Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
0004  */
0005 
0006 #include <linux/bug.h>
0007 #include <linux/completion.h>
0008 #include <linux/crc-itu-t.h>
0009 #include <linux/device.h>
0010 #include <linux/errno.h>
0011 #include <linux/firewire.h>
0012 #include <linux/firewire-constants.h>
0013 #include <linux/jiffies.h>
0014 #include <linux/kernel.h>
0015 #include <linux/kref.h>
0016 #include <linux/list.h>
0017 #include <linux/module.h>
0018 #include <linux/mutex.h>
0019 #include <linux/spinlock.h>
0020 #include <linux/workqueue.h>
0021 
0022 #include <linux/atomic.h>
0023 #include <asm/byteorder.h>
0024 
0025 #include "core.h"
0026 
0027 #define define_fw_printk_level(func, kern_level)        \
0028 void func(const struct fw_card *card, const char *fmt, ...) \
0029 {                               \
0030     struct va_format vaf;                   \
0031     va_list args;                       \
0032                                 \
0033     va_start(args, fmt);                    \
0034     vaf.fmt = fmt;                      \
0035     vaf.va = &args;                     \
0036     printk(kern_level KBUILD_MODNAME " %s: %pV",        \
0037            dev_name(card->device), &vaf);           \
0038     va_end(args);                       \
0039 }
0040 define_fw_printk_level(fw_err, KERN_ERR);
0041 define_fw_printk_level(fw_notice, KERN_NOTICE);
0042 
0043 int fw_compute_block_crc(__be32 *block)
0044 {
0045     int length;
0046     u16 crc;
0047 
0048     length = (be32_to_cpu(block[0]) >> 16) & 0xff;
0049     crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
0050     *block |= cpu_to_be32(crc);
0051 
0052     return length;
0053 }
0054 
0055 static DEFINE_MUTEX(card_mutex);
0056 static LIST_HEAD(card_list);
0057 
0058 static LIST_HEAD(descriptor_list);
0059 static int descriptor_count;
0060 
0061 static __be32 tmp_config_rom[256];
0062 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
0063 static size_t config_rom_length = 1 + 4 + 1 + 1;
0064 
0065 #define BIB_CRC(v)      ((v) <<  0)
0066 #define BIB_CRC_LENGTH(v)   ((v) << 16)
0067 #define BIB_INFO_LENGTH(v)  ((v) << 24)
0068 #define BIB_BUS_NAME        0x31333934 /* "1394" */
0069 #define BIB_LINK_SPEED(v)   ((v) <<  0)
0070 #define BIB_GENERATION(v)   ((v) <<  4)
0071 #define BIB_MAX_ROM(v)      ((v) <<  8)
0072 #define BIB_MAX_RECEIVE(v)  ((v) << 12)
0073 #define BIB_CYC_CLK_ACC(v)  ((v) << 16)
0074 #define BIB_PMC         ((1) << 27)
0075 #define BIB_BMC         ((1) << 28)
0076 #define BIB_ISC         ((1) << 29)
0077 #define BIB_CMC         ((1) << 30)
0078 #define BIB_IRMC        ((1) << 31)
0079 #define NODE_CAPABILITIES   0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
0080 
0081 /*
0082  * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
0083  * but we have to make it longer because there are many devices whose firmware
0084  * is just too slow for that.
0085  */
0086 #define DEFAULT_SPLIT_TIMEOUT   (2 * 8000)
0087 
0088 #define CANON_OUI       0x000085
0089 
0090 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
0091 {
0092     struct fw_descriptor *desc;
0093     int i, j, k, length;
0094 
0095     /*
0096      * Initialize contents of config rom buffer.  On the OHCI
0097      * controller, block reads to the config rom accesses the host
0098      * memory, but quadlet read access the hardware bus info block
0099      * registers.  That's just crack, but it means we should make
0100      * sure the contents of bus info block in host memory matches
0101      * the version stored in the OHCI registers.
0102      */
0103 
0104     config_rom[0] = cpu_to_be32(
0105         BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
0106     config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
0107     config_rom[2] = cpu_to_be32(
0108         BIB_LINK_SPEED(card->link_speed) |
0109         BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
0110         BIB_MAX_ROM(2) |
0111         BIB_MAX_RECEIVE(card->max_receive) |
0112         BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
0113     config_rom[3] = cpu_to_be32(card->guid >> 32);
0114     config_rom[4] = cpu_to_be32(card->guid);
0115 
0116     /* Generate root directory. */
0117     config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
0118     i = 7;
0119     j = 7 + descriptor_count;
0120 
0121     /* Generate root directory entries for descriptors. */
0122     list_for_each_entry (desc, &descriptor_list, link) {
0123         if (desc->immediate > 0)
0124             config_rom[i++] = cpu_to_be32(desc->immediate);
0125         config_rom[i] = cpu_to_be32(desc->key | (j - i));
0126         i++;
0127         j += desc->length;
0128     }
0129 
0130     /* Update root directory length. */
0131     config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
0132 
0133     /* End of root directory, now copy in descriptors. */
0134     list_for_each_entry (desc, &descriptor_list, link) {
0135         for (k = 0; k < desc->length; k++)
0136             config_rom[i + k] = cpu_to_be32(desc->data[k]);
0137         i += desc->length;
0138     }
0139 
0140     /* Calculate CRCs for all blocks in the config rom.  This
0141      * assumes that CRC length and info length are identical for
0142      * the bus info block, which is always the case for this
0143      * implementation. */
0144     for (i = 0; i < j; i += length + 1)
0145         length = fw_compute_block_crc(config_rom + i);
0146 
0147     WARN_ON(j != config_rom_length);
0148 }
0149 
0150 static void update_config_roms(void)
0151 {
0152     struct fw_card *card;
0153 
0154     list_for_each_entry (card, &card_list, link) {
0155         generate_config_rom(card, tmp_config_rom);
0156         card->driver->set_config_rom(card, tmp_config_rom,
0157                          config_rom_length);
0158     }
0159 }
0160 
0161 static size_t required_space(struct fw_descriptor *desc)
0162 {
0163     /* descriptor + entry into root dir + optional immediate entry */
0164     return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
0165 }
0166 
0167 int fw_core_add_descriptor(struct fw_descriptor *desc)
0168 {
0169     size_t i;
0170     int ret;
0171 
0172     /*
0173      * Check descriptor is valid; the length of all blocks in the
0174      * descriptor has to add up to exactly the length of the
0175      * block.
0176      */
0177     i = 0;
0178     while (i < desc->length)
0179         i += (desc->data[i] >> 16) + 1;
0180 
0181     if (i != desc->length)
0182         return -EINVAL;
0183 
0184     mutex_lock(&card_mutex);
0185 
0186     if (config_rom_length + required_space(desc) > 256) {
0187         ret = -EBUSY;
0188     } else {
0189         list_add_tail(&desc->link, &descriptor_list);
0190         config_rom_length += required_space(desc);
0191         descriptor_count++;
0192         if (desc->immediate > 0)
0193             descriptor_count++;
0194         update_config_roms();
0195         ret = 0;
0196     }
0197 
0198     mutex_unlock(&card_mutex);
0199 
0200     return ret;
0201 }
0202 EXPORT_SYMBOL(fw_core_add_descriptor);
0203 
0204 void fw_core_remove_descriptor(struct fw_descriptor *desc)
0205 {
0206     mutex_lock(&card_mutex);
0207 
0208     list_del(&desc->link);
0209     config_rom_length -= required_space(desc);
0210     descriptor_count--;
0211     if (desc->immediate > 0)
0212         descriptor_count--;
0213     update_config_roms();
0214 
0215     mutex_unlock(&card_mutex);
0216 }
0217 EXPORT_SYMBOL(fw_core_remove_descriptor);
0218 
0219 static int reset_bus(struct fw_card *card, bool short_reset)
0220 {
0221     int reg = short_reset ? 5 : 1;
0222     int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
0223 
0224     return card->driver->update_phy_reg(card, reg, 0, bit);
0225 }
0226 
0227 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
0228 {
0229     /* We don't try hard to sort out requests of long vs. short resets. */
0230     card->br_short = short_reset;
0231 
0232     /* Use an arbitrary short delay to combine multiple reset requests. */
0233     fw_card_get(card);
0234     if (!queue_delayed_work(fw_workqueue, &card->br_work,
0235                 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
0236         fw_card_put(card);
0237 }
0238 EXPORT_SYMBOL(fw_schedule_bus_reset);
0239 
0240 static void br_work(struct work_struct *work)
0241 {
0242     struct fw_card *card = container_of(work, struct fw_card, br_work.work);
0243 
0244     /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
0245     if (card->reset_jiffies != 0 &&
0246         time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
0247         if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
0248             fw_card_put(card);
0249         return;
0250     }
0251 
0252     fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
0253                FW_PHY_CONFIG_CURRENT_GAP_COUNT);
0254     reset_bus(card, card->br_short);
0255     fw_card_put(card);
0256 }
0257 
0258 static void allocate_broadcast_channel(struct fw_card *card, int generation)
0259 {
0260     int channel, bandwidth = 0;
0261 
0262     if (!card->broadcast_channel_allocated) {
0263         fw_iso_resource_manage(card, generation, 1ULL << 31,
0264                        &channel, &bandwidth, true);
0265         if (channel != 31) {
0266             fw_notice(card, "failed to allocate broadcast channel\n");
0267             return;
0268         }
0269         card->broadcast_channel_allocated = true;
0270     }
0271 
0272     device_for_each_child(card->device, (void *)(long)generation,
0273                   fw_device_set_broadcast_channel);
0274 }
0275 
0276 static const char gap_count_table[] = {
0277     63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
0278 };
0279 
0280 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
0281 {
0282     fw_card_get(card);
0283     if (!schedule_delayed_work(&card->bm_work, delay))
0284         fw_card_put(card);
0285 }
0286 
0287 static void bm_work(struct work_struct *work)
0288 {
0289     struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
0290     struct fw_device *root_device, *irm_device;
0291     struct fw_node *root_node;
0292     int root_id, new_root_id, irm_id, bm_id, local_id;
0293     int gap_count, generation, grace, rcode;
0294     bool do_reset = false;
0295     bool root_device_is_running;
0296     bool root_device_is_cmc;
0297     bool irm_is_1394_1995_only;
0298     bool keep_this_irm;
0299     __be32 transaction_data[2];
0300 
0301     spin_lock_irq(&card->lock);
0302 
0303     if (card->local_node == NULL) {
0304         spin_unlock_irq(&card->lock);
0305         goto out_put_card;
0306     }
0307 
0308     generation = card->generation;
0309 
0310     root_node = card->root_node;
0311     fw_node_get(root_node);
0312     root_device = root_node->data;
0313     root_device_is_running = root_device &&
0314             atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
0315     root_device_is_cmc = root_device && root_device->cmc;
0316 
0317     irm_device = card->irm_node->data;
0318     irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
0319             (irm_device->config_rom[2] & 0x000000f0) == 0;
0320 
0321     /* Canon MV5i works unreliably if it is not root node. */
0322     keep_this_irm = irm_device && irm_device->config_rom &&
0323             irm_device->config_rom[3] >> 8 == CANON_OUI;
0324 
0325     root_id  = root_node->node_id;
0326     irm_id   = card->irm_node->node_id;
0327     local_id = card->local_node->node_id;
0328 
0329     grace = time_after64(get_jiffies_64(),
0330                  card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
0331 
0332     if ((is_next_generation(generation, card->bm_generation) &&
0333          !card->bm_abdicate) ||
0334         (card->bm_generation != generation && grace)) {
0335         /*
0336          * This first step is to figure out who is IRM and
0337          * then try to become bus manager.  If the IRM is not
0338          * well defined (e.g. does not have an active link
0339          * layer or does not responds to our lock request, we
0340          * will have to do a little vigilante bus management.
0341          * In that case, we do a goto into the gap count logic
0342          * so that when we do the reset, we still optimize the
0343          * gap count.  That could well save a reset in the
0344          * next generation.
0345          */
0346 
0347         if (!card->irm_node->link_on) {
0348             new_root_id = local_id;
0349             fw_notice(card, "%s, making local node (%02x) root\n",
0350                   "IRM has link off", new_root_id);
0351             goto pick_me;
0352         }
0353 
0354         if (irm_is_1394_1995_only && !keep_this_irm) {
0355             new_root_id = local_id;
0356             fw_notice(card, "%s, making local node (%02x) root\n",
0357                   "IRM is not 1394a compliant", new_root_id);
0358             goto pick_me;
0359         }
0360 
0361         transaction_data[0] = cpu_to_be32(0x3f);
0362         transaction_data[1] = cpu_to_be32(local_id);
0363 
0364         spin_unlock_irq(&card->lock);
0365 
0366         rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
0367                 irm_id, generation, SCODE_100,
0368                 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
0369                 transaction_data, 8);
0370 
0371         if (rcode == RCODE_GENERATION)
0372             /* Another bus reset, BM work has been rescheduled. */
0373             goto out;
0374 
0375         bm_id = be32_to_cpu(transaction_data[0]);
0376 
0377         spin_lock_irq(&card->lock);
0378         if (rcode == RCODE_COMPLETE && generation == card->generation)
0379             card->bm_node_id =
0380                 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
0381         spin_unlock_irq(&card->lock);
0382 
0383         if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
0384             /* Somebody else is BM.  Only act as IRM. */
0385             if (local_id == irm_id)
0386                 allocate_broadcast_channel(card, generation);
0387 
0388             goto out;
0389         }
0390 
0391         if (rcode == RCODE_SEND_ERROR) {
0392             /*
0393              * We have been unable to send the lock request due to
0394              * some local problem.  Let's try again later and hope
0395              * that the problem has gone away by then.
0396              */
0397             fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
0398             goto out;
0399         }
0400 
0401         spin_lock_irq(&card->lock);
0402 
0403         if (rcode != RCODE_COMPLETE && !keep_this_irm) {
0404             /*
0405              * The lock request failed, maybe the IRM
0406              * isn't really IRM capable after all. Let's
0407              * do a bus reset and pick the local node as
0408              * root, and thus, IRM.
0409              */
0410             new_root_id = local_id;
0411             fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
0412                   fw_rcode_string(rcode), new_root_id);
0413             goto pick_me;
0414         }
0415     } else if (card->bm_generation != generation) {
0416         /*
0417          * We weren't BM in the last generation, and the last
0418          * bus reset is less than 125ms ago.  Reschedule this job.
0419          */
0420         spin_unlock_irq(&card->lock);
0421         fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
0422         goto out;
0423     }
0424 
0425     /*
0426      * We're bus manager for this generation, so next step is to
0427      * make sure we have an active cycle master and do gap count
0428      * optimization.
0429      */
0430     card->bm_generation = generation;
0431 
0432     if (root_device == NULL) {
0433         /*
0434          * Either link_on is false, or we failed to read the
0435          * config rom.  In either case, pick another root.
0436          */
0437         new_root_id = local_id;
0438     } else if (!root_device_is_running) {
0439         /*
0440          * If we haven't probed this device yet, bail out now
0441          * and let's try again once that's done.
0442          */
0443         spin_unlock_irq(&card->lock);
0444         goto out;
0445     } else if (root_device_is_cmc) {
0446         /*
0447          * We will send out a force root packet for this
0448          * node as part of the gap count optimization.
0449          */
0450         new_root_id = root_id;
0451     } else {
0452         /*
0453          * Current root has an active link layer and we
0454          * successfully read the config rom, but it's not
0455          * cycle master capable.
0456          */
0457         new_root_id = local_id;
0458     }
0459 
0460  pick_me:
0461     /*
0462      * Pick a gap count from 1394a table E-1.  The table doesn't cover
0463      * the typically much larger 1394b beta repeater delays though.
0464      */
0465     if (!card->beta_repeaters_present &&
0466         root_node->max_hops < ARRAY_SIZE(gap_count_table))
0467         gap_count = gap_count_table[root_node->max_hops];
0468     else
0469         gap_count = 63;
0470 
0471     /*
0472      * Finally, figure out if we should do a reset or not.  If we have
0473      * done less than 5 resets with the same physical topology and we
0474      * have either a new root or a new gap count setting, let's do it.
0475      */
0476 
0477     if (card->bm_retries++ < 5 &&
0478         (card->gap_count != gap_count || new_root_id != root_id))
0479         do_reset = true;
0480 
0481     spin_unlock_irq(&card->lock);
0482 
0483     if (do_reset) {
0484         fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
0485               new_root_id, gap_count);
0486         fw_send_phy_config(card, new_root_id, generation, gap_count);
0487         reset_bus(card, true);
0488         /* Will allocate broadcast channel after the reset. */
0489         goto out;
0490     }
0491 
0492     if (root_device_is_cmc) {
0493         /*
0494          * Make sure that the cycle master sends cycle start packets.
0495          */
0496         transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
0497         rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
0498                 root_id, generation, SCODE_100,
0499                 CSR_REGISTER_BASE + CSR_STATE_SET,
0500                 transaction_data, 4);
0501         if (rcode == RCODE_GENERATION)
0502             goto out;
0503     }
0504 
0505     if (local_id == irm_id)
0506         allocate_broadcast_channel(card, generation);
0507 
0508  out:
0509     fw_node_put(root_node);
0510  out_put_card:
0511     fw_card_put(card);
0512 }
0513 
0514 void fw_card_initialize(struct fw_card *card,
0515             const struct fw_card_driver *driver,
0516             struct device *device)
0517 {
0518     static atomic_t index = ATOMIC_INIT(-1);
0519 
0520     card->index = atomic_inc_return(&index);
0521     card->driver = driver;
0522     card->device = device;
0523     card->current_tlabel = 0;
0524     card->tlabel_mask = 0;
0525     card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
0526     card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
0527     card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
0528     card->split_timeout_jiffies =
0529             DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
0530     card->color = 0;
0531     card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
0532 
0533     kref_init(&card->kref);
0534     init_completion(&card->done);
0535     INIT_LIST_HEAD(&card->transaction_list);
0536     INIT_LIST_HEAD(&card->phy_receiver_list);
0537     spin_lock_init(&card->lock);
0538 
0539     card->local_node = NULL;
0540 
0541     INIT_DELAYED_WORK(&card->br_work, br_work);
0542     INIT_DELAYED_WORK(&card->bm_work, bm_work);
0543 }
0544 EXPORT_SYMBOL(fw_card_initialize);
0545 
0546 int fw_card_add(struct fw_card *card,
0547         u32 max_receive, u32 link_speed, u64 guid)
0548 {
0549     int ret;
0550 
0551     card->max_receive = max_receive;
0552     card->link_speed = link_speed;
0553     card->guid = guid;
0554 
0555     mutex_lock(&card_mutex);
0556 
0557     generate_config_rom(card, tmp_config_rom);
0558     ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
0559     if (ret == 0)
0560         list_add_tail(&card->link, &card_list);
0561 
0562     mutex_unlock(&card_mutex);
0563 
0564     return ret;
0565 }
0566 EXPORT_SYMBOL(fw_card_add);
0567 
0568 /*
0569  * The next few functions implement a dummy driver that is used once a card
0570  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
0571  * as all IO to the card will be handled (and failed) by the dummy driver
0572  * instead of calling into the module.  Only functions for iso context
0573  * shutdown still need to be provided by the card driver.
0574  *
0575  * .read/write_csr() should never be called anymore after the dummy driver
0576  * was bound since they are only used within request handler context.
0577  * .set_config_rom() is never called since the card is taken out of card_list
0578  * before switching to the dummy driver.
0579  */
0580 
0581 static int dummy_read_phy_reg(struct fw_card *card, int address)
0582 {
0583     return -ENODEV;
0584 }
0585 
0586 static int dummy_update_phy_reg(struct fw_card *card, int address,
0587                 int clear_bits, int set_bits)
0588 {
0589     return -ENODEV;
0590 }
0591 
0592 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
0593 {
0594     packet->callback(packet, card, RCODE_CANCELLED);
0595 }
0596 
0597 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
0598 {
0599     packet->callback(packet, card, RCODE_CANCELLED);
0600 }
0601 
0602 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
0603 {
0604     return -ENOENT;
0605 }
0606 
0607 static int dummy_enable_phys_dma(struct fw_card *card,
0608                  int node_id, int generation)
0609 {
0610     return -ENODEV;
0611 }
0612 
0613 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
0614                 int type, int channel, size_t header_size)
0615 {
0616     return ERR_PTR(-ENODEV);
0617 }
0618 
0619 static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
0620 {
0621     return 0;
0622 }
0623 
0624 static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
0625 {
0626 }
0627 
0628 static int dummy_start_iso(struct fw_iso_context *ctx,
0629                s32 cycle, u32 sync, u32 tags)
0630 {
0631     return -ENODEV;
0632 }
0633 
0634 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
0635 {
0636     return -ENODEV;
0637 }
0638 
0639 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
0640                struct fw_iso_buffer *buffer, unsigned long payload)
0641 {
0642     return -ENODEV;
0643 }
0644 
0645 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
0646 {
0647 }
0648 
0649 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
0650 {
0651     return -ENODEV;
0652 }
0653 
0654 static const struct fw_card_driver dummy_driver_template = {
0655     .read_phy_reg       = dummy_read_phy_reg,
0656     .update_phy_reg     = dummy_update_phy_reg,
0657     .send_request       = dummy_send_request,
0658     .send_response      = dummy_send_response,
0659     .cancel_packet      = dummy_cancel_packet,
0660     .enable_phys_dma    = dummy_enable_phys_dma,
0661     .read_csr       = dummy_read_csr,
0662     .write_csr      = dummy_write_csr,
0663     .allocate_iso_context   = dummy_allocate_iso_context,
0664     .start_iso      = dummy_start_iso,
0665     .set_iso_channels   = dummy_set_iso_channels,
0666     .queue_iso      = dummy_queue_iso,
0667     .flush_queue_iso    = dummy_flush_queue_iso,
0668     .flush_iso_completions  = dummy_flush_iso_completions,
0669 };
0670 
0671 void fw_card_release(struct kref *kref)
0672 {
0673     struct fw_card *card = container_of(kref, struct fw_card, kref);
0674 
0675     complete(&card->done);
0676 }
0677 EXPORT_SYMBOL_GPL(fw_card_release);
0678 
0679 void fw_core_remove_card(struct fw_card *card)
0680 {
0681     struct fw_card_driver dummy_driver = dummy_driver_template;
0682     unsigned long flags;
0683 
0684     card->driver->update_phy_reg(card, 4,
0685                      PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
0686     fw_schedule_bus_reset(card, false, true);
0687 
0688     mutex_lock(&card_mutex);
0689     list_del_init(&card->link);
0690     mutex_unlock(&card_mutex);
0691 
0692     /* Switch off most of the card driver interface. */
0693     dummy_driver.free_iso_context   = card->driver->free_iso_context;
0694     dummy_driver.stop_iso       = card->driver->stop_iso;
0695     card->driver = &dummy_driver;
0696 
0697     spin_lock_irqsave(&card->lock, flags);
0698     fw_destroy_nodes(card);
0699     spin_unlock_irqrestore(&card->lock, flags);
0700 
0701     /* Wait for all users, especially device workqueue jobs, to finish. */
0702     fw_card_put(card);
0703     wait_for_completion(&card->done);
0704 
0705     WARN_ON(!list_empty(&card->transaction_list));
0706 }
0707 EXPORT_SYMBOL(fw_core_remove_card);
0708 
0709 /**
0710  * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
0711  *              for controller card.
0712  * @card: The instance of card for 1394 OHCI controller.
0713  * @cycle_time: The mutual reference to value of cycle time for the read operation.
0714  *
0715  * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
0716  * controller card. This function accesses the region without any lock primitives or IRQ mask.
0717  * When returning successfully, the content of @value argument has value aligned to host endianness,
0718  * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
0719  *
0720  * Context: Any context.
0721  * Return:
0722  * * 0 - Read successfully.
0723  * * -ENODEV - The controller is unavailable due to being removed or unbound.
0724  */
0725 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
0726 {
0727     if (card->driver->read_csr == dummy_read_csr)
0728         return -ENODEV;
0729 
0730     // It's possible to switch to dummy driver between the above and the below. This is the best
0731     // effort to return -ENODEV.
0732     *cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
0733     return 0;
0734 }
0735 EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);