Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
0003  *
0004  * This driver supports the memory controllers found on the Intel
0005  * processor family Sandy Bridge.
0006  *
0007  * Copyright (c) 2011 by:
0008  *   Mauro Carvalho Chehab
0009  */
0010 
0011 #include <linux/module.h>
0012 #include <linux/init.h>
0013 #include <linux/pci.h>
0014 #include <linux/pci_ids.h>
0015 #include <linux/slab.h>
0016 #include <linux/delay.h>
0017 #include <linux/edac.h>
0018 #include <linux/mmzone.h>
0019 #include <linux/smp.h>
0020 #include <linux/bitmap.h>
0021 #include <linux/math64.h>
0022 #include <linux/mod_devicetable.h>
0023 #include <asm/cpu_device_id.h>
0024 #include <asm/intel-family.h>
0025 #include <asm/processor.h>
0026 #include <asm/mce.h>
0027 
0028 #include "edac_module.h"
0029 
0030 /* Static vars */
0031 static LIST_HEAD(sbridge_edac_list);
0032 
0033 /*
0034  * Alter this version for the module when modifications are made
0035  */
0036 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
0037 #define EDAC_MOD_STR        "sb_edac"
0038 
0039 /*
0040  * Debug macros
0041  */
0042 #define sbridge_printk(level, fmt, arg...)          \
0043     edac_printk(level, "sbridge", fmt, ##arg)
0044 
0045 #define sbridge_mc_printk(mci, level, fmt, arg...)      \
0046     edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
0047 
0048 /*
0049  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
0050  */
0051 #define GET_BITFIELD(v, lo, hi) \
0052     (((v) & GENMASK_ULL(hi, lo)) >> (lo))
0053 
0054 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
0055 static const u32 sbridge_dram_rule[] = {
0056     0x80, 0x88, 0x90, 0x98, 0xa0,
0057     0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
0058 };
0059 
0060 static const u32 ibridge_dram_rule[] = {
0061     0x60, 0x68, 0x70, 0x78, 0x80,
0062     0x88, 0x90, 0x98, 0xa0, 0xa8,
0063     0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
0064     0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
0065 };
0066 
0067 static const u32 knl_dram_rule[] = {
0068     0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
0069     0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
0070     0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
0071     0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
0072     0x100, 0x108, 0x110, 0x118,   /* 20-23 */
0073 };
0074 
0075 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
0076 #define A7MODE(reg)     GET_BITFIELD(reg, 26, 26)
0077 
0078 static char *show_dram_attr(u32 attr)
0079 {
0080     switch (attr) {
0081         case 0:
0082             return "DRAM";
0083         case 1:
0084             return "MMCFG";
0085         case 2:
0086             return "NXM";
0087         default:
0088             return "unknown";
0089     }
0090 }
0091 
0092 static const u32 sbridge_interleave_list[] = {
0093     0x84, 0x8c, 0x94, 0x9c, 0xa4,
0094     0xac, 0xb4, 0xbc, 0xc4, 0xcc,
0095 };
0096 
0097 static const u32 ibridge_interleave_list[] = {
0098     0x64, 0x6c, 0x74, 0x7c, 0x84,
0099     0x8c, 0x94, 0x9c, 0xa4, 0xac,
0100     0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
0101     0xdc, 0xe4, 0xec, 0xf4, 0xfc,
0102 };
0103 
0104 static const u32 knl_interleave_list[] = {
0105     0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
0106     0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
0107     0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
0108     0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
0109     0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
0110 };
0111 #define MAX_INTERLEAVE                          \
0112     (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),   \
0113            max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
0114              ARRAY_SIZE(knl_interleave_list))))
0115 
0116 struct interleave_pkg {
0117     unsigned char start;
0118     unsigned char end;
0119 };
0120 
0121 static const struct interleave_pkg sbridge_interleave_pkg[] = {
0122     { 0, 2 },
0123     { 3, 5 },
0124     { 8, 10 },
0125     { 11, 13 },
0126     { 16, 18 },
0127     { 19, 21 },
0128     { 24, 26 },
0129     { 27, 29 },
0130 };
0131 
0132 static const struct interleave_pkg ibridge_interleave_pkg[] = {
0133     { 0, 3 },
0134     { 4, 7 },
0135     { 8, 11 },
0136     { 12, 15 },
0137     { 16, 19 },
0138     { 20, 23 },
0139     { 24, 27 },
0140     { 28, 31 },
0141 };
0142 
0143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
0144               int interleave)
0145 {
0146     return GET_BITFIELD(reg, table[interleave].start,
0147                 table[interleave].end);
0148 }
0149 
0150 /* Devices 12 Function 7 */
0151 
0152 #define TOLM        0x80
0153 #define TOHM        0x84
0154 #define HASWELL_TOLM    0xd0
0155 #define HASWELL_TOHM_0  0xd4
0156 #define HASWELL_TOHM_1  0xd8
0157 #define KNL_TOLM    0xd0
0158 #define KNL_TOHM_0  0xd4
0159 #define KNL_TOHM_1  0xd8
0160 
0161 #define GET_TOLM(reg)       ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
0162 #define GET_TOHM(reg)       ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
0163 
0164 /* Device 13 Function 6 */
0165 
0166 #define SAD_TARGET  0xf0
0167 
0168 #define SOURCE_ID(reg)      GET_BITFIELD(reg, 9, 11)
0169 
0170 #define SOURCE_ID_KNL(reg)  GET_BITFIELD(reg, 12, 14)
0171 
0172 #define SAD_CONTROL 0xf4
0173 
0174 /* Device 14 function 0 */
0175 
0176 static const u32 tad_dram_rule[] = {
0177     0x40, 0x44, 0x48, 0x4c,
0178     0x50, 0x54, 0x58, 0x5c,
0179     0x60, 0x64, 0x68, 0x6c,
0180 };
0181 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
0182 
0183 #define TAD_LIMIT(reg)      ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
0184 #define TAD_SOCK(reg)       GET_BITFIELD(reg, 10, 11)
0185 #define TAD_CH(reg)     GET_BITFIELD(reg,  8,  9)
0186 #define TAD_TGT3(reg)       GET_BITFIELD(reg,  6,  7)
0187 #define TAD_TGT2(reg)       GET_BITFIELD(reg,  4,  5)
0188 #define TAD_TGT1(reg)       GET_BITFIELD(reg,  2,  3)
0189 #define TAD_TGT0(reg)       GET_BITFIELD(reg,  0,  1)
0190 
0191 /* Device 15, function 0 */
0192 
0193 #define MCMTR           0x7c
0194 #define KNL_MCMTR       0x624
0195 
0196 #define IS_ECC_ENABLED(mcmtr)       GET_BITFIELD(mcmtr, 2, 2)
0197 #define IS_LOCKSTEP_ENABLED(mcmtr)  GET_BITFIELD(mcmtr, 1, 1)
0198 #define IS_CLOSE_PG(mcmtr)      GET_BITFIELD(mcmtr, 0, 0)
0199 
0200 /* Device 15, function 1 */
0201 
0202 #define RASENABLES      0xac
0203 #define IS_MIRROR_ENABLED(reg)      GET_BITFIELD(reg, 0, 0)
0204 
0205 /* Device 15, functions 2-5 */
0206 
0207 static const int mtr_regs[] = {
0208     0x80, 0x84, 0x88,
0209 };
0210 
0211 static const int knl_mtr_reg = 0xb60;
0212 
0213 #define RANK_DISABLE(mtr)       GET_BITFIELD(mtr, 16, 19)
0214 #define IS_DIMM_PRESENT(mtr)        GET_BITFIELD(mtr, 14, 14)
0215 #define RANK_CNT_BITS(mtr)      GET_BITFIELD(mtr, 12, 13)
0216 #define RANK_WIDTH_BITS(mtr)        GET_BITFIELD(mtr, 2, 4)
0217 #define COL_WIDTH_BITS(mtr)     GET_BITFIELD(mtr, 0, 1)
0218 
0219 static const u32 tad_ch_nilv_offset[] = {
0220     0x90, 0x94, 0x98, 0x9c,
0221     0xa0, 0xa4, 0xa8, 0xac,
0222     0xb0, 0xb4, 0xb8, 0xbc,
0223 };
0224 #define CHN_IDX_OFFSET(reg)     GET_BITFIELD(reg, 28, 29)
0225 #define TAD_OFFSET(reg)         (GET_BITFIELD(reg,  6, 25) << 26)
0226 
0227 static const u32 rir_way_limit[] = {
0228     0x108, 0x10c, 0x110, 0x114, 0x118,
0229 };
0230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
0231 
0232 #define IS_RIR_VALID(reg)   GET_BITFIELD(reg, 31, 31)
0233 #define RIR_WAY(reg)        GET_BITFIELD(reg, 28, 29)
0234 
0235 #define MAX_RIR_WAY 8
0236 
0237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
0238     { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
0239     { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
0240     { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
0241     { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
0242     { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
0243 };
0244 
0245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
0246     GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
0247 
0248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
0249     GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
0250 
0251 /* Device 16, functions 2-7 */
0252 
0253 /*
0254  * FIXME: Implement the error count reads directly
0255  */
0256 
0257 #define RANK_ODD_OV(reg)        GET_BITFIELD(reg, 31, 31)
0258 #define RANK_ODD_ERR_CNT(reg)       GET_BITFIELD(reg, 16, 30)
0259 #define RANK_EVEN_OV(reg)       GET_BITFIELD(reg, 15, 15)
0260 #define RANK_EVEN_ERR_CNT(reg)      GET_BITFIELD(reg,  0, 14)
0261 
0262 #if 0 /* Currently unused*/
0263 static const u32 correrrcnt[] = {
0264     0x104, 0x108, 0x10c, 0x110,
0265 };
0266 
0267 static const u32 correrrthrsld[] = {
0268     0x11c, 0x120, 0x124, 0x128,
0269 };
0270 #endif
0271 
0272 #define RANK_ODD_ERR_THRSLD(reg)    GET_BITFIELD(reg, 16, 30)
0273 #define RANK_EVEN_ERR_THRSLD(reg)   GET_BITFIELD(reg,  0, 14)
0274 
0275 
0276 /* Device 17, function 0 */
0277 
0278 #define SB_RANK_CFG_A       0x0328
0279 
0280 #define IB_RANK_CFG_A       0x0320
0281 
0282 /*
0283  * sbridge structs
0284  */
0285 
0286 #define NUM_CHANNELS        6   /* Max channels per MC */
0287 #define MAX_DIMMS       3   /* Max DIMMS per channel */
0288 #define KNL_MAX_CHAS        38  /* KNL max num. of Cache Home Agents */
0289 #define KNL_MAX_CHANNELS    6   /* KNL max num. of PCI channels */
0290 #define KNL_MAX_EDCS        8   /* Embedded DRAM controllers */
0291 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
0292 
0293 enum type {
0294     SANDY_BRIDGE,
0295     IVY_BRIDGE,
0296     HASWELL,
0297     BROADWELL,
0298     KNIGHTS_LANDING,
0299 };
0300 
0301 enum domain {
0302     IMC0 = 0,
0303     IMC1,
0304     SOCK,
0305 };
0306 
0307 enum mirroring_mode {
0308     NON_MIRRORING,
0309     ADDR_RANGE_MIRRORING,
0310     FULL_MIRRORING,
0311 };
0312 
0313 struct sbridge_pvt;
0314 struct sbridge_info {
0315     enum type   type;
0316     u32     mcmtr;
0317     u32     rankcfgr;
0318     u64     (*get_tolm)(struct sbridge_pvt *pvt);
0319     u64     (*get_tohm)(struct sbridge_pvt *pvt);
0320     u64     (*rir_limit)(u32 reg);
0321     u64     (*sad_limit)(u32 reg);
0322     u32     (*interleave_mode)(u32 reg);
0323     u32     (*dram_attr)(u32 reg);
0324     const u32   *dram_rule;
0325     const u32   *interleave_list;
0326     const struct interleave_pkg *interleave_pkg;
0327     u8      max_sad;
0328     u8      (*get_node_id)(struct sbridge_pvt *pvt);
0329     u8      (*get_ha)(u8 bank);
0330     enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
0331     enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
0332     struct pci_dev  *pci_vtd;
0333 };
0334 
0335 struct sbridge_channel {
0336     u32     ranks;
0337     u32     dimms;
0338 };
0339 
0340 struct pci_id_descr {
0341     int         dev_id;
0342     int         optional;
0343     enum domain     dom;
0344 };
0345 
0346 struct pci_id_table {
0347     const struct pci_id_descr   *descr;
0348     int             n_devs_per_imc;
0349     int             n_devs_per_sock;
0350     int             n_imcs_per_sock;
0351     enum type           type;
0352 };
0353 
0354 struct sbridge_dev {
0355     struct list_head    list;
0356     int         seg;
0357     u8          bus, mc;
0358     u8          node_id, source_id;
0359     struct pci_dev      **pdev;
0360     enum domain     dom;
0361     int         n_devs;
0362     int         i_devs;
0363     struct mem_ctl_info *mci;
0364 };
0365 
0366 struct knl_pvt {
0367     struct pci_dev          *pci_cha[KNL_MAX_CHAS];
0368     struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
0369     struct pci_dev          *pci_mc0;
0370     struct pci_dev          *pci_mc1;
0371     struct pci_dev          *pci_mc0_misc;
0372     struct pci_dev          *pci_mc1_misc;
0373     struct pci_dev          *pci_mc_info; /* tolm, tohm */
0374 };
0375 
0376 struct sbridge_pvt {
0377     /* Devices per socket */
0378     struct pci_dev      *pci_ddrio;
0379     struct pci_dev      *pci_sad0, *pci_sad1;
0380     struct pci_dev      *pci_br0, *pci_br1;
0381     /* Devices per memory controller */
0382     struct pci_dev      *pci_ha, *pci_ta, *pci_ras;
0383     struct pci_dev      *pci_tad[NUM_CHANNELS];
0384 
0385     struct sbridge_dev  *sbridge_dev;
0386 
0387     struct sbridge_info info;
0388     struct sbridge_channel  channel[NUM_CHANNELS];
0389 
0390     /* Memory type detection */
0391     bool            is_cur_addr_mirrored, is_lockstep, is_close_pg;
0392     bool            is_chan_hash;
0393     enum mirroring_mode mirror_mode;
0394 
0395     /* Memory description */
0396     u64         tolm, tohm;
0397     struct knl_pvt knl;
0398 };
0399 
0400 #define PCI_DESCR(device_id, opt, domain)   \
0401     .dev_id = (device_id),      \
0402     .optional = opt,    \
0403     .dom = domain
0404 
0405 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
0406         /* Processor Home Agent */
0407     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
0408 
0409         /* Memory controller */
0410     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
0411     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
0412     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
0413     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
0414     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
0415     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
0416     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
0417 
0418         /* System Address Decoder */
0419     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
0420     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
0421 
0422         /* Broadcast Registers */
0423     { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
0424 };
0425 
0426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {    \
0427     .descr = A,         \
0428     .n_devs_per_imc = N,    \
0429     .n_devs_per_sock = ARRAY_SIZE(A),   \
0430     .n_imcs_per_sock = M,   \
0431     .type = T           \
0432 }
0433 
0434 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
0435     PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
0436     {0,}            /* 0 terminated list. */
0437 };
0438 
0439 /* This changes depending if 1HA or 2HA:
0440  * 1HA:
0441  *  0x0eb8 (17.0) is DDRIO0
0442  * 2HA:
0443  *  0x0ebc (17.4) is DDRIO0
0444  */
0445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0  0x0eb8
0446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0  0x0ebc
0447 
0448 /* pci ids */
0449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0     0x0ea0
0450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA      0x0ea8
0451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS     0x0e71
0452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0    0x0eaa
0453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1    0x0eab
0454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2    0x0eac
0455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3    0x0ead
0456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD         0x0ec8
0457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0         0x0ec9
0458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1         0x0eca
0459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1     0x0e60
0460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA      0x0e68
0461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS     0x0e79
0462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0    0x0e6a
0463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1    0x0e6b
0464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2    0x0e6c
0465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3    0x0e6d
0466 
0467 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
0468         /* Processor Home Agent */
0469     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
0470     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
0471 
0472         /* Memory controller */
0473     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
0474     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
0475     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
0476     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
0477     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
0478     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
0479 
0480         /* Optional, mode 2HA */
0481     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
0482     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
0483     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
0484     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
0485     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
0486     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
0487 
0488     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
0489     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
0490 
0491         /* System Address Decoder */
0492     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
0493 
0494         /* Broadcast Registers */
0495     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
0496     { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
0497 
0498 };
0499 
0500 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
0501     PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
0502     {0,}            /* 0 terminated list. */
0503 };
0504 
0505 /* Haswell support */
0506 /* EN processor:
0507  *  - 1 IMC
0508  *  - 3 DDR3 channels, 2 DPC per channel
0509  * EP processor:
0510  *  - 1 or 2 IMC
0511  *  - 4 DDR4 channels, 3 DPC per channel
0512  * EP 4S processor:
0513  *  - 2 IMC
0514  *  - 4 DDR4 channels, 3 DPC per channel
0515  * EX processor:
0516  *  - 2 IMC
0517  *  - each IMC interfaces with a SMI 2 channel
0518  *  - each SMI channel interfaces with a scalable memory buffer
0519  *  - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
0520  */
0521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
0522 #define HASWELL_HASYSDEFEATURE2 0x84
0523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
0524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
0525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
0526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
0527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
0528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
0529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
0530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
0531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
0532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
0533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
0534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
0535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
0536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
0537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
0538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
0539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
0540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
0541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
0542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
0543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
0544 static const struct pci_id_descr pci_dev_descr_haswell[] = {
0545     /* first item must be the HA */
0546     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
0547     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
0548 
0549     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
0550     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
0551     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
0552     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
0553     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
0554     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
0555 
0556     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
0557     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
0558     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
0559     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
0560     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
0561     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
0562 
0563     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
0564     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
0565     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
0566     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
0567     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
0568     { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
0569 };
0570 
0571 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
0572     PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
0573     {0,}            /* 0 terminated list. */
0574 };
0575 
0576 /* Knight's Landing Support */
0577 /*
0578  * KNL's memory channels are swizzled between memory controllers.
0579  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
0580  */
0581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
0582 
0583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
0584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
0585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
0586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
0587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
0588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
0589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
0590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
0591 /* SAD target - 1-29-1 (1 of these) */
0592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
0593 /* Caching / Home Agent */
0594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
0595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
0596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
0597 
0598 /*
0599  * KNL differs from SB, IB, and Haswell in that it has multiple
0600  * instances of the same device with the same device ID, so we handle that
0601  * by creating as many copies in the table as we expect to find.
0602  * (Like device ID must be grouped together.)
0603  */
0604 
0605 static const struct pci_id_descr pci_dev_descr_knl[] = {
0606     [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
0607     [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
0608     [8]     = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
0609     [9]     = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
0610     [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
0611     [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
0612     [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
0613 };
0614 
0615 static const struct pci_id_table pci_dev_descr_knl_table[] = {
0616     PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
0617     {0,}
0618 };
0619 
0620 /*
0621  * Broadwell support
0622  *
0623  * DE processor:
0624  *  - 1 IMC
0625  *  - 2 DDR3 channels, 2 DPC per channel
0626  * EP processor:
0627  *  - 1 or 2 IMC
0628  *  - 4 DDR4 channels, 3 DPC per channel
0629  * EP 4S processor:
0630  *  - 2 IMC
0631  *  - 4 DDR4 channels, 3 DPC per channel
0632  * EX processor:
0633  *  - 2 IMC
0634  *  - each IMC interfaces with a SMI 2 channel
0635  *  - each SMI channel interfaces with a scalable memory buffer
0636  *  - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
0637  */
0638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
0639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
0640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
0641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA    0x6fa8
0642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM    0x6f71
0643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA    0x6f68
0644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM    0x6f79
0645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
0646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
0647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
0648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
0649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
0650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
0651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
0652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
0653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
0654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
0655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
0656 
0657 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
0658     /* first item must be the HA */
0659     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
0660     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
0661 
0662     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
0663     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
0664     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
0665     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
0666     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
0667     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
0668 
0669     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
0670     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
0671     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
0672     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
0673     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
0674     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
0675 
0676     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
0677     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
0678     { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
0679 };
0680 
0681 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
0682     PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
0683     {0,}            /* 0 terminated list. */
0684 };
0685 
0686 
0687 /****************************************************************************
0688             Ancillary status routines
0689  ****************************************************************************/
0690 
0691 static inline int numrank(enum type type, u32 mtr)
0692 {
0693     int ranks = (1 << RANK_CNT_BITS(mtr));
0694     int max = 4;
0695 
0696     if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
0697         max = 8;
0698 
0699     if (ranks > max) {
0700         edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
0701              ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
0702         return -EINVAL;
0703     }
0704 
0705     return ranks;
0706 }
0707 
0708 static inline int numrow(u32 mtr)
0709 {
0710     int rows = (RANK_WIDTH_BITS(mtr) + 12);
0711 
0712     if (rows < 13 || rows > 18) {
0713         edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
0714              rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
0715         return -EINVAL;
0716     }
0717 
0718     return 1 << rows;
0719 }
0720 
0721 static inline int numcol(u32 mtr)
0722 {
0723     int cols = (COL_WIDTH_BITS(mtr) + 10);
0724 
0725     if (cols > 12) {
0726         edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
0727              cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
0728         return -EINVAL;
0729     }
0730 
0731     return 1 << cols;
0732 }
0733 
0734 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
0735                        int multi_bus,
0736                        struct sbridge_dev *prev)
0737 {
0738     struct sbridge_dev *sbridge_dev;
0739 
0740     /*
0741      * If we have devices scattered across several busses that pertain
0742      * to the same memory controller, we'll lump them all together.
0743      */
0744     if (multi_bus) {
0745         return list_first_entry_or_null(&sbridge_edac_list,
0746                 struct sbridge_dev, list);
0747     }
0748 
0749     sbridge_dev = list_entry(prev ? prev->list.next
0750                       : sbridge_edac_list.next, struct sbridge_dev, list);
0751 
0752     list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
0753         if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
0754                 (dom == SOCK || dom == sbridge_dev->dom))
0755             return sbridge_dev;
0756     }
0757 
0758     return NULL;
0759 }
0760 
0761 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
0762                          const struct pci_id_table *table)
0763 {
0764     struct sbridge_dev *sbridge_dev;
0765 
0766     sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
0767     if (!sbridge_dev)
0768         return NULL;
0769 
0770     sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
0771                     sizeof(*sbridge_dev->pdev),
0772                     GFP_KERNEL);
0773     if (!sbridge_dev->pdev) {
0774         kfree(sbridge_dev);
0775         return NULL;
0776     }
0777 
0778     sbridge_dev->seg = seg;
0779     sbridge_dev->bus = bus;
0780     sbridge_dev->dom = dom;
0781     sbridge_dev->n_devs = table->n_devs_per_imc;
0782     list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
0783 
0784     return sbridge_dev;
0785 }
0786 
0787 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
0788 {
0789     list_del(&sbridge_dev->list);
0790     kfree(sbridge_dev->pdev);
0791     kfree(sbridge_dev);
0792 }
0793 
0794 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
0795 {
0796     u32 reg;
0797 
0798     /* Address range is 32:28 */
0799     pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
0800     return GET_TOLM(reg);
0801 }
0802 
0803 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
0804 {
0805     u32 reg;
0806 
0807     pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
0808     return GET_TOHM(reg);
0809 }
0810 
0811 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
0812 {
0813     u32 reg;
0814 
0815     pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
0816 
0817     return GET_TOLM(reg);
0818 }
0819 
0820 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
0821 {
0822     u32 reg;
0823 
0824     pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
0825 
0826     return GET_TOHM(reg);
0827 }
0828 
0829 static u64 rir_limit(u32 reg)
0830 {
0831     return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
0832 }
0833 
0834 static u64 sad_limit(u32 reg)
0835 {
0836     return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
0837 }
0838 
0839 static u32 interleave_mode(u32 reg)
0840 {
0841     return GET_BITFIELD(reg, 1, 1);
0842 }
0843 
0844 static u32 dram_attr(u32 reg)
0845 {
0846     return GET_BITFIELD(reg, 2, 3);
0847 }
0848 
0849 static u64 knl_sad_limit(u32 reg)
0850 {
0851     return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
0852 }
0853 
0854 static u32 knl_interleave_mode(u32 reg)
0855 {
0856     return GET_BITFIELD(reg, 1, 2);
0857 }
0858 
0859 static const char * const knl_intlv_mode[] = {
0860     "[8:6]", "[10:8]", "[14:12]", "[32:30]"
0861 };
0862 
0863 static const char *get_intlv_mode_str(u32 reg, enum type t)
0864 {
0865     if (t == KNIGHTS_LANDING)
0866         return knl_intlv_mode[knl_interleave_mode(reg)];
0867     else
0868         return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
0869 }
0870 
0871 static u32 dram_attr_knl(u32 reg)
0872 {
0873     return GET_BITFIELD(reg, 3, 4);
0874 }
0875 
0876 
0877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
0878 {
0879     u32 reg;
0880     enum mem_type mtype;
0881 
0882     if (pvt->pci_ddrio) {
0883         pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
0884                       &reg);
0885         if (GET_BITFIELD(reg, 11, 11))
0886             /* FIXME: Can also be LRDIMM */
0887             mtype = MEM_RDDR3;
0888         else
0889             mtype = MEM_DDR3;
0890     } else
0891         mtype = MEM_UNKNOWN;
0892 
0893     return mtype;
0894 }
0895 
0896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
0897 {
0898     u32 reg;
0899     bool registered = false;
0900     enum mem_type mtype = MEM_UNKNOWN;
0901 
0902     if (!pvt->pci_ddrio)
0903         goto out;
0904 
0905     pci_read_config_dword(pvt->pci_ddrio,
0906                   HASWELL_DDRCRCLKCONTROLS, &reg);
0907     /* Is_Rdimm */
0908     if (GET_BITFIELD(reg, 16, 16))
0909         registered = true;
0910 
0911     pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
0912     if (GET_BITFIELD(reg, 14, 14)) {
0913         if (registered)
0914             mtype = MEM_RDDR4;
0915         else
0916             mtype = MEM_DDR4;
0917     } else {
0918         if (registered)
0919             mtype = MEM_RDDR3;
0920         else
0921             mtype = MEM_DDR3;
0922     }
0923 
0924 out:
0925     return mtype;
0926 }
0927 
0928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
0929 {
0930     /* for KNL value is fixed */
0931     return DEV_X16;
0932 }
0933 
0934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
0935 {
0936     /* there's no way to figure out */
0937     return DEV_UNKNOWN;
0938 }
0939 
0940 static enum dev_type __ibridge_get_width(u32 mtr)
0941 {
0942     enum dev_type type = DEV_UNKNOWN;
0943 
0944     switch (mtr) {
0945     case 2:
0946         type = DEV_X16;
0947         break;
0948     case 1:
0949         type = DEV_X8;
0950         break;
0951     case 0:
0952         type = DEV_X4;
0953         break;
0954     }
0955 
0956     return type;
0957 }
0958 
0959 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
0960 {
0961     /*
0962      * ddr3_width on the documentation but also valid for DDR4 on
0963      * Haswell
0964      */
0965     return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
0966 }
0967 
0968 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
0969 {
0970     /* ddr3_width on the documentation but also valid for DDR4 */
0971     return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
0972 }
0973 
0974 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
0975 {
0976     /* DDR4 RDIMMS and LRDIMMS are supported */
0977     return MEM_RDDR4;
0978 }
0979 
0980 static u8 get_node_id(struct sbridge_pvt *pvt)
0981 {
0982     u32 reg;
0983     pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
0984     return GET_BITFIELD(reg, 0, 2);
0985 }
0986 
0987 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
0988 {
0989     u32 reg;
0990 
0991     pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
0992     return GET_BITFIELD(reg, 0, 3);
0993 }
0994 
0995 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
0996 {
0997     u32 reg;
0998 
0999     pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1000     return GET_BITFIELD(reg, 0, 2);
1001 }
1002 
1003 /*
1004  * Use the reporting bank number to determine which memory
1005  * controller (also known as "ha" for "home agent"). Sandy
1006  * Bridge only has one memory controller per socket, so the
1007  * answer is always zero.
1008  */
1009 static u8 sbridge_get_ha(u8 bank)
1010 {
1011     return 0;
1012 }
1013 
1014 /*
1015  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1016  * home agent bank (7, 8), or one of the per-channel memory
1017  * controller banks (9 .. 16).
1018  */
1019 static u8 ibridge_get_ha(u8 bank)
1020 {
1021     switch (bank) {
1022     case 7 ... 8:
1023         return bank - 7;
1024     case 9 ... 16:
1025         return (bank - 9) / 4;
1026     default:
1027         return 0xff;
1028     }
1029 }
1030 
1031 /* Not used, but included for safety/symmetry */
1032 static u8 knl_get_ha(u8 bank)
1033 {
1034     return 0xff;
1035 }
1036 
1037 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1038 {
1039     u32 reg;
1040 
1041     pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1042     return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1043 }
1044 
1045 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1046 {
1047     u64 rc;
1048     u32 reg;
1049 
1050     pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1051     rc = GET_BITFIELD(reg, 26, 31);
1052     pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1053     rc = ((reg << 6) | rc) << 26;
1054 
1055     return rc | 0x3ffffff;
1056 }
1057 
1058 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1059 {
1060     u32 reg;
1061 
1062     pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1063     return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1064 }
1065 
1066 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1067 {
1068     u64 rc;
1069     u32 reg_lo, reg_hi;
1070 
1071     pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1072     pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1073     rc = ((u64)reg_hi << 32) | reg_lo;
1074     return rc | 0x3ffffff;
1075 }
1076 
1077 
1078 static u64 haswell_rir_limit(u32 reg)
1079 {
1080     return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1081 }
1082 
1083 static inline u8 sad_pkg_socket(u8 pkg)
1084 {
1085     /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1086     return ((pkg >> 3) << 2) | (pkg & 0x3);
1087 }
1088 
1089 static inline u8 sad_pkg_ha(u8 pkg)
1090 {
1091     return (pkg >> 2) & 0x1;
1092 }
1093 
1094 static int haswell_chan_hash(int idx, u64 addr)
1095 {
1096     int i;
1097 
1098     /*
1099      * XOR even bits from 12:26 to bit0 of idx,
1100      *     odd bits from 13:27 to bit1
1101      */
1102     for (i = 12; i < 28; i += 2)
1103         idx ^= (addr >> i) & 3;
1104 
1105     return idx;
1106 }
1107 
1108 /* Low bits of TAD limit, and some metadata. */
1109 static const u32 knl_tad_dram_limit_lo[] = {
1110     0x400, 0x500, 0x600, 0x700,
1111     0x800, 0x900, 0xa00, 0xb00,
1112 };
1113 
1114 /* Low bits of TAD offset. */
1115 static const u32 knl_tad_dram_offset_lo[] = {
1116     0x404, 0x504, 0x604, 0x704,
1117     0x804, 0x904, 0xa04, 0xb04,
1118 };
1119 
1120 /* High 16 bits of TAD limit and offset. */
1121 static const u32 knl_tad_dram_hi[] = {
1122     0x408, 0x508, 0x608, 0x708,
1123     0x808, 0x908, 0xa08, 0xb08,
1124 };
1125 
1126 /* Number of ways a tad entry is interleaved. */
1127 static const u32 knl_tad_ways[] = {
1128     8, 6, 4, 3, 2, 1,
1129 };
1130 
1131 /*
1132  * Retrieve the n'th Target Address Decode table entry
1133  * from the memory controller's TAD table.
1134  *
1135  * @pvt:    driver private data
1136  * @entry:  which entry you want to retrieve
1137  * @mc:     which memory controller (0 or 1)
1138  * @offset: output tad range offset
1139  * @limit:  output address of first byte above tad range
1140  * @ways:   output number of interleave ways
1141  *
1142  * The offset value has curious semantics.  It's a sort of running total
1143  * of the sizes of all the memory regions that aren't mapped in this
1144  * tad table.
1145  */
1146 static int knl_get_tad(const struct sbridge_pvt *pvt,
1147         const int entry,
1148         const int mc,
1149         u64 *offset,
1150         u64 *limit,
1151         int *ways)
1152 {
1153     u32 reg_limit_lo, reg_offset_lo, reg_hi;
1154     struct pci_dev *pci_mc;
1155     int way_id;
1156 
1157     switch (mc) {
1158     case 0:
1159         pci_mc = pvt->knl.pci_mc0;
1160         break;
1161     case 1:
1162         pci_mc = pvt->knl.pci_mc1;
1163         break;
1164     default:
1165         WARN_ON(1);
1166         return -EINVAL;
1167     }
1168 
1169     pci_read_config_dword(pci_mc,
1170             knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1171     pci_read_config_dword(pci_mc,
1172             knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1173     pci_read_config_dword(pci_mc,
1174             knl_tad_dram_hi[entry], &reg_hi);
1175 
1176     /* Is this TAD entry enabled? */
1177     if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1178         return -ENODEV;
1179 
1180     way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1181 
1182     if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1183         *ways = knl_tad_ways[way_id];
1184     } else {
1185         *ways = 0;
1186         sbridge_printk(KERN_ERR,
1187                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1188                 way_id);
1189         return -ENODEV;
1190     }
1191 
1192     /*
1193      * The least significant 6 bits of base and limit are truncated.
1194      * For limit, we fill the missing bits with 1s.
1195      */
1196     *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1197                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1198     *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1199                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1200 
1201     return 0;
1202 }
1203 
1204 /* Determine which memory controller is responsible for a given channel. */
1205 static int knl_channel_mc(int channel)
1206 {
1207     WARN_ON(channel < 0 || channel >= 6);
1208 
1209     return channel < 3 ? 1 : 0;
1210 }
1211 
1212 /*
1213  * Get the Nth entry from EDC_ROUTE_TABLE register.
1214  * (This is the per-tile mapping of logical interleave targets to
1215  *  physical EDC modules.)
1216  *
1217  * entry 0: 0:2
1218  *       1: 3:5
1219  *       2: 6:8
1220  *       3: 9:11
1221  *       4: 12:14
1222  *       5: 15:17
1223  *       6: 18:20
1224  *       7: 21:23
1225  * reserved: 24:31
1226  */
1227 static u32 knl_get_edc_route(int entry, u32 reg)
1228 {
1229     WARN_ON(entry >= KNL_MAX_EDCS);
1230     return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1231 }
1232 
1233 /*
1234  * Get the Nth entry from MC_ROUTE_TABLE register.
1235  * (This is the per-tile mapping of logical interleave targets to
1236  *  physical DRAM channels modules.)
1237  *
1238  * entry 0: mc 0:2   channel 18:19
1239  *       1: mc 3:5   channel 20:21
1240  *       2: mc 6:8   channel 22:23
1241  *       3: mc 9:11  channel 24:25
1242  *       4: mc 12:14 channel 26:27
1243  *       5: mc 15:17 channel 28:29
1244  * reserved: 30:31
1245  *
1246  * Though we have 3 bits to identify the MC, we should only see
1247  * the values 0 or 1.
1248  */
1249 
1250 static u32 knl_get_mc_route(int entry, u32 reg)
1251 {
1252     int mc, chan;
1253 
1254     WARN_ON(entry >= KNL_MAX_CHANNELS);
1255 
1256     mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1257     chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1258 
1259     return knl_channel_remap(mc, chan);
1260 }
1261 
1262 /*
1263  * Render the EDC_ROUTE register in human-readable form.
1264  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1265  */
1266 static void knl_show_edc_route(u32 reg, char *s)
1267 {
1268     int i;
1269 
1270     for (i = 0; i < KNL_MAX_EDCS; i++) {
1271         s[i*2] = knl_get_edc_route(i, reg) + '0';
1272         s[i*2+1] = '-';
1273     }
1274 
1275     s[KNL_MAX_EDCS*2 - 1] = '\0';
1276 }
1277 
1278 /*
1279  * Render the MC_ROUTE register in human-readable form.
1280  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1281  */
1282 static void knl_show_mc_route(u32 reg, char *s)
1283 {
1284     int i;
1285 
1286     for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1287         s[i*2] = knl_get_mc_route(i, reg) + '0';
1288         s[i*2+1] = '-';
1289     }
1290 
1291     s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1292 }
1293 
1294 #define KNL_EDC_ROUTE 0xb8
1295 #define KNL_MC_ROUTE 0xb4
1296 
1297 /* Is this dram rule backed by regular DRAM in flat mode? */
1298 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1299 
1300 /* Is this dram rule cached? */
1301 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1302 
1303 /* Is this rule backed by edc ? */
1304 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1305 
1306 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1307 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1308 
1309 /* Is this rule mod3? */
1310 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1311 
1312 /*
1313  * Figure out how big our RAM modules are.
1314  *
1315  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1316  * have to figure this out from the SAD rules, interleave lists, route tables,
1317  * and TAD rules.
1318  *
1319  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1320  * inspect the TAD rules to figure out how large the SAD regions really are.
1321  *
1322  * When we know the real size of a SAD region and how many ways it's
1323  * interleaved, we know the individual contribution of each channel to
1324  * TAD is size/ways.
1325  *
1326  * Finally, we have to check whether each channel participates in each SAD
1327  * region.
1328  *
1329  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1330  * much memory the channel uses, we know the DIMM is at least that large.
1331  * (The BIOS might possibly choose not to map all available memory, in which
1332  * case we will underreport the size of the DIMM.)
1333  *
1334  * In theory, we could try to determine the EDC sizes as well, but that would
1335  * only work in flat mode, not in cache mode.
1336  *
1337  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1338  *            elements)
1339  */
1340 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1341 {
1342     u64 sad_base, sad_limit = 0;
1343     u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1344     int sad_rule = 0;
1345     int tad_rule = 0;
1346     int intrlv_ways, tad_ways;
1347     u32 first_pkg, pkg;
1348     int i;
1349     u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1350     u32 dram_rule, interleave_reg;
1351     u32 mc_route_reg[KNL_MAX_CHAS];
1352     u32 edc_route_reg[KNL_MAX_CHAS];
1353     int edram_only;
1354     char edc_route_string[KNL_MAX_EDCS*2];
1355     char mc_route_string[KNL_MAX_CHANNELS*2];
1356     int cur_reg_start;
1357     int mc;
1358     int channel;
1359     int participants[KNL_MAX_CHANNELS];
1360 
1361     for (i = 0; i < KNL_MAX_CHANNELS; i++)
1362         mc_sizes[i] = 0;
1363 
1364     /* Read the EDC route table in each CHA. */
1365     cur_reg_start = 0;
1366     for (i = 0; i < KNL_MAX_CHAS; i++) {
1367         pci_read_config_dword(pvt->knl.pci_cha[i],
1368                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1369 
1370         if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1371             knl_show_edc_route(edc_route_reg[i-1],
1372                     edc_route_string);
1373             if (cur_reg_start == i-1)
1374                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1375                     cur_reg_start, edc_route_string);
1376             else
1377                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1378                     cur_reg_start, i-1, edc_route_string);
1379             cur_reg_start = i;
1380         }
1381     }
1382     knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1383     if (cur_reg_start == i-1)
1384         edac_dbg(0, "edc route table for CHA %d: %s\n",
1385             cur_reg_start, edc_route_string);
1386     else
1387         edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1388             cur_reg_start, i-1, edc_route_string);
1389 
1390     /* Read the MC route table in each CHA. */
1391     cur_reg_start = 0;
1392     for (i = 0; i < KNL_MAX_CHAS; i++) {
1393         pci_read_config_dword(pvt->knl.pci_cha[i],
1394             KNL_MC_ROUTE, &mc_route_reg[i]);
1395 
1396         if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1397             knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1398             if (cur_reg_start == i-1)
1399                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1400                     cur_reg_start, mc_route_string);
1401             else
1402                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1403                     cur_reg_start, i-1, mc_route_string);
1404             cur_reg_start = i;
1405         }
1406     }
1407     knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1408     if (cur_reg_start == i-1)
1409         edac_dbg(0, "mc route table for CHA %d: %s\n",
1410             cur_reg_start, mc_route_string);
1411     else
1412         edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1413             cur_reg_start, i-1, mc_route_string);
1414 
1415     /* Process DRAM rules */
1416     for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1417         /* previous limit becomes the new base */
1418         sad_base = sad_limit;
1419 
1420         pci_read_config_dword(pvt->pci_sad0,
1421             pvt->info.dram_rule[sad_rule], &dram_rule);
1422 
1423         if (!DRAM_RULE_ENABLE(dram_rule))
1424             break;
1425 
1426         edram_only = KNL_EDRAM_ONLY(dram_rule);
1427 
1428         sad_limit = pvt->info.sad_limit(dram_rule)+1;
1429 
1430         pci_read_config_dword(pvt->pci_sad0,
1431             pvt->info.interleave_list[sad_rule], &interleave_reg);
1432 
1433         /*
1434          * Find out how many ways this dram rule is interleaved.
1435          * We stop when we see the first channel again.
1436          */
1437         first_pkg = sad_pkg(pvt->info.interleave_pkg,
1438                         interleave_reg, 0);
1439         for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1440             pkg = sad_pkg(pvt->info.interleave_pkg,
1441                         interleave_reg, intrlv_ways);
1442 
1443             if ((pkg & 0x8) == 0) {
1444                 /*
1445                  * 0 bit means memory is non-local,
1446                  * which KNL doesn't support
1447                  */
1448                 edac_dbg(0, "Unexpected interleave target %d\n",
1449                     pkg);
1450                 return -1;
1451             }
1452 
1453             if (pkg == first_pkg)
1454                 break;
1455         }
1456         if (KNL_MOD3(dram_rule))
1457             intrlv_ways *= 3;
1458 
1459         edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1460             sad_rule,
1461             sad_base,
1462             sad_limit,
1463             intrlv_ways,
1464             edram_only ? ", EDRAM" : "");
1465 
1466         /*
1467          * Find out how big the SAD region really is by iterating
1468          * over TAD tables (SAD regions may contain holes).
1469          * Each memory controller might have a different TAD table, so
1470          * we have to look at both.
1471          *
1472          * Livespace is the memory that's mapped in this TAD table,
1473          * deadspace is the holes (this could be the MMIO hole, or it
1474          * could be memory that's mapped by the other TAD table but
1475          * not this one).
1476          */
1477         for (mc = 0; mc < 2; mc++) {
1478             sad_actual_size[mc] = 0;
1479             tad_livespace = 0;
1480             for (tad_rule = 0;
1481                     tad_rule < ARRAY_SIZE(
1482                         knl_tad_dram_limit_lo);
1483                     tad_rule++) {
1484                 if (knl_get_tad(pvt,
1485                         tad_rule,
1486                         mc,
1487                         &tad_deadspace,
1488                         &tad_limit,
1489                         &tad_ways))
1490                     break;
1491 
1492                 tad_size = (tad_limit+1) -
1493                     (tad_livespace + tad_deadspace);
1494                 tad_livespace += tad_size;
1495                 tad_base = (tad_limit+1) - tad_size;
1496 
1497                 if (tad_base < sad_base) {
1498                     if (tad_limit > sad_base)
1499                         edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1500                 } else if (tad_base < sad_limit) {
1501                     if (tad_limit+1 > sad_limit) {
1502                         edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1503                     } else {
1504                         /* TAD region is completely inside SAD region */
1505                         edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1506                             tad_rule, tad_base,
1507                             tad_limit, tad_size,
1508                             mc);
1509                         sad_actual_size[mc] += tad_size;
1510                     }
1511                 }
1512             }
1513         }
1514 
1515         for (mc = 0; mc < 2; mc++) {
1516             edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1517                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1518         }
1519 
1520         /* Ignore EDRAM rule */
1521         if (edram_only)
1522             continue;
1523 
1524         /* Figure out which channels participate in interleave. */
1525         for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1526             participants[channel] = 0;
1527 
1528         /* For each channel, does at least one CHA have
1529          * this channel mapped to the given target?
1530          */
1531         for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1532             int target;
1533             int cha;
1534 
1535             for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1536                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1537                     if (knl_get_mc_route(target,
1538                         mc_route_reg[cha]) == channel
1539                         && !participants[channel]) {
1540                         participants[channel] = 1;
1541                         break;
1542                     }
1543                 }
1544             }
1545         }
1546 
1547         for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1548             mc = knl_channel_mc(channel);
1549             if (participants[channel]) {
1550                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1551                     channel,
1552                     sad_actual_size[mc]/intrlv_ways,
1553                     sad_rule);
1554                 mc_sizes[channel] +=
1555                     sad_actual_size[mc]/intrlv_ways;
1556             }
1557         }
1558     }
1559 
1560     return 0;
1561 }
1562 
1563 static void get_source_id(struct mem_ctl_info *mci)
1564 {
1565     struct sbridge_pvt *pvt = mci->pvt_info;
1566     u32 reg;
1567 
1568     if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1569         pvt->info.type == KNIGHTS_LANDING)
1570         pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1571     else
1572         pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1573 
1574     if (pvt->info.type == KNIGHTS_LANDING)
1575         pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1576     else
1577         pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1578 }
1579 
1580 static int __populate_dimms(struct mem_ctl_info *mci,
1581                 u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1582                 enum edac_type mode)
1583 {
1584     struct sbridge_pvt *pvt = mci->pvt_info;
1585     int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1586                              : NUM_CHANNELS;
1587     unsigned int i, j, banks, ranks, rows, cols, npages;
1588     struct dimm_info *dimm;
1589     enum mem_type mtype;
1590     u64 size;
1591 
1592     mtype = pvt->info.get_memory_type(pvt);
1593     if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1594         edac_dbg(0, "Memory is registered\n");
1595     else if (mtype == MEM_UNKNOWN)
1596         edac_dbg(0, "Cannot determine memory type\n");
1597     else
1598         edac_dbg(0, "Memory is unregistered\n");
1599 
1600     if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1601         banks = 16;
1602     else
1603         banks = 8;
1604 
1605     for (i = 0; i < channels; i++) {
1606         u32 mtr;
1607 
1608         int max_dimms_per_channel;
1609 
1610         if (pvt->info.type == KNIGHTS_LANDING) {
1611             max_dimms_per_channel = 1;
1612             if (!pvt->knl.pci_channel[i])
1613                 continue;
1614         } else {
1615             max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1616             if (!pvt->pci_tad[i])
1617                 continue;
1618         }
1619 
1620         for (j = 0; j < max_dimms_per_channel; j++) {
1621             dimm = edac_get_dimm(mci, i, j, 0);
1622             if (pvt->info.type == KNIGHTS_LANDING) {
1623                 pci_read_config_dword(pvt->knl.pci_channel[i],
1624                     knl_mtr_reg, &mtr);
1625             } else {
1626                 pci_read_config_dword(pvt->pci_tad[i],
1627                     mtr_regs[j], &mtr);
1628             }
1629             edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1630             if (IS_DIMM_PRESENT(mtr)) {
1631                 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1632                     sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1633                                pvt->sbridge_dev->source_id,
1634                                pvt->sbridge_dev->dom, i);
1635                     return -ENODEV;
1636                 }
1637                 pvt->channel[i].dimms++;
1638 
1639                 ranks = numrank(pvt->info.type, mtr);
1640 
1641                 if (pvt->info.type == KNIGHTS_LANDING) {
1642                     /* For DDR4, this is fixed. */
1643                     cols = 1 << 10;
1644                     rows = knl_mc_sizes[i] /
1645                         ((u64) cols * ranks * banks * 8);
1646                 } else {
1647                     rows = numrow(mtr);
1648                     cols = numcol(mtr);
1649                 }
1650 
1651                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1652                 npages = MiB_TO_PAGES(size);
1653 
1654                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1655                      pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1656                      size, npages,
1657                      banks, ranks, rows, cols);
1658 
1659                 dimm->nr_pages = npages;
1660                 dimm->grain = 32;
1661                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1662                 dimm->mtype = mtype;
1663                 dimm->edac_mode = mode;
1664                 snprintf(dimm->label, sizeof(dimm->label),
1665                          "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1666                          pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1667             }
1668         }
1669     }
1670 
1671     return 0;
1672 }
1673 
1674 static int get_dimm_config(struct mem_ctl_info *mci)
1675 {
1676     struct sbridge_pvt *pvt = mci->pvt_info;
1677     u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1678     enum edac_type mode;
1679     u32 reg;
1680 
1681     pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1682     edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1683          pvt->sbridge_dev->mc,
1684          pvt->sbridge_dev->node_id,
1685          pvt->sbridge_dev->source_id);
1686 
1687     /* KNL doesn't support mirroring or lockstep,
1688      * and is always closed page
1689      */
1690     if (pvt->info.type == KNIGHTS_LANDING) {
1691         mode = EDAC_S4ECD4ED;
1692         pvt->mirror_mode = NON_MIRRORING;
1693         pvt->is_cur_addr_mirrored = false;
1694 
1695         if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1696             return -1;
1697         if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1698             edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1699             return -ENODEV;
1700         }
1701     } else {
1702         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1703             if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1704                 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1705                 return -ENODEV;
1706             }
1707             pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1708             if (GET_BITFIELD(reg, 28, 28)) {
1709                 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1710                 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1711                 goto next;
1712             }
1713         }
1714         if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1715             edac_dbg(0, "Failed to read RASENABLES register\n");
1716             return -ENODEV;
1717         }
1718         if (IS_MIRROR_ENABLED(reg)) {
1719             pvt->mirror_mode = FULL_MIRRORING;
1720             edac_dbg(0, "Full memory mirroring is enabled\n");
1721         } else {
1722             pvt->mirror_mode = NON_MIRRORING;
1723             edac_dbg(0, "Memory mirroring is disabled\n");
1724         }
1725 
1726 next:
1727         if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1728             edac_dbg(0, "Failed to read MCMTR register\n");
1729             return -ENODEV;
1730         }
1731         if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1732             edac_dbg(0, "Lockstep is enabled\n");
1733             mode = EDAC_S8ECD8ED;
1734             pvt->is_lockstep = true;
1735         } else {
1736             edac_dbg(0, "Lockstep is disabled\n");
1737             mode = EDAC_S4ECD4ED;
1738             pvt->is_lockstep = false;
1739         }
1740         if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1741             edac_dbg(0, "address map is on closed page mode\n");
1742             pvt->is_close_pg = true;
1743         } else {
1744             edac_dbg(0, "address map is on open page mode\n");
1745             pvt->is_close_pg = false;
1746         }
1747     }
1748 
1749     return __populate_dimms(mci, knl_mc_sizes, mode);
1750 }
1751 
1752 static void get_memory_layout(const struct mem_ctl_info *mci)
1753 {
1754     struct sbridge_pvt *pvt = mci->pvt_info;
1755     int i, j, k, n_sads, n_tads, sad_interl;
1756     u32 reg;
1757     u64 limit, prv = 0;
1758     u64 tmp_mb;
1759     u32 gb, mb;
1760     u32 rir_way;
1761 
1762     /*
1763      * Step 1) Get TOLM/TOHM ranges
1764      */
1765 
1766     pvt->tolm = pvt->info.get_tolm(pvt);
1767     tmp_mb = (1 + pvt->tolm) >> 20;
1768 
1769     gb = div_u64_rem(tmp_mb, 1024, &mb);
1770     edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1771         gb, (mb*1000)/1024, (u64)pvt->tolm);
1772 
1773     /* Address range is already 45:25 */
1774     pvt->tohm = pvt->info.get_tohm(pvt);
1775     tmp_mb = (1 + pvt->tohm) >> 20;
1776 
1777     gb = div_u64_rem(tmp_mb, 1024, &mb);
1778     edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1779         gb, (mb*1000)/1024, (u64)pvt->tohm);
1780 
1781     /*
1782      * Step 2) Get SAD range and SAD Interleave list
1783      * TAD registers contain the interleave wayness. However, it
1784      * seems simpler to just discover it indirectly, with the
1785      * algorithm bellow.
1786      */
1787     prv = 0;
1788     for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1789         /* SAD_LIMIT Address range is 45:26 */
1790         pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1791                       &reg);
1792         limit = pvt->info.sad_limit(reg);
1793 
1794         if (!DRAM_RULE_ENABLE(reg))
1795             continue;
1796 
1797         if (limit <= prv)
1798             break;
1799 
1800         tmp_mb = (limit + 1) >> 20;
1801         gb = div_u64_rem(tmp_mb, 1024, &mb);
1802         edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1803              n_sads,
1804              show_dram_attr(pvt->info.dram_attr(reg)),
1805              gb, (mb*1000)/1024,
1806              ((u64)tmp_mb) << 20L,
1807              get_intlv_mode_str(reg, pvt->info.type),
1808              reg);
1809         prv = limit;
1810 
1811         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1812                       &reg);
1813         sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1814         for (j = 0; j < 8; j++) {
1815             u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1816             if (j > 0 && sad_interl == pkg)
1817                 break;
1818 
1819             edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1820                  n_sads, j, pkg);
1821         }
1822     }
1823 
1824     if (pvt->info.type == KNIGHTS_LANDING)
1825         return;
1826 
1827     /*
1828      * Step 3) Get TAD range
1829      */
1830     prv = 0;
1831     for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1832         pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1833         limit = TAD_LIMIT(reg);
1834         if (limit <= prv)
1835             break;
1836         tmp_mb = (limit + 1) >> 20;
1837 
1838         gb = div_u64_rem(tmp_mb, 1024, &mb);
1839         edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1840              n_tads, gb, (mb*1000)/1024,
1841              ((u64)tmp_mb) << 20L,
1842              (u32)(1 << TAD_SOCK(reg)),
1843              (u32)TAD_CH(reg) + 1,
1844              (u32)TAD_TGT0(reg),
1845              (u32)TAD_TGT1(reg),
1846              (u32)TAD_TGT2(reg),
1847              (u32)TAD_TGT3(reg),
1848              reg);
1849         prv = limit;
1850     }
1851 
1852     /*
1853      * Step 4) Get TAD offsets, per each channel
1854      */
1855     for (i = 0; i < NUM_CHANNELS; i++) {
1856         if (!pvt->channel[i].dimms)
1857             continue;
1858         for (j = 0; j < n_tads; j++) {
1859             pci_read_config_dword(pvt->pci_tad[i],
1860                           tad_ch_nilv_offset[j],
1861                           &reg);
1862             tmp_mb = TAD_OFFSET(reg) >> 20;
1863             gb = div_u64_rem(tmp_mb, 1024, &mb);
1864             edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1865                  i, j,
1866                  gb, (mb*1000)/1024,
1867                  ((u64)tmp_mb) << 20L,
1868                  reg);
1869         }
1870     }
1871 
1872     /*
1873      * Step 6) Get RIR Wayness/Limit, per each channel
1874      */
1875     for (i = 0; i < NUM_CHANNELS; i++) {
1876         if (!pvt->channel[i].dimms)
1877             continue;
1878         for (j = 0; j < MAX_RIR_RANGES; j++) {
1879             pci_read_config_dword(pvt->pci_tad[i],
1880                           rir_way_limit[j],
1881                           &reg);
1882 
1883             if (!IS_RIR_VALID(reg))
1884                 continue;
1885 
1886             tmp_mb = pvt->info.rir_limit(reg) >> 20;
1887             rir_way = 1 << RIR_WAY(reg);
1888             gb = div_u64_rem(tmp_mb, 1024, &mb);
1889             edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1890                  i, j,
1891                  gb, (mb*1000)/1024,
1892                  ((u64)tmp_mb) << 20L,
1893                  rir_way,
1894                  reg);
1895 
1896             for (k = 0; k < rir_way; k++) {
1897                 pci_read_config_dword(pvt->pci_tad[i],
1898                               rir_offset[j][k],
1899                               &reg);
1900                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1901 
1902                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1903                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1904                      i, j, k,
1905                      gb, (mb*1000)/1024,
1906                      ((u64)tmp_mb) << 20L,
1907                      (u32)RIR_RNK_TGT(pvt->info.type, reg),
1908                      reg);
1909             }
1910         }
1911     }
1912 }
1913 
1914 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1915 {
1916     struct sbridge_dev *sbridge_dev;
1917 
1918     list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1919         if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1920             return sbridge_dev->mci;
1921     }
1922     return NULL;
1923 }
1924 
1925 static int get_memory_error_data(struct mem_ctl_info *mci,
1926                  u64 addr,
1927                  u8 *socket, u8 *ha,
1928                  long *channel_mask,
1929                  u8 *rank,
1930                  char **area_type, char *msg)
1931 {
1932     struct mem_ctl_info *new_mci;
1933     struct sbridge_pvt *pvt = mci->pvt_info;
1934     struct pci_dev      *pci_ha;
1935     int         n_rir, n_sads, n_tads, sad_way, sck_xch;
1936     int         sad_interl, idx, base_ch;
1937     int         interleave_mode, shiftup = 0;
1938     unsigned int        sad_interleave[MAX_INTERLEAVE];
1939     u32         reg, dram_rule;
1940     u8          ch_way, sck_way, pkg, sad_ha = 0;
1941     u32         tad_offset;
1942     u32         rir_way;
1943     u32         mb, gb;
1944     u64         ch_addr, offset, limit = 0, prv = 0;
1945 
1946 
1947     /*
1948      * Step 0) Check if the address is at special memory ranges
1949      * The check bellow is probably enough to fill all cases where
1950      * the error is not inside a memory, except for the legacy
1951      * range (e. g. VGA addresses). It is unlikely, however, that the
1952      * memory controller would generate an error on that range.
1953      */
1954     if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1955         sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1956         return -EINVAL;
1957     }
1958     if (addr >= (u64)pvt->tohm) {
1959         sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1960         return -EINVAL;
1961     }
1962 
1963     /*
1964      * Step 1) Get socket
1965      */
1966     for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1967         pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1968                       &reg);
1969 
1970         if (!DRAM_RULE_ENABLE(reg))
1971             continue;
1972 
1973         limit = pvt->info.sad_limit(reg);
1974         if (limit <= prv) {
1975             sprintf(msg, "Can't discover the memory socket");
1976             return -EINVAL;
1977         }
1978         if  (addr <= limit)
1979             break;
1980         prv = limit;
1981     }
1982     if (n_sads == pvt->info.max_sad) {
1983         sprintf(msg, "Can't discover the memory socket");
1984         return -EINVAL;
1985     }
1986     dram_rule = reg;
1987     *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1988     interleave_mode = pvt->info.interleave_mode(dram_rule);
1989 
1990     pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1991                   &reg);
1992 
1993     if (pvt->info.type == SANDY_BRIDGE) {
1994         sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1995         for (sad_way = 0; sad_way < 8; sad_way++) {
1996             u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1997             if (sad_way > 0 && sad_interl == pkg)
1998                 break;
1999             sad_interleave[sad_way] = pkg;
2000             edac_dbg(0, "SAD interleave #%d: %d\n",
2001                  sad_way, sad_interleave[sad_way]);
2002         }
2003         edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2004              pvt->sbridge_dev->mc,
2005              n_sads,
2006              addr,
2007              limit,
2008              sad_way + 7,
2009              !interleave_mode ? "" : "XOR[18:16]");
2010         if (interleave_mode)
2011             idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2012         else
2013             idx = (addr >> 6) & 7;
2014         switch (sad_way) {
2015         case 1:
2016             idx = 0;
2017             break;
2018         case 2:
2019             idx = idx & 1;
2020             break;
2021         case 4:
2022             idx = idx & 3;
2023             break;
2024         case 8:
2025             break;
2026         default:
2027             sprintf(msg, "Can't discover socket interleave");
2028             return -EINVAL;
2029         }
2030         *socket = sad_interleave[idx];
2031         edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2032              idx, sad_way, *socket);
2033     } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2034         int bits, a7mode = A7MODE(dram_rule);
2035 
2036         if (a7mode) {
2037             /* A7 mode swaps P9 with P6 */
2038             bits = GET_BITFIELD(addr, 7, 8) << 1;
2039             bits |= GET_BITFIELD(addr, 9, 9);
2040         } else
2041             bits = GET_BITFIELD(addr, 6, 8);
2042 
2043         if (interleave_mode == 0) {
2044             /* interleave mode will XOR {8,7,6} with {18,17,16} */
2045             idx = GET_BITFIELD(addr, 16, 18);
2046             idx ^= bits;
2047         } else
2048             idx = bits;
2049 
2050         pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2051         *socket = sad_pkg_socket(pkg);
2052         sad_ha = sad_pkg_ha(pkg);
2053 
2054         if (a7mode) {
2055             /* MCChanShiftUpEnable */
2056             pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2057             shiftup = GET_BITFIELD(reg, 22, 22);
2058         }
2059 
2060         edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2061              idx, *socket, sad_ha, shiftup);
2062     } else {
2063         /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2064         idx = (addr >> 6) & 7;
2065         pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2066         *socket = sad_pkg_socket(pkg);
2067         sad_ha = sad_pkg_ha(pkg);
2068         edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2069              idx, *socket, sad_ha);
2070     }
2071 
2072     *ha = sad_ha;
2073 
2074     /*
2075      * Move to the proper node structure, in order to access the
2076      * right PCI registers
2077      */
2078     new_mci = get_mci_for_node_id(*socket, sad_ha);
2079     if (!new_mci) {
2080         sprintf(msg, "Struct for socket #%u wasn't initialized",
2081             *socket);
2082         return -EINVAL;
2083     }
2084     mci = new_mci;
2085     pvt = mci->pvt_info;
2086 
2087     /*
2088      * Step 2) Get memory channel
2089      */
2090     prv = 0;
2091     pci_ha = pvt->pci_ha;
2092     for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2093         pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2094         limit = TAD_LIMIT(reg);
2095         if (limit <= prv) {
2096             sprintf(msg, "Can't discover the memory channel");
2097             return -EINVAL;
2098         }
2099         if  (addr <= limit)
2100             break;
2101         prv = limit;
2102     }
2103     if (n_tads == MAX_TAD) {
2104         sprintf(msg, "Can't discover the memory channel");
2105         return -EINVAL;
2106     }
2107 
2108     ch_way = TAD_CH(reg) + 1;
2109     sck_way = TAD_SOCK(reg);
2110 
2111     if (ch_way == 3)
2112         idx = addr >> 6;
2113     else {
2114         idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2115         if (pvt->is_chan_hash)
2116             idx = haswell_chan_hash(idx, addr);
2117     }
2118     idx = idx % ch_way;
2119 
2120     /*
2121      * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2122      */
2123     switch (idx) {
2124     case 0:
2125         base_ch = TAD_TGT0(reg);
2126         break;
2127     case 1:
2128         base_ch = TAD_TGT1(reg);
2129         break;
2130     case 2:
2131         base_ch = TAD_TGT2(reg);
2132         break;
2133     case 3:
2134         base_ch = TAD_TGT3(reg);
2135         break;
2136     default:
2137         sprintf(msg, "Can't discover the TAD target");
2138         return -EINVAL;
2139     }
2140     *channel_mask = 1 << base_ch;
2141 
2142     pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2143 
2144     if (pvt->mirror_mode == FULL_MIRRORING ||
2145         (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2146         *channel_mask |= 1 << ((base_ch + 2) % 4);
2147         switch(ch_way) {
2148         case 2:
2149         case 4:
2150             sck_xch = (1 << sck_way) * (ch_way >> 1);
2151             break;
2152         default:
2153             sprintf(msg, "Invalid mirror set. Can't decode addr");
2154             return -EINVAL;
2155         }
2156 
2157         pvt->is_cur_addr_mirrored = true;
2158     } else {
2159         sck_xch = (1 << sck_way) * ch_way;
2160         pvt->is_cur_addr_mirrored = false;
2161     }
2162 
2163     if (pvt->is_lockstep)
2164         *channel_mask |= 1 << ((base_ch + 1) % 4);
2165 
2166     offset = TAD_OFFSET(tad_offset);
2167 
2168     edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2169          n_tads,
2170          addr,
2171          limit,
2172          sck_way,
2173          ch_way,
2174          offset,
2175          idx,
2176          base_ch,
2177          *channel_mask);
2178 
2179     /* Calculate channel address */
2180     /* Remove the TAD offset */
2181 
2182     if (offset > addr) {
2183         sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2184             offset, addr);
2185         return -EINVAL;
2186     }
2187 
2188     ch_addr = addr - offset;
2189     ch_addr >>= (6 + shiftup);
2190     ch_addr /= sck_xch;
2191     ch_addr <<= (6 + shiftup);
2192     ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2193 
2194     /*
2195      * Step 3) Decode rank
2196      */
2197     for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2198         pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2199 
2200         if (!IS_RIR_VALID(reg))
2201             continue;
2202 
2203         limit = pvt->info.rir_limit(reg);
2204         gb = div_u64_rem(limit >> 20, 1024, &mb);
2205         edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2206              n_rir,
2207              gb, (mb*1000)/1024,
2208              limit,
2209              1 << RIR_WAY(reg));
2210         if  (ch_addr <= limit)
2211             break;
2212     }
2213     if (n_rir == MAX_RIR_RANGES) {
2214         sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2215             ch_addr);
2216         return -EINVAL;
2217     }
2218     rir_way = RIR_WAY(reg);
2219 
2220     if (pvt->is_close_pg)
2221         idx = (ch_addr >> 6);
2222     else
2223         idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2224     idx %= 1 << rir_way;
2225 
2226     pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2227     *rank = RIR_RNK_TGT(pvt->info.type, reg);
2228 
2229     edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2230          n_rir,
2231          ch_addr,
2232          limit,
2233          rir_way,
2234          idx);
2235 
2236     return 0;
2237 }
2238 
2239 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2240                       const struct mce *m, u8 *socket,
2241                       u8 *ha, long *channel_mask,
2242                       char *msg)
2243 {
2244     u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2245     struct mem_ctl_info *new_mci;
2246     struct sbridge_pvt *pvt;
2247     struct pci_dev *pci_ha;
2248     bool tad0;
2249 
2250     if (channel >= NUM_CHANNELS) {
2251         sprintf(msg, "Invalid channel 0x%x", channel);
2252         return -EINVAL;
2253     }
2254 
2255     pvt = mci->pvt_info;
2256     if (!pvt->info.get_ha) {
2257         sprintf(msg, "No get_ha()");
2258         return -EINVAL;
2259     }
2260     *ha = pvt->info.get_ha(m->bank);
2261     if (*ha != 0 && *ha != 1) {
2262         sprintf(msg, "Impossible bank %d", m->bank);
2263         return -EINVAL;
2264     }
2265 
2266     *socket = m->socketid;
2267     new_mci = get_mci_for_node_id(*socket, *ha);
2268     if (!new_mci) {
2269         strcpy(msg, "mci socket got corrupted!");
2270         return -EINVAL;
2271     }
2272 
2273     pvt = new_mci->pvt_info;
2274     pci_ha = pvt->pci_ha;
2275     pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2276     tad0 = m->addr <= TAD_LIMIT(reg);
2277 
2278     *channel_mask = 1 << channel;
2279     if (pvt->mirror_mode == FULL_MIRRORING ||
2280         (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2281         *channel_mask |= 1 << ((channel + 2) % 4);
2282         pvt->is_cur_addr_mirrored = true;
2283     } else {
2284         pvt->is_cur_addr_mirrored = false;
2285     }
2286 
2287     if (pvt->is_lockstep)
2288         *channel_mask |= 1 << ((channel + 1) % 4);
2289 
2290     return 0;
2291 }
2292 
2293 /****************************************************************************
2294     Device initialization routines: put/get, init/exit
2295  ****************************************************************************/
2296 
2297 /*
2298  *  sbridge_put_all_devices 'put' all the devices that we have
2299  *              reserved via 'get'
2300  */
2301 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2302 {
2303     int i;
2304 
2305     edac_dbg(0, "\n");
2306     for (i = 0; i < sbridge_dev->n_devs; i++) {
2307         struct pci_dev *pdev = sbridge_dev->pdev[i];
2308         if (!pdev)
2309             continue;
2310         edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2311              pdev->bus->number,
2312              PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2313         pci_dev_put(pdev);
2314     }
2315 }
2316 
2317 static void sbridge_put_all_devices(void)
2318 {
2319     struct sbridge_dev *sbridge_dev, *tmp;
2320 
2321     list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2322         sbridge_put_devices(sbridge_dev);
2323         free_sbridge_dev(sbridge_dev);
2324     }
2325 }
2326 
2327 static int sbridge_get_onedevice(struct pci_dev **prev,
2328                  u8 *num_mc,
2329                  const struct pci_id_table *table,
2330                  const unsigned devno,
2331                  const int multi_bus)
2332 {
2333     struct sbridge_dev *sbridge_dev = NULL;
2334     const struct pci_id_descr *dev_descr = &table->descr[devno];
2335     struct pci_dev *pdev = NULL;
2336     int seg = 0;
2337     u8 bus = 0;
2338     int i = 0;
2339 
2340     sbridge_printk(KERN_DEBUG,
2341         "Seeking for: PCI ID %04x:%04x\n",
2342         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2343 
2344     pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2345                   dev_descr->dev_id, *prev);
2346 
2347     if (!pdev) {
2348         if (*prev) {
2349             *prev = pdev;
2350             return 0;
2351         }
2352 
2353         if (dev_descr->optional)
2354             return 0;
2355 
2356         /* if the HA wasn't found */
2357         if (devno == 0)
2358             return -ENODEV;
2359 
2360         sbridge_printk(KERN_INFO,
2361             "Device not found: %04x:%04x\n",
2362             PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2363 
2364         /* End of list, leave */
2365         return -ENODEV;
2366     }
2367     seg = pci_domain_nr(pdev->bus);
2368     bus = pdev->bus->number;
2369 
2370 next_imc:
2371     sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2372                       multi_bus, sbridge_dev);
2373     if (!sbridge_dev) {
2374         /* If the HA1 wasn't found, don't create EDAC second memory controller */
2375         if (dev_descr->dom == IMC1 && devno != 1) {
2376             edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2377                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2378             pci_dev_put(pdev);
2379             return 0;
2380         }
2381 
2382         if (dev_descr->dom == SOCK)
2383             goto out_imc;
2384 
2385         sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2386         if (!sbridge_dev) {
2387             pci_dev_put(pdev);
2388             return -ENOMEM;
2389         }
2390         (*num_mc)++;
2391     }
2392 
2393     if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2394         sbridge_printk(KERN_ERR,
2395             "Duplicated device for %04x:%04x\n",
2396             PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2397         pci_dev_put(pdev);
2398         return -ENODEV;
2399     }
2400 
2401     sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2402 
2403     /* pdev belongs to more than one IMC, do extra gets */
2404     if (++i > 1)
2405         pci_dev_get(pdev);
2406 
2407     if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2408         goto next_imc;
2409 
2410 out_imc:
2411     /* Be sure that the device is enabled */
2412     if (unlikely(pci_enable_device(pdev) < 0)) {
2413         sbridge_printk(KERN_ERR,
2414             "Couldn't enable %04x:%04x\n",
2415             PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2416         return -ENODEV;
2417     }
2418 
2419     edac_dbg(0, "Detected %04x:%04x\n",
2420          PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2421 
2422     /*
2423      * As stated on drivers/pci/search.c, the reference count for
2424      * @from is always decremented if it is not %NULL. So, as we need
2425      * to get all devices up to null, we need to do a get for the device
2426      */
2427     pci_dev_get(pdev);
2428 
2429     *prev = pdev;
2430 
2431     return 0;
2432 }
2433 
2434 /*
2435  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2436  *               devices we want to reference for this driver.
2437  * @num_mc: pointer to the memory controllers count, to be incremented in case
2438  *      of success.
2439  * @table: model specific table
2440  *
2441  * returns 0 in case of success or error code
2442  */
2443 static int sbridge_get_all_devices(u8 *num_mc,
2444                     const struct pci_id_table *table)
2445 {
2446     int i, rc;
2447     struct pci_dev *pdev = NULL;
2448     int allow_dups = 0;
2449     int multi_bus = 0;
2450 
2451     if (table->type == KNIGHTS_LANDING)
2452         allow_dups = multi_bus = 1;
2453     while (table && table->descr) {
2454         for (i = 0; i < table->n_devs_per_sock; i++) {
2455             if (!allow_dups || i == 0 ||
2456                     table->descr[i].dev_id !=
2457                         table->descr[i-1].dev_id) {
2458                 pdev = NULL;
2459             }
2460             do {
2461                 rc = sbridge_get_onedevice(&pdev, num_mc,
2462                                table, i, multi_bus);
2463                 if (rc < 0) {
2464                     if (i == 0) {
2465                         i = table->n_devs_per_sock;
2466                         break;
2467                     }
2468                     sbridge_put_all_devices();
2469                     return -ENODEV;
2470                 }
2471             } while (pdev && !allow_dups);
2472         }
2473         table++;
2474     }
2475 
2476     return 0;
2477 }
2478 
2479 /*
2480  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2481  * the format: XXXa. So we can convert from a device to the corresponding
2482  * channel like this
2483  */
2484 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2485 
2486 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2487                  struct sbridge_dev *sbridge_dev)
2488 {
2489     struct sbridge_pvt *pvt = mci->pvt_info;
2490     struct pci_dev *pdev;
2491     u8 saw_chan_mask = 0;
2492     int i;
2493 
2494     for (i = 0; i < sbridge_dev->n_devs; i++) {
2495         pdev = sbridge_dev->pdev[i];
2496         if (!pdev)
2497             continue;
2498 
2499         switch (pdev->device) {
2500         case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2501             pvt->pci_sad0 = pdev;
2502             break;
2503         case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2504             pvt->pci_sad1 = pdev;
2505             break;
2506         case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2507             pvt->pci_br0 = pdev;
2508             break;
2509         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2510             pvt->pci_ha = pdev;
2511             break;
2512         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2513             pvt->pci_ta = pdev;
2514             break;
2515         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2516             pvt->pci_ras = pdev;
2517             break;
2518         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2519         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2520         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2521         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2522         {
2523             int id = TAD_DEV_TO_CHAN(pdev->device);
2524             pvt->pci_tad[id] = pdev;
2525             saw_chan_mask |= 1 << id;
2526         }
2527             break;
2528         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2529             pvt->pci_ddrio = pdev;
2530             break;
2531         default:
2532             goto error;
2533         }
2534 
2535         edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2536              pdev->vendor, pdev->device,
2537              sbridge_dev->bus,
2538              pdev);
2539     }
2540 
2541     /* Check if everything were registered */
2542     if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2543         !pvt->pci_ras || !pvt->pci_ta)
2544         goto enodev;
2545 
2546     if (saw_chan_mask != 0x0f)
2547         goto enodev;
2548     return 0;
2549 
2550 enodev:
2551     sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2552     return -ENODEV;
2553 
2554 error:
2555     sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2556                PCI_VENDOR_ID_INTEL, pdev->device);
2557     return -EINVAL;
2558 }
2559 
2560 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2561                  struct sbridge_dev *sbridge_dev)
2562 {
2563     struct sbridge_pvt *pvt = mci->pvt_info;
2564     struct pci_dev *pdev;
2565     u8 saw_chan_mask = 0;
2566     int i;
2567 
2568     for (i = 0; i < sbridge_dev->n_devs; i++) {
2569         pdev = sbridge_dev->pdev[i];
2570         if (!pdev)
2571             continue;
2572 
2573         switch (pdev->device) {
2574         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2575         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2576             pvt->pci_ha = pdev;
2577             break;
2578         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2579         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2580             pvt->pci_ta = pdev;
2581             break;
2582         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2583         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2584             pvt->pci_ras = pdev;
2585             break;
2586         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2587         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2588         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2589         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2590         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2591         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2592         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2593         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2594         {
2595             int id = TAD_DEV_TO_CHAN(pdev->device);
2596             pvt->pci_tad[id] = pdev;
2597             saw_chan_mask |= 1 << id;
2598         }
2599             break;
2600         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2601             pvt->pci_ddrio = pdev;
2602             break;
2603         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2604             pvt->pci_ddrio = pdev;
2605             break;
2606         case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2607             pvt->pci_sad0 = pdev;
2608             break;
2609         case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2610             pvt->pci_br0 = pdev;
2611             break;
2612         case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2613             pvt->pci_br1 = pdev;
2614             break;
2615         default:
2616             goto error;
2617         }
2618 
2619         edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2620              sbridge_dev->bus,
2621              PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2622              pdev);
2623     }
2624 
2625     /* Check if everything were registered */
2626     if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2627         !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2628         goto enodev;
2629 
2630     if (saw_chan_mask != 0x0f && /* -EN/-EX */
2631         saw_chan_mask != 0x03)   /* -EP */
2632         goto enodev;
2633     return 0;
2634 
2635 enodev:
2636     sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2637     return -ENODEV;
2638 
2639 error:
2640     sbridge_printk(KERN_ERR,
2641                "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2642             pdev->device);
2643     return -EINVAL;
2644 }
2645 
2646 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2647                  struct sbridge_dev *sbridge_dev)
2648 {
2649     struct sbridge_pvt *pvt = mci->pvt_info;
2650     struct pci_dev *pdev;
2651     u8 saw_chan_mask = 0;
2652     int i;
2653 
2654     /* there's only one device per system; not tied to any bus */
2655     if (pvt->info.pci_vtd == NULL)
2656         /* result will be checked later */
2657         pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2658                            PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2659                            NULL);
2660 
2661     for (i = 0; i < sbridge_dev->n_devs; i++) {
2662         pdev = sbridge_dev->pdev[i];
2663         if (!pdev)
2664             continue;
2665 
2666         switch (pdev->device) {
2667         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2668             pvt->pci_sad0 = pdev;
2669             break;
2670         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2671             pvt->pci_sad1 = pdev;
2672             break;
2673         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2674         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2675             pvt->pci_ha = pdev;
2676             break;
2677         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2678         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2679             pvt->pci_ta = pdev;
2680             break;
2681         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2682         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2683             pvt->pci_ras = pdev;
2684             break;
2685         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2686         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2687         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2688         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2689         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2690         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2691         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2692         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2693         {
2694             int id = TAD_DEV_TO_CHAN(pdev->device);
2695             pvt->pci_tad[id] = pdev;
2696             saw_chan_mask |= 1 << id;
2697         }
2698             break;
2699         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2700         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2701         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2702         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2703             if (!pvt->pci_ddrio)
2704                 pvt->pci_ddrio = pdev;
2705             break;
2706         default:
2707             break;
2708         }
2709 
2710         edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2711              sbridge_dev->bus,
2712              PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2713              pdev);
2714     }
2715 
2716     /* Check if everything were registered */
2717     if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2718         !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2719         goto enodev;
2720 
2721     if (saw_chan_mask != 0x0f && /* -EN/-EX */
2722         saw_chan_mask != 0x03)   /* -EP */
2723         goto enodev;
2724     return 0;
2725 
2726 enodev:
2727     sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2728     return -ENODEV;
2729 }
2730 
2731 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2732                  struct sbridge_dev *sbridge_dev)
2733 {
2734     struct sbridge_pvt *pvt = mci->pvt_info;
2735     struct pci_dev *pdev;
2736     u8 saw_chan_mask = 0;
2737     int i;
2738 
2739     /* there's only one device per system; not tied to any bus */
2740     if (pvt->info.pci_vtd == NULL)
2741         /* result will be checked later */
2742         pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2743                            PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2744                            NULL);
2745 
2746     for (i = 0; i < sbridge_dev->n_devs; i++) {
2747         pdev = sbridge_dev->pdev[i];
2748         if (!pdev)
2749             continue;
2750 
2751         switch (pdev->device) {
2752         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2753             pvt->pci_sad0 = pdev;
2754             break;
2755         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2756             pvt->pci_sad1 = pdev;
2757             break;
2758         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2759         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2760             pvt->pci_ha = pdev;
2761             break;
2762         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2763         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2764             pvt->pci_ta = pdev;
2765             break;
2766         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2767         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2768             pvt->pci_ras = pdev;
2769             break;
2770         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2771         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2772         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2773         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2774         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2775         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2776         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2777         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2778         {
2779             int id = TAD_DEV_TO_CHAN(pdev->device);
2780             pvt->pci_tad[id] = pdev;
2781             saw_chan_mask |= 1 << id;
2782         }
2783             break;
2784         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2785             pvt->pci_ddrio = pdev;
2786             break;
2787         default:
2788             break;
2789         }
2790 
2791         edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2792              sbridge_dev->bus,
2793              PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2794              pdev);
2795     }
2796 
2797     /* Check if everything were registered */
2798     if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2799         !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2800         goto enodev;
2801 
2802     if (saw_chan_mask != 0x0f && /* -EN/-EX */
2803         saw_chan_mask != 0x03)   /* -EP */
2804         goto enodev;
2805     return 0;
2806 
2807 enodev:
2808     sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2809     return -ENODEV;
2810 }
2811 
2812 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2813             struct sbridge_dev *sbridge_dev)
2814 {
2815     struct sbridge_pvt *pvt = mci->pvt_info;
2816     struct pci_dev *pdev;
2817     int dev, func;
2818 
2819     int i;
2820     int devidx;
2821 
2822     for (i = 0; i < sbridge_dev->n_devs; i++) {
2823         pdev = sbridge_dev->pdev[i];
2824         if (!pdev)
2825             continue;
2826 
2827         /* Extract PCI device and function. */
2828         dev = (pdev->devfn >> 3) & 0x1f;
2829         func = pdev->devfn & 0x7;
2830 
2831         switch (pdev->device) {
2832         case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2833             if (dev == 8)
2834                 pvt->knl.pci_mc0 = pdev;
2835             else if (dev == 9)
2836                 pvt->knl.pci_mc1 = pdev;
2837             else {
2838                 sbridge_printk(KERN_ERR,
2839                     "Memory controller in unexpected place! (dev %d, fn %d)\n",
2840                     dev, func);
2841                 continue;
2842             }
2843             break;
2844 
2845         case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2846             pvt->pci_sad0 = pdev;
2847             break;
2848 
2849         case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2850             pvt->pci_sad1 = pdev;
2851             break;
2852 
2853         case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2854             /* There are one of these per tile, and range from
2855              * 1.14.0 to 1.18.5.
2856              */
2857             devidx = ((dev-14)*8)+func;
2858 
2859             if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2860                 sbridge_printk(KERN_ERR,
2861                     "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2862                     dev, func);
2863                 continue;
2864             }
2865 
2866             WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2867 
2868             pvt->knl.pci_cha[devidx] = pdev;
2869             break;
2870 
2871         case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2872             devidx = -1;
2873 
2874             /*
2875              *  MC0 channels 0-2 are device 9 function 2-4,
2876              *  MC1 channels 3-5 are device 8 function 2-4.
2877              */
2878 
2879             if (dev == 9)
2880                 devidx = func-2;
2881             else if (dev == 8)
2882                 devidx = 3 + (func-2);
2883 
2884             if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2885                 sbridge_printk(KERN_ERR,
2886                     "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2887                     dev, func);
2888                 continue;
2889             }
2890 
2891             WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2892             pvt->knl.pci_channel[devidx] = pdev;
2893             break;
2894 
2895         case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2896             pvt->knl.pci_mc_info = pdev;
2897             break;
2898 
2899         case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2900             pvt->pci_ta = pdev;
2901             break;
2902 
2903         default:
2904             sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2905                 pdev->device);
2906             break;
2907         }
2908     }
2909 
2910     if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2911         !pvt->pci_sad0     || !pvt->pci_sad1    ||
2912         !pvt->pci_ta) {
2913         goto enodev;
2914     }
2915 
2916     for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2917         if (!pvt->knl.pci_channel[i]) {
2918             sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2919             goto enodev;
2920         }
2921     }
2922 
2923     for (i = 0; i < KNL_MAX_CHAS; i++) {
2924         if (!pvt->knl.pci_cha[i]) {
2925             sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2926             goto enodev;
2927         }
2928     }
2929 
2930     return 0;
2931 
2932 enodev:
2933     sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2934     return -ENODEV;
2935 }
2936 
2937 /****************************************************************************
2938             Error check routines
2939  ****************************************************************************/
2940 
2941 /*
2942  * While Sandy Bridge has error count registers, SMI BIOS read values from
2943  * and resets the counters. So, they are not reliable for the OS to read
2944  * from them. So, we have no option but to just trust on whatever MCE is
2945  * telling us about the errors.
2946  */
2947 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2948                     const struct mce *m)
2949 {
2950     struct mem_ctl_info *new_mci;
2951     struct sbridge_pvt *pvt = mci->pvt_info;
2952     enum hw_event_mc_err_type tp_event;
2953     char *optype, msg[256];
2954     bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2955     bool overflow = GET_BITFIELD(m->status, 62, 62);
2956     bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2957     bool recoverable;
2958     u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2959     u32 mscod = GET_BITFIELD(m->status, 16, 31);
2960     u32 errcode = GET_BITFIELD(m->status, 0, 15);
2961     u32 channel = GET_BITFIELD(m->status, 0, 3);
2962     u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2963     /*
2964      * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2965      * A value 6 is for cache line aligned address, a value 12 is for page
2966      * aligned address reported by patrol scrubber.
2967      */
2968     u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2969     long channel_mask, first_channel;
2970     u8  rank = 0xff, socket, ha;
2971     int rc, dimm;
2972     char *area_type = "DRAM";
2973 
2974     if (pvt->info.type != SANDY_BRIDGE)
2975         recoverable = true;
2976     else
2977         recoverable = GET_BITFIELD(m->status, 56, 56);
2978 
2979     if (uncorrected_error) {
2980         core_err_cnt = 1;
2981         if (ripv) {
2982             tp_event = HW_EVENT_ERR_UNCORRECTED;
2983         } else {
2984             tp_event = HW_EVENT_ERR_FATAL;
2985         }
2986     } else {
2987         tp_event = HW_EVENT_ERR_CORRECTED;
2988     }
2989 
2990     /*
2991      * According with Table 15-9 of the Intel Architecture spec vol 3A,
2992      * memory errors should fit in this mask:
2993      *  000f 0000 1mmm cccc (binary)
2994      * where:
2995      *  f = Correction Report Filtering Bit. If 1, subsequent errors
2996      *      won't be shown
2997      *  mmm = error type
2998      *  cccc = channel
2999      * If the mask doesn't match, report an error to the parsing logic
3000      */
3001     switch (optypenum) {
3002     case 0:
3003         optype = "generic undef request error";
3004         break;
3005     case 1:
3006         optype = "memory read error";
3007         break;
3008     case 2:
3009         optype = "memory write error";
3010         break;
3011     case 3:
3012         optype = "addr/cmd error";
3013         break;
3014     case 4:
3015         optype = "memory scrubbing error";
3016         break;
3017     default:
3018         optype = "reserved";
3019         break;
3020     }
3021 
3022     if (pvt->info.type == KNIGHTS_LANDING) {
3023         if (channel == 14) {
3024             edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3025                 overflow ? " OVERFLOW" : "",
3026                 (uncorrected_error && recoverable)
3027                 ? " recoverable" : "",
3028                 mscod, errcode,
3029                 m->bank);
3030         } else {
3031             char A = *("A");
3032 
3033             /*
3034              * Reported channel is in range 0-2, so we can't map it
3035              * back to mc. To figure out mc we check machine check
3036              * bank register that reported this error.
3037              * bank15 means mc0 and bank16 means mc1.
3038              */
3039             channel = knl_channel_remap(m->bank == 16, channel);
3040             channel_mask = 1 << channel;
3041 
3042             snprintf(msg, sizeof(msg),
3043                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3044                 overflow ? " OVERFLOW" : "",
3045                 (uncorrected_error && recoverable)
3046                 ? " recoverable" : " ",
3047                 mscod, errcode, channel, A + channel);
3048             edac_mc_handle_error(tp_event, mci, core_err_cnt,
3049                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3050                 channel, 0, -1,
3051                 optype, msg);
3052         }
3053         return;
3054     } else if (lsb < 12) {
3055         rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3056                        &channel_mask, &rank,
3057                        &area_type, msg);
3058     } else {
3059         rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3060                             &channel_mask, msg);
3061     }
3062 
3063     if (rc < 0)
3064         goto err_parsing;
3065     new_mci = get_mci_for_node_id(socket, ha);
3066     if (!new_mci) {
3067         strcpy(msg, "Error: socket got corrupted!");
3068         goto err_parsing;
3069     }
3070     mci = new_mci;
3071     pvt = mci->pvt_info;
3072 
3073     first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3074 
3075     if (rank == 0xff)
3076         dimm = -1;
3077     else if (rank < 4)
3078         dimm = 0;
3079     else if (rank < 8)
3080         dimm = 1;
3081     else
3082         dimm = 2;
3083 
3084     /*
3085      * FIXME: On some memory configurations (mirror, lockstep), the
3086      * Memory Controller can't point the error to a single DIMM. The
3087      * EDAC core should be handling the channel mask, in order to point
3088      * to the group of dimm's where the error may be happening.
3089      */
3090     if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3091         channel = first_channel;
3092 
3093     snprintf(msg, sizeof(msg),
3094          "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3095          overflow ? " OVERFLOW" : "",
3096          (uncorrected_error && recoverable) ? " recoverable" : "",
3097          area_type,
3098          mscod, errcode,
3099          socket, ha,
3100          channel_mask,
3101          rank);
3102 
3103     edac_dbg(0, "%s\n", msg);
3104 
3105     /* FIXME: need support for channel mask */
3106 
3107     if (channel == CHANNEL_UNSPECIFIED)
3108         channel = -1;
3109 
3110     /* Call the helper to output message */
3111     edac_mc_handle_error(tp_event, mci, core_err_cnt,
3112                  m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3113                  channel, dimm, -1,
3114                  optype, msg);
3115     return;
3116 err_parsing:
3117     edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3118                  -1, -1, -1,
3119                  msg, "");
3120 
3121 }
3122 
3123 /*
3124  * Check that logging is enabled and that this is the right type
3125  * of error for us to handle.
3126  */
3127 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3128                    void *data)
3129 {
3130     struct mce *mce = (struct mce *)data;
3131     struct mem_ctl_info *mci;
3132     char *type;
3133 
3134     if (mce->kflags & MCE_HANDLED_CEC)
3135         return NOTIFY_DONE;
3136 
3137     /*
3138      * Just let mcelog handle it if the error is
3139      * outside the memory controller. A memory error
3140      * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3141      * bit 12 has an special meaning.
3142      */
3143     if ((mce->status & 0xefff) >> 7 != 1)
3144         return NOTIFY_DONE;
3145 
3146     /* Check ADDRV bit in STATUS */
3147     if (!GET_BITFIELD(mce->status, 58, 58))
3148         return NOTIFY_DONE;
3149 
3150     /* Check MISCV bit in STATUS */
3151     if (!GET_BITFIELD(mce->status, 59, 59))
3152         return NOTIFY_DONE;
3153 
3154     /* Check address type in MISC (physical address only) */
3155     if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3156         return NOTIFY_DONE;
3157 
3158     mci = get_mci_for_node_id(mce->socketid, IMC0);
3159     if (!mci)
3160         return NOTIFY_DONE;
3161 
3162     if (mce->mcgstatus & MCG_STATUS_MCIP)
3163         type = "Exception";
3164     else
3165         type = "Event";
3166 
3167     sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3168 
3169     sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3170               "Bank %d: %016Lx\n", mce->extcpu, type,
3171               mce->mcgstatus, mce->bank, mce->status);
3172     sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3173     sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3174     sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3175 
3176     sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3177               "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3178               mce->time, mce->socketid, mce->apicid);
3179 
3180     sbridge_mce_output_error(mci, mce);
3181 
3182     /* Advice mcelog that the error were handled */
3183     mce->kflags |= MCE_HANDLED_EDAC;
3184     return NOTIFY_OK;
3185 }
3186 
3187 static struct notifier_block sbridge_mce_dec = {
3188     .notifier_call  = sbridge_mce_check_error,
3189     .priority   = MCE_PRIO_EDAC,
3190 };
3191 
3192 /****************************************************************************
3193             EDAC register/unregister logic
3194  ****************************************************************************/
3195 
3196 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3197 {
3198     struct mem_ctl_info *mci = sbridge_dev->mci;
3199 
3200     if (unlikely(!mci || !mci->pvt_info)) {
3201         edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3202 
3203         sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3204         return;
3205     }
3206 
3207     edac_dbg(0, "MC: mci = %p, dev = %p\n",
3208          mci, &sbridge_dev->pdev[0]->dev);
3209 
3210     /* Remove MC sysfs nodes */
3211     edac_mc_del_mc(mci->pdev);
3212 
3213     edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3214     kfree(mci->ctl_name);
3215     edac_mc_free(mci);
3216     sbridge_dev->mci = NULL;
3217 }
3218 
3219 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3220 {
3221     struct mem_ctl_info *mci;
3222     struct edac_mc_layer layers[2];
3223     struct sbridge_pvt *pvt;
3224     struct pci_dev *pdev = sbridge_dev->pdev[0];
3225     int rc;
3226 
3227     /* allocate a new MC control structure */
3228     layers[0].type = EDAC_MC_LAYER_CHANNEL;
3229     layers[0].size = type == KNIGHTS_LANDING ?
3230         KNL_MAX_CHANNELS : NUM_CHANNELS;
3231     layers[0].is_virt_csrow = false;
3232     layers[1].type = EDAC_MC_LAYER_SLOT;
3233     layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3234     layers[1].is_virt_csrow = true;
3235     mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3236                 sizeof(*pvt));
3237 
3238     if (unlikely(!mci))
3239         return -ENOMEM;
3240 
3241     edac_dbg(0, "MC: mci = %p, dev = %p\n",
3242          mci, &pdev->dev);
3243 
3244     pvt = mci->pvt_info;
3245     memset(pvt, 0, sizeof(*pvt));
3246 
3247     /* Associate sbridge_dev and mci for future usage */
3248     pvt->sbridge_dev = sbridge_dev;
3249     sbridge_dev->mci = mci;
3250 
3251     mci->mtype_cap = type == KNIGHTS_LANDING ?
3252         MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3253     mci->edac_ctl_cap = EDAC_FLAG_NONE;
3254     mci->edac_cap = EDAC_FLAG_NONE;
3255     mci->mod_name = EDAC_MOD_STR;
3256     mci->dev_name = pci_name(pdev);
3257     mci->ctl_page_to_phys = NULL;
3258 
3259     pvt->info.type = type;
3260     switch (type) {
3261     case IVY_BRIDGE:
3262         pvt->info.rankcfgr = IB_RANK_CFG_A;
3263         pvt->info.get_tolm = ibridge_get_tolm;
3264         pvt->info.get_tohm = ibridge_get_tohm;
3265         pvt->info.dram_rule = ibridge_dram_rule;
3266         pvt->info.get_memory_type = get_memory_type;
3267         pvt->info.get_node_id = get_node_id;
3268         pvt->info.get_ha = ibridge_get_ha;
3269         pvt->info.rir_limit = rir_limit;
3270         pvt->info.sad_limit = sad_limit;
3271         pvt->info.interleave_mode = interleave_mode;
3272         pvt->info.dram_attr = dram_attr;
3273         pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3274         pvt->info.interleave_list = ibridge_interleave_list;
3275         pvt->info.interleave_pkg = ibridge_interleave_pkg;
3276         pvt->info.get_width = ibridge_get_width;
3277 
3278         /* Store pci devices at mci for faster access */
3279         rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3280         if (unlikely(rc < 0))
3281             goto fail0;
3282         get_source_id(mci);
3283         mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3284             pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3285         break;
3286     case SANDY_BRIDGE:
3287         pvt->info.rankcfgr = SB_RANK_CFG_A;
3288         pvt->info.get_tolm = sbridge_get_tolm;
3289         pvt->info.get_tohm = sbridge_get_tohm;
3290         pvt->info.dram_rule = sbridge_dram_rule;
3291         pvt->info.get_memory_type = get_memory_type;
3292         pvt->info.get_node_id = get_node_id;
3293         pvt->info.get_ha = sbridge_get_ha;
3294         pvt->info.rir_limit = rir_limit;
3295         pvt->info.sad_limit = sad_limit;
3296         pvt->info.interleave_mode = interleave_mode;
3297         pvt->info.dram_attr = dram_attr;
3298         pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3299         pvt->info.interleave_list = sbridge_interleave_list;
3300         pvt->info.interleave_pkg = sbridge_interleave_pkg;
3301         pvt->info.get_width = sbridge_get_width;
3302 
3303         /* Store pci devices at mci for faster access */
3304         rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3305         if (unlikely(rc < 0))
3306             goto fail0;
3307         get_source_id(mci);
3308         mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3309             pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3310         break;
3311     case HASWELL:
3312         /* rankcfgr isn't used */
3313         pvt->info.get_tolm = haswell_get_tolm;
3314         pvt->info.get_tohm = haswell_get_tohm;
3315         pvt->info.dram_rule = ibridge_dram_rule;
3316         pvt->info.get_memory_type = haswell_get_memory_type;
3317         pvt->info.get_node_id = haswell_get_node_id;
3318         pvt->info.get_ha = ibridge_get_ha;
3319         pvt->info.rir_limit = haswell_rir_limit;
3320         pvt->info.sad_limit = sad_limit;
3321         pvt->info.interleave_mode = interleave_mode;
3322         pvt->info.dram_attr = dram_attr;
3323         pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3324         pvt->info.interleave_list = ibridge_interleave_list;
3325         pvt->info.interleave_pkg = ibridge_interleave_pkg;
3326         pvt->info.get_width = ibridge_get_width;
3327 
3328         /* Store pci devices at mci for faster access */
3329         rc = haswell_mci_bind_devs(mci, sbridge_dev);
3330         if (unlikely(rc < 0))
3331             goto fail0;
3332         get_source_id(mci);
3333         mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3334             pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3335         break;
3336     case BROADWELL:
3337         /* rankcfgr isn't used */
3338         pvt->info.get_tolm = haswell_get_tolm;
3339         pvt->info.get_tohm = haswell_get_tohm;
3340         pvt->info.dram_rule = ibridge_dram_rule;
3341         pvt->info.get_memory_type = haswell_get_memory_type;
3342         pvt->info.get_node_id = haswell_get_node_id;
3343         pvt->info.get_ha = ibridge_get_ha;
3344         pvt->info.rir_limit = haswell_rir_limit;
3345         pvt->info.sad_limit = sad_limit;
3346         pvt->info.interleave_mode = interleave_mode;
3347         pvt->info.dram_attr = dram_attr;
3348         pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3349         pvt->info.interleave_list = ibridge_interleave_list;
3350         pvt->info.interleave_pkg = ibridge_interleave_pkg;
3351         pvt->info.get_width = broadwell_get_width;
3352 
3353         /* Store pci devices at mci for faster access */
3354         rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3355         if (unlikely(rc < 0))
3356             goto fail0;
3357         get_source_id(mci);
3358         mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3359             pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3360         break;
3361     case KNIGHTS_LANDING:
3362         /* pvt->info.rankcfgr == ??? */
3363         pvt->info.get_tolm = knl_get_tolm;
3364         pvt->info.get_tohm = knl_get_tohm;
3365         pvt->info.dram_rule = knl_dram_rule;
3366         pvt->info.get_memory_type = knl_get_memory_type;
3367         pvt->info.get_node_id = knl_get_node_id;
3368         pvt->info.get_ha = knl_get_ha;
3369         pvt->info.rir_limit = NULL;
3370         pvt->info.sad_limit = knl_sad_limit;
3371         pvt->info.interleave_mode = knl_interleave_mode;
3372         pvt->info.dram_attr = dram_attr_knl;
3373         pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3374         pvt->info.interleave_list = knl_interleave_list;
3375         pvt->info.interleave_pkg = ibridge_interleave_pkg;
3376         pvt->info.get_width = knl_get_width;
3377 
3378         rc = knl_mci_bind_devs(mci, sbridge_dev);
3379         if (unlikely(rc < 0))
3380             goto fail0;
3381         get_source_id(mci);
3382         mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3383             pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3384         break;
3385     }
3386 
3387     if (!mci->ctl_name) {
3388         rc = -ENOMEM;
3389         goto fail0;
3390     }
3391 
3392     /* Get dimm basic config and the memory layout */
3393     rc = get_dimm_config(mci);
3394     if (rc < 0) {
3395         edac_dbg(0, "MC: failed to get_dimm_config()\n");
3396         goto fail;
3397     }
3398     get_memory_layout(mci);
3399 
3400     /* record ptr to the generic device */
3401     mci->pdev = &pdev->dev;
3402 
3403     /* add this new MC control structure to EDAC's list of MCs */
3404     if (unlikely(edac_mc_add_mc(mci))) {
3405         edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3406         rc = -EINVAL;
3407         goto fail;
3408     }
3409 
3410     return 0;
3411 
3412 fail:
3413     kfree(mci->ctl_name);
3414 fail0:
3415     edac_mc_free(mci);
3416     sbridge_dev->mci = NULL;
3417     return rc;
3418 }
3419 
3420 static const struct x86_cpu_id sbridge_cpuids[] = {
3421     X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3422     X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,   &pci_dev_descr_ibridge_table),
3423     X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,     &pci_dev_descr_haswell_table),
3424     X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,   &pci_dev_descr_broadwell_table),
3425     X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,   &pci_dev_descr_broadwell_table),
3426     X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
3427     X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
3428     { }
3429 };
3430 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3431 
3432 /*
3433  *  sbridge_probe   Get all devices and register memory controllers
3434  *          present.
3435  *  return:
3436  *      0 for FOUND a device
3437  *      < 0 for error code
3438  */
3439 
3440 static int sbridge_probe(const struct x86_cpu_id *id)
3441 {
3442     int rc;
3443     u8 mc, num_mc = 0;
3444     struct sbridge_dev *sbridge_dev;
3445     struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3446 
3447     /* get the pci devices we want to reserve for our use */
3448     rc = sbridge_get_all_devices(&num_mc, ptable);
3449 
3450     if (unlikely(rc < 0)) {
3451         edac_dbg(0, "couldn't get all devices\n");
3452         goto fail0;
3453     }
3454 
3455     mc = 0;
3456 
3457     list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3458         edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3459              mc, mc + 1, num_mc);
3460 
3461         sbridge_dev->mc = mc++;
3462         rc = sbridge_register_mci(sbridge_dev, ptable->type);
3463         if (unlikely(rc < 0))
3464             goto fail1;
3465     }
3466 
3467     sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3468 
3469     return 0;
3470 
3471 fail1:
3472     list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3473         sbridge_unregister_mci(sbridge_dev);
3474 
3475     sbridge_put_all_devices();
3476 fail0:
3477     return rc;
3478 }
3479 
3480 /*
3481  *  sbridge_remove  cleanup
3482  *
3483  */
3484 static void sbridge_remove(void)
3485 {
3486     struct sbridge_dev *sbridge_dev;
3487 
3488     edac_dbg(0, "\n");
3489 
3490     list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3491         sbridge_unregister_mci(sbridge_dev);
3492 
3493     /* Release PCI resources */
3494     sbridge_put_all_devices();
3495 }
3496 
3497 /*
3498  *  sbridge_init        Module entry function
3499  *          Try to initialize this module for its devices
3500  */
3501 static int __init sbridge_init(void)
3502 {
3503     const struct x86_cpu_id *id;
3504     const char *owner;
3505     int rc;
3506 
3507     edac_dbg(2, "\n");
3508 
3509     owner = edac_get_owner();
3510     if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3511         return -EBUSY;
3512 
3513     if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3514         return -ENODEV;
3515 
3516     id = x86_match_cpu(sbridge_cpuids);
3517     if (!id)
3518         return -ENODEV;
3519 
3520     /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3521     opstate_init();
3522 
3523     rc = sbridge_probe(id);
3524 
3525     if (rc >= 0) {
3526         mce_register_decode_chain(&sbridge_mce_dec);
3527         return 0;
3528     }
3529 
3530     sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3531               rc);
3532 
3533     return rc;
3534 }
3535 
3536 /*
3537  *  sbridge_exit()  Module exit function
3538  *          Unregister the driver
3539  */
3540 static void __exit sbridge_exit(void)
3541 {
3542     edac_dbg(2, "\n");
3543     sbridge_remove();
3544     mce_unregister_decode_chain(&sbridge_mce_dec);
3545 }
3546 
3547 module_init(sbridge_init);
3548 module_exit(sbridge_exit);
3549 
3550 module_param(edac_op_state, int, 0444);
3551 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3552 
3553 MODULE_LICENSE("GPL");
3554 MODULE_AUTHOR("Mauro Carvalho Chehab");
3555 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3556 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3557            SBRIDGE_REVISION);