
1532         fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1533                  (void *) ohci->config_rom + i, length);
1534     }
1535 
1536     fw_core_handle_response(&ohci->card, &response);
1537 }
1538 
1539 static void handle_local_lock(struct fw_ohci *ohci,
1540                   struct fw_packet *packet, u32 csr)
1541 {
1542     struct fw_packet response;
1543     int tcode, length, ext_tcode, sel, try;
1544     __be32 *payload, lock_old;
1545     u32 lock_arg, lock_data;
1546 
1547     tcode = HEADER_GET_TCODE(packet->header[0]);
1548     length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1549     payload = packet->payload;
1550     ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1551 
1552     if (tcode == TCODE_LOCK_REQUEST &&
1553         ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1554         lock_arg = be32_to_cpu(payload[0]);
1555         lock_data = be32_to_cpu(payload[1]);
1556     } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1557         lock_arg = 0;
1558         lock_data = 0;
1559     } else {
1560         fw_fill_response(&response, packet->header,
1561                  RCODE_TYPE_ERROR, NULL, 0);
1562         goto out;
1563     }
1564 
1565     sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1566     reg_write(ohci, OHCI1394_CSRData, lock_data);
1567     reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1568     reg_write(ohci, OHCI1394_CSRControl, sel);
1569 
1570     for (try = 0; try < 20; try++)
1571         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1572             lock_old = cpu_to_be32(reg_read(ohci,
1573                             OHCI1394_CSRData));
1574             fw_fill_response(&response, packet->header,
1575                      RCODE_COMPLETE,
1576                      &lock_old, sizeof(lock_old));
1577             goto out;
1578         }
1579 
1580     ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1581     fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1582 
1583  out:
1584     fw_core_handle_response(&ohci->card, &response);
1585 }
1586 
1587 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1588 {
1589     u64 offset, csr;
1590 
1591     if (ctx == &ctx->ohci->at_request_ctx) {
1592         packet->ack = ACK_PENDING;
1593         packet->callback(packet, &ctx->ohci->card, packet->ack);
1594     }
1595 
1596     offset =
1597         ((unsigned long long)
1598          HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1599         packet->header[2];
1600     csr = offset - CSR_REGISTER_BASE;
1601 
1602     /* Handle config rom reads. */
1603     if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1604         handle_local_rom(ctx->ohci, packet, csr);
1605     else switch (csr) {
1606     case CSR_BUS_MANAGER_ID:
1607     case CSR_BANDWIDTH_AVAILABLE:
1608     case CSR_CHANNELS_AVAILABLE_HI:
1609     case CSR_CHANNELS_AVAILABLE_LO:
1610         handle_local_lock(ctx->ohci, packet, csr);
1611         break;
1612     default:
1613         if (ctx == &ctx->ohci->at_request_ctx)
1614             fw_core_handle_request(&ctx->ohci->card, packet);
1615         else
1616             fw_core_handle_response(&ctx->ohci->card, packet);
1617         break;
1618     }
1619 
1620     if (ctx == &ctx->ohci->at_response_ctx) {
1621         packet->ack = ACK_COMPLETE;
1622         packet->callback(packet, &ctx->ohci->card, packet->ack);
1623     }
1624 }
1625 
1626 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1627 {
1628     unsigned long flags;
1629     int ret;
1630 
1631     spin_lock_irqsave(&ctx->ohci->lock, flags);
1632 
1633     if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1634         ctx->ohci->generation == packet->generation) {
1635         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1636         handle_local_request(ctx, packet);
1637         return;
1638     }
1639 
1640     ret = at_context_queue_packet(ctx, packet);
1641     spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1642 
1643     if (ret < 0)
1644         packet->callback(packet, &ctx->ohci->card, packet->ack);
1645 
1646 }
1647 
1648 static void detect_dead_context(struct fw_ohci *ohci,
1649                 const char *name, unsigned int regs)
1650 {
1651     u32 ctl;
1652 
1653     ctl = reg_read(ohci, CONTROL_SET(regs));
1654     if (ctl & CONTEXT_DEAD)
1655         ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1656             name, evts[ctl & 0x1f]);
1657 }
1658 
1659 static void handle_dead_contexts(struct fw_ohci *ohci)
1660 {
1661     unsigned int i;
1662     char name[8];
1663 
1664     detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1665     detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1666     detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1667     detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1668     for (i = 0; i < 32; ++i) {
1669         if (!(ohci->it_context_support & (1 << i)))
1670             continue;
1671         sprintf(name, "IT%u", i);
1672         detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1673     }
1674     for (i = 0; i < 32; ++i) {
1675         if (!(ohci->ir_context_support & (1 << i)))
1676             continue;
1677         sprintf(name, "IR%u", i);
1678         detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1679     }
1680     /* TODO: maybe try to flush and restart the dead contexts */
1681 }
1682 
1683 static u32 cycle_timer_ticks(u32 cycle_timer)
1684 {
1685     u32 ticks;
1686 
1687     ticks = cycle_timer & 0xfff;
1688     ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1689     ticks += (3072 * 8000) * (cycle_timer >> 25);
1690 
1691     return ticks;
1692 }
1693 
1694 /*
1695  * Some controllers exhibit one or more of the following bugs when updating the
1696  * iso cycle timer register:
1697  *  - When the lowest six bits are wrapping around to zero, a read that happens
1698  *    at the same time will return garbage in the lowest ten bits.
1699  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1700  *    not incremented for about 60 ns.
1701  *  - Occasionally, the entire register reads zero.
1702  *
1703  * To catch these, we read the register three times and ensure that the
1704  * difference between each two consecutive reads is approximately the same, i.e.
1705  * less than twice the other.  Furthermore, any negative difference indicates an
1706  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1707  * execute, so we have enough precision to compute the ratio of the differences.)
1708  */
1709 static u32 get_cycle_time(struct fw_ohci *ohci)
1710 {
1711     u32 c0, c1, c2;
1712     u32 t0, t1, t2;
1713     s32 diff01, diff12;
1714     int i;
1715 
1716     c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1717 
1718     if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1719         i = 0;
1720         c1 = c2;
1721         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1722         do {
1723             c0 = c1;
1724             c1 = c2;
1725             c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1726             t0 = cycle_timer_ticks(c0);
1727             t1 = cycle_timer_ticks(c1);
1728             t2 = cycle_timer_ticks(c2);
1729             diff01 = t1 - t0;
1730             diff12 = t2 - t1;
1731         } while ((diff01 <= 0 || diff12 <= 0 ||
1732               diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1733              && i++ < 20);
1734     }
1735 
1736     return c2;
1737 }
1738 
1739 /*
1740  * This function has to be called at least every 64 seconds.  The bus_time
1741  * field stores not only the upper 25 bits of the BUS_TIME register but also
1742  * the most significant bit of the cycle timer in bit 6 so that we can detect
1743  * changes in this bit.
1744  */
1745 static u32 update_bus_time(struct fw_ohci *ohci)
1746 {
1747     u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1748 
1749     if (unlikely(!ohci->bus_time_running)) {
1750         reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1751         ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1752                          (cycle_time_seconds & 0x40);
1753         ohci->bus_time_running = true;
1754     }
1755 
1756     if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1757         ohci->bus_time += 0x40;
1758 
1759     return ohci->bus_time | cycle_time_seconds;
1760 }
1761 
1762 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1763 {
1764     int reg;
1765 
1766     mutex_lock(&ohci->phy_reg_mutex);
1767     reg = write_phy_reg(ohci, 7, port_index);
1768     if (reg >= 0)
1769         reg = read_phy_reg(ohci, 8);
1770     mutex_unlock(&ohci->phy_reg_mutex);
1771     if (reg < 0)
1772         return reg;
1773 
1774     switch (reg & 0x0f) {
1775     case 0x06:
1776         return 2;   /* is child node (connected to parent node) */
1777     case 0x0e:
1778         return 3;   /* is parent node (connected to child node) */
1779     }
1780     return 1;       /* not connected */
1781 }
1782 
1783 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1784     int self_id_count)
1785 {
1786     int i;
1787     u32 entry;
1788 
1789     for (i = 0; i < self_id_count; i++) {
1790         entry = ohci->self_id_buffer[i];
1791         if ((self_id & 0xff000000) == (entry & 0xff000000))
1792             return -1;
1793         if ((self_id & 0xff000000) < (entry & 0xff000000))
1794             return i;
1795     }
1796     return i;
1797 }
1798 
1799 static int initiated_reset(struct fw_ohci *ohci)
1800 {
1801     int reg;
1802     int ret = 0;
1803 
1804     mutex_lock(&ohci->phy_reg_mutex);
1805     reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1806     if (reg >= 0) {
1807         reg = read_phy_reg(ohci, 8);
1808         reg |= 0x40;
1809         reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1810         if (reg >= 0) {
1811             reg = read_phy_reg(ohci, 12); /* read register 12 */
1812             if (reg >= 0) {
1813                 if ((reg & 0x08) == 0x08) {
1814                     /* bit 3 indicates "initiated reset" */
1815                     ret = 0x2;
1816                 }
1817             }
1818         }
1819     }
1820     mutex_unlock(&ohci->phy_reg_mutex);
1821     return ret;
1822 }
1823 
1824 /*
1825  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1826  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1827  * Construct the selfID from phy register contents.
1828  */
1829 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1830 {
1831     int reg, i, pos, status;
1832     /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1833     u32 self_id = 0x8040c800;
1834 
1835     reg = reg_read(ohci, OHCI1394_NodeID);
1836     if (!(reg & OHCI1394_NodeID_idValid)) {
1837         ohci_notice(ohci,
1838                 "node ID not valid, new bus reset in progress\n");
1839         return -EBUSY;
1840     }
1841     self_id |= ((reg & 0x3f) << 24); /* phy ID */
1842 
1843     reg = ohci_read_phy_reg(&ohci->card, 4);
1844     if (reg < 0)
1845         return reg;
1846     self_id |= ((reg & 0x07) << 8); /* power class */
1847 
1848     reg = ohci_read_phy_reg(&ohci->card, 1);
1849     if (reg < 0)
1850         return reg;
1851     self_id |= ((reg & 0x3f) << 16); /* gap count */
1852 
1853     for (i = 0; i < 3; i++) {
1854         status = get_status_for_port(ohci, i);
1855         if (status < 0)
1856             return status;
1857         self_id |= ((status & 0x3) << (6 - (i * 2)));
1858     }
1859 
1860     self_id |= initiated_reset(ohci);
1861 
1862     pos = get_self_id_pos(ohci, self_id, self_id_count);
1863     if (pos >= 0) {
1864         memmove(&(ohci->self_id_buffer[pos+1]),
1865             &(ohci->self_id_buffer[pos]),
1866             (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1867         ohci->self_id_buffer[pos] = self_id;
1868         self_id_count++;
1869     }
1870     return self_id_count;
1871 }
1872 
1873 static void bus_reset_work(struct work_struct *work)
1874 {
1875     struct fw_ohci *ohci =
1876         container_of(work, struct fw_ohci, bus_reset_work);
1877     int self_id_count, generation, new_generation, i, j;
1878     u32 reg;
1879     void *free_rom = NULL;
1880     dma_addr_t free_rom_bus = 0;
1881     bool is_new_root;
1882 
1883     reg = reg_read(ohci, OHCI1394_NodeID);
1884     if (!(reg & OHCI1394_NodeID_idValid)) {
1885         ohci_notice(ohci,
1886                 "node ID not valid, new bus reset in progress\n");
1887         return;
1888     }
1889     if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1890         ohci_notice(ohci, "malconfigured bus\n");
1891         return;
1892     }
1893     ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1894                    OHCI1394_NodeID_nodeNumber);
1895 
1896     is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1897     if (!(ohci->is_root && is_new_root))
1898         reg_write(ohci, OHCI1394_LinkControlSet,
1899               OHCI1394_LinkControl_cycleMaster);
1900     ohci->is_root = is_new_root;
1901 
1902     reg = reg_read(ohci, OHCI1394_SelfIDCount);
1903     if (reg & OHCI1394_SelfIDCount_selfIDError) {
1904         ohci_notice(ohci, "self ID receive error\n");
1905         return;
1906     }
1907     /*
1908      * The count in the SelfIDCount register is the number of
1909      * bytes in the self ID receive buffer.  Since we also receive
1910      * the inverted quadlets and a header quadlet, we shift one
1911      * bit extra to get the actual number of self IDs.
1912      */
1913     self_id_count = (reg >> 3) & 0xff;
1914 
1915     if (self_id_count > 252) {
1916         ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1917         return;
1918     }
1919 
1920     generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1921     rmb();
1922 
1923     for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1924         u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1925         u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1926 
1927         if (id != ~id2) {
1928             /*
1929              * If the invalid data looks like a cycle start packet,
1930              * it's likely to be the result of the cycle master
1931              * having a wrong gap count.  In this case, the self IDs
1932              * so far are valid and should be processed so that the
1933              * bus manager can then correct the gap count.
1934              */
1935             if (id == 0xffff008f) {
1936                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1937                 self_id_count = j;
1938                 break;
1939             }
1940 
1941             ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1942                     j, self_id_count, id, id2);
1943             return;
1944         }
1945         ohci->self_id_buffer[j] = id;
1946     }
1947 
1948     if (ohci->quirks & QUIRK_TI_SLLZ059) {
1949         self_id_count = find_and_insert_self_id(ohci, self_id_count);
1950         if (self_id_count < 0) {
1951             ohci_notice(ohci,
1952                     "could not construct local self ID\n");
1953             return;
1954         }
1955     }
1956 
1957     if (self_id_count == 0) {
1958         ohci_notice(ohci, "no self IDs\n");
1959         return;
1960     }
1961     rmb();
1962 
1963     /*
1964      * Check the consistency of the self IDs we just read.  The
1965      * problem we face is that a new bus reset can start while we
1966      * read out the self IDs from the DMA buffer. If this happens,
1967      * the DMA buffer will be overwritten with new self IDs and we
1968      * will read out inconsistent data.  The OHCI specification
1969      * (section 11.2) recommends a technique similar to
1970      * linux/seqlock.h, where we remember the generation of the
1971      * self IDs in the buffer before reading them out and compare
1972      * it to the current generation after reading them out.  If
1973      * the two generations match we know we have a consistent set
1974      * of self IDs.
1975      */
1976 
1977     new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1978     if (new_generation != generation) {
1979         ohci_notice(ohci, "new bus reset, discarding self ids\n");
1980         return;
1981     }
1982 
1983     /* FIXME: Document how the locking works. */
1984     spin_lock_irq(&ohci->lock);
1985 
1986     ohci->generation = -1; /* prevent AT packet queueing */
1987     context_stop(&ohci->at_request_ctx);
1988     context_stop(&ohci->at_response_ctx);
1989 
1990     spin_unlock_irq(&ohci->lock);
1991 
1992     /*
1993      * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1994      * packets in the AT queues and software needs to drain them.
1995      * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1996      */
1997     at_context_flush(&ohci->at_request_ctx);
1998     at_context_flush(&ohci->at_response_ctx);
1999 
2000     spin_lock_irq(&ohci->lock);
2001 
2002     ohci->generation = generation;
2003     reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2004 
2005     if (ohci->quirks & QUIRK_RESET_PACKET)
2006         ohci->request_generation = generation;
2007 
2008     /*
2009      * This next bit is unrelated to the AT context stuff but we
2010      * have to do it under the spinlock also.  If a new config rom
2011      * was set up before this reset, the old one is now no longer
2012      * in use and we can free it. Update the config rom pointers
2013      * to point to the current config rom and clear the
2014      * next_config_rom pointer so a new update can take place.
2015      */
2016 
2017     if (ohci->next_config_rom != NULL) {
2018         if (ohci->next_config_rom != ohci->config_rom) {
2019             free_rom      = ohci->config_rom;
2020             free_rom_bus  = ohci->config_rom_bus;
2021         }
2022         ohci->config_rom      = ohci->next_config_rom;
2023         ohci->config_rom_bus  = ohci->next_config_rom_bus;
2024         ohci->next_config_rom = NULL;
2025 
2026         /*
2027          * Restore config_rom image and manually update
2028          * config_rom registers.  Writing the header quadlet
2029          * will indicate that the config rom is ready, so we
2030          * do that last.
2031          */
2032         reg_write(ohci, OHCI1394_BusOptions,
2033               be32_to_cpu(ohci->config_rom[2]));
2034         ohci->config_rom[0] = ohci->next_header;
2035         reg_write(ohci, OHCI1394_ConfigROMhdr,
2036               be32_to_cpu(ohci->next_header));
2037     }
2038 
2039     if (param_remote_dma) {
2040         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2041         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2042     }
2043 
2044     spin_unlock_irq(&ohci->lock);
2045 
2046     if (free_rom)
2047         dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2048                   free_rom, free_rom_bus);
2049 
2050     log_selfids(ohci, generation, self_id_count);
2051 
2052     fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2053                  self_id_count, ohci->self_id_buffer,
2054                  ohci->csr_state_setclear_abdicate);
2055     ohci->csr_state_setclear_abdicate = false;
2056 }
2057 
2058 static irqreturn_t irq_handler(int irq, void *data)
2059 {
2060     struct fw_ohci *ohci = data;
2061     u32 event, iso_event;
2062     int i;
2063 
2064     event = reg_read(ohci, OHCI1394_IntEventClear);
2065 
2066     if (!event || !~event)
2067         return IRQ_NONE;
2068 
2069     /*
2070      * busReset and postedWriteErr must not be cleared yet
2071      * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2072      */
2073     reg_write(ohci, OHCI1394_IntEventClear,
2074           event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2075     log_irqs(ohci, event);
2076 
2077     if (event & OHCI1394_selfIDComplete)
2078         queue_work(selfid_workqueue, &ohci->bus_reset_work);
2079 
2080     if (event & OHCI1394_RQPkt)
2081         tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2082 
2083     if (event & OHCI1394_RSPkt)
2084         tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2085 
2086     if (event & OHCI1394_reqTxComplete)
2087         tasklet_schedule(&ohci->at_request_ctx.tasklet);
2088 
2089     if (event & OHCI1394_respTxComplete)
2090         tasklet_schedule(&ohci->at_response_ctx.tasklet);
2091 
2092     if (event & OHCI1394_isochRx) {
2093         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2094         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2095 
2096         while (iso_event) {
2097             i = ffs(iso_event) - 1;
2098             tasklet_schedule(
2099                 &ohci->ir_context_list[i].context.tasklet);
2100             iso_event &= ~(1 << i);
2101         }
2102     }
2103 
2104     if (event & OHCI1394_isochTx) {
2105         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2106         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2107 
2108         while (iso_event) {
2109             i = ffs(iso_event) - 1;
2110             tasklet_schedule(
2111                 &ohci->it_context_list[i].context.tasklet);
2112             iso_event &= ~(1 << i);
2113         }
2114     }
2115 
2116     if (unlikely(event & OHCI1394_regAccessFail))
2117         ohci_err(ohci, "register access failure\n");
2118 
2119     if (unlikely(event & OHCI1394_postedWriteErr)) {
2120         reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2121         reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2122         reg_write(ohci, OHCI1394_IntEventClear,
2123               OHCI1394_postedWriteErr);
2124         if (printk_ratelimit())
2125             ohci_err(ohci, "PCI posted write error\n");
2126     }
2127 
2128     if (unlikely(event & OHCI1394_cycleTooLong)) {
2129         if (printk_ratelimit())
2130             ohci_notice(ohci, "isochronous cycle too long\n");
2131         reg_write(ohci, OHCI1394_LinkControlSet,
2132               OHCI1394_LinkControl_cycleMaster);
2133     }
2134 
2135     if (unlikely(event & OHCI1394_cycleInconsistent)) {
2136         /*
2137          * We need to clear this event bit in order to make
2138          * cycleMatch isochronous I/O work.  In theory we should
2139          * stop active cycleMatch iso contexts now and restart
2140          * them at least two cycles later.  (FIXME?)
2141          */
2142         if (printk_ratelimit())
2143             ohci_notice(ohci, "isochronous cycle inconsistent\n");
2144     }
2145 
2146     if (unlikely(event & OHCI1394_unrecoverableError))
2147         handle_dead_contexts(ohci);
2148 
2149     if (event & OHCI1394_cycle64Seconds) {
2150         spin_lock(&ohci->lock);
2151         update_bus_time(ohci);
2152         spin_unlock(&ohci->lock);
2153     } else
2154         flush_writes(ohci);
2155 
2156     return IRQ_HANDLED;
2157 }
2158 
2159 static int software_reset(struct fw_ohci *ohci)
2160 {
2161     u32 val;
2162     int i;
2163 
2164     reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2165     for (i = 0; i < 500; i++) {
2166         val = reg_read(ohci, OHCI1394_HCControlSet);
2167         if (!~val)
2168             return -ENODEV; /* Card was ejected. */
2169 
2170         if (!(val & OHCI1394_HCControl_softReset))
2171             return 0;
2172 
2173         msleep(1);
2174     }
2175 
2176     return -EBUSY;
2177 }
2178 
2179 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2180 {
2181     size_t size = length * 4;
2182 
2183     memcpy(dest, src, size);
2184     if (size < CONFIG_ROM_SIZE)
2185         memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2186 }
2187 
2188 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2189 {
2190     bool enable_1394a;
2191     int ret, clear, set, offset;
2192 
2193     /* Check if the driver should configure link and PHY. */
2194     if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2195           OHCI1394_HCControl_programPhyEnable))
2196         return 0;
2197 
2198     /* Paranoia: check whether the PHY supports 1394a, too. */
2199     enable_1394a = false;
2200     ret = read_phy_reg(ohci, 2);
2201     if (ret < 0)
2202         return ret;
2203     if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2204         ret = read_paged_phy_reg(ohci, 1, 8);
2205         if (ret < 0)
2206             return ret;
2207         if (ret >= 1)
2208             enable_1394a = true;
2209     }
2210 
2211     if (ohci->quirks & QUIRK_NO_1394A)
2212         enable_1394a = false;
2213 
2214     /* Configure PHY and link consistently. */
2215     if (enable_1394a) {
2216         clear = 0;
2217         set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2218     } else {
2219         clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2220         set = 0;
2221     }
2222     ret = update_phy_reg(ohci, 5, clear, set);
2223     if (ret < 0)
2224         return ret;
2225 
2226     if (enable_1394a)
2227         offset = OHCI1394_HCControlSet;
2228     else
2229         offset = OHCI1394_HCControlClear;
2230     reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2231 
2232     /* Clean up: configuration has been taken care of. */
2233     reg_write(ohci, OHCI1394_HCControlClear,
2234           OHCI1394_HCControl_programPhyEnable);
2235 
2236     return 0;
2237 }
2238 
2239 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2240 {
2241     /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2242     static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2243     int reg, i;
2244 
2245     reg = read_phy_reg(ohci, 2);
2246     if (reg < 0)
2247         return reg;
2248     if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2249         return 0;
2250 
2251     for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2252         reg = read_paged_phy_reg(ohci, 1, i + 10);
2253         if (reg < 0)
2254             return reg;
2255         if (reg != id[i])
2256             return 0;
2257     }
2258     return 1;
2259 }
2260 
2261 static int ohci_enable(struct fw_card *card,
2262                const __be32 *config_rom, size_t length)
2263 {
2264     struct fw_ohci *ohci = fw_ohci(card);
2265     u32 lps, version, irqs;
2266     int i, ret;
2267 
2268     ret = software_reset(ohci);
2269     if (ret < 0) {
2270         ohci_err(ohci, "failed to reset ohci card\n");
2271         return ret;
2272     }
2273 
2274     /*
2275      * Now enable LPS, which we need in order to start accessing
2276      * most of the registers.  In fact, on some cards (ALI M5251),
2277      * accessing registers in the SClk domain without LPS enabled
2278      * will lock up the machine.  Wait 50msec to make sure we have
2279      * full link enabled.  However, with some cards (well, at least
2280      * a JMicron PCIe card), we have to try again sometimes.
2281      *
2282      * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2283      * cannot actually use the phy at that time.  These need tens of
2284      * millisecods pause between LPS write and first phy access too.
2285      */
2286 
2287     reg_write(ohci, OHCI1394_HCControlSet,
2288           OHCI1394_HCControl_LPS |
2289           OHCI1394_HCControl_postedWriteEnable);
2290     flush_writes(ohci);
2291 
2292     for (lps = 0, i = 0; !lps && i < 3; i++) {
2293         msleep(50);
2294         lps = reg_read(ohci, OHCI1394_HCControlSet) &
2295               OHCI1394_HCControl_LPS;
2296     }
2297 
2298     if (!lps) {
2299         ohci_err(ohci, "failed to set Link Power Status\n");
2300         return -EIO;
2301     }
2302 
2303     if (ohci->quirks & QUIRK_TI_SLLZ059) {
2304         ret = probe_tsb41ba3d(ohci);
2305         if (ret < 0)
2306             return ret;
2307         if (ret)
2308             ohci_notice(ohci, "local TSB41BA3D phy\n");
2309         else
2310             ohci->quirks &= ~QUIRK_TI_SLLZ059;
2311     }
2312 
2313     reg_write(ohci, OHCI1394_HCControlClear,
2314           OHCI1394_HCControl_noByteSwapData);
2315 
2316     reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2317     reg_write(ohci, OHCI1394_LinkControlSet,
2318           OHCI1394_LinkControl_cycleTimerEnable |
2319           OHCI1394_LinkControl_cycleMaster);
2320 
2321     reg_write(ohci, OHCI1394_ATRetries,
2322           OHCI1394_MAX_AT_REQ_RETRIES |
2323           (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2324           (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2325           (200 << 16));
2326 
2327     ohci->bus_time_running = false;
2328 
2329     for (i = 0; i < 32; i++)
2330         if (ohci->ir_context_support & (1 << i))
2331             reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2332                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2333 
2334     version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2335     if (version >= OHCI_VERSION_1_1) {
2336         reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2337               0xfffffffe);
2338         card->broadcast_channel_auto_allocated = true;
2339     }
2340 
2341     /* Get implemented bits of the priority arbitration request counter. */
2342     reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2343     ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2344     reg_write(ohci, OHCI1394_FairnessControl, 0);
2345     card->priority_budget_implemented = ohci->pri_req_max != 0;
2346 
2347     reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2348     reg_write(ohci, OHCI1394_IntEventClear, ~0);
2349     reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2350 
2351     ret = configure_1394a_enhancements(ohci);
2352     if (ret < 0)
2353         return ret;
2354 
2355     /* Activate link_on bit and contender bit in our self ID packets.*/
2356     ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2357     if (ret < 0)
2358         return ret;
2359 
2360     /*
2361      * When the link is not yet enabled, the atomic config rom
2362      * update mechanism described below in ohci_set_config_rom()
2363      * is not active.  We have to update ConfigRomHeader and
2364      * BusOptions manually, and the write to ConfigROMmap takes
2365      * effect immediately.  We tie this to the enabling of the
2366      * link, so we have a valid config rom before enabling - the
2367      * OHCI requires that ConfigROMhdr and BusOptions have valid
2368      * values before enabling.
2369      *
2370      * However, when the ConfigROMmap is written, some controllers
2371      * always read back quadlets 0 and 2 from the config rom to
2372      * the ConfigRomHeader and BusOptions registers on bus reset.
2373      * They shouldn't do that in this initial case where the link
2374      * isn't enabled.  This means we have to use the same
2375      * workaround here, setting the bus header to 0 and then write
2376      * the right values in the bus reset tasklet.
2377      */
2378 
2379     if (config_rom) {
2380         ohci->next_config_rom =
2381             dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2382                        &ohci->next_config_rom_bus,
2383                        GFP_KERNEL);
2384         if (ohci->next_config_rom == NULL)
2385             return -ENOMEM;
2386 
2387         copy_config_rom(ohci->next_config_rom, config_rom, length);
2388     } else {
2389         /*
2390          * In the suspend case, config_rom is NULL, which
2391          * means that we just reuse the old config rom.
2392          */
2393         ohci->next_config_rom = ohci->config_rom;
2394         ohci->next_config_rom_bus = ohci->config_rom_bus;
2395     }
2396 
2397     ohci->next_header = ohci->next_config_rom[0];
2398     ohci->next_config_rom[0] = 0;
2399     reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2400     reg_write(ohci, OHCI1394_BusOptions,
2401           be32_to_cpu(ohci->next_config_rom[2]));
2402     reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2403 
2404     reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2405 
2406     irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2407         OHCI1394_RQPkt | OHCI1394_RSPkt |
2408         OHCI1394_isochTx | OHCI1394_isochRx |
2409         OHCI1394_postedWriteErr |
2410         OHCI1394_selfIDComplete |
2411         OHCI1394_regAccessFail |
2412         OHCI1394_cycleInconsistent |
2413         OHCI1394_unrecoverableError |
2414         OHCI1394_cycleTooLong |
2415         OHCI1394_masterIntEnable;
2416     if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2417         irqs |= OHCI1394_busReset;
2418     reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2419 
2420     reg_write(ohci, OHCI1394_HCControlSet,
2421           OHCI1394_HCControl_linkEnable |
2422           OHCI1394_HCControl_BIBimageValid);
2423 
2424     reg_write(ohci, OHCI1394_LinkControlSet,
2425           OHCI1394_LinkControl_rcvSelfID |
2426           OHCI1394_LinkControl_rcvPhyPkt);
2427 
2428     ar_context_run(&ohci->ar_request_ctx);
2429     ar_context_run(&ohci->ar_response_ctx);
2430 
2431     flush_writes(ohci);
2432 
2433     /* We are ready to go, reset bus to finish initialization. */
2434     fw_schedule_bus_reset(&ohci->card, false, true);
2435 
2436     return 0;
2437 }
2438 
2439 static int ohci_set_config_rom(struct fw_card *card,
2440                    const __be32 *config_rom, size_t length)
2441 {
2442     struct fw_ohci *ohci;
2443     __be32 *next_config_rom;
2444     dma_addr_t next_config_rom_bus;
2445 
2446     ohci = fw_ohci(card);
2447 
2448     /*
2449      * When the OHCI controller is enabled, the config rom update
2450      * mechanism is a bit tricky, but easy enough to use.  See
2451      * section 5.5.6 in the OHCI specification.
2452      *
2453      * The OHCI controller caches the new config rom address in a
2454      * shadow register (ConfigROMmapNext) and needs a bus reset
2455      * for the changes to take place.  When the bus reset is
2456      * detected, the controller loads the new values for the
2457      * ConfigRomHeader and BusOptions registers from the specified
2458      * config rom and loads ConfigROMmap from the ConfigROMmapNext
2459      * shadow register. All automatically and atomically.
2460      *
2461      * Now, there's a twist to this story.  The automatic load of
2462      * ConfigRomHeader and BusOptions doesn't honor the
2463      * noByteSwapData bit, so with a be32 config rom, the
2464      * controller will load be32 values in to these registers
2465      * during the atomic update, even on litte endian
2466      * architectures.  The workaround we use is to put a 0 in the
2467      * header quadlet; 0 is endian agnostic and means that the
2468      * config rom isn't ready yet.  In the bus reset tasklet we
2469      * then set up the real values for the two registers.
2470      *
2471      * We use ohci->lock to avoid racing with the code that sets
2472      * ohci->next_config_rom to NULL (see bus_reset_work).
2473      */
2474 
2475     next_config_rom =
2476         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2477                    &next_config_rom_bus, GFP_KERNEL);
2478     if (next_config_rom == NULL)
2479         return -ENOMEM;
2480 
2481     spin_lock_irq(&ohci->lock);
2482 
2483     /*
2484      * If there is not an already pending config_rom update,
2485      * push our new allocation into the ohci->next_config_rom
2486      * and then mark the local variable as null so that we
2487      * won't deallocate the new buffer.
2488      *
2489      * OTOH, if there is a pending config_rom update, just
2490      * use that buffer with the new config_rom data, and
2491      * let this routine free the unused DMA allocation.
2492      */
2493 
2494     if (ohci->next_config_rom == NULL) {
2495         ohci->next_config_rom = next_config_rom;
2496         ohci->next_config_rom_bus = next_config_rom_bus;
2497         next_config_rom = NULL;
2498     }
2499 
2500     copy_config_rom(ohci->next_config_rom, config_rom, length);
2501 
2502     ohci->next_header = config_rom[0];
2503     ohci->next_config_rom[0] = 0;
2504 
2505     reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2506 
2507     spin_unlock_irq(&ohci->lock);
2508 
2509     /* If we didn't use the DMA allocation, delete it. */
2510     if (next_config_rom != NULL)
2511         dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2512                   next_config_rom, next_config_rom_bus);
2513 
2514     /*
2515      * Now initiate a bus reset to have the changes take
2516      * effect. We clean up the old config rom memory and DMA
2517      * mappings in the bus reset tasklet, since the OHCI
2518      * controller could need to access it before the bus reset
2519      * takes effect.
2520      */
2521 
2522     fw_schedule_bus_reset(&ohci->card, true, true);
2523 
2524     return 0;
2525 }
2526 
2527 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2528 {
2529     struct fw_ohci *ohci = fw_ohci(card);
2530 
2531     at_context_transmit(&ohci->at_request_ctx, packet);
2532 }
2533 
2534 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2535 {
2536     struct fw_ohci *ohci = fw_ohci(card);
2537 
2538     at_context_transmit(&ohci->at_response_ctx, packet);
2539 }
2540 
2541 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2542 {
2543     struct fw_ohci *ohci = fw_ohci(card);
2544     struct context *ctx = &ohci->at_request_ctx;
2545     struct driver_data *driver_data = packet->driver_data;
2546     int ret = -ENOENT;
2547 
2548     tasklet_disable_in_atomic(&ctx->tasklet);
2549 
2550     if (packet->ack != 0)
2551         goto out;
2552 
2553     if (packet->payload_mapped)
2554         dma_unmap_single(ohci->card.device, packet->payload_bus,
2555                  packet->payload_length, DMA_TO_DEVICE);
2556 
2557     log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2558     driver_data->packet = NULL;
2559     packet->ack = RCODE_CANCELLED;
2560     packet->callback(packet, &ohci->card, packet->ack);
2561     ret = 0;
2562  out:
2563     tasklet_enable(&ctx->tasklet);
2564 
2565     return ret;
2566 }
2567 
2568 static int ohci_enable_phys_dma(struct fw_card *card,
2569                 int node_id, int generation)
2570 {
2571     struct fw_ohci *ohci = fw_ohci(card);
2572     unsigned long flags;
2573     int n, ret = 0;
2574 
2575     if (param_remote_dma)
2576         return 0;
2577 
2578     /*
2579      * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2580      * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2581      */
2582 
2583     spin_lock_irqsave(&ohci->lock, flags);
2584 
2585     if (ohci->generation != generation) {
2586         ret = -ESTALE;
2587         goto out;
2588     }
2589 
2590     /*
2591      * Note, if the node ID contains a non-local bus ID, physical DMA is
2592      * enabled for _all_ nodes on remote buses.
2593      */
2594 
2595     n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2596     if (n < 32)
2597         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2598     else
2599         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2600 
2601     flush_writes(ohci);
2602  out:
2603     spin_unlock_irqrestore(&ohci->lock, flags);
2604 
2605     return ret;
2606 }
2607 
2608 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2609 {
2610     struct fw_ohci *ohci = fw_ohci(card);
2611     unsigned long flags;
2612     u32 value;
2613 
2614     switch (csr_offset) {
2615     case CSR_STATE_CLEAR:
2616     case CSR_STATE_SET:
2617         if (ohci->is_root &&
2618             (reg_read(ohci, OHCI1394_LinkControlSet) &
2619              OHCI1394_LinkControl_cycleMaster))
2620             value = CSR_STATE_BIT_CMSTR;
2621         else
2622             value = 0;
2623         if (ohci->csr_state_setclear_abdicate)
2624             value |= CSR_STATE_BIT_ABDICATE;
2625 
2626         return value;
2627 
2628     case CSR_NODE_IDS:
2629         return reg_read(ohci, OHCI1394_NodeID) << 16;
2630 
2631     case CSR_CYCLE_TIME:
2632         return get_cycle_time(ohci);
2633 
2634     case CSR_BUS_TIME:
2635         /*
2636          * We might be called just after the cycle timer has wrapped
2637          * around but just before the cycle64Seconds handler, so we
2638          * better check here, too, if the bus time needs to be updated.
2639          */
2640         spin_lock_irqsave(&ohci->lock, flags);
2641         value = update_bus_time(ohci);
2642         spin_unlock_irqrestore(&ohci->lock, flags);
2643         return value;
2644 
2645     case CSR_BUSY_TIMEOUT:
2646         value = reg_read(ohci, OHCI1394_ATRetries);
2647         return (value >> 4) & 0x0ffff00f;
2648 
2649     case CSR_PRIORITY_BUDGET:
2650         return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2651             (ohci->pri_req_max << 8);
2652 
2653     default:
2654         WARN_ON(1);
2655         return 0;
2656     }
2657 }
2658 
2659 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2660 {
2661     struct fw_ohci *ohci = fw_ohci(card);
2662     unsigned long flags;
2663 
2664     switch (csr_offset) {
2665     case CSR_STATE_CLEAR:
2666         if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2667             reg_write(ohci, OHCI1394_LinkControlClear,
2668                   OHCI1394_LinkControl_cycleMaster);
2669             flush_writes(ohci);
2670         }
2671         if (value & CSR_STATE_BIT_ABDICATE)
2672             ohci->csr_state_setclear_abdicate = false;
2673         break;
2674 
2675     case CSR_STATE_SET:
2676         if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2677             reg_write(ohci, OHCI1394_LinkControlSet,
2678                   OHCI1394_LinkControl_cycleMaster);
2679             flush_writes(ohci);
2680         }
2681         if (value & CSR_STATE_BIT_ABDICATE)
2682             ohci->csr_state_setclear_abdicate = true;
2683         break;
2684 
2685     case CSR_NODE_IDS:
2686         reg_write(ohci, OHCI1394_NodeID, value >> 16);
2687         flush_writes(ohci);
2688         break;
2689 
2690     case CSR_CYCLE_TIME:
2691         reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2692         reg_write(ohci, OHCI1394_IntEventSet,
2693               OHCI1394_cycleInconsistent);
2694         flush_writes(ohci);
2695         break;
2696 
2697     case CSR_BUS_TIME:
2698         spin_lock_irqsave(&ohci->lock, flags);
2699         ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2700                          (value & ~0x7f);
2701         spin_unlock_irqrestore(&ohci->lock, flags);
2702         break;
2703 
2704     case CSR_BUSY_TIMEOUT:
2705         value = (value & 0xf) | ((value & 0xf) << 4) |
2706             ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2707         reg_write(ohci, OHCI1394_ATRetries, value);
2708         flush_writes(ohci);
2709         break;
2710 
2711     case CSR_PRIORITY_BUDGET:
2712         reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2713         flush_writes(ohci);
2714         break;
2715 
2716     default:
2717         WARN_ON(1);
2718         break;
2719     }
2720 }
2721 
2722 static void flush_iso_completions(struct iso_context *ctx)
2723 {
2724     ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2725                   ctx->header_length, ctx->header,
2726                   ctx->base.callback_data);
2727     ctx->header_length = 0;
2728 }
2729 
2730 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2731 {
2732     u32 *ctx_hdr;
2733 
2734     if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2735         if (ctx->base.drop_overflow_headers)
2736             return;
2737         flush_iso_completions(ctx);
2738     }
2739 
2740     ctx_hdr = ctx->header + ctx->header_length;
2741     ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2742 
2743     /*
2744      * The two iso header quadlets are byteswapped to little
2745      * endian by the controller, but we want to present them
2746      * as big endian for consistency with the bus endianness.
2747      */
2748     if (ctx->base.header_size > 0)
2749         ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2750     if (ctx->base.header_size > 4)
2751         ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2752     if (ctx->base.header_size > 8)
2753         memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2754     ctx->header_length += ctx->base.header_size;
2755 }
2756 
2757 static int handle_ir_packet_per_buffer(struct context *context,
2758                        struct descriptor *d,
2759                        struct descriptor *last)
2760 {
2761     struct iso_context *ctx =
2762         container_of(context, struct iso_context, context);
2763     struct descriptor *pd;
2764     u32 buffer_dma;
2765 
2766     for (pd = d; pd <= last; pd++)
2767         if (pd->transfer_status)
2768             break;
2769     if (pd > last)
2770         /* Descriptor(s) not done yet, stop iteration */
2771         return 0;
2772 
2773     while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2774         d++;
2775         buffer_dma = le32_to_cpu(d->data_address);
2776         dma_sync_single_range_for_cpu(context->ohci->card.device,
2777                           buffer_dma & PAGE_MASK,
2778                           buffer_dma & ~PAGE_MASK,
2779                           le16_to_cpu(d->req_count),
2780                           DMA_FROM_DEVICE);
2781     }
2782 
2783     copy_iso_headers(ctx, (u32 *) (last + 1));
2784 
2785     if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2786         flush_iso_completions(ctx);
2787 
2788     return 1;
2789 }
2790 
2791 /* d == last because each descriptor block is only a single descriptor. */
2792 static int handle_ir_buffer_fill(struct context *context,
2793                  struct descriptor *d,
2794                  struct descriptor *last)
2795 {
2796     struct iso_context *ctx =
2797         container_of(context, struct iso_context, context);
2798     unsigned int req_count, res_count, completed;
2799     u32 buffer_dma;
2800 
2801     req_count = le16_to_cpu(last->req_count);
2802     res_count = le16_to_cpu(READ_ONCE(last->res_count));
2803     completed = req_count - res_count;
2804     buffer_dma = le32_to_cpu(last->data_address);
2805 
2806     if (completed > 0) {
2807         ctx->mc_buffer_bus = buffer_dma;
2808         ctx->mc_completed = completed;
2809     }
2810 
2811     if (res_count != 0)
2812         /* Descriptor(s) not done yet, stop iteration */
2813         return 0;
2814 
2815     dma_sync_single_range_for_cpu(context->ohci->card.device,
2816                       buffer_dma & PAGE_MASK,
2817                       buffer_dma & ~PAGE_MASK,
2818                       completed, DMA_FROM_DEVICE);
2819 
2820     if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2821         ctx->base.callback.mc(&ctx->base,
2822                       buffer_dma + completed,
2823                       ctx->base.callback_data);
2824         ctx->mc_completed = 0;
2825     }
2826 
2827     return 1;
2828 }
2829 
2830 static void flush_ir_buffer_fill(struct iso_context *ctx)
2831 {
2832     dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2833                       ctx->mc_buffer_bus & PAGE_MASK,
2834                       ctx->mc_buffer_bus & ~PAGE_MASK,
2835                       ctx->mc_completed, DMA_FROM_DEVICE);
2836 
2837     ctx->base.callback.mc(&ctx->base,
2838                   ctx->mc_buffer_bus + ctx->mc_completed,
2839                   ctx->base.callback_data);
2840     ctx->mc_completed = 0;
2841 }
2842 
2843 static inline void sync_it_packet_for_cpu(struct context *context,
2844                       struct descriptor *pd)
2845 {
2846     __le16 control;
2847     u32 buffer_dma;
2848 
2849     /* only packets beginning with OUTPUT_MORE* have data buffers */
2850     if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2851         return;
2852 
2853     /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2854     pd += 2;
2855 
2856     /*
2857      * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2858      * data buffer is in the context program's coherent page and must not
2859      * be synced.
2860      */
2861     if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2862         (context->current_bus          & PAGE_MASK)) {
2863         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2864             return;
2865         pd++;
2866     }
2867 
2868     do {
2869         buffer_dma = le32_to_cpu(pd->data_address);
2870         dma_sync_single_range_for_cpu(context->ohci->card.device,
2871                           buffer_dma & PAGE_MASK,
2872                           buffer_dma & ~PAGE_MASK,
2873                           le16_to_cpu(pd->req_count),
2874                           DMA_TO_DEVICE);
2875         control = pd->control;
2876         pd++;
2877     } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2878 }
2879 
2880 static int handle_it_packet(struct context *context,
2881                 struct descriptor *d,
2882                 struct descriptor *last)
2883 {
2884     struct iso_context *ctx =
2885         container_of(context, struct iso_context, context);
2886     struct descriptor *pd;
2887     __be32 *ctx_hdr;
2888 
2889     for (pd = d; pd <= last; pd++)
2890         if (pd->transfer_status)
2891             break;
2892     if (pd > last)
2893         /* Descriptor(s) not done yet, stop iteration */
2894         return 0;
2895 
2896     sync_it_packet_for_cpu(context, d);
2897 
2898     if (ctx->header_length + 4 > PAGE_SIZE) {
2899         if (ctx->base.drop_overflow_headers)
2900             return 1;
2901         flush_iso_completions(ctx);
2902     }
2903 
2904     ctx_hdr = ctx->header + ctx->header_length;
2905     ctx->last_timestamp = le16_to_cpu(last->res_count);
2906     /* Present this value as big-endian to match the receive code */
2907     *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2908                    le16_to_cpu(pd->res_count));
2909     ctx->header_length += 4;
2910 
2911     if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2912         flush_iso_completions(ctx);
2913 
2914     return 1;
2915 }
2916 
2917 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2918 {
2919     u32 hi = channels >> 32, lo = channels;
2920 
2921     reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2922     reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2923     reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2924     reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2925     ohci->mc_channels = channels;
2926 }
2927 
2928 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2929                 int type, int channel, size_t header_size)
2930 {
2931     struct fw_ohci *ohci = fw_ohci(card);
2932     struct iso_context *ctx;
2933     descriptor_callback_t callback;
2934     u64 *channels;
2935     u32 *mask, regs;
2936     int index, ret = -EBUSY;
2937 
2938     spin_lock_irq(&ohci->lock);
2939 
2940     switch (type) {
2941     case FW_ISO_CONTEXT_TRANSMIT:
2942         mask     = &ohci->it_context_mask;
2943         callback = handle_it_packet;
2944         index    = ffs(*mask) - 1;
2945         if (index >= 0) {
2946             *mask &= ~(1 << index);
2947             regs = OHCI1394_IsoXmitContextBase(index);
2948             ctx  = &ohci->it_context_list[index];
2949         }
2950         break;
2951 
2952     case FW_ISO_CONTEXT_RECEIVE:
2953         channels = &ohci->ir_context_channels;
2954         mask     = &ohci->ir_context_mask;
2955         callback = handle_ir_packet_per_buffer;
2956         index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2957         if (index >= 0) {
2958             *channels &= ~(1ULL << channel);
2959             *mask     &= ~(1 << index);
2960             regs = OHCI1394_IsoRcvContextBase(index);
2961             ctx  = &ohci->ir_context_list[index];
2962         }
2963         break;
2964 
2965     case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2966         mask     = &ohci->ir_context_mask;
2967         callback = handle_ir_buffer_fill;
2968         index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2969         if (index >= 0) {
2970             ohci->mc_allocated = true;
2971             *mask &= ~(1 << index);
2972             regs = OHCI1394_IsoRcvContextBase(index);
2973             ctx  = &ohci->ir_context_list[index];
2974         }
2975         break;
2976 
2977     default:
2978         index = -1;
2979         ret = -ENOSYS;
2980     }
2981 
2982     spin_unlock_irq(&ohci->lock);
2983 
2984     if (index < 0)
2985         return ERR_PTR(ret);
2986 
2987     memset(ctx, 0, sizeof(*ctx));
2988     ctx->header_length = 0;
2989     ctx->header = (void *) __get_free_page(GFP_KERNEL);
2990     if (ctx->header == NULL) {
2991         ret = -ENOMEM;
2992         goto out;
2993     }
2994     ret = context_init(&ctx->context, ohci, regs, callback);
2995     if (ret < 0)
2996         goto out_with_header;
2997 
2998     if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2999         set_multichannel_mask(ohci, 0);
3000         ctx->mc_completed = 0;
3001     }
3002 
3003     return &ctx->base;
3004 
3005  out_with_header:
3006     free_page((unsigned long)ctx->header);
3007  out:
3008     spin_lock_irq(&ohci->lock);
3009 
3010     switch (type) {
3011     case FW_ISO_CONTEXT_RECEIVE:
3012         *channels |= 1ULL << channel;
3013         break;
3014 
3015     case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3016         ohci->mc_allocated = false;
3017         break;
3018     }
3019     *mask |= 1 << index;
3020 
3021     spin_unlock_irq(&ohci->lock);
3022 
3023     return ERR_PTR(ret);
3024 }
3025 
3026 static int ohci_start_iso(struct fw_iso_context *base,
3027               s32 cycle, u32 sync, u32 tags)
3028 {
3029     struct iso_context *ctx = container_of(base, struct iso_context, base);
3030     struct fw_ohci *ohci = ctx->context.ohci;
3031     u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3032     int index;
3033 
3034     /* the controller cannot start without any queued packets */
3035     if (ctx->context.last->branch_address == 0)
3036         return -ENODATA;
3037 
3038     switch (ctx->base.type) {
3039     case FW_ISO_CONTEXT_TRANSMIT:
3040         index = ctx - ohci->it_context_list;
3041         match = 0;
3042         if (cycle >= 0)
3043             match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3044                 (cycle & 0x7fff) << 16;
3045 
3046         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3047         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3048         context_run(&ctx->context, match);
3049         break;
3050 
3051     case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3052         control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3053         fallthrough;
3054     case FW_ISO_CONTEXT_RECEIVE:
3055         index = ctx - ohci->ir_context_list;
3056         match = (tags << 28) | (sync << 8) | ctx->base.channel;
3057         if (cycle >= 0) {
3058             match |= (cycle & 0x07fff) << 12;
3059             control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3060         }
3061 
3062         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3063         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3064         reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3065         context_run(&ctx->context, control);
3066 
3067         ctx->sync = sync;
3068         ctx->tags = tags;
3069 
3070         break;
3071     }
3072 
3073     return 0;
3074 }
3075 
3076 static int ohci_stop_iso(struct fw_iso_context *base)
3077 {
3078     struct fw_ohci *ohci = fw_ohci(base->card);
3079     struct iso_context *ctx = container_of(base, struct iso_context, base);
3080     int index;
3081 
3082     switch (ctx->base.type) {
3083     case FW_ISO_CONTEXT_TRANSMIT:
3084         index = ctx - ohci->it_context_list;
3085         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3086         break;
3087 
3088     case FW_ISO_CONTEXT_RECEIVE:
3089     case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3090         index = ctx - ohci->ir_context_list;
3091         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3092         break;
3093     }
3094     flush_writes(ohci);
3095     context_stop(&ctx->context);
3096     tasklet_kill(&ctx->context.tasklet);
3097 
3098     return 0;
3099 }
3100 
3101 static void ohci_free_iso_context(struct fw_iso_context *base)
3102 {
3103     struct fw_ohci *ohci = fw_ohci(base->card);
3104     struct iso_context *ctx = container_of(base, struct iso_context, base);
3105     unsigned long flags;
3106     int index;
3107 
3108     ohci_stop_iso(base);
3109     context_release(&ctx->context);
3110     free_page((unsigned long)ctx->header);
3111 
3112     spin_lock_irqsave(&ohci->lock, flags);
3113 
3114     switch (base->type) {
3115     case FW_ISO_CONTEXT_TRANSMIT:
3116         index = ctx - ohci->it_context_list;
3117         ohci->it_context_mask |= 1 << index;
3118         break;
3119 
3120     case FW_ISO_CONTEXT_RECEIVE:
3121         index = ctx - ohci->ir_context_list;
3122         ohci->ir_context_mask |= 1 << index;
3123         ohci->ir_context_channels |= 1ULL << base->channel;
3124         break;
3125 
3126     case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3127         index = ctx - ohci->ir_context_list;
3128         ohci->ir_context_mask |= 1 << index;
3129         ohci->ir_context_channels |= ohci->mc_channels;
3130         ohci->mc_channels = 0;
3131         ohci->mc_allocated = false;
3132         break;
3133     }
3134 
3135     spin_unlock_irqrestore(&ohci->lock, flags);
3136 }
3137 
3138 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3139 {
3140     struct fw_ohci *ohci = fw_ohci(base->card);
3141     unsigned long flags;
3142     int ret;
3143 
3144     switch (base->type) {
3145     case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3146 
3147         spin_lock_irqsave(&ohci->lock, flags);
3148 
3149         /* Don't allow multichannel to grab other contexts' channels. */
3150         if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3151             *channels = ohci->ir_context_channels;
3152             ret = -EBUSY;
3153         } else {
3154             set_multichannel_mask(ohci, *channels);
3155             ret = 0;
3156         }
3157 
3158         spin_unlock_irqrestore(&ohci->lock, flags);
3159 
3160         break;
3161     default:
3162         ret = -EINVAL;
3163     }
3164 
3165     return ret;
3166 }
3167 
3168 #ifdef CONFIG_PM
3169 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3170 {
3171     int i;
3172     struct iso_context *ctx;
3173 
3174     for (i = 0 ; i < ohci->n_ir ; i++) {
3175         ctx = &ohci->ir_context_list[i];
3176         if (ctx->context.running)
3177             ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3178     }
3179 
3180     for (i = 0 ; i < ohci->n_it ; i++) {
3181         ctx = &ohci->it_context_list[i];
3182         if (ctx->context.running)
3183             ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3184     }
3185 }
3186 #endif
3187 
3188 static int queue_iso_transmit(struct iso_context *ctx,
3189                   struct fw_iso_packet *packet,
3190                   struct fw_iso_buffer *buffer,
3191                   unsigned long payload)
3192 {
3193     struct descriptor *d, *last, *pd;
3194     struct fw_iso_packet *p;
3195     __le32 *header;
3196     dma_addr_t d_bus, page_bus;
3197     u32 z, header_z, payload_z, irq;
3198     u32 payload_index, payload_end_index, next_page_index;
3199     int page, end_page, i, length, offset;
3200 
3201     p = packet;
3202     payload_index = payload;
3203 
3204     if (p->skip)
3205         z = 1;
3206     else
3207         z = 2;
3208     if (p->header_length > 0)
3209         z++;
3210 
3211     /* Determine the first page the payload isn't contained in. */
3212     end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3213     if (p->payload_length > 0)
3214         payload_z = end_page - (payload_index >> PAGE_SHIFT);
3215     else
3216         payload_z = 0;
3217 
3218     z += payload_z;
3219 
3220     /* Get header size in number of descriptors. */
3221     header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3222 
3223     d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3224     if (d == NULL)
3225         return -ENOMEM;
3226 
3227     if (!p->skip) {
3228         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3229         d[0].req_count = cpu_to_le16(8);
3230         /*
3231          * Link the skip address to this descriptor itself.  This causes
3232          * a context to skip a cycle whenever lost cycles or FIFO
3233          * overruns occur, without dropping the data.  The application
3234          * should then decide whether this is an error condition or not.
3235          * FIXME:  Make the context's cycle-lost behaviour configurable?
3236          */
3237         d[0].branch_address = cpu_to_le32(d_bus | z);
3238 
3239         header = (__le32 *) &d[1];
3240         header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3241                     IT_HEADER_TAG(p->tag) |
3242                     IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3243                     IT_HEADER_CHANNEL(ctx->base.channel) |
3244                     IT_HEADER_SPEED(ctx->base.speed));
3245         header[1] =
3246             cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3247                               p->payload_length));
3248     }
3249 
3250     if (p->header_length > 0) {
3251         d[2].req_count    = cpu_to_le16(p->header_length);
3252         d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3253         memcpy(&d[z], p->header, p->header_length);
3254     }
3255 
3256     pd = d + z - payload_z;
3257     payload_end_index = payload_index + p->payload_length;
3258     for (i = 0; i < payload_z; i++) {
3259         page               = payload_index >> PAGE_SHIFT;
3260         offset             = payload_index & ~PAGE_MASK;
3261         next_page_index    = (page + 1) << PAGE_SHIFT;
3262         length             =
3263             min(next_page_index, payload_end_index) - payload_index;
3264         pd[i].req_count    = cpu_to_le16(length);
3265 
3266         page_bus = page_private(buffer->pages[page]);
3267         pd[i].data_address = cpu_to_le32(page_bus + offset);
3268 
3269         dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3270                          page_bus, offset, length,
3271                          DMA_TO_DEVICE);
3272 
3273         payload_index += length;
3274     }
3275 
3276     if (p->interrupt)
3277         irq = DESCRIPTOR_IRQ_ALWAYS;
3278     else
3279         irq = DESCRIPTOR_NO_IRQ;
3280 
3281     last = z == 2 ? d : d + z - 1;
3282     last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3283                      DESCRIPTOR_STATUS |
3284                      DESCRIPTOR_BRANCH_ALWAYS |
3285                      irq);
3286 
3287     context_append(&ctx->context, d, z, header_z);
3288 
3289     return 0;
3290 }
3291 
3292 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3293                        struct fw_iso_packet *packet,
3294                        struct fw_iso_buffer *buffer,
3295                        unsigned long payload)
3296 {
3297     struct device *device = ctx->context.ohci->card.device;
3298     struct descriptor *d, *pd;
3299     dma_addr_t d_bus, page_bus;
3300     u32 z, header_z, rest;
3301     int i, j, length;
3302     int page, offset, packet_count, header_size, payload_per_buffer;
3303 
3304     /*
3305      * The OHCI controller puts the isochronous header and trailer in the
3306      * buffer, so we need at least 8 bytes.
3307      */
3308     packet_count = packet->header_length / ctx->base.header_size;
3309     header_size  = max(ctx->base.header_size, (size_t)8);
3310 
3311     /* Get header size in number of descriptors. */
3312     header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3313     page     = payload >> PAGE_SHIFT;
3314     offset   = payload & ~PAGE_MASK;
3315     payload_per_buffer = packet->payload_length / packet_count;
3316 
3317     for (i = 0; i < packet_count; i++) {
3318         /* d points to the header descriptor */
3319         z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3320         d = context_get_descriptors(&ctx->context,
3321                 z + header_z, &d_bus);
3322         if (d == NULL)
3323             return -ENOMEM;
3324 
3325         d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3326                           DESCRIPTOR_INPUT_MORE);
3327         if (packet->skip && i == 0)
3328             d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3329         d->req_count    = cpu_to_le16(header_size);
3330         d->res_count    = d->req_count;
3331         d->transfer_status = 0;
3332         d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3333 
3334         rest = payload_per_buffer;
3335         pd = d;
3336         for (j = 1; j < z; j++) {
3337             pd++;
3338             pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3339                           DESCRIPTOR_INPUT_MORE);
3340 
3341             if (offset + rest < PAGE_SIZE)
3342                 length = rest;
3343             else
3344                 length = PAGE_SIZE - offset;
3345             pd->req_count = cpu_to_le16(length);
3346             pd->res_count = pd->req_count;
3347             pd->transfer_status = 0;
3348 
3349             page_bus = page_private(buffer->pages[page]);
3350             pd->data_address = cpu_to_le32(page_bus + offset);
3351 
3352             dma_sync_single_range_for_device(device, page_bus,
3353                              offset, length,
3354                              DMA_FROM_DEVICE);
3355 
3356             offset = (offset + length) & ~PAGE_MASK;
3357             rest -= length;
3358             if (offset == 0)
3359                 page++;
3360         }
3361         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3362                       DESCRIPTOR_INPUT_LAST |
3363                       DESCRIPTOR_BRANCH_ALWAYS);
3364         if (packet->interrupt && i == packet_count - 1)
3365             pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3366 
3367         context_append(&ctx->context, d, z, header_z);
3368     }
3369 
3370     return 0;
3371 }
3372 
3373 static int queue_iso_buffer_fill(struct iso_context *ctx,
3374                  struct fw_iso_packet *packet,
3375                  struct fw_iso_buffer *buffer,
3376                  unsigned long payload)
3377 {
3378     struct descriptor *d;
3379     dma_addr_t d_bus, page_bus;
3380     int page, offset, rest, z, i, length;
3381 
3382     page   = payload >> PAGE_SHIFT;
3383     offset = payload & ~PAGE_MASK;
3384     rest   = packet->payload_length;
3385 
3386     /* We need one descriptor for each page in the buffer. */
3387     z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3388 
3389     if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3390         return -EFAULT;
3391 
3392     for (i = 0; i < z; i++) {
3393         d = context_get_descriptors(&ctx->context, 1, &d_bus);
3394         if (d == NULL)
3395             return -ENOMEM;
3396 
3397         d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3398                      DESCRIPTOR_BRANCH_ALWAYS);
3399         if (packet->skip && i == 0)
3400             d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3401         if (packet->interrupt && i == z - 1)
3402             d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3403 
3404         if (offset + rest < PAGE_SIZE)
3405             length = rest;
3406         else
3407             length = PAGE_SIZE - offset;
3408         d->req_count = cpu_to_le16(length);
3409         d->res_count = d->req_count;
3410         d->transfer_status = 0;
3411 
3412         page_bus = page_private(buffer->pages[page]);
3413         d->data_address = cpu_to_le32(page_bus + offset);
3414 
3415         dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3416                          page_bus, offset, length,
3417                          DMA_FROM_DEVICE);
3418 
3419         rest -= length;
3420         offset = 0;
3421         page++;
3422 
3423         context_append(&ctx->context, d, 1, 0);
3424     }
3425 
3426     return 0;
3427 }
3428 
3429 static int ohci_queue_iso(struct fw_iso_context *base,
3430               struct fw_iso_packet *packet,
3431               struct fw_iso_buffer *buffer,
3432               unsigned long payload)
3433 {
3434     struct iso_context *ctx = container_of(base, struct iso_context, base);
3435     unsigned long flags;
3436     int ret = -ENOSYS;
3437 
3438     spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3439     switch (base->type) {
3440     case FW_ISO_CONTEXT_TRANSMIT:
3441         ret = queue_iso_transmit(ctx, packet, buffer, payload);
3442         break;
3443     case FW_ISO_CONTEXT_RECEIVE:
3444         ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3445         break;
3446     case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3447         ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3448         break;
3449     }
3450     spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3451 
3452     return ret;
3453 }
3454 
3455 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3456 {
3457     struct context *ctx =
3458             &container_of(base, struct iso_context, base)->context;
3459 
3460     reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3461 }
3462 
3463 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3464 {
3465     struct iso_context *ctx = container_of(base, struct iso_context, base);
3466     int ret = 0;
3467 
3468     tasklet_disable_in_atomic(&ctx->context.tasklet);
3469 
3470     if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3471         context_tasklet((unsigned long)&ctx->context);
3472 
3473         switch (base->type) {
3474         case FW_ISO_CONTEXT_TRANSMIT:
3475         case FW_ISO_CONTEXT_RECEIVE:
3476             if (ctx->header_length != 0)
3477                 flush_iso_completions(ctx);
3478             break;
3479         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3480             if (ctx->mc_completed != 0)
3481                 flush_ir_buffer_fill(ctx);
3482             break;
3483         default:
3484             ret = -ENOSYS;
3485         }
3486 
3487         clear_bit_unlock(0, &ctx->flushing_completions);
3488         smp_mb__after_atomic();
3489     }
3490 
3491     tasklet_enable(&ctx->context.tasklet);
3492 
3493     return ret;
3494 }
3495 
3496 static const struct fw_card_driver ohci_driver = {
3497     .enable         = ohci_enable,
3498     .read_phy_reg       = ohci_read_phy_reg,
3499     .update_phy_reg     = ohci_update_phy_reg,
3500     .set_config_rom     = ohci_set_config_rom,
3501     .send_request       = ohci_send_request,
3502     .send_response      = ohci_send_response,
3503     .cancel_packet      = ohci_cancel_packet,
3504     .enable_phys_dma    = ohci_enable_phys_dma,
3505     .read_csr       = ohci_read_csr,
3506     .write_csr      = ohci_write_csr,
3507 
3508     .allocate_iso_context   = ohci_allocate_iso_context,
3509     .free_iso_context   = ohci_free_iso_context,
3510     .set_iso_channels   = ohci_set_iso_channels,
3511     .queue_iso      = ohci_queue_iso,
3512     .flush_queue_iso    = ohci_flush_queue_iso,
3513     .flush_iso_completions  = ohci_flush_iso_completions,
3514     .start_iso      = ohci_start_iso,
3515     .stop_iso       = ohci_stop_iso,
3516 };
3517 
3518 #ifdef CONFIG_PPC_PMAC
3519 static void pmac_ohci_on(struct pci_dev *dev)
3520 {
3521     if (machine_is(powermac)) {
3522         struct device_node *ofn = pci_device_to_OF_node(dev);
3523 
3524         if (ofn) {
3525             pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3526             pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3527         }
3528     }
3529 }
3530 
3531 static void pmac_ohci_off(struct pci_dev *dev)
3532 {
3533     if (machine_is(powermac)) {
3534         struct device_node *ofn = pci_device_to_OF_node(dev);
3535 
3536         if (ofn) {
3537             pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3538             pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3539         }
3540     }
3541 }
3542 #else
3543 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3544 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3545 #endif /* CONFIG_PPC_PMAC */
3546 
3547 static int pci_probe(struct pci_dev *dev,
3548                    const struct pci_device_id *ent)
3549 {
3550     struct fw_ohci *ohci;
3551     u32 bus_options, max_receive, link_speed, version;
3552     u64 guid;
3553     int i, err;
3554     size_t size;
3555 
3556     if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3557         dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3558         return -ENOSYS;
3559     }
3560 
3561     ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3562     if (ohci == NULL) {
3563         err = -ENOMEM;
3564         goto fail;
3565     }
3566 
3567     fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3568 
3569     pmac_ohci_on(dev);
3570 
3571     err = pci_enable_device(dev);
3572     if (err) {
3573         dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3574         goto fail_free;
3575     }
3576 
3577     pci_set_master(dev);
3578     pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3579     pci_set_drvdata(dev, ohci);
3580 
3581     spin_lock_init(&ohci->lock);
3582     mutex_init(&ohci->phy_reg_mutex);
3583 
3584     INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3585 
3586     if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3587         pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3588         ohci_err(ohci, "invalid MMIO resource\n");
3589         err = -ENXIO;
3590         goto fail_disable;
3591     }
3592 
3593     err = pci_request_region(dev, 0, ohci_driver_name);
3594     if (err) {
3595         ohci_err(ohci, "MMIO resource unavailable\n");
3596         goto fail_disable;
3597     }
3598 
3599     ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3600     if (ohci->registers == NULL) {
3601         ohci_err(ohci, "failed to remap registers\n");
3602         err = -ENXIO;
3603         goto fail_iomem;
3604     }
3605 
3606     for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3607         if ((ohci_quirks[i].vendor == dev->vendor) &&
3608             (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3609              ohci_quirks[i].device == dev->device) &&
3610             (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3611              ohci_quirks[i].revision >= dev->revision)) {
3612             ohci->quirks = ohci_quirks[i].flags;
3613             break;
3614         }
3615     if (param_quirks)
3616         ohci->quirks = param_quirks;
3617 
3618     /*
3619      * Because dma_alloc_coherent() allocates at least one page,
3620      * we save space by using a common buffer for the AR request/
3621      * response descriptors and the self IDs buffer.
3622      */
3623     BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3624     BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3625     ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3626                            PAGE_SIZE,
3627                            &ohci->misc_buffer_bus,
3628                            GFP_KERNEL);
3629     if (!ohci->misc_buffer) {
3630         err = -ENOMEM;
3631         goto fail_iounmap;
3632     }
3633 
3634     err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3635                   OHCI1394_AsReqRcvContextControlSet);
3636     if (err < 0)
3637         goto fail_misc_buf;
3638 
3639     err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3640                   OHCI1394_AsRspRcvContextControlSet);
3641     if (err < 0)
3642         goto fail_arreq_ctx;
3643 
3644     err = context_init(&ohci->at_request_ctx, ohci,
3645                OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3646     if (err < 0)
3647         goto fail_arrsp_ctx;
3648 
3649     err = context_init(&ohci->at_response_ctx, ohci,
3650                OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3651     if (err < 0)
3652         goto fail_atreq_ctx;
3653 
3654     reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3655     ohci->ir_context_channels = ~0ULL;
3656     ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3657     reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3658     ohci->ir_context_mask = ohci->ir_context_support;
3659     ohci->n_ir = hweight32(ohci->ir_context_mask);
3660     size = sizeof(struct iso_context) * ohci->n_ir;
3661     ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3662 
3663     reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3664     ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3665     /* JMicron JMB38x often shows 0 at first read, just ignore it */
3666     if (!ohci->it_context_support) {
3667         ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3668         ohci->it_context_support = 0xf;
3669     }
3670     reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3671     ohci->it_context_mask = ohci->it_context_support;
3672     ohci->n_it = hweight32(ohci->it_context_mask);
3673     size = sizeof(struct iso_context) * ohci->n_it;
3674     ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3675 
3676     if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3677         err = -ENOMEM;
3678         goto fail_contexts;
3679     }
3680 
3681     ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3682     ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3683 
3684     bus_options = reg_read(ohci, OHCI1394_BusOptions);
3685     max_receive = (bus_options >> 12) & 0xf;
3686     link_speed = bus_options & 0x7;
3687     guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3688         reg_read(ohci, OHCI1394_GUIDLo);
3689 
3690     if (!(ohci->quirks & QUIRK_NO_MSI))
3691         pci_enable_msi(dev);
3692     if (request_irq(dev->irq, irq_handler,
3693             pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3694             ohci_driver_name, ohci)) {
3695         ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3696         err = -EIO;
3697         goto fail_msi;
3698     }
3699 
3700     err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3701     if (err)
3702         goto fail_irq;
3703 
3704     version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3705     ohci_notice(ohci,
3706             "added OHCI v%x.%x device as card %d, "
3707             "%d IR + %d IT contexts, quirks 0x%x%s\n",
3708             version >> 16, version & 0xff, ohci->card.index,
3709             ohci->n_ir, ohci->n_it, ohci->quirks,
3710             reg_read(ohci, OHCI1394_PhyUpperBound) ?
3711             ", physUB" : "");
3712 
3713     return 0;
3714 
3715  fail_irq:
3716     free_irq(dev->irq, ohci);
3717  fail_msi:
3718     pci_disable_msi(dev);
3719  fail_contexts:
3720     kfree(ohci->ir_context_list);
3721     kfree(ohci->it_context_list);
3722     context_release(&ohci->at_response_ctx);
3723  fail_atreq_ctx:
3724     context_release(&ohci->at_request_ctx);
3725  fail_arrsp_ctx:
3726     ar_context_release(&ohci->ar_response_ctx);
3727  fail_arreq_ctx:
3728     ar_context_release(&ohci->ar_request_ctx);
3729  fail_misc_buf:
3730     dma_free_coherent(ohci->card.device, PAGE_SIZE,
3731               ohci->misc_buffer, ohci->misc_buffer_bus);
3732  fail_iounmap:
3733     pci_iounmap(dev, ohci->registers);
3734  fail_iomem:
3735     pci_release_region(dev, 0);
3736  fail_disable:
3737     pci_disable_device(dev);
3738  fail_free:
3739     kfree(ohci);
3740     pmac_ohci_off(dev);
3741  fail:
3742     return err;
3743 }
3744 
3745 static void pci_remove(struct pci_dev *dev)
3746 {
3747     struct fw_ohci *ohci = pci_get_drvdata(dev);
3748 
3749     /*
3750      * If the removal is happening from the suspend state, LPS won't be
3751      * enabled and host registers (eg., IntMaskClear) won't be accessible.
3752      */
3753     if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3754         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3755         flush_writes(ohci);
3756     }
3757     cancel_work_sync(&ohci->bus_reset_work);
3758     fw_core_remove_card(&ohci->card);
3759 
3760     /*
3761      * FIXME: Fail all pending packets here, now that the upper
3762      * layers can't queue any more.
3763      */
3764 
3765     software_reset(ohci);
3766     free_irq(dev->irq, ohci);
3767 
3768     if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3769         dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3770                   ohci->next_config_rom, ohci->next_config_rom_bus);
3771     if (ohci->config_rom)
3772         dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3773                   ohci->config_rom, ohci->config_rom_bus);
3774     ar_context_release(&ohci->ar_request_ctx);
3775     ar_context_release(&ohci->ar_response_ctx);
3776     dma_free_coherent(ohci->card.device, PAGE_SIZE,
3777               ohci->misc_buffer, ohci->misc_buffer_bus);
3778     context_release(&ohci->at_request_ctx);
3779     context_release(&ohci->at_response_ctx);
3780     kfree(ohci->it_context_list);
3781     kfree(ohci->ir_context_list);
3782     pci_disable_msi(dev);
3783     pci_iounmap(dev, ohci->registers);
3784     pci_release_region(dev, 0);
3785     pci_disable_device(dev);
3786     kfree(ohci);
3787     pmac_ohci_off(dev);
3788 
3789     dev_notice(&dev->dev, "removed fw-ohci device\n");
3790 }
3791 
3792 #ifdef CONFIG_PM
3793 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3794 {
3795     struct fw_ohci *ohci = pci_get_drvdata(dev);
3796     int err;
3797 
3798     software_reset(ohci);
3799     err = pci_save_state(dev);
3800     if (err) {
3801         ohci_err(ohci, "pci_save_state failed\n");
3802         return err;
3803     }
3804     err = pci_set_power_state(dev, pci_choose_state(dev, state));
3805     if (err)
3806         ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3807     pmac_ohci_off(dev);
3808 
3809     return 0;
3810 }
3811 
3812 static int pci_resume(struct pci_dev *dev)
3813 {
3814     struct fw_ohci *ohci = pci_get_drvdata(dev);
3815     int err;
3816 
3817     pmac_ohci_on(dev);
3818     pci_set_power_state(dev, PCI_D0);
3819     pci_restore_state(dev);
3820     err = pci_enable_device(dev);
3821     if (err) {
3822         ohci_err(ohci, "pci_enable_device failed\n");
3823         return err;
3824     }
3825 
3826     /* Some systems don't setup GUID register on resume from ram  */
3827     if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3828                     !reg_read(ohci, OHCI1394_GUIDHi)) {
3829         reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3830         reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3831     }
3832 
3833     err = ohci_enable(&ohci->card, NULL, 0);
3834     if (err)
3835         return err;
3836 
3837     ohci_resume_iso_dma(ohci);
3838 
3839     return 0;
3840 }
3841 #endif
3842 
3843 static const struct pci_device_id pci_table[] = {
3844     { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3845     { }
3846 };
3847 
3848 MODULE_DEVICE_TABLE(pci, pci_table);
3849 
3850 static struct pci_driver fw_ohci_pci_driver = {
3851     .name       = ohci_driver_name,
3852     .id_table   = pci_table,
3853     .probe      = pci_probe,
3854     .remove     = pci_remove,
3855 #ifdef CONFIG_PM
3856     .resume     = pci_resume,
3857     .suspend    = pci_suspend,
3858 #endif
3859 };
3860 
3861 static int __init fw_ohci_init(void)
3862 {
3863     selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3864     if (!selfid_workqueue)
3865         return -ENOMEM;
3866 
3867     return pci_register_driver(&fw_ohci_pci_driver);
3868 }
3869 
3870 static void __exit fw_ohci_cleanup(void)
3871 {
3872     pci_unregister_driver(&fw_ohci_pci_driver);
3873     destroy_workqueue(selfid_workqueue);
3874 }
3875 
3876 module_init(fw_ohci_init);
3877 module_exit(fw_ohci_cleanup);
3878 
3879 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3880 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3881 MODULE_LICENSE("GPL");
3882 
3883 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3884 MODULE_ALIAS("ohci1394");