Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Core IEEE1394 transaction logic
0004  *
0005  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
0006  */
0007 
0008 #include <linux/bug.h>
0009 #include <linux/completion.h>
0010 #include <linux/device.h>
0011 #include <linux/errno.h>
0012 #include <linux/firewire.h>
0013 #include <linux/firewire-constants.h>
0014 #include <linux/fs.h>
0015 #include <linux/init.h>
0016 #include <linux/idr.h>
0017 #include <linux/jiffies.h>
0018 #include <linux/kernel.h>
0019 #include <linux/list.h>
0020 #include <linux/module.h>
0021 #include <linux/rculist.h>
0022 #include <linux/slab.h>
0023 #include <linux/spinlock.h>
0024 #include <linux/string.h>
0025 #include <linux/timer.h>
0026 #include <linux/types.h>
0027 #include <linux/workqueue.h>
0028 
0029 #include <asm/byteorder.h>
0030 
0031 #include "core.h"
0032 
0033 #define HEADER_PRI(pri)         ((pri) << 0)
0034 #define HEADER_TCODE(tcode)     ((tcode) << 4)
0035 #define HEADER_RETRY(retry)     ((retry) << 8)
0036 #define HEADER_TLABEL(tlabel)       ((tlabel) << 10)
0037 #define HEADER_DESTINATION(destination) ((destination) << 16)
0038 #define HEADER_SOURCE(source)       ((source) << 16)
0039 #define HEADER_RCODE(rcode)     ((rcode) << 12)
0040 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
0041 #define HEADER_DATA_LENGTH(length)  ((length) << 16)
0042 #define HEADER_EXTENDED_TCODE(tcode)    ((tcode) << 0)
0043 
0044 #define HEADER_GET_TCODE(q)     (((q) >> 4) & 0x0f)
0045 #define HEADER_GET_TLABEL(q)        (((q) >> 10) & 0x3f)
0046 #define HEADER_GET_RCODE(q)     (((q) >> 12) & 0x0f)
0047 #define HEADER_GET_DESTINATION(q)   (((q) >> 16) & 0xffff)
0048 #define HEADER_GET_SOURCE(q)        (((q) >> 16) & 0xffff)
0049 #define HEADER_GET_OFFSET_HIGH(q)   (((q) >> 0) & 0xffff)
0050 #define HEADER_GET_DATA_LENGTH(q)   (((q) >> 16) & 0xffff)
0051 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
0052 
0053 #define HEADER_DESTINATION_IS_BROADCAST(q) \
0054     (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
0055 
0056 #define PHY_PACKET_CONFIG   0x0
0057 #define PHY_PACKET_LINK_ON  0x1
0058 #define PHY_PACKET_SELF_ID  0x2
0059 
0060 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
0061 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
0062 #define PHY_IDENTIFIER(id)      ((id) << 30)
0063 
0064 /* returns 0 if the split timeout handler is already running */
0065 static int try_cancel_split_timeout(struct fw_transaction *t)
0066 {
0067     if (t->is_split_transaction)
0068         return del_timer(&t->split_timeout_timer);
0069     else
0070         return 1;
0071 }
0072 
0073 static int close_transaction(struct fw_transaction *transaction,
0074                  struct fw_card *card, int rcode)
0075 {
0076     struct fw_transaction *t = NULL, *iter;
0077     unsigned long flags;
0078 
0079     spin_lock_irqsave(&card->lock, flags);
0080     list_for_each_entry(iter, &card->transaction_list, link) {
0081         if (iter == transaction) {
0082             if (!try_cancel_split_timeout(iter)) {
0083                 spin_unlock_irqrestore(&card->lock, flags);
0084                 goto timed_out;
0085             }
0086             list_del_init(&iter->link);
0087             card->tlabel_mask &= ~(1ULL << iter->tlabel);
0088             t = iter;
0089             break;
0090         }
0091     }
0092     spin_unlock_irqrestore(&card->lock, flags);
0093 
0094     if (t) {
0095         t->callback(card, rcode, NULL, 0, t->callback_data);
0096         return 0;
0097     }
0098 
0099  timed_out:
0100     return -ENOENT;
0101 }
0102 
0103 /*
0104  * Only valid for transactions that are potentially pending (ie have
0105  * been sent).
0106  */
0107 int fw_cancel_transaction(struct fw_card *card,
0108               struct fw_transaction *transaction)
0109 {
0110     /*
0111      * Cancel the packet transmission if it's still queued.  That
0112      * will call the packet transmission callback which cancels
0113      * the transaction.
0114      */
0115 
0116     if (card->driver->cancel_packet(card, &transaction->packet) == 0)
0117         return 0;
0118 
0119     /*
0120      * If the request packet has already been sent, we need to see
0121      * if the transaction is still pending and remove it in that case.
0122      */
0123 
0124     return close_transaction(transaction, card, RCODE_CANCELLED);
0125 }
0126 EXPORT_SYMBOL(fw_cancel_transaction);
0127 
0128 static void split_transaction_timeout_callback(struct timer_list *timer)
0129 {
0130     struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
0131     struct fw_card *card = t->card;
0132     unsigned long flags;
0133 
0134     spin_lock_irqsave(&card->lock, flags);
0135     if (list_empty(&t->link)) {
0136         spin_unlock_irqrestore(&card->lock, flags);
0137         return;
0138     }
0139     list_del(&t->link);
0140     card->tlabel_mask &= ~(1ULL << t->tlabel);
0141     spin_unlock_irqrestore(&card->lock, flags);
0142 
0143     t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
0144 }
0145 
0146 static void start_split_transaction_timeout(struct fw_transaction *t,
0147                         struct fw_card *card)
0148 {
0149     unsigned long flags;
0150 
0151     spin_lock_irqsave(&card->lock, flags);
0152 
0153     if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
0154         spin_unlock_irqrestore(&card->lock, flags);
0155         return;
0156     }
0157 
0158     t->is_split_transaction = true;
0159     mod_timer(&t->split_timeout_timer,
0160           jiffies + card->split_timeout_jiffies);
0161 
0162     spin_unlock_irqrestore(&card->lock, flags);
0163 }
0164 
0165 static void transmit_complete_callback(struct fw_packet *packet,
0166                        struct fw_card *card, int status)
0167 {
0168     struct fw_transaction *t =
0169         container_of(packet, struct fw_transaction, packet);
0170 
0171     switch (status) {
0172     case ACK_COMPLETE:
0173         close_transaction(t, card, RCODE_COMPLETE);
0174         break;
0175     case ACK_PENDING:
0176         start_split_transaction_timeout(t, card);
0177         break;
0178     case ACK_BUSY_X:
0179     case ACK_BUSY_A:
0180     case ACK_BUSY_B:
0181         close_transaction(t, card, RCODE_BUSY);
0182         break;
0183     case ACK_DATA_ERROR:
0184         close_transaction(t, card, RCODE_DATA_ERROR);
0185         break;
0186     case ACK_TYPE_ERROR:
0187         close_transaction(t, card, RCODE_TYPE_ERROR);
0188         break;
0189     default:
0190         /*
0191          * In this case the ack is really a juju specific
0192          * rcode, so just forward that to the callback.
0193          */
0194         close_transaction(t, card, status);
0195         break;
0196     }
0197 }
0198 
0199 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
0200         int destination_id, int source_id, int generation, int speed,
0201         unsigned long long offset, void *payload, size_t length)
0202 {
0203     int ext_tcode;
0204 
0205     if (tcode == TCODE_STREAM_DATA) {
0206         packet->header[0] =
0207             HEADER_DATA_LENGTH(length) |
0208             destination_id |
0209             HEADER_TCODE(TCODE_STREAM_DATA);
0210         packet->header_length = 4;
0211         packet->payload = payload;
0212         packet->payload_length = length;
0213 
0214         goto common;
0215     }
0216 
0217     if (tcode > 0x10) {
0218         ext_tcode = tcode & ~0x10;
0219         tcode = TCODE_LOCK_REQUEST;
0220     } else
0221         ext_tcode = 0;
0222 
0223     packet->header[0] =
0224         HEADER_RETRY(RETRY_X) |
0225         HEADER_TLABEL(tlabel) |
0226         HEADER_TCODE(tcode) |
0227         HEADER_DESTINATION(destination_id);
0228     packet->header[1] =
0229         HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
0230     packet->header[2] =
0231         offset;
0232 
0233     switch (tcode) {
0234     case TCODE_WRITE_QUADLET_REQUEST:
0235         packet->header[3] = *(u32 *)payload;
0236         packet->header_length = 16;
0237         packet->payload_length = 0;
0238         break;
0239 
0240     case TCODE_LOCK_REQUEST:
0241     case TCODE_WRITE_BLOCK_REQUEST:
0242         packet->header[3] =
0243             HEADER_DATA_LENGTH(length) |
0244             HEADER_EXTENDED_TCODE(ext_tcode);
0245         packet->header_length = 16;
0246         packet->payload = payload;
0247         packet->payload_length = length;
0248         break;
0249 
0250     case TCODE_READ_QUADLET_REQUEST:
0251         packet->header_length = 12;
0252         packet->payload_length = 0;
0253         break;
0254 
0255     case TCODE_READ_BLOCK_REQUEST:
0256         packet->header[3] =
0257             HEADER_DATA_LENGTH(length) |
0258             HEADER_EXTENDED_TCODE(ext_tcode);
0259         packet->header_length = 16;
0260         packet->payload_length = 0;
0261         break;
0262 
0263     default:
0264         WARN(1, "wrong tcode %d\n", tcode);
0265     }
0266  common:
0267     packet->speed = speed;
0268     packet->generation = generation;
0269     packet->ack = 0;
0270     packet->payload_mapped = false;
0271 }
0272 
0273 static int allocate_tlabel(struct fw_card *card)
0274 {
0275     int tlabel;
0276 
0277     tlabel = card->current_tlabel;
0278     while (card->tlabel_mask & (1ULL << tlabel)) {
0279         tlabel = (tlabel + 1) & 0x3f;
0280         if (tlabel == card->current_tlabel)
0281             return -EBUSY;
0282     }
0283 
0284     card->current_tlabel = (tlabel + 1) & 0x3f;
0285     card->tlabel_mask |= 1ULL << tlabel;
0286 
0287     return tlabel;
0288 }
0289 
0290 /**
0291  * fw_send_request() - submit a request packet for transmission
0292  * @card:       interface to send the request at
0293  * @t:          transaction instance to which the request belongs
0294  * @tcode:      transaction code
0295  * @destination_id: destination node ID, consisting of bus_ID and phy_ID
0296  * @generation:     bus generation in which request and response are valid
0297  * @speed:      transmission speed
0298  * @offset:     48bit wide offset into destination's address space
0299  * @payload:        data payload for the request subaction
0300  * @length:     length of the payload, in bytes
0301  * @callback:       function to be called when the transaction is completed
0302  * @callback_data:  data to be passed to the transaction completion callback
0303  *
0304  * Submit a request packet into the asynchronous request transmission queue.
0305  * Can be called from atomic context.  If you prefer a blocking API, use
0306  * fw_run_transaction() in a context that can sleep.
0307  *
0308  * In case of lock requests, specify one of the firewire-core specific %TCODE_
0309  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
0310  *
0311  * Make sure that the value in @destination_id is not older than the one in
0312  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
0313  *
0314  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
0315  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
0316  * It will contain tag, channel, and sy data instead of a node ID then.
0317  *
0318  * The payload buffer at @data is going to be DMA-mapped except in case of
0319  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
0320  * buffer complies with the restrictions of the streaming DMA mapping API.
0321  * @payload must not be freed before the @callback is called.
0322  *
0323  * In case of request types without payload, @data is NULL and @length is 0.
0324  *
0325  * After the transaction is completed successfully or unsuccessfully, the
0326  * @callback will be called.  Among its parameters is the response code which
0327  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
0328  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
0329  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
0330  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
0331  * generation, or missing ACK respectively.
0332  *
0333  * Note some timing corner cases:  fw_send_request() may complete much earlier
0334  * than when the request packet actually hits the wire.  On the other hand,
0335  * transaction completion and hence execution of @callback may happen even
0336  * before fw_send_request() returns.
0337  */
0338 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
0339              int destination_id, int generation, int speed,
0340              unsigned long long offset, void *payload, size_t length,
0341              fw_transaction_callback_t callback, void *callback_data)
0342 {
0343     unsigned long flags;
0344     int tlabel;
0345 
0346     /*
0347      * Allocate tlabel from the bitmap and put the transaction on
0348      * the list while holding the card spinlock.
0349      */
0350 
0351     spin_lock_irqsave(&card->lock, flags);
0352 
0353     tlabel = allocate_tlabel(card);
0354     if (tlabel < 0) {
0355         spin_unlock_irqrestore(&card->lock, flags);
0356         callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
0357         return;
0358     }
0359 
0360     t->node_id = destination_id;
0361     t->tlabel = tlabel;
0362     t->card = card;
0363     t->is_split_transaction = false;
0364     timer_setup(&t->split_timeout_timer,
0365             split_transaction_timeout_callback, 0);
0366     t->callback = callback;
0367     t->callback_data = callback_data;
0368 
0369     fw_fill_request(&t->packet, tcode, t->tlabel,
0370             destination_id, card->node_id, generation,
0371             speed, offset, payload, length);
0372     t->packet.callback = transmit_complete_callback;
0373 
0374     list_add_tail(&t->link, &card->transaction_list);
0375 
0376     spin_unlock_irqrestore(&card->lock, flags);
0377 
0378     card->driver->send_request(card, &t->packet);
0379 }
0380 EXPORT_SYMBOL(fw_send_request);
0381 
0382 struct transaction_callback_data {
0383     struct completion done;
0384     void *payload;
0385     int rcode;
0386 };
0387 
0388 static void transaction_callback(struct fw_card *card, int rcode,
0389                  void *payload, size_t length, void *data)
0390 {
0391     struct transaction_callback_data *d = data;
0392 
0393     if (rcode == RCODE_COMPLETE)
0394         memcpy(d->payload, payload, length);
0395     d->rcode = rcode;
0396     complete(&d->done);
0397 }
0398 
0399 /**
0400  * fw_run_transaction() - send request and sleep until transaction is completed
0401  * @card:       card interface for this request
0402  * @tcode:      transaction code
0403  * @destination_id: destination node ID, consisting of bus_ID and phy_ID
0404  * @generation:     bus generation in which request and response are valid
0405  * @speed:      transmission speed
0406  * @offset:     48bit wide offset into destination's address space
0407  * @payload:        data payload for the request subaction
0408  * @length:     length of the payload, in bytes
0409  *
0410  * Returns the RCODE.  See fw_send_request() for parameter documentation.
0411  * Unlike fw_send_request(), @data points to the payload of the request or/and
0412  * to the payload of the response.  DMA mapping restrictions apply to outbound
0413  * request payloads of >= 8 bytes but not to inbound response payloads.
0414  */
0415 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
0416                int generation, int speed, unsigned long long offset,
0417                void *payload, size_t length)
0418 {
0419     struct transaction_callback_data d;
0420     struct fw_transaction t;
0421 
0422     timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
0423     init_completion(&d.done);
0424     d.payload = payload;
0425     fw_send_request(card, &t, tcode, destination_id, generation, speed,
0426             offset, payload, length, transaction_callback, &d);
0427     wait_for_completion(&d.done);
0428     destroy_timer_on_stack(&t.split_timeout_timer);
0429 
0430     return d.rcode;
0431 }
0432 EXPORT_SYMBOL(fw_run_transaction);
0433 
0434 static DEFINE_MUTEX(phy_config_mutex);
0435 static DECLARE_COMPLETION(phy_config_done);
0436 
0437 static void transmit_phy_packet_callback(struct fw_packet *packet,
0438                      struct fw_card *card, int status)
0439 {
0440     complete(&phy_config_done);
0441 }
0442 
0443 static struct fw_packet phy_config_packet = {
0444     .header_length  = 12,
0445     .header[0]  = TCODE_LINK_INTERNAL << 4,
0446     .payload_length = 0,
0447     .speed      = SCODE_100,
0448     .callback   = transmit_phy_packet_callback,
0449 };
0450 
0451 void fw_send_phy_config(struct fw_card *card,
0452             int node_id, int generation, int gap_count)
0453 {
0454     long timeout = DIV_ROUND_UP(HZ, 10);
0455     u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
0456 
0457     if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
0458         data |= PHY_CONFIG_ROOT_ID(node_id);
0459 
0460     if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
0461         gap_count = card->driver->read_phy_reg(card, 1);
0462         if (gap_count < 0)
0463             return;
0464 
0465         gap_count &= 63;
0466         if (gap_count == 63)
0467             return;
0468     }
0469     data |= PHY_CONFIG_GAP_COUNT(gap_count);
0470 
0471     mutex_lock(&phy_config_mutex);
0472 
0473     phy_config_packet.header[1] = data;
0474     phy_config_packet.header[2] = ~data;
0475     phy_config_packet.generation = generation;
0476     reinit_completion(&phy_config_done);
0477 
0478     card->driver->send_request(card, &phy_config_packet);
0479     wait_for_completion_timeout(&phy_config_done, timeout);
0480 
0481     mutex_unlock(&phy_config_mutex);
0482 }
0483 
0484 static struct fw_address_handler *lookup_overlapping_address_handler(
0485     struct list_head *list, unsigned long long offset, size_t length)
0486 {
0487     struct fw_address_handler *handler;
0488 
0489     list_for_each_entry_rcu(handler, list, link) {
0490         if (handler->offset < offset + length &&
0491             offset < handler->offset + handler->length)
0492             return handler;
0493     }
0494 
0495     return NULL;
0496 }
0497 
0498 static bool is_enclosing_handler(struct fw_address_handler *handler,
0499                  unsigned long long offset, size_t length)
0500 {
0501     return handler->offset <= offset &&
0502         offset + length <= handler->offset + handler->length;
0503 }
0504 
0505 static struct fw_address_handler *lookup_enclosing_address_handler(
0506     struct list_head *list, unsigned long long offset, size_t length)
0507 {
0508     struct fw_address_handler *handler;
0509 
0510     list_for_each_entry_rcu(handler, list, link) {
0511         if (is_enclosing_handler(handler, offset, length))
0512             return handler;
0513     }
0514 
0515     return NULL;
0516 }
0517 
0518 static DEFINE_SPINLOCK(address_handler_list_lock);
0519 static LIST_HEAD(address_handler_list);
0520 
0521 const struct fw_address_region fw_high_memory_region =
0522     { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
0523 EXPORT_SYMBOL(fw_high_memory_region);
0524 
0525 static const struct fw_address_region low_memory_region =
0526     { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
0527 
0528 #if 0
0529 const struct fw_address_region fw_private_region =
0530     { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
0531 const struct fw_address_region fw_csr_region =
0532     { .start = CSR_REGISTER_BASE,
0533       .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
0534 const struct fw_address_region fw_unit_space_region =
0535     { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
0536 #endif  /*  0  */
0537 
0538 static bool is_in_fcp_region(u64 offset, size_t length)
0539 {
0540     return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
0541         offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
0542 }
0543 
0544 /**
0545  * fw_core_add_address_handler() - register for incoming requests
0546  * @handler:    callback
0547  * @region: region in the IEEE 1212 node space address range
0548  *
0549  * region->start, ->end, and handler->length have to be quadlet-aligned.
0550  *
0551  * When a request is received that falls within the specified address range,
0552  * the specified callback is invoked.  The parameters passed to the callback
0553  * give the details of the particular request.
0554  *
0555  * To be called in process context.
0556  * Return value:  0 on success, non-zero otherwise.
0557  *
0558  * The start offset of the handler's address region is determined by
0559  * fw_core_add_address_handler() and is returned in handler->offset.
0560  *
0561  * Address allocations are exclusive, except for the FCP registers.
0562  */
0563 int fw_core_add_address_handler(struct fw_address_handler *handler,
0564                 const struct fw_address_region *region)
0565 {
0566     struct fw_address_handler *other;
0567     int ret = -EBUSY;
0568 
0569     if (region->start & 0xffff000000000003ULL ||
0570         region->start >= region->end ||
0571         region->end   > 0x0001000000000000ULL ||
0572         handler->length & 3 ||
0573         handler->length == 0)
0574         return -EINVAL;
0575 
0576     spin_lock(&address_handler_list_lock);
0577 
0578     handler->offset = region->start;
0579     while (handler->offset + handler->length <= region->end) {
0580         if (is_in_fcp_region(handler->offset, handler->length))
0581             other = NULL;
0582         else
0583             other = lookup_overlapping_address_handler
0584                     (&address_handler_list,
0585                      handler->offset, handler->length);
0586         if (other != NULL) {
0587             handler->offset += other->length;
0588         } else {
0589             list_add_tail_rcu(&handler->link, &address_handler_list);
0590             ret = 0;
0591             break;
0592         }
0593     }
0594 
0595     spin_unlock(&address_handler_list_lock);
0596 
0597     return ret;
0598 }
0599 EXPORT_SYMBOL(fw_core_add_address_handler);
0600 
0601 /**
0602  * fw_core_remove_address_handler() - unregister an address handler
0603  * @handler: callback
0604  *
0605  * To be called in process context.
0606  *
0607  * When fw_core_remove_address_handler() returns, @handler->callback() is
0608  * guaranteed to not run on any CPU anymore.
0609  */
0610 void fw_core_remove_address_handler(struct fw_address_handler *handler)
0611 {
0612     spin_lock(&address_handler_list_lock);
0613     list_del_rcu(&handler->link);
0614     spin_unlock(&address_handler_list_lock);
0615     synchronize_rcu();
0616 }
0617 EXPORT_SYMBOL(fw_core_remove_address_handler);
0618 
0619 struct fw_request {
0620     struct fw_packet response;
0621     u32 request_header[4];
0622     int ack;
0623     u32 timestamp;
0624     u32 length;
0625     u32 data[];
0626 };
0627 
0628 static void free_response_callback(struct fw_packet *packet,
0629                    struct fw_card *card, int status)
0630 {
0631     struct fw_request *request;
0632 
0633     request = container_of(packet, struct fw_request, response);
0634     kfree(request);
0635 }
0636 
0637 int fw_get_response_length(struct fw_request *r)
0638 {
0639     int tcode, ext_tcode, data_length;
0640 
0641     tcode = HEADER_GET_TCODE(r->request_header[0]);
0642 
0643     switch (tcode) {
0644     case TCODE_WRITE_QUADLET_REQUEST:
0645     case TCODE_WRITE_BLOCK_REQUEST:
0646         return 0;
0647 
0648     case TCODE_READ_QUADLET_REQUEST:
0649         return 4;
0650 
0651     case TCODE_READ_BLOCK_REQUEST:
0652         data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
0653         return data_length;
0654 
0655     case TCODE_LOCK_REQUEST:
0656         ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
0657         data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
0658         switch (ext_tcode) {
0659         case EXTCODE_FETCH_ADD:
0660         case EXTCODE_LITTLE_ADD:
0661             return data_length;
0662         default:
0663             return data_length / 2;
0664         }
0665 
0666     default:
0667         WARN(1, "wrong tcode %d\n", tcode);
0668         return 0;
0669     }
0670 }
0671 
0672 void fw_fill_response(struct fw_packet *response, u32 *request_header,
0673               int rcode, void *payload, size_t length)
0674 {
0675     int tcode, tlabel, extended_tcode, source, destination;
0676 
0677     tcode          = HEADER_GET_TCODE(request_header[0]);
0678     tlabel         = HEADER_GET_TLABEL(request_header[0]);
0679     source         = HEADER_GET_DESTINATION(request_header[0]);
0680     destination    = HEADER_GET_SOURCE(request_header[1]);
0681     extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
0682 
0683     response->header[0] =
0684         HEADER_RETRY(RETRY_1) |
0685         HEADER_TLABEL(tlabel) |
0686         HEADER_DESTINATION(destination);
0687     response->header[1] =
0688         HEADER_SOURCE(source) |
0689         HEADER_RCODE(rcode);
0690     response->header[2] = 0;
0691 
0692     switch (tcode) {
0693     case TCODE_WRITE_QUADLET_REQUEST:
0694     case TCODE_WRITE_BLOCK_REQUEST:
0695         response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
0696         response->header_length = 12;
0697         response->payload_length = 0;
0698         break;
0699 
0700     case TCODE_READ_QUADLET_REQUEST:
0701         response->header[0] |=
0702             HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
0703         if (payload != NULL)
0704             response->header[3] = *(u32 *)payload;
0705         else
0706             response->header[3] = 0;
0707         response->header_length = 16;
0708         response->payload_length = 0;
0709         break;
0710 
0711     case TCODE_READ_BLOCK_REQUEST:
0712     case TCODE_LOCK_REQUEST:
0713         response->header[0] |= HEADER_TCODE(tcode + 2);
0714         response->header[3] =
0715             HEADER_DATA_LENGTH(length) |
0716             HEADER_EXTENDED_TCODE(extended_tcode);
0717         response->header_length = 16;
0718         response->payload = payload;
0719         response->payload_length = length;
0720         break;
0721 
0722     default:
0723         WARN(1, "wrong tcode %d\n", tcode);
0724     }
0725 
0726     response->payload_mapped = false;
0727 }
0728 EXPORT_SYMBOL(fw_fill_response);
0729 
0730 static u32 compute_split_timeout_timestamp(struct fw_card *card,
0731                        u32 request_timestamp)
0732 {
0733     unsigned int cycles;
0734     u32 timestamp;
0735 
0736     cycles = card->split_timeout_cycles;
0737     cycles += request_timestamp & 0x1fff;
0738 
0739     timestamp = request_timestamp & ~0x1fff;
0740     timestamp += (cycles / 8000) << 13;
0741     timestamp |= cycles % 8000;
0742 
0743     return timestamp;
0744 }
0745 
0746 static struct fw_request *allocate_request(struct fw_card *card,
0747                        struct fw_packet *p)
0748 {
0749     struct fw_request *request;
0750     u32 *data, length;
0751     int request_tcode;
0752 
0753     request_tcode = HEADER_GET_TCODE(p->header[0]);
0754     switch (request_tcode) {
0755     case TCODE_WRITE_QUADLET_REQUEST:
0756         data = &p->header[3];
0757         length = 4;
0758         break;
0759 
0760     case TCODE_WRITE_BLOCK_REQUEST:
0761     case TCODE_LOCK_REQUEST:
0762         data = p->payload;
0763         length = HEADER_GET_DATA_LENGTH(p->header[3]);
0764         break;
0765 
0766     case TCODE_READ_QUADLET_REQUEST:
0767         data = NULL;
0768         length = 4;
0769         break;
0770 
0771     case TCODE_READ_BLOCK_REQUEST:
0772         data = NULL;
0773         length = HEADER_GET_DATA_LENGTH(p->header[3]);
0774         break;
0775 
0776     default:
0777         fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
0778              p->header[0], p->header[1], p->header[2]);
0779         return NULL;
0780     }
0781 
0782     request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
0783     if (request == NULL)
0784         return NULL;
0785 
0786     request->response.speed = p->speed;
0787     request->response.timestamp =
0788             compute_split_timeout_timestamp(card, p->timestamp);
0789     request->response.generation = p->generation;
0790     request->response.ack = 0;
0791     request->response.callback = free_response_callback;
0792     request->ack = p->ack;
0793     request->timestamp = p->timestamp;
0794     request->length = length;
0795     if (data)
0796         memcpy(request->data, data, length);
0797 
0798     memcpy(request->request_header, p->header, sizeof(p->header));
0799 
0800     return request;
0801 }
0802 
0803 void fw_send_response(struct fw_card *card,
0804               struct fw_request *request, int rcode)
0805 {
0806     if (WARN_ONCE(!request, "invalid for FCP address handlers"))
0807         return;
0808 
0809     /* unified transaction or broadcast transaction: don't respond */
0810     if (request->ack != ACK_PENDING ||
0811         HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
0812         kfree(request);
0813         return;
0814     }
0815 
0816     if (rcode == RCODE_COMPLETE)
0817         fw_fill_response(&request->response, request->request_header,
0818                  rcode, request->data,
0819                  fw_get_response_length(request));
0820     else
0821         fw_fill_response(&request->response, request->request_header,
0822                  rcode, NULL, 0);
0823 
0824     card->driver->send_response(card, &request->response);
0825 }
0826 EXPORT_SYMBOL(fw_send_response);
0827 
0828 /**
0829  * fw_get_request_speed() - returns speed at which the @request was received
0830  * @request: firewire request data
0831  */
0832 int fw_get_request_speed(struct fw_request *request)
0833 {
0834     return request->response.speed;
0835 }
0836 EXPORT_SYMBOL(fw_get_request_speed);
0837 
0838 /**
0839  * fw_request_get_timestamp: Get timestamp of the request.
0840  * @request: The opaque pointer to request structure.
0841  *
0842  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
0843  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
0844  * field of isochronous cycle time register.
0845  *
0846  * Returns: timestamp of the request.
0847  */
0848 u32 fw_request_get_timestamp(const struct fw_request *request)
0849 {
0850     return request->timestamp;
0851 }
0852 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
0853 
0854 static void handle_exclusive_region_request(struct fw_card *card,
0855                         struct fw_packet *p,
0856                         struct fw_request *request,
0857                         unsigned long long offset)
0858 {
0859     struct fw_address_handler *handler;
0860     int tcode, destination, source;
0861 
0862     destination = HEADER_GET_DESTINATION(p->header[0]);
0863     source      = HEADER_GET_SOURCE(p->header[1]);
0864     tcode       = HEADER_GET_TCODE(p->header[0]);
0865     if (tcode == TCODE_LOCK_REQUEST)
0866         tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
0867 
0868     rcu_read_lock();
0869     handler = lookup_enclosing_address_handler(&address_handler_list,
0870                            offset, request->length);
0871     if (handler)
0872         handler->address_callback(card, request,
0873                       tcode, destination, source,
0874                       p->generation, offset,
0875                       request->data, request->length,
0876                       handler->callback_data);
0877     rcu_read_unlock();
0878 
0879     if (!handler)
0880         fw_send_response(card, request, RCODE_ADDRESS_ERROR);
0881 }
0882 
0883 static void handle_fcp_region_request(struct fw_card *card,
0884                       struct fw_packet *p,
0885                       struct fw_request *request,
0886                       unsigned long long offset)
0887 {
0888     struct fw_address_handler *handler;
0889     int tcode, destination, source;
0890 
0891     if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
0892          offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
0893         request->length > 0x200) {
0894         fw_send_response(card, request, RCODE_ADDRESS_ERROR);
0895 
0896         return;
0897     }
0898 
0899     tcode       = HEADER_GET_TCODE(p->header[0]);
0900     destination = HEADER_GET_DESTINATION(p->header[0]);
0901     source      = HEADER_GET_SOURCE(p->header[1]);
0902 
0903     if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
0904         tcode != TCODE_WRITE_BLOCK_REQUEST) {
0905         fw_send_response(card, request, RCODE_TYPE_ERROR);
0906 
0907         return;
0908     }
0909 
0910     rcu_read_lock();
0911     list_for_each_entry_rcu(handler, &address_handler_list, link) {
0912         if (is_enclosing_handler(handler, offset, request->length))
0913             handler->address_callback(card, NULL, tcode,
0914                           destination, source,
0915                           p->generation, offset,
0916                           request->data,
0917                           request->length,
0918                           handler->callback_data);
0919     }
0920     rcu_read_unlock();
0921 
0922     fw_send_response(card, request, RCODE_COMPLETE);
0923 }
0924 
0925 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
0926 {
0927     struct fw_request *request;
0928     unsigned long long offset;
0929 
0930     if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
0931         return;
0932 
0933     if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
0934         fw_cdev_handle_phy_packet(card, p);
0935         return;
0936     }
0937 
0938     request = allocate_request(card, p);
0939     if (request == NULL) {
0940         /* FIXME: send statically allocated busy packet. */
0941         return;
0942     }
0943 
0944     offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
0945         p->header[2];
0946 
0947     if (!is_in_fcp_region(offset, request->length))
0948         handle_exclusive_region_request(card, p, request, offset);
0949     else
0950         handle_fcp_region_request(card, p, request, offset);
0951 
0952 }
0953 EXPORT_SYMBOL(fw_core_handle_request);
0954 
0955 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
0956 {
0957     struct fw_transaction *t = NULL, *iter;
0958     unsigned long flags;
0959     u32 *data;
0960     size_t data_length;
0961     int tcode, tlabel, source, rcode;
0962 
0963     tcode   = HEADER_GET_TCODE(p->header[0]);
0964     tlabel  = HEADER_GET_TLABEL(p->header[0]);
0965     source  = HEADER_GET_SOURCE(p->header[1]);
0966     rcode   = HEADER_GET_RCODE(p->header[1]);
0967 
0968     spin_lock_irqsave(&card->lock, flags);
0969     list_for_each_entry(iter, &card->transaction_list, link) {
0970         if (iter->node_id == source && iter->tlabel == tlabel) {
0971             if (!try_cancel_split_timeout(iter)) {
0972                 spin_unlock_irqrestore(&card->lock, flags);
0973                 goto timed_out;
0974             }
0975             list_del_init(&iter->link);
0976             card->tlabel_mask &= ~(1ULL << iter->tlabel);
0977             t = iter;
0978             break;
0979         }
0980     }
0981     spin_unlock_irqrestore(&card->lock, flags);
0982 
0983     if (!t) {
0984  timed_out:
0985         fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
0986               source, tlabel);
0987         return;
0988     }
0989 
0990     /*
0991      * FIXME: sanity check packet, is length correct, does tcodes
0992      * and addresses match.
0993      */
0994 
0995     switch (tcode) {
0996     case TCODE_READ_QUADLET_RESPONSE:
0997         data = (u32 *) &p->header[3];
0998         data_length = 4;
0999         break;
1000 
1001     case TCODE_WRITE_RESPONSE:
1002         data = NULL;
1003         data_length = 0;
1004         break;
1005 
1006     case TCODE_READ_BLOCK_RESPONSE:
1007     case TCODE_LOCK_RESPONSE:
1008         data = p->payload;
1009         data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1010         break;
1011 
1012     default:
1013         /* Should never happen, this is just to shut up gcc. */
1014         data = NULL;
1015         data_length = 0;
1016         break;
1017     }
1018 
1019     /*
1020      * The response handler may be executed while the request handler
1021      * is still pending.  Cancel the request handler.
1022      */
1023     card->driver->cancel_packet(card, &t->packet);
1024 
1025     t->callback(card, rcode, data, data_length, t->callback_data);
1026 }
1027 EXPORT_SYMBOL(fw_core_handle_response);
1028 
1029 /**
1030  * fw_rcode_string - convert a firewire result code to an error description
1031  * @rcode: the result code
1032  */
1033 const char *fw_rcode_string(int rcode)
1034 {
1035     static const char *const names[] = {
1036         [RCODE_COMPLETE]       = "no error",
1037         [RCODE_CONFLICT_ERROR] = "conflict error",
1038         [RCODE_DATA_ERROR]     = "data error",
1039         [RCODE_TYPE_ERROR]     = "type error",
1040         [RCODE_ADDRESS_ERROR]  = "address error",
1041         [RCODE_SEND_ERROR]     = "send error",
1042         [RCODE_CANCELLED]      = "timeout",
1043         [RCODE_BUSY]           = "busy",
1044         [RCODE_GENERATION]     = "bus reset",
1045         [RCODE_NO_ACK]         = "no ack",
1046     };
1047 
1048     if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1049         return names[rcode];
1050     else
1051         return "unknown";
1052 }
1053 EXPORT_SYMBOL(fw_rcode_string);
1054 
1055 static const struct fw_address_region topology_map_region =
1056     { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1057       .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1058 
1059 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1060         int tcode, int destination, int source, int generation,
1061         unsigned long long offset, void *payload, size_t length,
1062         void *callback_data)
1063 {
1064     int start;
1065 
1066     if (!TCODE_IS_READ_REQUEST(tcode)) {
1067         fw_send_response(card, request, RCODE_TYPE_ERROR);
1068         return;
1069     }
1070 
1071     if ((offset & 3) > 0 || (length & 3) > 0) {
1072         fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1073         return;
1074     }
1075 
1076     start = (offset - topology_map_region.start) / 4;
1077     memcpy(payload, &card->topology_map[start], length);
1078 
1079     fw_send_response(card, request, RCODE_COMPLETE);
1080 }
1081 
1082 static struct fw_address_handler topology_map = {
1083     .length         = 0x400,
1084     .address_callback   = handle_topology_map,
1085 };
1086 
1087 static const struct fw_address_region registers_region =
1088     { .start = CSR_REGISTER_BASE,
1089       .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1090 
1091 static void update_split_timeout(struct fw_card *card)
1092 {
1093     unsigned int cycles;
1094 
1095     cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1096 
1097     /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1098     cycles = clamp(cycles, 800u, 3u * 8000u);
1099 
1100     card->split_timeout_cycles = cycles;
1101     card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1102 }
1103 
1104 static void handle_registers(struct fw_card *card, struct fw_request *request,
1105         int tcode, int destination, int source, int generation,
1106         unsigned long long offset, void *payload, size_t length,
1107         void *callback_data)
1108 {
1109     int reg = offset & ~CSR_REGISTER_BASE;
1110     __be32 *data = payload;
1111     int rcode = RCODE_COMPLETE;
1112     unsigned long flags;
1113 
1114     switch (reg) {
1115     case CSR_PRIORITY_BUDGET:
1116         if (!card->priority_budget_implemented) {
1117             rcode = RCODE_ADDRESS_ERROR;
1118             break;
1119         }
1120         fallthrough;
1121 
1122     case CSR_NODE_IDS:
1123         /*
1124          * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1125          * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1126          */
1127         fallthrough;
1128 
1129     case CSR_STATE_CLEAR:
1130     case CSR_STATE_SET:
1131     case CSR_CYCLE_TIME:
1132     case CSR_BUS_TIME:
1133     case CSR_BUSY_TIMEOUT:
1134         if (tcode == TCODE_READ_QUADLET_REQUEST)
1135             *data = cpu_to_be32(card->driver->read_csr(card, reg));
1136         else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1137             card->driver->write_csr(card, reg, be32_to_cpu(*data));
1138         else
1139             rcode = RCODE_TYPE_ERROR;
1140         break;
1141 
1142     case CSR_RESET_START:
1143         if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1144             card->driver->write_csr(card, CSR_STATE_CLEAR,
1145                         CSR_STATE_BIT_ABDICATE);
1146         else
1147             rcode = RCODE_TYPE_ERROR;
1148         break;
1149 
1150     case CSR_SPLIT_TIMEOUT_HI:
1151         if (tcode == TCODE_READ_QUADLET_REQUEST) {
1152             *data = cpu_to_be32(card->split_timeout_hi);
1153         } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1154             spin_lock_irqsave(&card->lock, flags);
1155             card->split_timeout_hi = be32_to_cpu(*data) & 7;
1156             update_split_timeout(card);
1157             spin_unlock_irqrestore(&card->lock, flags);
1158         } else {
1159             rcode = RCODE_TYPE_ERROR;
1160         }
1161         break;
1162 
1163     case CSR_SPLIT_TIMEOUT_LO:
1164         if (tcode == TCODE_READ_QUADLET_REQUEST) {
1165             *data = cpu_to_be32(card->split_timeout_lo);
1166         } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1167             spin_lock_irqsave(&card->lock, flags);
1168             card->split_timeout_lo =
1169                     be32_to_cpu(*data) & 0xfff80000;
1170             update_split_timeout(card);
1171             spin_unlock_irqrestore(&card->lock, flags);
1172         } else {
1173             rcode = RCODE_TYPE_ERROR;
1174         }
1175         break;
1176 
1177     case CSR_MAINT_UTILITY:
1178         if (tcode == TCODE_READ_QUADLET_REQUEST)
1179             *data = card->maint_utility_register;
1180         else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1181             card->maint_utility_register = *data;
1182         else
1183             rcode = RCODE_TYPE_ERROR;
1184         break;
1185 
1186     case CSR_BROADCAST_CHANNEL:
1187         if (tcode == TCODE_READ_QUADLET_REQUEST)
1188             *data = cpu_to_be32(card->broadcast_channel);
1189         else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1190             card->broadcast_channel =
1191                 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1192                 BROADCAST_CHANNEL_INITIAL;
1193         else
1194             rcode = RCODE_TYPE_ERROR;
1195         break;
1196 
1197     case CSR_BUS_MANAGER_ID:
1198     case CSR_BANDWIDTH_AVAILABLE:
1199     case CSR_CHANNELS_AVAILABLE_HI:
1200     case CSR_CHANNELS_AVAILABLE_LO:
1201         /*
1202          * FIXME: these are handled by the OHCI hardware and
1203          * the stack never sees these request. If we add
1204          * support for a new type of controller that doesn't
1205          * handle this in hardware we need to deal with these
1206          * transactions.
1207          */
1208         BUG();
1209         break;
1210 
1211     default:
1212         rcode = RCODE_ADDRESS_ERROR;
1213         break;
1214     }
1215 
1216     fw_send_response(card, request, rcode);
1217 }
1218 
1219 static struct fw_address_handler registers = {
1220     .length         = 0x400,
1221     .address_callback   = handle_registers,
1222 };
1223 
1224 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1225         int tcode, int destination, int source, int generation,
1226         unsigned long long offset, void *payload, size_t length,
1227         void *callback_data)
1228 {
1229     /*
1230      * This catches requests not handled by the physical DMA unit,
1231      * i.e., wrong transaction types or unauthorized source nodes.
1232      */
1233     fw_send_response(card, request, RCODE_TYPE_ERROR);
1234 }
1235 
1236 static struct fw_address_handler low_memory = {
1237     .length         = FW_MAX_PHYSICAL_RANGE,
1238     .address_callback   = handle_low_memory,
1239 };
1240 
1241 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1242 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1243 MODULE_LICENSE("GPL");
1244 
1245 static const u32 vendor_textual_descriptor[] = {
1246     /* textual descriptor leaf () */
1247     0x00060000,
1248     0x00000000,
1249     0x00000000,
1250     0x4c696e75,     /* L i n u */
1251     0x78204669,     /* x   F i */
1252     0x72657769,     /* r e w i */
1253     0x72650000,     /* r e     */
1254 };
1255 
1256 static const u32 model_textual_descriptor[] = {
1257     /* model descriptor leaf () */
1258     0x00030000,
1259     0x00000000,
1260     0x00000000,
1261     0x4a756a75,     /* J u j u */
1262 };
1263 
1264 static struct fw_descriptor vendor_id_descriptor = {
1265     .length = ARRAY_SIZE(vendor_textual_descriptor),
1266     .immediate = 0x03001f11,
1267     .key = 0x81000000,
1268     .data = vendor_textual_descriptor,
1269 };
1270 
1271 static struct fw_descriptor model_id_descriptor = {
1272     .length = ARRAY_SIZE(model_textual_descriptor),
1273     .immediate = 0x17023901,
1274     .key = 0x81000000,
1275     .data = model_textual_descriptor,
1276 };
1277 
1278 static int __init fw_core_init(void)
1279 {
1280     int ret;
1281 
1282     fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1283     if (!fw_workqueue)
1284         return -ENOMEM;
1285 
1286     ret = bus_register(&fw_bus_type);
1287     if (ret < 0) {
1288         destroy_workqueue(fw_workqueue);
1289         return ret;
1290     }
1291 
1292     fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1293     if (fw_cdev_major < 0) {
1294         bus_unregister(&fw_bus_type);
1295         destroy_workqueue(fw_workqueue);
1296         return fw_cdev_major;
1297     }
1298 
1299     fw_core_add_address_handler(&topology_map, &topology_map_region);
1300     fw_core_add_address_handler(&registers, &registers_region);
1301     fw_core_add_address_handler(&low_memory, &low_memory_region);
1302     fw_core_add_descriptor(&vendor_id_descriptor);
1303     fw_core_add_descriptor(&model_id_descriptor);
1304 
1305     return 0;
1306 }
1307 
1308 static void __exit fw_core_cleanup(void)
1309 {
1310     unregister_chrdev(fw_cdev_major, "firewire");
1311     bus_unregister(&fw_bus_type);
1312     destroy_workqueue(fw_workqueue);
1313     idr_destroy(&fw_device_idr);
1314 }
1315 
1316 module_init(fw_core_init);
1317 module_exit(fw_core_cleanup);