0001
0002
0003
0004
0005 #include <linux/cpu_pm.h>
0006 #include <linux/delay.h>
0007 #include <linux/dmaengine.h>
0008 #include <linux/dma-mapping.h>
0009 #include <linux/dmapool.h>
0010 #include <linux/err.h>
0011 #include <linux/init.h>
0012 #include <linux/interrupt.h>
0013 #include <linux/list.h>
0014 #include <linux/module.h>
0015 #include <linux/omap-dma.h>
0016 #include <linux/platform_device.h>
0017 #include <linux/slab.h>
0018 #include <linux/spinlock.h>
0019 #include <linux/of_dma.h>
0020 #include <linux/of_device.h>
0021
0022 #include "../virt-dma.h"
0023
0024 #define OMAP_SDMA_REQUESTS 127
0025 #define OMAP_SDMA_CHANNELS 32
0026
0027 struct omap_dma_config {
0028 int lch_end;
0029 unsigned int rw_priority:1;
0030 unsigned int needs_busy_check:1;
0031 unsigned int may_lose_context:1;
0032 unsigned int needs_lch_clear:1;
0033 };
0034
0035 struct omap_dma_context {
0036 u32 irqenable_l0;
0037 u32 irqenable_l1;
0038 u32 ocp_sysconfig;
0039 u32 gcr;
0040 };
0041
0042 struct omap_dmadev {
0043 struct dma_device ddev;
0044 spinlock_t lock;
0045 void __iomem *base;
0046 const struct omap_dma_reg *reg_map;
0047 struct omap_system_dma_plat_info *plat;
0048 const struct omap_dma_config *cfg;
0049 struct notifier_block nb;
0050 struct omap_dma_context context;
0051 int lch_count;
0052 DECLARE_BITMAP(lch_bitmap, OMAP_SDMA_CHANNELS);
0053 struct mutex lch_lock;
0054 bool legacy;
0055 bool ll123_supported;
0056 struct dma_pool *desc_pool;
0057 unsigned dma_requests;
0058 spinlock_t irq_lock;
0059 uint32_t irq_enable_mask;
0060 struct omap_chan **lch_map;
0061 };
0062
0063 struct omap_chan {
0064 struct virt_dma_chan vc;
0065 void __iomem *channel_base;
0066 const struct omap_dma_reg *reg_map;
0067 uint32_t ccr;
0068
0069 struct dma_slave_config cfg;
0070 unsigned dma_sig;
0071 bool cyclic;
0072 bool paused;
0073 bool running;
0074
0075 int dma_ch;
0076 struct omap_desc *desc;
0077 unsigned sgidx;
0078 };
0079
0080 #define DESC_NXT_SV_REFRESH (0x1 << 24)
0081 #define DESC_NXT_SV_REUSE (0x2 << 24)
0082 #define DESC_NXT_DV_REFRESH (0x1 << 26)
0083 #define DESC_NXT_DV_REUSE (0x2 << 26)
0084 #define DESC_NTYPE_TYPE2 (0x2 << 29)
0085
0086
0087 struct omap_type2_desc {
0088 uint32_t next_desc;
0089 uint32_t en;
0090 uint32_t addr;
0091 uint16_t fn;
0092 uint16_t cicr;
0093 int16_t cdei;
0094 int16_t csei;
0095 int32_t cdfi;
0096 int32_t csfi;
0097 } __packed;
0098
0099 struct omap_sg {
0100 dma_addr_t addr;
0101 uint32_t en;
0102 uint32_t fn;
0103 int32_t fi;
0104 int16_t ei;
0105
0106
0107 struct omap_type2_desc *t2_desc;
0108 dma_addr_t t2_desc_paddr;
0109 };
0110
0111 struct omap_desc {
0112 struct virt_dma_desc vd;
0113 bool using_ll;
0114 enum dma_transfer_direction dir;
0115 dma_addr_t dev_addr;
0116 bool polled;
0117
0118 int32_t fi;
0119 int16_t ei;
0120 uint8_t es;
0121 uint32_t ccr;
0122 uint16_t clnk_ctrl;
0123 uint16_t cicr;
0124 uint32_t csdp;
0125
0126 unsigned sglen;
0127 struct omap_sg sg[];
0128 };
0129
0130 enum {
0131 CAPS_0_SUPPORT_LL123 = BIT(20),
0132 CAPS_0_SUPPORT_LL4 = BIT(21),
0133
0134 CCR_FS = BIT(5),
0135 CCR_READ_PRIORITY = BIT(6),
0136 CCR_ENABLE = BIT(7),
0137 CCR_AUTO_INIT = BIT(8),
0138 CCR_REPEAT = BIT(9),
0139 CCR_OMAP31_DISABLE = BIT(10),
0140 CCR_SUSPEND_SENSITIVE = BIT(8),
0141 CCR_RD_ACTIVE = BIT(9),
0142 CCR_WR_ACTIVE = BIT(10),
0143 CCR_SRC_AMODE_CONSTANT = 0 << 12,
0144 CCR_SRC_AMODE_POSTINC = 1 << 12,
0145 CCR_SRC_AMODE_SGLIDX = 2 << 12,
0146 CCR_SRC_AMODE_DBLIDX = 3 << 12,
0147 CCR_DST_AMODE_CONSTANT = 0 << 14,
0148 CCR_DST_AMODE_POSTINC = 1 << 14,
0149 CCR_DST_AMODE_SGLIDX = 2 << 14,
0150 CCR_DST_AMODE_DBLIDX = 3 << 14,
0151 CCR_CONSTANT_FILL = BIT(16),
0152 CCR_TRANSPARENT_COPY = BIT(17),
0153 CCR_BS = BIT(18),
0154 CCR_SUPERVISOR = BIT(22),
0155 CCR_PREFETCH = BIT(23),
0156 CCR_TRIGGER_SRC = BIT(24),
0157 CCR_BUFFERING_DISABLE = BIT(25),
0158 CCR_WRITE_PRIORITY = BIT(26),
0159 CCR_SYNC_ELEMENT = 0,
0160 CCR_SYNC_FRAME = CCR_FS,
0161 CCR_SYNC_BLOCK = CCR_BS,
0162 CCR_SYNC_PACKET = CCR_BS | CCR_FS,
0163
0164 CSDP_DATA_TYPE_8 = 0,
0165 CSDP_DATA_TYPE_16 = 1,
0166 CSDP_DATA_TYPE_32 = 2,
0167 CSDP_SRC_PORT_EMIFF = 0 << 2,
0168 CSDP_SRC_PORT_EMIFS = 1 << 2,
0169 CSDP_SRC_PORT_OCP_T1 = 2 << 2,
0170 CSDP_SRC_PORT_TIPB = 3 << 2,
0171 CSDP_SRC_PORT_OCP_T2 = 4 << 2,
0172 CSDP_SRC_PORT_MPUI = 5 << 2,
0173 CSDP_SRC_PACKED = BIT(6),
0174 CSDP_SRC_BURST_1 = 0 << 7,
0175 CSDP_SRC_BURST_16 = 1 << 7,
0176 CSDP_SRC_BURST_32 = 2 << 7,
0177 CSDP_SRC_BURST_64 = 3 << 7,
0178 CSDP_DST_PORT_EMIFF = 0 << 9,
0179 CSDP_DST_PORT_EMIFS = 1 << 9,
0180 CSDP_DST_PORT_OCP_T1 = 2 << 9,
0181 CSDP_DST_PORT_TIPB = 3 << 9,
0182 CSDP_DST_PORT_OCP_T2 = 4 << 9,
0183 CSDP_DST_PORT_MPUI = 5 << 9,
0184 CSDP_DST_PACKED = BIT(13),
0185 CSDP_DST_BURST_1 = 0 << 14,
0186 CSDP_DST_BURST_16 = 1 << 14,
0187 CSDP_DST_BURST_32 = 2 << 14,
0188 CSDP_DST_BURST_64 = 3 << 14,
0189 CSDP_WRITE_NON_POSTED = 0 << 16,
0190 CSDP_WRITE_POSTED = 1 << 16,
0191 CSDP_WRITE_LAST_NON_POSTED = 2 << 16,
0192
0193 CICR_TOUT_IE = BIT(0),
0194 CICR_DROP_IE = BIT(1),
0195 CICR_HALF_IE = BIT(2),
0196 CICR_FRAME_IE = BIT(3),
0197 CICR_LAST_IE = BIT(4),
0198 CICR_BLOCK_IE = BIT(5),
0199 CICR_PKT_IE = BIT(7),
0200 CICR_TRANS_ERR_IE = BIT(8),
0201 CICR_SUPERVISOR_ERR_IE = BIT(10),
0202 CICR_MISALIGNED_ERR_IE = BIT(11),
0203 CICR_DRAIN_IE = BIT(12),
0204 CICR_SUPER_BLOCK_IE = BIT(14),
0205
0206 CLNK_CTRL_ENABLE_LNK = BIT(15),
0207
0208 CDP_DST_VALID_INC = 0 << 0,
0209 CDP_DST_VALID_RELOAD = 1 << 0,
0210 CDP_DST_VALID_REUSE = 2 << 0,
0211 CDP_SRC_VALID_INC = 0 << 2,
0212 CDP_SRC_VALID_RELOAD = 1 << 2,
0213 CDP_SRC_VALID_REUSE = 2 << 2,
0214 CDP_NTYPE_TYPE1 = 1 << 4,
0215 CDP_NTYPE_TYPE2 = 2 << 4,
0216 CDP_NTYPE_TYPE3 = 3 << 4,
0217 CDP_TMODE_NORMAL = 0 << 8,
0218 CDP_TMODE_LLIST = 1 << 8,
0219 CDP_FAST = BIT(10),
0220 };
0221
0222 static const unsigned es_bytes[] = {
0223 [CSDP_DATA_TYPE_8] = 1,
0224 [CSDP_DATA_TYPE_16] = 2,
0225 [CSDP_DATA_TYPE_32] = 4,
0226 };
0227
0228 static bool omap_dma_filter_fn(struct dma_chan *chan, void *param);
0229 static struct of_dma_filter_info omap_dma_info = {
0230 .filter_fn = omap_dma_filter_fn,
0231 };
0232
0233 static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
0234 {
0235 return container_of(d, struct omap_dmadev, ddev);
0236 }
0237
0238 static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
0239 {
0240 return container_of(c, struct omap_chan, vc.chan);
0241 }
0242
0243 static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
0244 {
0245 return container_of(t, struct omap_desc, vd.tx);
0246 }
0247
0248 static void omap_dma_desc_free(struct virt_dma_desc *vd)
0249 {
0250 struct omap_desc *d = to_omap_dma_desc(&vd->tx);
0251
0252 if (d->using_ll) {
0253 struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
0254 int i;
0255
0256 for (i = 0; i < d->sglen; i++) {
0257 if (d->sg[i].t2_desc)
0258 dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
0259 d->sg[i].t2_desc_paddr);
0260 }
0261 }
0262
0263 kfree(d);
0264 }
0265
0266 static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
0267 enum dma_transfer_direction dir, bool last)
0268 {
0269 struct omap_sg *sg = &d->sg[idx];
0270 struct omap_type2_desc *t2_desc = sg->t2_desc;
0271
0272 if (idx)
0273 d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
0274 if (last)
0275 t2_desc->next_desc = 0xfffffffc;
0276
0277 t2_desc->en = sg->en;
0278 t2_desc->addr = sg->addr;
0279 t2_desc->fn = sg->fn & 0xffff;
0280 t2_desc->cicr = d->cicr;
0281 if (!last)
0282 t2_desc->cicr &= ~CICR_BLOCK_IE;
0283
0284 switch (dir) {
0285 case DMA_DEV_TO_MEM:
0286 t2_desc->cdei = sg->ei;
0287 t2_desc->csei = d->ei;
0288 t2_desc->cdfi = sg->fi;
0289 t2_desc->csfi = d->fi;
0290
0291 t2_desc->en |= DESC_NXT_DV_REFRESH;
0292 t2_desc->en |= DESC_NXT_SV_REUSE;
0293 break;
0294 case DMA_MEM_TO_DEV:
0295 t2_desc->cdei = d->ei;
0296 t2_desc->csei = sg->ei;
0297 t2_desc->cdfi = d->fi;
0298 t2_desc->csfi = sg->fi;
0299
0300 t2_desc->en |= DESC_NXT_SV_REFRESH;
0301 t2_desc->en |= DESC_NXT_DV_REUSE;
0302 break;
0303 default:
0304 return;
0305 }
0306
0307 t2_desc->en |= DESC_NTYPE_TYPE2;
0308 }
0309
0310 static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
0311 {
0312 switch (type) {
0313 case OMAP_DMA_REG_16BIT:
0314 writew_relaxed(val, addr);
0315 break;
0316 case OMAP_DMA_REG_2X16BIT:
0317 writew_relaxed(val, addr);
0318 writew_relaxed(val >> 16, addr + 2);
0319 break;
0320 case OMAP_DMA_REG_32BIT:
0321 writel_relaxed(val, addr);
0322 break;
0323 default:
0324 WARN_ON(1);
0325 }
0326 }
0327
0328 static unsigned omap_dma_read(unsigned type, void __iomem *addr)
0329 {
0330 unsigned val;
0331
0332 switch (type) {
0333 case OMAP_DMA_REG_16BIT:
0334 val = readw_relaxed(addr);
0335 break;
0336 case OMAP_DMA_REG_2X16BIT:
0337 val = readw_relaxed(addr);
0338 val |= readw_relaxed(addr + 2) << 16;
0339 break;
0340 case OMAP_DMA_REG_32BIT:
0341 val = readl_relaxed(addr);
0342 break;
0343 default:
0344 WARN_ON(1);
0345 val = 0;
0346 }
0347
0348 return val;
0349 }
0350
0351 static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
0352 {
0353 const struct omap_dma_reg *r = od->reg_map + reg;
0354
0355 WARN_ON(r->stride);
0356
0357 omap_dma_write(val, r->type, od->base + r->offset);
0358 }
0359
0360 static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
0361 {
0362 const struct omap_dma_reg *r = od->reg_map + reg;
0363
0364 WARN_ON(r->stride);
0365
0366 return omap_dma_read(r->type, od->base + r->offset);
0367 }
0368
0369 static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
0370 {
0371 const struct omap_dma_reg *r = c->reg_map + reg;
0372
0373 omap_dma_write(val, r->type, c->channel_base + r->offset);
0374 }
0375
0376 static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
0377 {
0378 const struct omap_dma_reg *r = c->reg_map + reg;
0379
0380 return omap_dma_read(r->type, c->channel_base + r->offset);
0381 }
0382
0383 static void omap_dma_clear_csr(struct omap_chan *c)
0384 {
0385 if (dma_omap1())
0386 omap_dma_chan_read(c, CSR);
0387 else
0388 omap_dma_chan_write(c, CSR, ~0);
0389 }
0390
0391 static unsigned omap_dma_get_csr(struct omap_chan *c)
0392 {
0393 unsigned val = omap_dma_chan_read(c, CSR);
0394
0395 if (!dma_omap1())
0396 omap_dma_chan_write(c, CSR, val);
0397
0398 return val;
0399 }
0400
0401 static void omap_dma_clear_lch(struct omap_dmadev *od, int lch)
0402 {
0403 struct omap_chan *c;
0404 int i;
0405
0406 c = od->lch_map[lch];
0407 if (!c)
0408 return;
0409
0410 for (i = CSDP; i <= od->cfg->lch_end; i++)
0411 omap_dma_chan_write(c, i, 0);
0412 }
0413
0414 static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
0415 unsigned lch)
0416 {
0417 c->channel_base = od->base + od->plat->channel_stride * lch;
0418
0419 od->lch_map[lch] = c;
0420 }
0421
0422 static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
0423 {
0424 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
0425 uint16_t cicr = d->cicr;
0426
0427 if (__dma_omap15xx(od->plat->dma_attr))
0428 omap_dma_chan_write(c, CPC, 0);
0429 else
0430 omap_dma_chan_write(c, CDAC, 0);
0431
0432 omap_dma_clear_csr(c);
0433
0434 if (d->using_ll) {
0435 uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
0436
0437 if (d->dir == DMA_DEV_TO_MEM)
0438 cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
0439 else
0440 cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
0441 omap_dma_chan_write(c, CDP, cdp);
0442
0443 omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
0444 omap_dma_chan_write(c, CCDN, 0);
0445 omap_dma_chan_write(c, CCFN, 0xffff);
0446 omap_dma_chan_write(c, CCEN, 0xffffff);
0447
0448 cicr &= ~CICR_BLOCK_IE;
0449 } else if (od->ll123_supported) {
0450 omap_dma_chan_write(c, CDP, 0);
0451 }
0452
0453
0454 omap_dma_chan_write(c, CICR, cicr);
0455
0456
0457 omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
0458
0459 c->running = true;
0460 }
0461
0462 static void omap_dma_drain_chan(struct omap_chan *c)
0463 {
0464 int i;
0465 u32 val;
0466
0467
0468 for (i = 0; ; i++) {
0469 val = omap_dma_chan_read(c, CCR);
0470 if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
0471 break;
0472
0473 if (i > 100)
0474 break;
0475
0476 udelay(5);
0477 }
0478
0479 if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
0480 dev_err(c->vc.chan.device->dev,
0481 "DMA drain did not complete on lch %d\n",
0482 c->dma_ch);
0483 }
0484
0485 static int omap_dma_stop(struct omap_chan *c)
0486 {
0487 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
0488 uint32_t val;
0489
0490
0491 omap_dma_chan_write(c, CICR, 0);
0492
0493 omap_dma_clear_csr(c);
0494
0495 val = omap_dma_chan_read(c, CCR);
0496 if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
0497 uint32_t sysconfig;
0498
0499 sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
0500 val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
0501 val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
0502 omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
0503
0504 val = omap_dma_chan_read(c, CCR);
0505 val &= ~CCR_ENABLE;
0506 omap_dma_chan_write(c, CCR, val);
0507
0508 if (!(c->ccr & CCR_BUFFERING_DISABLE))
0509 omap_dma_drain_chan(c);
0510
0511 omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
0512 } else {
0513 if (!(val & CCR_ENABLE))
0514 return -EINVAL;
0515
0516 val &= ~CCR_ENABLE;
0517 omap_dma_chan_write(c, CCR, val);
0518
0519 if (!(c->ccr & CCR_BUFFERING_DISABLE))
0520 omap_dma_drain_chan(c);
0521 }
0522
0523 mb();
0524
0525 if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
0526 val = omap_dma_chan_read(c, CLNK_CTRL);
0527
0528 if (dma_omap1())
0529 val |= 1 << 14;
0530 else
0531 val &= ~CLNK_CTRL_ENABLE_LNK;
0532
0533 omap_dma_chan_write(c, CLNK_CTRL, val);
0534 }
0535 c->running = false;
0536 return 0;
0537 }
0538
0539 static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
0540 {
0541 struct omap_sg *sg = d->sg + c->sgidx;
0542 unsigned cxsa, cxei, cxfi;
0543
0544 if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
0545 cxsa = CDSA;
0546 cxei = CDEI;
0547 cxfi = CDFI;
0548 } else {
0549 cxsa = CSSA;
0550 cxei = CSEI;
0551 cxfi = CSFI;
0552 }
0553
0554 omap_dma_chan_write(c, cxsa, sg->addr);
0555 omap_dma_chan_write(c, cxei, sg->ei);
0556 omap_dma_chan_write(c, cxfi, sg->fi);
0557 omap_dma_chan_write(c, CEN, sg->en);
0558 omap_dma_chan_write(c, CFN, sg->fn);
0559
0560 omap_dma_start(c, d);
0561 c->sgidx++;
0562 }
0563
0564 static void omap_dma_start_desc(struct omap_chan *c)
0565 {
0566 struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
0567 struct omap_desc *d;
0568 unsigned cxsa, cxei, cxfi;
0569
0570 if (!vd) {
0571 c->desc = NULL;
0572 return;
0573 }
0574
0575 list_del(&vd->node);
0576
0577 c->desc = d = to_omap_dma_desc(&vd->tx);
0578 c->sgidx = 0;
0579
0580
0581
0582
0583
0584
0585 mb();
0586
0587 omap_dma_chan_write(c, CCR, d->ccr);
0588 if (dma_omap1())
0589 omap_dma_chan_write(c, CCR2, d->ccr >> 16);
0590
0591 if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
0592 cxsa = CSSA;
0593 cxei = CSEI;
0594 cxfi = CSFI;
0595 } else {
0596 cxsa = CDSA;
0597 cxei = CDEI;
0598 cxfi = CDFI;
0599 }
0600
0601 omap_dma_chan_write(c, cxsa, d->dev_addr);
0602 omap_dma_chan_write(c, cxei, d->ei);
0603 omap_dma_chan_write(c, cxfi, d->fi);
0604 omap_dma_chan_write(c, CSDP, d->csdp);
0605 omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
0606
0607 omap_dma_start_sg(c, d);
0608 }
0609
0610 static void omap_dma_callback(int ch, u16 status, void *data)
0611 {
0612 struct omap_chan *c = data;
0613 struct omap_desc *d;
0614 unsigned long flags;
0615
0616 spin_lock_irqsave(&c->vc.lock, flags);
0617 d = c->desc;
0618 if (d) {
0619 if (c->cyclic) {
0620 vchan_cyclic_callback(&d->vd);
0621 } else if (d->using_ll || c->sgidx == d->sglen) {
0622 omap_dma_start_desc(c);
0623 vchan_cookie_complete(&d->vd);
0624 } else {
0625 omap_dma_start_sg(c, d);
0626 }
0627 }
0628 spin_unlock_irqrestore(&c->vc.lock, flags);
0629 }
0630
0631 static irqreturn_t omap_dma_irq(int irq, void *devid)
0632 {
0633 struct omap_dmadev *od = devid;
0634 unsigned status, channel;
0635
0636 spin_lock(&od->irq_lock);
0637
0638 status = omap_dma_glbl_read(od, IRQSTATUS_L1);
0639 status &= od->irq_enable_mask;
0640 if (status == 0) {
0641 spin_unlock(&od->irq_lock);
0642 return IRQ_NONE;
0643 }
0644
0645 while ((channel = ffs(status)) != 0) {
0646 unsigned mask, csr;
0647 struct omap_chan *c;
0648
0649 channel -= 1;
0650 mask = BIT(channel);
0651 status &= ~mask;
0652
0653 c = od->lch_map[channel];
0654 if (c == NULL) {
0655
0656 dev_err(od->ddev.dev, "invalid channel %u\n", channel);
0657 continue;
0658 }
0659
0660 csr = omap_dma_get_csr(c);
0661 omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
0662
0663 omap_dma_callback(channel, csr, c);
0664 }
0665
0666 spin_unlock(&od->irq_lock);
0667
0668 return IRQ_HANDLED;
0669 }
0670
0671 static int omap_dma_get_lch(struct omap_dmadev *od, int *lch)
0672 {
0673 int channel;
0674
0675 mutex_lock(&od->lch_lock);
0676 channel = find_first_zero_bit(od->lch_bitmap, od->lch_count);
0677 if (channel >= od->lch_count)
0678 goto out_busy;
0679 set_bit(channel, od->lch_bitmap);
0680 mutex_unlock(&od->lch_lock);
0681
0682 omap_dma_clear_lch(od, channel);
0683 *lch = channel;
0684
0685 return 0;
0686
0687 out_busy:
0688 mutex_unlock(&od->lch_lock);
0689 *lch = -EINVAL;
0690
0691 return -EBUSY;
0692 }
0693
0694 static void omap_dma_put_lch(struct omap_dmadev *od, int lch)
0695 {
0696 omap_dma_clear_lch(od, lch);
0697 mutex_lock(&od->lch_lock);
0698 clear_bit(lch, od->lch_bitmap);
0699 mutex_unlock(&od->lch_lock);
0700 }
0701
0702 static inline bool omap_dma_legacy(struct omap_dmadev *od)
0703 {
0704 return IS_ENABLED(CONFIG_ARCH_OMAP1) && od->legacy;
0705 }
0706
0707 static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
0708 {
0709 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
0710 struct omap_chan *c = to_omap_dma_chan(chan);
0711 struct device *dev = od->ddev.dev;
0712 int ret;
0713
0714 if (omap_dma_legacy(od)) {
0715 ret = omap_request_dma(c->dma_sig, "DMA engine",
0716 omap_dma_callback, c, &c->dma_ch);
0717 } else {
0718 ret = omap_dma_get_lch(od, &c->dma_ch);
0719 }
0720
0721 dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
0722
0723 if (ret >= 0) {
0724 omap_dma_assign(od, c, c->dma_ch);
0725
0726 if (!omap_dma_legacy(od)) {
0727 unsigned val;
0728
0729 spin_lock_irq(&od->irq_lock);
0730 val = BIT(c->dma_ch);
0731 omap_dma_glbl_write(od, IRQSTATUS_L1, val);
0732 od->irq_enable_mask |= val;
0733 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
0734
0735 val = omap_dma_glbl_read(od, IRQENABLE_L0);
0736 val &= ~BIT(c->dma_ch);
0737 omap_dma_glbl_write(od, IRQENABLE_L0, val);
0738 spin_unlock_irq(&od->irq_lock);
0739 }
0740 }
0741
0742 if (dma_omap1()) {
0743 if (__dma_omap16xx(od->plat->dma_attr)) {
0744 c->ccr = CCR_OMAP31_DISABLE;
0745
0746 c->ccr |= c->dma_ch + 1;
0747 } else {
0748 c->ccr = c->dma_sig & 0x1f;
0749 }
0750 } else {
0751 c->ccr = c->dma_sig & 0x1f;
0752 c->ccr |= (c->dma_sig & ~0x1f) << 14;
0753 }
0754 if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
0755 c->ccr |= CCR_BUFFERING_DISABLE;
0756
0757 return ret;
0758 }
0759
0760 static void omap_dma_free_chan_resources(struct dma_chan *chan)
0761 {
0762 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
0763 struct omap_chan *c = to_omap_dma_chan(chan);
0764
0765 if (!omap_dma_legacy(od)) {
0766 spin_lock_irq(&od->irq_lock);
0767 od->irq_enable_mask &= ~BIT(c->dma_ch);
0768 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
0769 spin_unlock_irq(&od->irq_lock);
0770 }
0771
0772 c->channel_base = NULL;
0773 od->lch_map[c->dma_ch] = NULL;
0774 vchan_free_chan_resources(&c->vc);
0775
0776 if (omap_dma_legacy(od))
0777 omap_free_dma(c->dma_ch);
0778 else
0779 omap_dma_put_lch(od, c->dma_ch);
0780
0781 dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
0782 c->dma_sig);
0783 c->dma_sig = 0;
0784 }
0785
0786 static size_t omap_dma_sg_size(struct omap_sg *sg)
0787 {
0788 return sg->en * sg->fn;
0789 }
0790
0791 static size_t omap_dma_desc_size(struct omap_desc *d)
0792 {
0793 unsigned i;
0794 size_t size;
0795
0796 for (size = i = 0; i < d->sglen; i++)
0797 size += omap_dma_sg_size(&d->sg[i]);
0798
0799 return size * es_bytes[d->es];
0800 }
0801
0802 static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
0803 {
0804 unsigned i;
0805 size_t size, es_size = es_bytes[d->es];
0806
0807 for (size = i = 0; i < d->sglen; i++) {
0808 size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
0809
0810 if (size)
0811 size += this_size;
0812 else if (addr >= d->sg[i].addr &&
0813 addr < d->sg[i].addr + this_size)
0814 size += d->sg[i].addr + this_size - addr;
0815 }
0816 return size;
0817 }
0818
0819
0820
0821
0822
0823 static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
0824 {
0825 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
0826 uint32_t val;
0827
0828 val = omap_dma_chan_read(c, reg);
0829 if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
0830 val = omap_dma_chan_read(c, reg);
0831
0832 return val;
0833 }
0834
0835 static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
0836 {
0837 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
0838 dma_addr_t addr, cdac;
0839
0840 if (__dma_omap15xx(od->plat->dma_attr)) {
0841 addr = omap_dma_chan_read(c, CPC);
0842 } else {
0843 addr = omap_dma_chan_read_3_3(c, CSAC);
0844 cdac = omap_dma_chan_read_3_3(c, CDAC);
0845
0846
0847
0848
0849
0850
0851 if (cdac == 0)
0852 addr = omap_dma_chan_read(c, CSSA);
0853 }
0854
0855 if (dma_omap1())
0856 addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
0857
0858 return addr;
0859 }
0860
0861 static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
0862 {
0863 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
0864 dma_addr_t addr;
0865
0866 if (__dma_omap15xx(od->plat->dma_attr)) {
0867 addr = omap_dma_chan_read(c, CPC);
0868 } else {
0869 addr = omap_dma_chan_read_3_3(c, CDAC);
0870
0871
0872
0873
0874
0875
0876
0877 if (addr == 0)
0878 addr = omap_dma_chan_read(c, CDSA);
0879 }
0880
0881 if (dma_omap1())
0882 addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
0883
0884 return addr;
0885 }
0886
0887 static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
0888 dma_cookie_t cookie, struct dma_tx_state *txstate)
0889 {
0890 struct omap_chan *c = to_omap_dma_chan(chan);
0891 enum dma_status ret;
0892 unsigned long flags;
0893 struct omap_desc *d = NULL;
0894
0895 ret = dma_cookie_status(chan, cookie, txstate);
0896 if (ret == DMA_COMPLETE)
0897 return ret;
0898
0899 spin_lock_irqsave(&c->vc.lock, flags);
0900 if (c->desc && c->desc->vd.tx.cookie == cookie)
0901 d = c->desc;
0902
0903 if (!txstate)
0904 goto out;
0905
0906 if (d) {
0907 dma_addr_t pos;
0908
0909 if (d->dir == DMA_MEM_TO_DEV)
0910 pos = omap_dma_get_src_pos(c);
0911 else if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM)
0912 pos = omap_dma_get_dst_pos(c);
0913 else
0914 pos = 0;
0915
0916 txstate->residue = omap_dma_desc_size_pos(d, pos);
0917 } else {
0918 struct virt_dma_desc *vd = vchan_find_desc(&c->vc, cookie);
0919
0920 if (vd)
0921 txstate->residue = omap_dma_desc_size(
0922 to_omap_dma_desc(&vd->tx));
0923 else
0924 txstate->residue = 0;
0925 }
0926
0927 out:
0928 if (ret == DMA_IN_PROGRESS && c->paused) {
0929 ret = DMA_PAUSED;
0930 } else if (d && d->polled && c->running) {
0931 uint32_t ccr = omap_dma_chan_read(c, CCR);
0932
0933
0934
0935
0936 if (!(ccr & CCR_ENABLE)) {
0937 ret = DMA_COMPLETE;
0938 omap_dma_start_desc(c);
0939 vchan_cookie_complete(&d->vd);
0940 }
0941 }
0942
0943 spin_unlock_irqrestore(&c->vc.lock, flags);
0944
0945 return ret;
0946 }
0947
0948 static void omap_dma_issue_pending(struct dma_chan *chan)
0949 {
0950 struct omap_chan *c = to_omap_dma_chan(chan);
0951 unsigned long flags;
0952
0953 spin_lock_irqsave(&c->vc.lock, flags);
0954 if (vchan_issue_pending(&c->vc) && !c->desc)
0955 omap_dma_start_desc(c);
0956 spin_unlock_irqrestore(&c->vc.lock, flags);
0957 }
0958
0959 static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
0960 struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
0961 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
0962 {
0963 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
0964 struct omap_chan *c = to_omap_dma_chan(chan);
0965 enum dma_slave_buswidth dev_width;
0966 struct scatterlist *sgent;
0967 struct omap_desc *d;
0968 dma_addr_t dev_addr;
0969 unsigned i, es, en, frame_bytes;
0970 bool ll_failed = false;
0971 u32 burst;
0972 u32 port_window, port_window_bytes;
0973
0974 if (dir == DMA_DEV_TO_MEM) {
0975 dev_addr = c->cfg.src_addr;
0976 dev_width = c->cfg.src_addr_width;
0977 burst = c->cfg.src_maxburst;
0978 port_window = c->cfg.src_port_window_size;
0979 } else if (dir == DMA_MEM_TO_DEV) {
0980 dev_addr = c->cfg.dst_addr;
0981 dev_width = c->cfg.dst_addr_width;
0982 burst = c->cfg.dst_maxburst;
0983 port_window = c->cfg.dst_port_window_size;
0984 } else {
0985 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
0986 return NULL;
0987 }
0988
0989
0990 switch (dev_width) {
0991 case DMA_SLAVE_BUSWIDTH_1_BYTE:
0992 es = CSDP_DATA_TYPE_8;
0993 break;
0994 case DMA_SLAVE_BUSWIDTH_2_BYTES:
0995 es = CSDP_DATA_TYPE_16;
0996 break;
0997 case DMA_SLAVE_BUSWIDTH_4_BYTES:
0998 es = CSDP_DATA_TYPE_32;
0999 break;
1000 default:
1001 return NULL;
1002 }
1003
1004
1005 d = kzalloc(struct_size(d, sg, sglen), GFP_ATOMIC);
1006 if (!d)
1007 return NULL;
1008
1009 d->dir = dir;
1010 d->dev_addr = dev_addr;
1011 d->es = es;
1012
1013
1014 if (port_window) {
1015 burst = port_window;
1016 port_window_bytes = port_window * es_bytes[es];
1017
1018 d->ei = 1;
1019
1020
1021
1022
1023
1024
1025 d->fi = -(port_window_bytes - 1);
1026 }
1027
1028 d->ccr = c->ccr | CCR_SYNC_FRAME;
1029 if (dir == DMA_DEV_TO_MEM) {
1030 d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
1031
1032 d->ccr |= CCR_DST_AMODE_POSTINC;
1033 if (port_window) {
1034 d->ccr |= CCR_SRC_AMODE_DBLIDX;
1035
1036 if (port_window_bytes >= 64)
1037 d->csdp |= CSDP_SRC_BURST_64;
1038 else if (port_window_bytes >= 32)
1039 d->csdp |= CSDP_SRC_BURST_32;
1040 else if (port_window_bytes >= 16)
1041 d->csdp |= CSDP_SRC_BURST_16;
1042
1043 } else {
1044 d->ccr |= CCR_SRC_AMODE_CONSTANT;
1045 }
1046 } else {
1047 d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
1048
1049 d->ccr |= CCR_SRC_AMODE_POSTINC;
1050 if (port_window) {
1051 d->ccr |= CCR_DST_AMODE_DBLIDX;
1052
1053 if (port_window_bytes >= 64)
1054 d->csdp |= CSDP_DST_BURST_64;
1055 else if (port_window_bytes >= 32)
1056 d->csdp |= CSDP_DST_BURST_32;
1057 else if (port_window_bytes >= 16)
1058 d->csdp |= CSDP_DST_BURST_16;
1059 } else {
1060 d->ccr |= CCR_DST_AMODE_CONSTANT;
1061 }
1062 }
1063
1064 d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
1065 d->csdp |= es;
1066
1067 if (dma_omap1()) {
1068 d->cicr |= CICR_TOUT_IE;
1069
1070 if (dir == DMA_DEV_TO_MEM)
1071 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
1072 else
1073 d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
1074 } else {
1075 if (dir == DMA_DEV_TO_MEM)
1076 d->ccr |= CCR_TRIGGER_SRC;
1077
1078 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1079
1080 if (port_window)
1081 d->csdp |= CSDP_WRITE_LAST_NON_POSTED;
1082 }
1083 if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
1084 d->clnk_ctrl = c->dma_ch;
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095 en = burst;
1096 frame_bytes = es_bytes[es] * en;
1097
1098 if (sglen >= 2)
1099 d->using_ll = od->ll123_supported;
1100
1101 for_each_sg(sgl, sgent, sglen, i) {
1102 struct omap_sg *osg = &d->sg[i];
1103
1104 osg->addr = sg_dma_address(sgent);
1105 osg->en = en;
1106 osg->fn = sg_dma_len(sgent) / frame_bytes;
1107
1108 if (d->using_ll) {
1109 osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
1110 &osg->t2_desc_paddr);
1111 if (!osg->t2_desc) {
1112 dev_err(chan->device->dev,
1113 "t2_desc[%d] allocation failed\n", i);
1114 ll_failed = true;
1115 d->using_ll = false;
1116 continue;
1117 }
1118
1119 omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
1120 }
1121 }
1122
1123 d->sglen = sglen;
1124
1125
1126 if (ll_failed) {
1127 for (i = 0; i < d->sglen; i++) {
1128 struct omap_sg *osg = &d->sg[i];
1129
1130 if (osg->t2_desc) {
1131 dma_pool_free(od->desc_pool, osg->t2_desc,
1132 osg->t2_desc_paddr);
1133 osg->t2_desc = NULL;
1134 }
1135 }
1136 }
1137
1138 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1139 }
1140
1141 static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
1142 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1143 size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
1144 {
1145 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1146 struct omap_chan *c = to_omap_dma_chan(chan);
1147 enum dma_slave_buswidth dev_width;
1148 struct omap_desc *d;
1149 dma_addr_t dev_addr;
1150 unsigned es;
1151 u32 burst;
1152
1153 if (dir == DMA_DEV_TO_MEM) {
1154 dev_addr = c->cfg.src_addr;
1155 dev_width = c->cfg.src_addr_width;
1156 burst = c->cfg.src_maxburst;
1157 } else if (dir == DMA_MEM_TO_DEV) {
1158 dev_addr = c->cfg.dst_addr;
1159 dev_width = c->cfg.dst_addr_width;
1160 burst = c->cfg.dst_maxburst;
1161 } else {
1162 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
1163 return NULL;
1164 }
1165
1166
1167 switch (dev_width) {
1168 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1169 es = CSDP_DATA_TYPE_8;
1170 break;
1171 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1172 es = CSDP_DATA_TYPE_16;
1173 break;
1174 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1175 es = CSDP_DATA_TYPE_32;
1176 break;
1177 default:
1178 return NULL;
1179 }
1180
1181
1182 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1183 if (!d)
1184 return NULL;
1185
1186 d->dir = dir;
1187 d->dev_addr = dev_addr;
1188 d->fi = burst;
1189 d->es = es;
1190 d->sg[0].addr = buf_addr;
1191 d->sg[0].en = period_len / es_bytes[es];
1192 d->sg[0].fn = buf_len / period_len;
1193 d->sglen = 1;
1194
1195 d->ccr = c->ccr;
1196 if (dir == DMA_DEV_TO_MEM)
1197 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
1198 else
1199 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
1200
1201 d->cicr = CICR_DROP_IE;
1202 if (flags & DMA_PREP_INTERRUPT)
1203 d->cicr |= CICR_FRAME_IE;
1204
1205 d->csdp = es;
1206
1207 if (dma_omap1()) {
1208 d->cicr |= CICR_TOUT_IE;
1209
1210 if (dir == DMA_DEV_TO_MEM)
1211 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
1212 else
1213 d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
1214 } else {
1215 if (burst)
1216 d->ccr |= CCR_SYNC_PACKET;
1217 else
1218 d->ccr |= CCR_SYNC_ELEMENT;
1219
1220 if (dir == DMA_DEV_TO_MEM) {
1221 d->ccr |= CCR_TRIGGER_SRC;
1222 d->csdp |= CSDP_DST_PACKED;
1223 } else {
1224 d->csdp |= CSDP_SRC_PACKED;
1225 }
1226
1227 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1228
1229 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1230 }
1231
1232 if (__dma_omap15xx(od->plat->dma_attr))
1233 d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
1234 else
1235 d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
1236
1237 c->cyclic = true;
1238
1239 return vchan_tx_prep(&c->vc, &d->vd, flags);
1240 }
1241
1242 static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
1243 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1244 size_t len, unsigned long tx_flags)
1245 {
1246 struct omap_chan *c = to_omap_dma_chan(chan);
1247 struct omap_desc *d;
1248 uint8_t data_type;
1249
1250 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1251 if (!d)
1252 return NULL;
1253
1254 data_type = __ffs((src | dest | len));
1255 if (data_type > CSDP_DATA_TYPE_32)
1256 data_type = CSDP_DATA_TYPE_32;
1257
1258 d->dir = DMA_MEM_TO_MEM;
1259 d->dev_addr = src;
1260 d->fi = 0;
1261 d->es = data_type;
1262 d->sg[0].en = len / BIT(data_type);
1263 d->sg[0].fn = 1;
1264 d->sg[0].addr = dest;
1265 d->sglen = 1;
1266 d->ccr = c->ccr;
1267 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
1268
1269 if (tx_flags & DMA_PREP_INTERRUPT)
1270 d->cicr |= CICR_FRAME_IE;
1271 else
1272 d->polled = true;
1273
1274 d->csdp = data_type;
1275
1276 if (dma_omap1()) {
1277 d->cicr |= CICR_TOUT_IE;
1278 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1279 } else {
1280 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1281 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1282 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1283 }
1284
1285 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1286 }
1287
1288 static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
1289 struct dma_chan *chan, struct dma_interleaved_template *xt,
1290 unsigned long flags)
1291 {
1292 struct omap_chan *c = to_omap_dma_chan(chan);
1293 struct omap_desc *d;
1294 struct omap_sg *sg;
1295 uint8_t data_type;
1296 size_t src_icg, dst_icg;
1297
1298
1299 if (is_slave_direction(xt->dir))
1300 return NULL;
1301
1302 if (xt->frame_size != 1 || xt->numf == 0)
1303 return NULL;
1304
1305 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1306 if (!d)
1307 return NULL;
1308
1309 data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
1310 if (data_type > CSDP_DATA_TYPE_32)
1311 data_type = CSDP_DATA_TYPE_32;
1312
1313 sg = &d->sg[0];
1314 d->dir = DMA_MEM_TO_MEM;
1315 d->dev_addr = xt->src_start;
1316 d->es = data_type;
1317 sg->en = xt->sgl[0].size / BIT(data_type);
1318 sg->fn = xt->numf;
1319 sg->addr = xt->dst_start;
1320 d->sglen = 1;
1321 d->ccr = c->ccr;
1322
1323 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1324 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1325 if (src_icg) {
1326 d->ccr |= CCR_SRC_AMODE_DBLIDX;
1327 d->ei = 1;
1328 d->fi = src_icg + 1;
1329 } else if (xt->src_inc) {
1330 d->ccr |= CCR_SRC_AMODE_POSTINC;
1331 d->fi = 0;
1332 } else {
1333 dev_err(chan->device->dev,
1334 "%s: SRC constant addressing is not supported\n",
1335 __func__);
1336 kfree(d);
1337 return NULL;
1338 }
1339
1340 if (dst_icg) {
1341 d->ccr |= CCR_DST_AMODE_DBLIDX;
1342 sg->ei = 1;
1343 sg->fi = dst_icg + 1;
1344 } else if (xt->dst_inc) {
1345 d->ccr |= CCR_DST_AMODE_POSTINC;
1346 sg->fi = 0;
1347 } else {
1348 dev_err(chan->device->dev,
1349 "%s: DST constant addressing is not supported\n",
1350 __func__);
1351 kfree(d);
1352 return NULL;
1353 }
1354
1355 d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1356
1357 d->csdp = data_type;
1358
1359 if (dma_omap1()) {
1360 d->cicr |= CICR_TOUT_IE;
1361 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1362 } else {
1363 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1364 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1365 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1366 }
1367
1368 return vchan_tx_prep(&c->vc, &d->vd, flags);
1369 }
1370
1371 static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
1372 {
1373 struct omap_chan *c = to_omap_dma_chan(chan);
1374
1375 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1376 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1377 return -EINVAL;
1378
1379 if (cfg->src_maxburst > chan->device->max_burst ||
1380 cfg->dst_maxburst > chan->device->max_burst)
1381 return -EINVAL;
1382
1383 memcpy(&c->cfg, cfg, sizeof(c->cfg));
1384
1385 return 0;
1386 }
1387
1388 static int omap_dma_terminate_all(struct dma_chan *chan)
1389 {
1390 struct omap_chan *c = to_omap_dma_chan(chan);
1391 unsigned long flags;
1392 LIST_HEAD(head);
1393
1394 spin_lock_irqsave(&c->vc.lock, flags);
1395
1396
1397
1398
1399
1400
1401 if (c->desc) {
1402 vchan_terminate_vdesc(&c->desc->vd);
1403 c->desc = NULL;
1404
1405 if (!c->paused)
1406 omap_dma_stop(c);
1407 }
1408
1409 c->cyclic = false;
1410 c->paused = false;
1411
1412 vchan_get_all_descriptors(&c->vc, &head);
1413 spin_unlock_irqrestore(&c->vc.lock, flags);
1414 vchan_dma_desc_free_list(&c->vc, &head);
1415
1416 return 0;
1417 }
1418
1419 static void omap_dma_synchronize(struct dma_chan *chan)
1420 {
1421 struct omap_chan *c = to_omap_dma_chan(chan);
1422
1423 vchan_synchronize(&c->vc);
1424 }
1425
1426 static int omap_dma_pause(struct dma_chan *chan)
1427 {
1428 struct omap_chan *c = to_omap_dma_chan(chan);
1429 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1430 unsigned long flags;
1431 int ret = -EINVAL;
1432 bool can_pause = false;
1433
1434 spin_lock_irqsave(&od->irq_lock, flags);
1435
1436 if (!c->desc)
1437 goto out;
1438
1439 if (c->cyclic)
1440 can_pause = true;
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465 else if (c->desc->dir == DMA_DEV_TO_MEM)
1466 can_pause = true;
1467
1468 if (can_pause && !c->paused) {
1469 ret = omap_dma_stop(c);
1470 if (!ret)
1471 c->paused = true;
1472 }
1473 out:
1474 spin_unlock_irqrestore(&od->irq_lock, flags);
1475
1476 return ret;
1477 }
1478
1479 static int omap_dma_resume(struct dma_chan *chan)
1480 {
1481 struct omap_chan *c = to_omap_dma_chan(chan);
1482 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1483 unsigned long flags;
1484 int ret = -EINVAL;
1485
1486 spin_lock_irqsave(&od->irq_lock, flags);
1487
1488 if (c->paused && c->desc) {
1489 mb();
1490
1491
1492 omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
1493
1494 omap_dma_start(c, c->desc);
1495 c->paused = false;
1496 ret = 0;
1497 }
1498 spin_unlock_irqrestore(&od->irq_lock, flags);
1499
1500 return ret;
1501 }
1502
1503 static int omap_dma_chan_init(struct omap_dmadev *od)
1504 {
1505 struct omap_chan *c;
1506
1507 c = kzalloc(sizeof(*c), GFP_KERNEL);
1508 if (!c)
1509 return -ENOMEM;
1510
1511 c->reg_map = od->reg_map;
1512 c->vc.desc_free = omap_dma_desc_free;
1513 vchan_init(&c->vc, &od->ddev);
1514
1515 return 0;
1516 }
1517
1518 static void omap_dma_free(struct omap_dmadev *od)
1519 {
1520 while (!list_empty(&od->ddev.channels)) {
1521 struct omap_chan *c = list_first_entry(&od->ddev.channels,
1522 struct omap_chan, vc.chan.device_node);
1523
1524 list_del(&c->vc.chan.device_node);
1525 tasklet_kill(&c->vc.task);
1526 kfree(c);
1527 }
1528 }
1529
1530
1531 static bool omap_dma_busy(struct omap_dmadev *od)
1532 {
1533 struct omap_chan *c;
1534 int lch = -1;
1535
1536 while (1) {
1537 lch = find_next_bit(od->lch_bitmap, od->lch_count, lch + 1);
1538 if (lch >= od->lch_count)
1539 break;
1540 c = od->lch_map[lch];
1541 if (!c)
1542 continue;
1543 if (omap_dma_chan_read(c, CCR) & CCR_ENABLE)
1544 return true;
1545 }
1546
1547 return false;
1548 }
1549
1550
1551 static int omap_dma_busy_notifier(struct notifier_block *nb,
1552 unsigned long cmd, void *v)
1553 {
1554 struct omap_dmadev *od;
1555
1556 od = container_of(nb, struct omap_dmadev, nb);
1557
1558 switch (cmd) {
1559 case CPU_CLUSTER_PM_ENTER:
1560 if (omap_dma_busy(od))
1561 return NOTIFY_BAD;
1562 break;
1563 case CPU_CLUSTER_PM_ENTER_FAILED:
1564 case CPU_CLUSTER_PM_EXIT:
1565 break;
1566 }
1567
1568 return NOTIFY_OK;
1569 }
1570
1571
1572
1573
1574
1575
1576 static void omap_dma_context_save(struct omap_dmadev *od)
1577 {
1578 od->context.irqenable_l0 = omap_dma_glbl_read(od, IRQENABLE_L0);
1579 od->context.irqenable_l1 = omap_dma_glbl_read(od, IRQENABLE_L1);
1580 od->context.ocp_sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
1581 od->context.gcr = omap_dma_glbl_read(od, GCR);
1582 }
1583
1584 static void omap_dma_context_restore(struct omap_dmadev *od)
1585 {
1586 int i;
1587
1588 omap_dma_glbl_write(od, GCR, od->context.gcr);
1589 omap_dma_glbl_write(od, OCP_SYSCONFIG, od->context.ocp_sysconfig);
1590 omap_dma_glbl_write(od, IRQENABLE_L0, od->context.irqenable_l0);
1591 omap_dma_glbl_write(od, IRQENABLE_L1, od->context.irqenable_l1);
1592
1593
1594 if (od->plat->errata & DMA_ROMCODE_BUG)
1595 omap_dma_glbl_write(od, IRQSTATUS_L0, 0);
1596
1597
1598 for (i = 0; i < od->lch_count; i++)
1599 omap_dma_clear_lch(od, i);
1600 }
1601
1602
1603 static int omap_dma_context_notifier(struct notifier_block *nb,
1604 unsigned long cmd, void *v)
1605 {
1606 struct omap_dmadev *od;
1607
1608 od = container_of(nb, struct omap_dmadev, nb);
1609
1610 switch (cmd) {
1611 case CPU_CLUSTER_PM_ENTER:
1612 if (omap_dma_busy(od))
1613 return NOTIFY_BAD;
1614 omap_dma_context_save(od);
1615 break;
1616 case CPU_CLUSTER_PM_ENTER_FAILED:
1617 break;
1618 case CPU_CLUSTER_PM_EXIT:
1619 omap_dma_context_restore(od);
1620 break;
1621 }
1622
1623 return NOTIFY_OK;
1624 }
1625
1626 static void omap_dma_init_gcr(struct omap_dmadev *od, int arb_rate,
1627 int max_fifo_depth, int tparams)
1628 {
1629 u32 val;
1630
1631
1632 if (!od->cfg->rw_priority)
1633 return;
1634
1635 if (max_fifo_depth == 0)
1636 max_fifo_depth = 1;
1637 if (arb_rate == 0)
1638 arb_rate = 1;
1639
1640 val = 0xff & max_fifo_depth;
1641 val |= (0x3 & tparams) << 12;
1642 val |= (arb_rate & 0xff) << 16;
1643
1644 omap_dma_glbl_write(od, GCR, val);
1645 }
1646
1647 #define OMAP_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1648 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1649 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1650
1651
1652
1653
1654
1655 static const struct omap_dma_config default_cfg;
1656
1657 static int omap_dma_probe(struct platform_device *pdev)
1658 {
1659 const struct omap_dma_config *conf;
1660 struct omap_dmadev *od;
1661 struct resource *res;
1662 int rc, i, irq;
1663 u32 val;
1664
1665 od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1666 if (!od)
1667 return -ENOMEM;
1668
1669 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1670 od->base = devm_ioremap_resource(&pdev->dev, res);
1671 if (IS_ERR(od->base))
1672 return PTR_ERR(od->base);
1673
1674 conf = of_device_get_match_data(&pdev->dev);
1675 if (conf) {
1676 od->cfg = conf;
1677 od->plat = dev_get_platdata(&pdev->dev);
1678 if (!od->plat) {
1679 dev_err(&pdev->dev, "omap_system_dma_plat_info is missing");
1680 return -ENODEV;
1681 }
1682 } else if (IS_ENABLED(CONFIG_ARCH_OMAP1)) {
1683 od->cfg = &default_cfg;
1684
1685 od->plat = omap_get_plat_info();
1686 if (!od->plat)
1687 return -EPROBE_DEFER;
1688 } else {
1689 return -ENODEV;
1690 }
1691
1692 od->reg_map = od->plat->reg_map;
1693
1694 dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1695 dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1696 dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1697 dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
1698 od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
1699 od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
1700 od->ddev.device_tx_status = omap_dma_tx_status;
1701 od->ddev.device_issue_pending = omap_dma_issue_pending;
1702 od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1703 od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1704 od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1705 od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
1706 od->ddev.device_config = omap_dma_slave_config;
1707 od->ddev.device_pause = omap_dma_pause;
1708 od->ddev.device_resume = omap_dma_resume;
1709 od->ddev.device_terminate_all = omap_dma_terminate_all;
1710 od->ddev.device_synchronize = omap_dma_synchronize;
1711 od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
1712 od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
1713 od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1714 if (__dma_omap15xx(od->plat->dma_attr))
1715 od->ddev.residue_granularity =
1716 DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1717 else
1718 od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1719 od->ddev.max_burst = SZ_16M - 1;
1720 od->ddev.dev = &pdev->dev;
1721 INIT_LIST_HEAD(&od->ddev.channels);
1722 mutex_init(&od->lch_lock);
1723 spin_lock_init(&od->lock);
1724 spin_lock_init(&od->irq_lock);
1725
1726
1727 od->dma_requests = OMAP_SDMA_REQUESTS;
1728 if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
1729 "dma-requests",
1730 &od->dma_requests)) {
1731 dev_info(&pdev->dev,
1732 "Missing dma-requests property, using %u.\n",
1733 OMAP_SDMA_REQUESTS);
1734 }
1735
1736
1737 if (!pdev->dev.of_node) {
1738 od->lch_count = od->plat->dma_attr->lch_count;
1739 if (unlikely(!od->lch_count))
1740 od->lch_count = OMAP_SDMA_CHANNELS;
1741 } else if (of_property_read_u32(pdev->dev.of_node, "dma-channels",
1742 &od->lch_count)) {
1743 dev_info(&pdev->dev,
1744 "Missing dma-channels property, using %u.\n",
1745 OMAP_SDMA_CHANNELS);
1746 od->lch_count = OMAP_SDMA_CHANNELS;
1747 }
1748
1749
1750 if (pdev->dev.of_node && !of_property_read_u32(pdev->dev.of_node,
1751 "dma-channel-mask",
1752 &val)) {
1753
1754 val = ~val;
1755 bitmap_from_arr32(od->lch_bitmap, &val, od->lch_count);
1756 }
1757 if (od->plat->dma_attr->dev_caps & HS_CHANNELS_RESERVED)
1758 bitmap_set(od->lch_bitmap, 0, 2);
1759
1760 od->lch_map = devm_kcalloc(&pdev->dev, od->lch_count,
1761 sizeof(*od->lch_map),
1762 GFP_KERNEL);
1763 if (!od->lch_map)
1764 return -ENOMEM;
1765
1766 for (i = 0; i < od->dma_requests; i++) {
1767 rc = omap_dma_chan_init(od);
1768 if (rc) {
1769 omap_dma_free(od);
1770 return rc;
1771 }
1772 }
1773
1774 irq = platform_get_irq(pdev, 1);
1775 if (irq <= 0) {
1776 dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
1777 od->legacy = true;
1778 } else {
1779
1780 od->irq_enable_mask = 0;
1781 omap_dma_glbl_write(od, IRQENABLE_L1, 0);
1782
1783 rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
1784 IRQF_SHARED, "omap-dma-engine", od);
1785 if (rc) {
1786 omap_dma_free(od);
1787 return rc;
1788 }
1789 }
1790
1791 if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
1792 od->ll123_supported = true;
1793
1794 od->ddev.filter.map = od->plat->slave_map;
1795 od->ddev.filter.mapcnt = od->plat->slavecnt;
1796 od->ddev.filter.fn = omap_dma_filter_fn;
1797
1798 if (od->ll123_supported) {
1799 od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
1800 &pdev->dev,
1801 sizeof(struct omap_type2_desc),
1802 4, 0);
1803 if (!od->desc_pool) {
1804 dev_err(&pdev->dev,
1805 "unable to allocate descriptor pool\n");
1806 od->ll123_supported = false;
1807 }
1808 }
1809
1810 rc = dma_async_device_register(&od->ddev);
1811 if (rc) {
1812 pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
1813 rc);
1814 omap_dma_free(od);
1815 return rc;
1816 }
1817
1818 platform_set_drvdata(pdev, od);
1819
1820 if (pdev->dev.of_node) {
1821 omap_dma_info.dma_cap = od->ddev.cap_mask;
1822
1823
1824 rc = of_dma_controller_register(pdev->dev.of_node,
1825 of_dma_simple_xlate, &omap_dma_info);
1826 if (rc) {
1827 pr_warn("OMAP-DMA: failed to register DMA controller\n");
1828 dma_async_device_unregister(&od->ddev);
1829 omap_dma_free(od);
1830 }
1831 }
1832
1833 omap_dma_init_gcr(od, DMA_DEFAULT_ARB_RATE, DMA_DEFAULT_FIFO_DEPTH, 0);
1834
1835 if (od->cfg->needs_busy_check) {
1836 od->nb.notifier_call = omap_dma_busy_notifier;
1837 cpu_pm_register_notifier(&od->nb);
1838 } else if (od->cfg->may_lose_context) {
1839 od->nb.notifier_call = omap_dma_context_notifier;
1840 cpu_pm_register_notifier(&od->nb);
1841 }
1842
1843 dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
1844 od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
1845
1846 return rc;
1847 }
1848
1849 static int omap_dma_remove(struct platform_device *pdev)
1850 {
1851 struct omap_dmadev *od = platform_get_drvdata(pdev);
1852 int irq;
1853
1854 if (od->cfg->may_lose_context)
1855 cpu_pm_unregister_notifier(&od->nb);
1856
1857 if (pdev->dev.of_node)
1858 of_dma_controller_free(pdev->dev.of_node);
1859
1860 irq = platform_get_irq(pdev, 1);
1861 devm_free_irq(&pdev->dev, irq, od);
1862
1863 dma_async_device_unregister(&od->ddev);
1864
1865 if (!omap_dma_legacy(od)) {
1866
1867 omap_dma_glbl_write(od, IRQENABLE_L0, 0);
1868 }
1869
1870 if (od->ll123_supported)
1871 dma_pool_destroy(od->desc_pool);
1872
1873 omap_dma_free(od);
1874
1875 return 0;
1876 }
1877
1878 static const struct omap_dma_config omap2420_data = {
1879 .lch_end = CCFN,
1880 .rw_priority = true,
1881 .needs_lch_clear = true,
1882 .needs_busy_check = true,
1883 };
1884
1885 static const struct omap_dma_config omap2430_data = {
1886 .lch_end = CCFN,
1887 .rw_priority = true,
1888 .needs_lch_clear = true,
1889 };
1890
1891 static const struct omap_dma_config omap3430_data = {
1892 .lch_end = CCFN,
1893 .rw_priority = true,
1894 .needs_lch_clear = true,
1895 .may_lose_context = true,
1896 };
1897
1898 static const struct omap_dma_config omap3630_data = {
1899 .lch_end = CCDN,
1900 .rw_priority = true,
1901 .needs_lch_clear = true,
1902 .may_lose_context = true,
1903 };
1904
1905 static const struct omap_dma_config omap4_data = {
1906 .lch_end = CCDN,
1907 .rw_priority = true,
1908 .needs_lch_clear = true,
1909 };
1910
1911 static const struct of_device_id omap_dma_match[] = {
1912 { .compatible = "ti,omap2420-sdma", .data = &omap2420_data, },
1913 { .compatible = "ti,omap2430-sdma", .data = &omap2430_data, },
1914 { .compatible = "ti,omap3430-sdma", .data = &omap3430_data, },
1915 { .compatible = "ti,omap3630-sdma", .data = &omap3630_data, },
1916 { .compatible = "ti,omap4430-sdma", .data = &omap4_data, },
1917 {},
1918 };
1919 MODULE_DEVICE_TABLE(of, omap_dma_match);
1920
1921 static struct platform_driver omap_dma_driver = {
1922 .probe = omap_dma_probe,
1923 .remove = omap_dma_remove,
1924 .driver = {
1925 .name = "omap-dma-engine",
1926 .of_match_table = omap_dma_match,
1927 },
1928 };
1929
1930 static bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
1931 {
1932 if (chan->device->dev->driver == &omap_dma_driver.driver) {
1933 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1934 struct omap_chan *c = to_omap_dma_chan(chan);
1935 unsigned req = *(unsigned *)param;
1936
1937 if (req <= od->dma_requests) {
1938 c->dma_sig = req;
1939 return true;
1940 }
1941 }
1942 return false;
1943 }
1944
1945 static int omap_dma_init(void)
1946 {
1947 return platform_driver_register(&omap_dma_driver);
1948 }
1949 subsys_initcall(omap_dma_init);
1950
1951 static void __exit omap_dma_exit(void)
1952 {
1953 platform_driver_unregister(&omap_dma_driver);
1954 }
1955 module_exit(omap_dma_exit);
1956
1957 MODULE_AUTHOR("Russell King");
1958 MODULE_LICENSE("GPL");