0001
0002
0003
0004
0005
0006
0007 #include <linux/kernel.h>
0008 #include <linux/processor.h>
0009 #include <asm/cpu_device_id.h>
0010 #include <asm/intel-family.h>
0011 #include <asm/mce.h>
0012
0013 #include "edac_module.h"
0014 #include "skx_common.h"
0015
0016 #define EDAC_MOD_STR "skx_edac"
0017
0018
0019
0020
0021 #define skx_printk(level, fmt, arg...) \
0022 edac_printk(level, "skx", fmt, ##arg)
0023
0024 #define skx_mc_printk(mci, level, fmt, arg...) \
0025 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
0026
0027 static struct list_head *skx_edac_list;
0028
0029 static u64 skx_tolm, skx_tohm;
0030 static int skx_num_sockets;
0031 static unsigned int nvdimm_count;
0032
0033 #define MASK26 0x3FFFFFF
0034 #define MASK29 0x1FFFFFFF
0035
0036 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
0037 {
0038 struct skx_dev *d;
0039
0040 list_for_each_entry(d, skx_edac_list, list) {
0041 if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
0042 return d;
0043 }
0044
0045 return NULL;
0046 }
0047
0048 enum munittype {
0049 CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD,
0050 ERRCHAN0, ERRCHAN1, ERRCHAN2,
0051 };
0052
0053 struct munit {
0054 u16 did;
0055 u16 devfn[SKX_NUM_IMC];
0056 u8 busidx;
0057 u8 per_socket;
0058 enum munittype mtype;
0059 };
0060
0061
0062
0063
0064
0065
0066 static const struct munit skx_all_munits[] = {
0067 { 0x2054, { }, 1, 1, SAD_ALL },
0068 { 0x2055, { }, 1, 1, UTIL_ALL },
0069 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
0070 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
0071 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
0072 { 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 },
0073 { 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 },
0074 { 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 },
0075 { 0x208e, { }, 1, 0, SAD },
0076 { }
0077 };
0078
0079 static int get_all_munits(const struct munit *m)
0080 {
0081 struct pci_dev *pdev, *prev;
0082 struct skx_dev *d;
0083 u32 reg;
0084 int i = 0, ndev = 0;
0085
0086 prev = NULL;
0087 for (;;) {
0088 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
0089 if (!pdev)
0090 break;
0091 ndev++;
0092 if (m->per_socket == SKX_NUM_IMC) {
0093 for (i = 0; i < SKX_NUM_IMC; i++)
0094 if (m->devfn[i] == pdev->devfn)
0095 break;
0096 if (i == SKX_NUM_IMC)
0097 goto fail;
0098 }
0099 d = get_skx_dev(pdev->bus, m->busidx);
0100 if (!d)
0101 goto fail;
0102
0103
0104 if (unlikely(pci_enable_device(pdev) < 0)) {
0105 skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
0106 PCI_VENDOR_ID_INTEL, m->did);
0107 goto fail;
0108 }
0109
0110 switch (m->mtype) {
0111 case CHAN0:
0112 case CHAN1:
0113 case CHAN2:
0114 pci_dev_get(pdev);
0115 d->imc[i].chan[m->mtype].cdev = pdev;
0116 break;
0117 case ERRCHAN0:
0118 case ERRCHAN1:
0119 case ERRCHAN2:
0120 pci_dev_get(pdev);
0121 d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev;
0122 break;
0123 case SAD_ALL:
0124 pci_dev_get(pdev);
0125 d->sad_all = pdev;
0126 break;
0127 case UTIL_ALL:
0128 pci_dev_get(pdev);
0129 d->util_all = pdev;
0130 break;
0131 case SAD:
0132
0133
0134
0135
0136
0137
0138 pci_read_config_dword(pdev, 0xB4, ®);
0139 if (reg != 0) {
0140 if (d->mcroute == 0) {
0141 d->mcroute = reg;
0142 } else if (d->mcroute != reg) {
0143 skx_printk(KERN_ERR, "mcroute mismatch\n");
0144 goto fail;
0145 }
0146 }
0147 ndev--;
0148 break;
0149 }
0150
0151 prev = pdev;
0152 }
0153
0154 return ndev;
0155 fail:
0156 pci_dev_put(pdev);
0157 return -ENODEV;
0158 }
0159
0160 static struct res_config skx_cfg = {
0161 .type = SKX,
0162 .decs_did = 0x2016,
0163 .busno_cfg_offset = 0xcc,
0164 };
0165
0166 static const struct x86_cpu_id skx_cpuids[] = {
0167 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x0, 0xf), &skx_cfg),
0168 { }
0169 };
0170 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
0171
0172 static bool skx_check_ecc(u32 mcmtr)
0173 {
0174 return !!GET_BITFIELD(mcmtr, 2, 2);
0175 }
0176
0177 static int skx_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg)
0178 {
0179 struct skx_pvt *pvt = mci->pvt_info;
0180 u32 mtr, mcmtr, amap, mcddrtcfg;
0181 struct skx_imc *imc = pvt->imc;
0182 struct dimm_info *dimm;
0183 int i, j;
0184 int ndimms;
0185
0186
0187 pci_read_config_dword(imc->chan[0].cdev, 0x87c, &mcmtr);
0188
0189 for (i = 0; i < SKX_NUM_CHANNELS; i++) {
0190 ndimms = 0;
0191 pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
0192 pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
0193 for (j = 0; j < SKX_NUM_DIMMS; j++) {
0194 dimm = edac_get_dimm(mci, i, j, 0);
0195 pci_read_config_dword(imc->chan[i].cdev,
0196 0x80 + 4 * j, &mtr);
0197 if (IS_DIMM_PRESENT(mtr)) {
0198 ndimms += skx_get_dimm_info(mtr, mcmtr, amap, dimm, imc, i, j, cfg);
0199 } else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
0200 ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
0201 EDAC_MOD_STR);
0202 nvdimm_count++;
0203 }
0204 }
0205 if (ndimms && !skx_check_ecc(mcmtr)) {
0206 skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
0207 return -ENODEV;
0208 }
0209 }
0210
0211 return 0;
0212 }
0213
0214 #define SKX_MAX_SAD 24
0215
0216 #define SKX_GET_SAD(d, i, reg) \
0217 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
0218 #define SKX_GET_ILV(d, i, reg) \
0219 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
0220
0221 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
0222 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
0223 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
0224 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
0225 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
0226 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
0227 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
0228
0229 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
0230 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
0231
0232 static void skx_show_retry_rd_err_log(struct decoded_addr *res,
0233 char *msg, int len,
0234 bool scrub_err)
0235 {
0236 u32 log0, log1, log2, log3, log4;
0237 u32 corr0, corr1, corr2, corr3;
0238 struct pci_dev *edev;
0239 int n;
0240
0241 edev = res->dev->imc[res->imc].chan[res->channel].edev;
0242
0243 pci_read_config_dword(edev, 0x154, &log0);
0244 pci_read_config_dword(edev, 0x148, &log1);
0245 pci_read_config_dword(edev, 0x150, &log2);
0246 pci_read_config_dword(edev, 0x15c, &log3);
0247 pci_read_config_dword(edev, 0x114, &log4);
0248
0249 n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
0250 log0, log1, log2, log3, log4);
0251
0252 pci_read_config_dword(edev, 0x104, &corr0);
0253 pci_read_config_dword(edev, 0x108, &corr1);
0254 pci_read_config_dword(edev, 0x10c, &corr2);
0255 pci_read_config_dword(edev, 0x110, &corr3);
0256
0257 if (len - n > 0)
0258 snprintf(msg + n, len - n,
0259 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
0260 corr0 & 0xffff, corr0 >> 16,
0261 corr1 & 0xffff, corr1 >> 16,
0262 corr2 & 0xffff, corr2 >> 16,
0263 corr3 & 0xffff, corr3 >> 16);
0264 }
0265
0266 static bool skx_sad_decode(struct decoded_addr *res)
0267 {
0268 struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
0269 u64 addr = res->addr;
0270 int i, idx, tgt, lchan, shift;
0271 u32 sad, ilv;
0272 u64 limit, prev_limit;
0273 int remote = 0;
0274
0275
0276 if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
0277 edac_dbg(0, "Address 0x%llx out of range\n", addr);
0278 return false;
0279 }
0280
0281 restart:
0282 prev_limit = 0;
0283 for (i = 0; i < SKX_MAX_SAD; i++) {
0284 SKX_GET_SAD(d, i, sad);
0285 limit = SKX_SAD_LIMIT(sad);
0286 if (SKX_SAD_ENABLE(sad)) {
0287 if (addr >= prev_limit && addr <= limit)
0288 goto sad_found;
0289 }
0290 prev_limit = limit + 1;
0291 }
0292 edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
0293 return false;
0294
0295 sad_found:
0296 SKX_GET_ILV(d, i, ilv);
0297
0298 switch (SKX_SAD_INTERLEAVE(sad)) {
0299 case 0:
0300 idx = GET_BITFIELD(addr, 6, 8);
0301 break;
0302 case 1:
0303 idx = GET_BITFIELD(addr, 8, 10);
0304 break;
0305 case 2:
0306 idx = GET_BITFIELD(addr, 12, 14);
0307 break;
0308 case 3:
0309 idx = GET_BITFIELD(addr, 30, 32);
0310 break;
0311 }
0312
0313 tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
0314
0315
0316 if (SKX_ILV_REMOTE(tgt)) {
0317 if (remote) {
0318 edac_dbg(0, "Double remote!\n");
0319 return false;
0320 }
0321 remote = 1;
0322 list_for_each_entry(d, skx_edac_list, list) {
0323 if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
0324 goto restart;
0325 }
0326 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
0327 return false;
0328 }
0329
0330 if (SKX_SAD_MOD3(sad) == 0) {
0331 lchan = SKX_ILV_TARGET(tgt);
0332 } else {
0333 switch (SKX_SAD_MOD3MODE(sad)) {
0334 case 0:
0335 shift = 6;
0336 break;
0337 case 1:
0338 shift = 8;
0339 break;
0340 case 2:
0341 shift = 12;
0342 break;
0343 default:
0344 edac_dbg(0, "illegal mod3mode\n");
0345 return false;
0346 }
0347 switch (SKX_SAD_MOD3ASMOD2(sad)) {
0348 case 0:
0349 lchan = (addr >> shift) % 3;
0350 break;
0351 case 1:
0352 lchan = (addr >> shift) % 2;
0353 break;
0354 case 2:
0355 lchan = (addr >> shift) % 2;
0356 lchan = (lchan << 1) | !lchan;
0357 break;
0358 case 3:
0359 lchan = ((addr >> shift) % 2) << 1;
0360 break;
0361 }
0362 lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
0363 }
0364
0365 res->dev = d;
0366 res->socket = d->imc[0].src_id;
0367 res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
0368 res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
0369
0370 edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
0371 res->addr, res->socket, res->imc, res->channel);
0372 return true;
0373 }
0374
0375 #define SKX_MAX_TAD 8
0376
0377 #define SKX_GET_TADBASE(d, mc, i, reg) \
0378 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
0379 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
0380 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
0381 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
0382 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
0383
0384 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
0385 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
0386 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
0387 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
0388 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
0389 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
0390 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
0391
0392
0393 static int skx_granularity[] = { 6, 8, 12, 30 };
0394
0395 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
0396 {
0397 addr >>= shift;
0398 addr /= ways;
0399 addr <<= shift;
0400
0401 return addr | (lowbits & ((1ull << shift) - 1));
0402 }
0403
0404 static bool skx_tad_decode(struct decoded_addr *res)
0405 {
0406 int i;
0407 u32 base, wayness, chnilvoffset;
0408 int skt_interleave_bit, chn_interleave_bit;
0409 u64 channel_addr;
0410
0411 for (i = 0; i < SKX_MAX_TAD; i++) {
0412 SKX_GET_TADBASE(res->dev, res->imc, i, base);
0413 SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
0414 if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
0415 goto tad_found;
0416 }
0417 edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
0418 return false;
0419
0420 tad_found:
0421 res->sktways = SKX_TAD_SKTWAYS(wayness);
0422 res->chanways = SKX_TAD_CHNWAYS(wayness);
0423 skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
0424 chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
0425
0426 SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
0427 channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
0428
0429 if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
0430
0431 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
0432 res->chanways, channel_addr);
0433 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
0434 res->sktways, channel_addr);
0435 } else {
0436
0437 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
0438 res->sktways, res->addr);
0439 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
0440 res->chanways, res->addr);
0441 }
0442
0443 res->chan_addr = channel_addr;
0444
0445 edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
0446 res->addr, res->chan_addr, res->sktways, res->chanways);
0447 return true;
0448 }
0449
0450 #define SKX_MAX_RIR 4
0451
0452 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
0453 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
0454 0x108 + 4 * (i), &(reg))
0455 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
0456 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
0457 0x120 + 16 * (idx) + 4 * (i), &(reg))
0458
0459 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
0460 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
0461 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
0462 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
0463 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
0464
0465 static bool skx_rir_decode(struct decoded_addr *res)
0466 {
0467 int i, idx, chan_rank;
0468 int shift;
0469 u32 rirway, rirlv;
0470 u64 rank_addr, prev_limit = 0, limit;
0471
0472 if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
0473 shift = 6;
0474 else
0475 shift = 13;
0476
0477 for (i = 0; i < SKX_MAX_RIR; i++) {
0478 SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
0479 limit = SKX_RIR_LIMIT(rirway);
0480 if (SKX_RIR_VALID(rirway)) {
0481 if (prev_limit <= res->chan_addr &&
0482 res->chan_addr <= limit)
0483 goto rir_found;
0484 }
0485 prev_limit = limit;
0486 }
0487 edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
0488 return false;
0489
0490 rir_found:
0491 rank_addr = res->chan_addr >> shift;
0492 rank_addr /= SKX_RIR_WAYS(rirway);
0493 rank_addr <<= shift;
0494 rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
0495
0496 res->rank_address = rank_addr;
0497 idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
0498
0499 SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
0500 res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
0501 chan_rank = SKX_RIR_CHAN_RANK(rirlv);
0502 res->channel_rank = chan_rank;
0503 res->dimm = chan_rank / 4;
0504 res->rank = chan_rank % 4;
0505
0506 edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
0507 res->addr, res->dimm, res->rank,
0508 res->channel_rank, res->rank_address);
0509 return true;
0510 }
0511
0512 static u8 skx_close_row[] = {
0513 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
0514 };
0515
0516 static u8 skx_close_column[] = {
0517 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
0518 };
0519
0520 static u8 skx_open_row[] = {
0521 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
0522 };
0523
0524 static u8 skx_open_column[] = {
0525 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
0526 };
0527
0528 static u8 skx_open_fine_column[] = {
0529 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
0530 };
0531
0532 static int skx_bits(u64 addr, int nbits, u8 *bits)
0533 {
0534 int i, res = 0;
0535
0536 for (i = 0; i < nbits; i++)
0537 res |= ((addr >> bits[i]) & 1) << i;
0538 return res;
0539 }
0540
0541 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
0542 {
0543 int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
0544
0545 if (do_xor)
0546 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
0547
0548 return ret;
0549 }
0550
0551 static bool skx_mad_decode(struct decoded_addr *r)
0552 {
0553 struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
0554 int bg0 = dimm->fine_grain_bank ? 6 : 13;
0555
0556 if (dimm->close_pg) {
0557 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
0558 r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
0559 r->column |= 0x400;
0560 r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
0561 r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
0562 } else {
0563 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
0564 if (dimm->fine_grain_bank)
0565 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
0566 else
0567 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
0568 r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
0569 r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
0570 }
0571 r->row &= (1u << dimm->rowbits) - 1;
0572
0573 edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
0574 r->addr, r->row, r->column, r->bank_address,
0575 r->bank_group);
0576 return true;
0577 }
0578
0579 static bool skx_decode(struct decoded_addr *res)
0580 {
0581 return skx_sad_decode(res) && skx_tad_decode(res) &&
0582 skx_rir_decode(res) && skx_mad_decode(res);
0583 }
0584
0585 static struct notifier_block skx_mce_dec = {
0586 .notifier_call = skx_mce_check_error,
0587 .priority = MCE_PRIO_EDAC,
0588 };
0589
0590 #ifdef CONFIG_EDAC_DEBUG
0591
0592
0593
0594
0595
0596 static struct dentry *skx_test;
0597
0598 static int debugfs_u64_set(void *data, u64 val)
0599 {
0600 struct mce m;
0601
0602 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
0603
0604 memset(&m, 0, sizeof(m));
0605
0606 m.status = MCI_STATUS_ADDRV + 0x90;
0607
0608 m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
0609 m.addr = val;
0610 skx_mce_check_error(NULL, 0, &m);
0611
0612 return 0;
0613 }
0614 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
0615
0616 static void setup_skx_debug(void)
0617 {
0618 skx_test = edac_debugfs_create_dir("skx_test");
0619 if (!skx_test)
0620 return;
0621
0622 if (!edac_debugfs_create_file("addr", 0200, skx_test,
0623 NULL, &fops_u64_wo)) {
0624 debugfs_remove(skx_test);
0625 skx_test = NULL;
0626 }
0627 }
0628
0629 static void teardown_skx_debug(void)
0630 {
0631 debugfs_remove_recursive(skx_test);
0632 }
0633 #else
0634 static inline void setup_skx_debug(void) {}
0635 static inline void teardown_skx_debug(void) {}
0636 #endif
0637
0638
0639
0640
0641
0642
0643
0644 static int __init skx_init(void)
0645 {
0646 const struct x86_cpu_id *id;
0647 struct res_config *cfg;
0648 const struct munit *m;
0649 const char *owner;
0650 int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
0651 u8 mc = 0, src_id, node_id;
0652 struct skx_dev *d;
0653
0654 edac_dbg(2, "\n");
0655
0656 owner = edac_get_owner();
0657 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
0658 return -EBUSY;
0659
0660 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
0661 return -ENODEV;
0662
0663 id = x86_match_cpu(skx_cpuids);
0664 if (!id)
0665 return -ENODEV;
0666
0667 cfg = (struct res_config *)id->driver_data;
0668
0669 rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
0670 if (rc)
0671 return rc;
0672
0673 rc = skx_get_all_bus_mappings(cfg, &skx_edac_list);
0674 if (rc < 0)
0675 goto fail;
0676 if (rc == 0) {
0677 edac_dbg(2, "No memory controllers found\n");
0678 return -ENODEV;
0679 }
0680 skx_num_sockets = rc;
0681
0682 for (m = skx_all_munits; m->did; m++) {
0683 rc = get_all_munits(m);
0684 if (rc < 0)
0685 goto fail;
0686 if (rc != m->per_socket * skx_num_sockets) {
0687 edac_dbg(2, "Expected %d, got %d of 0x%x\n",
0688 m->per_socket * skx_num_sockets, rc, m->did);
0689 rc = -ENODEV;
0690 goto fail;
0691 }
0692 }
0693
0694 list_for_each_entry(d, skx_edac_list, list) {
0695 rc = skx_get_src_id(d, 0xf0, &src_id);
0696 if (rc < 0)
0697 goto fail;
0698 rc = skx_get_node_id(d, &node_id);
0699 if (rc < 0)
0700 goto fail;
0701 edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
0702 for (i = 0; i < SKX_NUM_IMC; i++) {
0703 d->imc[i].mc = mc++;
0704 d->imc[i].lmc = i;
0705 d->imc[i].src_id = src_id;
0706 d->imc[i].node_id = node_id;
0707 rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
0708 "Skylake Socket", EDAC_MOD_STR,
0709 skx_get_dimm_config, cfg);
0710 if (rc < 0)
0711 goto fail;
0712 }
0713 }
0714
0715 skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
0716
0717 if (nvdimm_count && skx_adxl_get() == -ENODEV)
0718 skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
0719
0720
0721 opstate_init();
0722
0723 setup_skx_debug();
0724
0725 mce_register_decode_chain(&skx_mce_dec);
0726
0727 return 0;
0728 fail:
0729 skx_remove();
0730 return rc;
0731 }
0732
0733 static void __exit skx_exit(void)
0734 {
0735 edac_dbg(2, "\n");
0736 mce_unregister_decode_chain(&skx_mce_dec);
0737 teardown_skx_debug();
0738 if (nvdimm_count)
0739 skx_adxl_put();
0740 skx_remove();
0741 }
0742
0743 module_init(skx_init);
0744 module_exit(skx_exit);
0745
0746 module_param(edac_op_state, int, 0444);
0747 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
0748
0749 MODULE_LICENSE("GPL v2");
0750 MODULE_AUTHOR("Tony Luck");
0751 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");