Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Renesas R-Car Gen2/Gen3 DMA Controller Driver
0004  *
0005  * Copyright (C) 2014-2019 Renesas Electronics Inc.
0006  *
0007  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
0008  */
0009 
0010 #include <linux/delay.h>
0011 #include <linux/dma-mapping.h>
0012 #include <linux/dmaengine.h>
0013 #include <linux/interrupt.h>
0014 #include <linux/list.h>
0015 #include <linux/module.h>
0016 #include <linux/mutex.h>
0017 #include <linux/of.h>
0018 #include <linux/of_dma.h>
0019 #include <linux/of_platform.h>
0020 #include <linux/platform_device.h>
0021 #include <linux/pm_runtime.h>
0022 #include <linux/slab.h>
0023 #include <linux/spinlock.h>
0024 
0025 #include "../dmaengine.h"
0026 
0027 /*
0028  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
0029  * @node: entry in the parent's chunks list
0030  * @src_addr: device source address
0031  * @dst_addr: device destination address
0032  * @size: transfer size in bytes
0033  */
0034 struct rcar_dmac_xfer_chunk {
0035     struct list_head node;
0036 
0037     dma_addr_t src_addr;
0038     dma_addr_t dst_addr;
0039     u32 size;
0040 };
0041 
0042 /*
0043  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
0044  * @sar: value of the SAR register (source address)
0045  * @dar: value of the DAR register (destination address)
0046  * @tcr: value of the TCR register (transfer count)
0047  */
0048 struct rcar_dmac_hw_desc {
0049     u32 sar;
0050     u32 dar;
0051     u32 tcr;
0052     u32 reserved;
0053 } __attribute__((__packed__));
0054 
0055 /*
0056  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
0057  * @async_tx: base DMA asynchronous transaction descriptor
0058  * @direction: direction of the DMA transfer
0059  * @xfer_shift: log2 of the transfer size
0060  * @chcr: value of the channel configuration register for this transfer
0061  * @node: entry in the channel's descriptors lists
0062  * @chunks: list of transfer chunks for this transfer
0063  * @running: the transfer chunk being currently processed
0064  * @nchunks: number of transfer chunks for this transfer
0065  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
0066  * @hwdescs.mem: hardware descriptors memory for the transfer
0067  * @hwdescs.dma: device address of the hardware descriptors memory
0068  * @hwdescs.size: size of the hardware descriptors in bytes
0069  * @size: transfer size in bytes
0070  * @cyclic: when set indicates that the DMA transfer is cyclic
0071  */
0072 struct rcar_dmac_desc {
0073     struct dma_async_tx_descriptor async_tx;
0074     enum dma_transfer_direction direction;
0075     unsigned int xfer_shift;
0076     u32 chcr;
0077 
0078     struct list_head node;
0079     struct list_head chunks;
0080     struct rcar_dmac_xfer_chunk *running;
0081     unsigned int nchunks;
0082 
0083     struct {
0084         bool use;
0085         struct rcar_dmac_hw_desc *mem;
0086         dma_addr_t dma;
0087         size_t size;
0088     } hwdescs;
0089 
0090     unsigned int size;
0091     bool cyclic;
0092 };
0093 
0094 #define to_rcar_dmac_desc(d)    container_of(d, struct rcar_dmac_desc, async_tx)
0095 
0096 /*
0097  * struct rcar_dmac_desc_page - One page worth of descriptors
0098  * @node: entry in the channel's pages list
0099  * @descs: array of DMA descriptors
0100  * @chunks: array of transfer chunk descriptors
0101  */
0102 struct rcar_dmac_desc_page {
0103     struct list_head node;
0104 
0105     union {
0106         struct rcar_dmac_desc descs[0];
0107         struct rcar_dmac_xfer_chunk chunks[0];
0108     };
0109 };
0110 
0111 #define RCAR_DMAC_DESCS_PER_PAGE                    \
0112     ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /    \
0113     sizeof(struct rcar_dmac_desc))
0114 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE                  \
0115     ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /   \
0116     sizeof(struct rcar_dmac_xfer_chunk))
0117 
0118 /*
0119  * struct rcar_dmac_chan_slave - Slave configuration
0120  * @slave_addr: slave memory address
0121  * @xfer_size: size (in bytes) of hardware transfers
0122  */
0123 struct rcar_dmac_chan_slave {
0124     phys_addr_t slave_addr;
0125     unsigned int xfer_size;
0126 };
0127 
0128 /*
0129  * struct rcar_dmac_chan_map - Map of slave device phys to dma address
0130  * @addr: slave dma address
0131  * @dir: direction of mapping
0132  * @slave: slave configuration that is mapped
0133  */
0134 struct rcar_dmac_chan_map {
0135     dma_addr_t addr;
0136     enum dma_data_direction dir;
0137     struct rcar_dmac_chan_slave slave;
0138 };
0139 
0140 /*
0141  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
0142  * @chan: base DMA channel object
0143  * @iomem: channel I/O memory base
0144  * @index: index of this channel in the controller
0145  * @irq: channel IRQ
0146  * @src: slave memory address and size on the source side
0147  * @dst: slave memory address and size on the destination side
0148  * @mid_rid: hardware MID/RID for the DMA client using this channel
0149  * @lock: protects the channel CHCR register and the desc members
0150  * @desc.free: list of free descriptors
0151  * @desc.pending: list of pending descriptors (submitted with tx_submit)
0152  * @desc.active: list of active descriptors (activated with issue_pending)
0153  * @desc.done: list of completed descriptors
0154  * @desc.wait: list of descriptors waiting for an ack
0155  * @desc.running: the descriptor being processed (a member of the active list)
0156  * @desc.chunks_free: list of free transfer chunk descriptors
0157  * @desc.pages: list of pages used by allocated descriptors
0158  */
0159 struct rcar_dmac_chan {
0160     struct dma_chan chan;
0161     void __iomem *iomem;
0162     unsigned int index;
0163     int irq;
0164 
0165     struct rcar_dmac_chan_slave src;
0166     struct rcar_dmac_chan_slave dst;
0167     struct rcar_dmac_chan_map map;
0168     int mid_rid;
0169 
0170     spinlock_t lock;
0171 
0172     struct {
0173         struct list_head free;
0174         struct list_head pending;
0175         struct list_head active;
0176         struct list_head done;
0177         struct list_head wait;
0178         struct rcar_dmac_desc *running;
0179 
0180         struct list_head chunks_free;
0181 
0182         struct list_head pages;
0183     } desc;
0184 };
0185 
0186 #define to_rcar_dmac_chan(c)    container_of(c, struct rcar_dmac_chan, chan)
0187 
0188 /*
0189  * struct rcar_dmac - R-Car Gen2 DMA Controller
0190  * @engine: base DMA engine object
0191  * @dev: the hardware device
0192  * @dmac_base: remapped base register block
0193  * @chan_base: remapped channel register block (optional)
0194  * @n_channels: number of available channels
0195  * @channels: array of DMAC channels
0196  * @channels_mask: bitfield of which DMA channels are managed by this driver
0197  * @modules: bitmask of client modules in use
0198  */
0199 struct rcar_dmac {
0200     struct dma_device engine;
0201     struct device *dev;
0202     void __iomem *dmac_base;
0203     void __iomem *chan_base;
0204 
0205     unsigned int n_channels;
0206     struct rcar_dmac_chan *channels;
0207     u32 channels_mask;
0208 
0209     DECLARE_BITMAP(modules, 256);
0210 };
0211 
0212 #define to_rcar_dmac(d)     container_of(d, struct rcar_dmac, engine)
0213 
0214 #define for_each_rcar_dmac_chan(i, dmac, chan)                      \
0215     for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++)   \
0216         if (!((dmac)->channels_mask & BIT(i))) continue; else
0217 
0218 /*
0219  * struct rcar_dmac_of_data - This driver's OF data
0220  * @chan_offset_base: DMAC channels base offset
0221  * @chan_offset_stride: DMAC channels offset stride
0222  */
0223 struct rcar_dmac_of_data {
0224     u32 chan_offset_base;
0225     u32 chan_offset_stride;
0226 };
0227 
0228 /* -----------------------------------------------------------------------------
0229  * Registers
0230  */
0231 
0232 #define RCAR_DMAISTA            0x0020
0233 #define RCAR_DMASEC         0x0030
0234 #define RCAR_DMAOR          0x0060
0235 #define RCAR_DMAOR_PRI_FIXED        (0 << 8)
0236 #define RCAR_DMAOR_PRI_ROUND_ROBIN  (3 << 8)
0237 #define RCAR_DMAOR_AE           (1 << 2)
0238 #define RCAR_DMAOR_DME          (1 << 0)
0239 #define RCAR_DMACHCLR           0x0080  /* Not on R-Car Gen4 */
0240 #define RCAR_DMADPSEC           0x00a0
0241 
0242 #define RCAR_DMASAR         0x0000
0243 #define RCAR_DMADAR         0x0004
0244 #define RCAR_DMATCR         0x0008
0245 #define RCAR_DMATCR_MASK        0x00ffffff
0246 #define RCAR_DMATSR         0x0028
0247 #define RCAR_DMACHCR            0x000c
0248 #define RCAR_DMACHCR_CAE        (1 << 31)
0249 #define RCAR_DMACHCR_CAIE       (1 << 30)
0250 #define RCAR_DMACHCR_DPM_DISABLED   (0 << 28)
0251 #define RCAR_DMACHCR_DPM_ENABLED    (1 << 28)
0252 #define RCAR_DMACHCR_DPM_REPEAT     (2 << 28)
0253 #define RCAR_DMACHCR_DPM_INFINITE   (3 << 28)
0254 #define RCAR_DMACHCR_RPT_SAR        (1 << 27)
0255 #define RCAR_DMACHCR_RPT_DAR        (1 << 26)
0256 #define RCAR_DMACHCR_RPT_TCR        (1 << 25)
0257 #define RCAR_DMACHCR_DPB        (1 << 22)
0258 #define RCAR_DMACHCR_DSE        (1 << 19)
0259 #define RCAR_DMACHCR_DSIE       (1 << 18)
0260 #define RCAR_DMACHCR_TS_1B      ((0 << 20) | (0 << 3))
0261 #define RCAR_DMACHCR_TS_2B      ((0 << 20) | (1 << 3))
0262 #define RCAR_DMACHCR_TS_4B      ((0 << 20) | (2 << 3))
0263 #define RCAR_DMACHCR_TS_16B     ((0 << 20) | (3 << 3))
0264 #define RCAR_DMACHCR_TS_32B     ((1 << 20) | (0 << 3))
0265 #define RCAR_DMACHCR_TS_64B     ((1 << 20) | (1 << 3))
0266 #define RCAR_DMACHCR_TS_8B      ((1 << 20) | (3 << 3))
0267 #define RCAR_DMACHCR_DM_FIXED       (0 << 14)
0268 #define RCAR_DMACHCR_DM_INC     (1 << 14)
0269 #define RCAR_DMACHCR_DM_DEC     (2 << 14)
0270 #define RCAR_DMACHCR_SM_FIXED       (0 << 12)
0271 #define RCAR_DMACHCR_SM_INC     (1 << 12)
0272 #define RCAR_DMACHCR_SM_DEC     (2 << 12)
0273 #define RCAR_DMACHCR_RS_AUTO        (4 << 8)
0274 #define RCAR_DMACHCR_RS_DMARS       (8 << 8)
0275 #define RCAR_DMACHCR_IE         (1 << 2)
0276 #define RCAR_DMACHCR_TE         (1 << 1)
0277 #define RCAR_DMACHCR_DE         (1 << 0)
0278 #define RCAR_DMATCRB            0x0018
0279 #define RCAR_DMATSRB            0x0038
0280 #define RCAR_DMACHCRB           0x001c
0281 #define RCAR_DMACHCRB_DCNT(n)       ((n) << 24)
0282 #define RCAR_DMACHCRB_DPTR_MASK     (0xff << 16)
0283 #define RCAR_DMACHCRB_DPTR_SHIFT    16
0284 #define RCAR_DMACHCRB_DRST      (1 << 15)
0285 #define RCAR_DMACHCRB_DTS       (1 << 8)
0286 #define RCAR_DMACHCRB_SLM_NORMAL    (0 << 4)
0287 #define RCAR_DMACHCRB_SLM_CLK(n)    ((8 | (n)) << 4)
0288 #define RCAR_DMACHCRB_PRI(n)        ((n) << 0)
0289 #define RCAR_DMARS          0x0040
0290 #define RCAR_DMABUFCR           0x0048
0291 #define RCAR_DMABUFCR_MBU(n)        ((n) << 16)
0292 #define RCAR_DMABUFCR_ULB(n)        ((n) << 0)
0293 #define RCAR_DMADPBASE          0x0050
0294 #define RCAR_DMADPBASE_MASK     0xfffffff0
0295 #define RCAR_DMADPBASE_SEL      (1 << 0)
0296 #define RCAR_DMADPCR            0x0054
0297 #define RCAR_DMADPCR_DIPT(n)        ((n) << 24)
0298 #define RCAR_DMAFIXSAR          0x0010
0299 #define RCAR_DMAFIXDAR          0x0014
0300 #define RCAR_DMAFIXDPBASE       0x0060
0301 
0302 /* For R-Car Gen4 */
0303 #define RCAR_GEN4_DMACHCLR      0x0100
0304 
0305 /* Hardcode the MEMCPY transfer size to 4 bytes. */
0306 #define RCAR_DMAC_MEMCPY_XFER_SIZE  4
0307 
0308 /* -----------------------------------------------------------------------------
0309  * Device access
0310  */
0311 
0312 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
0313 {
0314     if (reg == RCAR_DMAOR)
0315         writew(data, dmac->dmac_base + reg);
0316     else
0317         writel(data, dmac->dmac_base + reg);
0318 }
0319 
0320 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
0321 {
0322     if (reg == RCAR_DMAOR)
0323         return readw(dmac->dmac_base + reg);
0324     else
0325         return readl(dmac->dmac_base + reg);
0326 }
0327 
0328 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
0329 {
0330     if (reg == RCAR_DMARS)
0331         return readw(chan->iomem + reg);
0332     else
0333         return readl(chan->iomem + reg);
0334 }
0335 
0336 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
0337 {
0338     if (reg == RCAR_DMARS)
0339         writew(data, chan->iomem + reg);
0340     else
0341         writel(data, chan->iomem + reg);
0342 }
0343 
0344 static void rcar_dmac_chan_clear(struct rcar_dmac *dmac,
0345                  struct rcar_dmac_chan *chan)
0346 {
0347     if (dmac->chan_base)
0348         rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
0349     else
0350         rcar_dmac_write(dmac, RCAR_DMACHCLR, BIT(chan->index));
0351 }
0352 
0353 static void rcar_dmac_chan_clear_all(struct rcar_dmac *dmac)
0354 {
0355     struct rcar_dmac_chan *chan;
0356     unsigned int i;
0357 
0358     if (dmac->chan_base) {
0359         for_each_rcar_dmac_chan(i, dmac, chan)
0360             rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
0361     } else {
0362         rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
0363     }
0364 }
0365 
0366 /* -----------------------------------------------------------------------------
0367  * Initialization and configuration
0368  */
0369 
0370 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
0371 {
0372     u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
0373 
0374     return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
0375 }
0376 
0377 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
0378 {
0379     struct rcar_dmac_desc *desc = chan->desc.running;
0380     u32 chcr = desc->chcr;
0381 
0382     WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
0383 
0384     if (chan->mid_rid >= 0)
0385         rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
0386 
0387     if (desc->hwdescs.use) {
0388         struct rcar_dmac_xfer_chunk *chunk =
0389             list_first_entry(&desc->chunks,
0390                      struct rcar_dmac_xfer_chunk, node);
0391 
0392         dev_dbg(chan->chan.device->dev,
0393             "chan%u: queue desc %p: %u@%pad\n",
0394             chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
0395 
0396 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
0397         rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
0398                      chunk->src_addr >> 32);
0399         rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
0400                      chunk->dst_addr >> 32);
0401         rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
0402                      desc->hwdescs.dma >> 32);
0403 #endif
0404         rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
0405                      (desc->hwdescs.dma & 0xfffffff0) |
0406                      RCAR_DMADPBASE_SEL);
0407         rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
0408                      RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
0409                      RCAR_DMACHCRB_DRST);
0410 
0411         /*
0412          * Errata: When descriptor memory is accessed through an IOMMU
0413          * the DMADAR register isn't initialized automatically from the
0414          * first descriptor at beginning of transfer by the DMAC like it
0415          * should. Initialize it manually with the destination address
0416          * of the first chunk.
0417          */
0418         rcar_dmac_chan_write(chan, RCAR_DMADAR,
0419                      chunk->dst_addr & 0xffffffff);
0420 
0421         /*
0422          * Program the descriptor stage interrupt to occur after the end
0423          * of the first stage.
0424          */
0425         rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
0426 
0427         chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
0428              |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
0429 
0430         /*
0431          * If the descriptor isn't cyclic enable normal descriptor mode
0432          * and the transfer completion interrupt.
0433          */
0434         if (!desc->cyclic)
0435             chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
0436         /*
0437          * If the descriptor is cyclic and has a callback enable the
0438          * descriptor stage interrupt in infinite repeat mode.
0439          */
0440         else if (desc->async_tx.callback)
0441             chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
0442         /*
0443          * Otherwise just select infinite repeat mode without any
0444          * interrupt.
0445          */
0446         else
0447             chcr |= RCAR_DMACHCR_DPM_INFINITE;
0448     } else {
0449         struct rcar_dmac_xfer_chunk *chunk = desc->running;
0450 
0451         dev_dbg(chan->chan.device->dev,
0452             "chan%u: queue chunk %p: %u@%pad -> %pad\n",
0453             chan->index, chunk, chunk->size, &chunk->src_addr,
0454             &chunk->dst_addr);
0455 
0456 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
0457         rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
0458                      chunk->src_addr >> 32);
0459         rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
0460                      chunk->dst_addr >> 32);
0461 #endif
0462         rcar_dmac_chan_write(chan, RCAR_DMASAR,
0463                      chunk->src_addr & 0xffffffff);
0464         rcar_dmac_chan_write(chan, RCAR_DMADAR,
0465                      chunk->dst_addr & 0xffffffff);
0466         rcar_dmac_chan_write(chan, RCAR_DMATCR,
0467                      chunk->size >> desc->xfer_shift);
0468 
0469         chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
0470     }
0471 
0472     rcar_dmac_chan_write(chan, RCAR_DMACHCR,
0473                  chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
0474 }
0475 
0476 static int rcar_dmac_init(struct rcar_dmac *dmac)
0477 {
0478     u16 dmaor;
0479 
0480     /* Clear all channels and enable the DMAC globally. */
0481     rcar_dmac_chan_clear_all(dmac);
0482     rcar_dmac_write(dmac, RCAR_DMAOR,
0483             RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
0484 
0485     dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
0486     if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
0487         dev_warn(dmac->dev, "DMAOR initialization failed.\n");
0488         return -EIO;
0489     }
0490 
0491     return 0;
0492 }
0493 
0494 /* -----------------------------------------------------------------------------
0495  * Descriptors submission
0496  */
0497 
0498 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
0499 {
0500     struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
0501     struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
0502     unsigned long flags;
0503     dma_cookie_t cookie;
0504 
0505     spin_lock_irqsave(&chan->lock, flags);
0506 
0507     cookie = dma_cookie_assign(tx);
0508 
0509     dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
0510         chan->index, tx->cookie, desc);
0511 
0512     list_add_tail(&desc->node, &chan->desc.pending);
0513     desc->running = list_first_entry(&desc->chunks,
0514                      struct rcar_dmac_xfer_chunk, node);
0515 
0516     spin_unlock_irqrestore(&chan->lock, flags);
0517 
0518     return cookie;
0519 }
0520 
0521 /* -----------------------------------------------------------------------------
0522  * Descriptors allocation and free
0523  */
0524 
0525 /*
0526  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
0527  * @chan: the DMA channel
0528  * @gfp: allocation flags
0529  */
0530 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
0531 {
0532     struct rcar_dmac_desc_page *page;
0533     unsigned long flags;
0534     LIST_HEAD(list);
0535     unsigned int i;
0536 
0537     page = (void *)get_zeroed_page(gfp);
0538     if (!page)
0539         return -ENOMEM;
0540 
0541     for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
0542         struct rcar_dmac_desc *desc = &page->descs[i];
0543 
0544         dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
0545         desc->async_tx.tx_submit = rcar_dmac_tx_submit;
0546         INIT_LIST_HEAD(&desc->chunks);
0547 
0548         list_add_tail(&desc->node, &list);
0549     }
0550 
0551     spin_lock_irqsave(&chan->lock, flags);
0552     list_splice_tail(&list, &chan->desc.free);
0553     list_add_tail(&page->node, &chan->desc.pages);
0554     spin_unlock_irqrestore(&chan->lock, flags);
0555 
0556     return 0;
0557 }
0558 
0559 /*
0560  * rcar_dmac_desc_put - Release a DMA transfer descriptor
0561  * @chan: the DMA channel
0562  * @desc: the descriptor
0563  *
0564  * Put the descriptor and its transfer chunk descriptors back in the channel's
0565  * free descriptors lists. The descriptor's chunks list will be reinitialized to
0566  * an empty list as a result.
0567  *
0568  * The descriptor must have been removed from the channel's lists before calling
0569  * this function.
0570  */
0571 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
0572                    struct rcar_dmac_desc *desc)
0573 {
0574     unsigned long flags;
0575 
0576     spin_lock_irqsave(&chan->lock, flags);
0577     list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
0578     list_add(&desc->node, &chan->desc.free);
0579     spin_unlock_irqrestore(&chan->lock, flags);
0580 }
0581 
0582 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
0583 {
0584     struct rcar_dmac_desc *desc, *_desc;
0585     unsigned long flags;
0586     LIST_HEAD(list);
0587 
0588     /*
0589      * We have to temporarily move all descriptors from the wait list to a
0590      * local list as iterating over the wait list, even with
0591      * list_for_each_entry_safe, isn't safe if we release the channel lock
0592      * around the rcar_dmac_desc_put() call.
0593      */
0594     spin_lock_irqsave(&chan->lock, flags);
0595     list_splice_init(&chan->desc.wait, &list);
0596     spin_unlock_irqrestore(&chan->lock, flags);
0597 
0598     list_for_each_entry_safe(desc, _desc, &list, node) {
0599         if (async_tx_test_ack(&desc->async_tx)) {
0600             list_del(&desc->node);
0601             rcar_dmac_desc_put(chan, desc);
0602         }
0603     }
0604 
0605     if (list_empty(&list))
0606         return;
0607 
0608     /* Put the remaining descriptors back in the wait list. */
0609     spin_lock_irqsave(&chan->lock, flags);
0610     list_splice(&list, &chan->desc.wait);
0611     spin_unlock_irqrestore(&chan->lock, flags);
0612 }
0613 
0614 /*
0615  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
0616  * @chan: the DMA channel
0617  *
0618  * Locking: This function must be called in a non-atomic context.
0619  *
0620  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
0621  * be allocated.
0622  */
0623 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
0624 {
0625     struct rcar_dmac_desc *desc;
0626     unsigned long flags;
0627     int ret;
0628 
0629     /* Recycle acked descriptors before attempting allocation. */
0630     rcar_dmac_desc_recycle_acked(chan);
0631 
0632     spin_lock_irqsave(&chan->lock, flags);
0633 
0634     while (list_empty(&chan->desc.free)) {
0635         /*
0636          * No free descriptors, allocate a page worth of them and try
0637          * again, as someone else could race us to get the newly
0638          * allocated descriptors. If the allocation fails return an
0639          * error.
0640          */
0641         spin_unlock_irqrestore(&chan->lock, flags);
0642         ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
0643         if (ret < 0)
0644             return NULL;
0645         spin_lock_irqsave(&chan->lock, flags);
0646     }
0647 
0648     desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
0649     list_del(&desc->node);
0650 
0651     spin_unlock_irqrestore(&chan->lock, flags);
0652 
0653     return desc;
0654 }
0655 
0656 /*
0657  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
0658  * @chan: the DMA channel
0659  * @gfp: allocation flags
0660  */
0661 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
0662 {
0663     struct rcar_dmac_desc_page *page;
0664     unsigned long flags;
0665     LIST_HEAD(list);
0666     unsigned int i;
0667 
0668     page = (void *)get_zeroed_page(gfp);
0669     if (!page)
0670         return -ENOMEM;
0671 
0672     for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
0673         struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
0674 
0675         list_add_tail(&chunk->node, &list);
0676     }
0677 
0678     spin_lock_irqsave(&chan->lock, flags);
0679     list_splice_tail(&list, &chan->desc.chunks_free);
0680     list_add_tail(&page->node, &chan->desc.pages);
0681     spin_unlock_irqrestore(&chan->lock, flags);
0682 
0683     return 0;
0684 }
0685 
0686 /*
0687  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
0688  * @chan: the DMA channel
0689  *
0690  * Locking: This function must be called in a non-atomic context.
0691  *
0692  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
0693  * descriptor can be allocated.
0694  */
0695 static struct rcar_dmac_xfer_chunk *
0696 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
0697 {
0698     struct rcar_dmac_xfer_chunk *chunk;
0699     unsigned long flags;
0700     int ret;
0701 
0702     spin_lock_irqsave(&chan->lock, flags);
0703 
0704     while (list_empty(&chan->desc.chunks_free)) {
0705         /*
0706          * No free descriptors, allocate a page worth of them and try
0707          * again, as someone else could race us to get the newly
0708          * allocated descriptors. If the allocation fails return an
0709          * error.
0710          */
0711         spin_unlock_irqrestore(&chan->lock, flags);
0712         ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
0713         if (ret < 0)
0714             return NULL;
0715         spin_lock_irqsave(&chan->lock, flags);
0716     }
0717 
0718     chunk = list_first_entry(&chan->desc.chunks_free,
0719                  struct rcar_dmac_xfer_chunk, node);
0720     list_del(&chunk->node);
0721 
0722     spin_unlock_irqrestore(&chan->lock, flags);
0723 
0724     return chunk;
0725 }
0726 
0727 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
0728                      struct rcar_dmac_desc *desc, size_t size)
0729 {
0730     /*
0731      * dma_alloc_coherent() allocates memory in page size increments. To
0732      * avoid reallocating the hardware descriptors when the allocated size
0733      * wouldn't change align the requested size to a multiple of the page
0734      * size.
0735      */
0736     size = PAGE_ALIGN(size);
0737 
0738     if (desc->hwdescs.size == size)
0739         return;
0740 
0741     if (desc->hwdescs.mem) {
0742         dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
0743                   desc->hwdescs.mem, desc->hwdescs.dma);
0744         desc->hwdescs.mem = NULL;
0745         desc->hwdescs.size = 0;
0746     }
0747 
0748     if (!size)
0749         return;
0750 
0751     desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
0752                            &desc->hwdescs.dma, GFP_NOWAIT);
0753     if (!desc->hwdescs.mem)
0754         return;
0755 
0756     desc->hwdescs.size = size;
0757 }
0758 
0759 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
0760                  struct rcar_dmac_desc *desc)
0761 {
0762     struct rcar_dmac_xfer_chunk *chunk;
0763     struct rcar_dmac_hw_desc *hwdesc;
0764 
0765     rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
0766 
0767     hwdesc = desc->hwdescs.mem;
0768     if (!hwdesc)
0769         return -ENOMEM;
0770 
0771     list_for_each_entry(chunk, &desc->chunks, node) {
0772         hwdesc->sar = chunk->src_addr;
0773         hwdesc->dar = chunk->dst_addr;
0774         hwdesc->tcr = chunk->size >> desc->xfer_shift;
0775         hwdesc++;
0776     }
0777 
0778     return 0;
0779 }
0780 
0781 /* -----------------------------------------------------------------------------
0782  * Stop and reset
0783  */
0784 static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
0785 {
0786     u32 chcr;
0787     unsigned int i;
0788 
0789     /*
0790      * Ensure that the setting of the DE bit is actually 0 after
0791      * clearing it.
0792      */
0793     for (i = 0; i < 1024; i++) {
0794         chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
0795         if (!(chcr & RCAR_DMACHCR_DE))
0796             return;
0797         udelay(1);
0798     }
0799 
0800     dev_err(chan->chan.device->dev, "CHCR DE check error\n");
0801 }
0802 
0803 static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
0804 {
0805     u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
0806 
0807     /* set DE=0 and flush remaining data */
0808     rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
0809 
0810     /* make sure all remaining data was flushed */
0811     rcar_dmac_chcr_de_barrier(chan);
0812 }
0813 
0814 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
0815 {
0816     u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
0817 
0818     chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
0819           RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
0820           RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
0821     rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
0822     rcar_dmac_chcr_de_barrier(chan);
0823 }
0824 
0825 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
0826 {
0827     struct rcar_dmac_desc *desc, *_desc;
0828     unsigned long flags;
0829     LIST_HEAD(descs);
0830 
0831     spin_lock_irqsave(&chan->lock, flags);
0832 
0833     /* Move all non-free descriptors to the local lists. */
0834     list_splice_init(&chan->desc.pending, &descs);
0835     list_splice_init(&chan->desc.active, &descs);
0836     list_splice_init(&chan->desc.done, &descs);
0837     list_splice_init(&chan->desc.wait, &descs);
0838 
0839     chan->desc.running = NULL;
0840 
0841     spin_unlock_irqrestore(&chan->lock, flags);
0842 
0843     list_for_each_entry_safe(desc, _desc, &descs, node) {
0844         list_del(&desc->node);
0845         rcar_dmac_desc_put(chan, desc);
0846     }
0847 }
0848 
0849 static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
0850 {
0851     struct rcar_dmac_chan *chan;
0852     unsigned int i;
0853 
0854     /* Stop all channels. */
0855     for_each_rcar_dmac_chan(i, dmac, chan) {
0856         /* Stop and reinitialize the channel. */
0857         spin_lock_irq(&chan->lock);
0858         rcar_dmac_chan_halt(chan);
0859         spin_unlock_irq(&chan->lock);
0860     }
0861 }
0862 
0863 static int rcar_dmac_chan_pause(struct dma_chan *chan)
0864 {
0865     unsigned long flags;
0866     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
0867 
0868     spin_lock_irqsave(&rchan->lock, flags);
0869     rcar_dmac_clear_chcr_de(rchan);
0870     spin_unlock_irqrestore(&rchan->lock, flags);
0871 
0872     return 0;
0873 }
0874 
0875 /* -----------------------------------------------------------------------------
0876  * Descriptors preparation
0877  */
0878 
0879 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
0880                       struct rcar_dmac_desc *desc)
0881 {
0882     static const u32 chcr_ts[] = {
0883         RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
0884         RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
0885         RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
0886         RCAR_DMACHCR_TS_64B,
0887     };
0888 
0889     unsigned int xfer_size;
0890     u32 chcr;
0891 
0892     switch (desc->direction) {
0893     case DMA_DEV_TO_MEM:
0894         chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
0895              | RCAR_DMACHCR_RS_DMARS;
0896         xfer_size = chan->src.xfer_size;
0897         break;
0898 
0899     case DMA_MEM_TO_DEV:
0900         chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
0901              | RCAR_DMACHCR_RS_DMARS;
0902         xfer_size = chan->dst.xfer_size;
0903         break;
0904 
0905     case DMA_MEM_TO_MEM:
0906     default:
0907         chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
0908              | RCAR_DMACHCR_RS_AUTO;
0909         xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
0910         break;
0911     }
0912 
0913     desc->xfer_shift = ilog2(xfer_size);
0914     desc->chcr = chcr | chcr_ts[desc->xfer_shift];
0915 }
0916 
0917 /*
0918  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
0919  *
0920  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
0921  * converted to scatter-gather to guarantee consistent locking and a correct
0922  * list manipulation. For slave DMA direction carries the usual meaning, and,
0923  * logically, the SG list is RAM and the addr variable contains slave address,
0924  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
0925  * and the SG list contains only one element and points at the source buffer.
0926  */
0927 static struct dma_async_tx_descriptor *
0928 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
0929                unsigned int sg_len, dma_addr_t dev_addr,
0930                enum dma_transfer_direction dir, unsigned long dma_flags,
0931                bool cyclic)
0932 {
0933     struct rcar_dmac_xfer_chunk *chunk;
0934     struct rcar_dmac_desc *desc;
0935     struct scatterlist *sg;
0936     unsigned int nchunks = 0;
0937     unsigned int max_chunk_size;
0938     unsigned int full_size = 0;
0939     bool cross_boundary = false;
0940     unsigned int i;
0941 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
0942     u32 high_dev_addr;
0943     u32 high_mem_addr;
0944 #endif
0945 
0946     desc = rcar_dmac_desc_get(chan);
0947     if (!desc)
0948         return NULL;
0949 
0950     desc->async_tx.flags = dma_flags;
0951     desc->async_tx.cookie = -EBUSY;
0952 
0953     desc->cyclic = cyclic;
0954     desc->direction = dir;
0955 
0956     rcar_dmac_chan_configure_desc(chan, desc);
0957 
0958     max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
0959 
0960     /*
0961      * Allocate and fill the transfer chunk descriptors. We own the only
0962      * reference to the DMA descriptor, there's no need for locking.
0963      */
0964     for_each_sg(sgl, sg, sg_len, i) {
0965         dma_addr_t mem_addr = sg_dma_address(sg);
0966         unsigned int len = sg_dma_len(sg);
0967 
0968         full_size += len;
0969 
0970 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
0971         if (i == 0) {
0972             high_dev_addr = dev_addr >> 32;
0973             high_mem_addr = mem_addr >> 32;
0974         }
0975 
0976         if ((dev_addr >> 32 != high_dev_addr) ||
0977             (mem_addr >> 32 != high_mem_addr))
0978             cross_boundary = true;
0979 #endif
0980         while (len) {
0981             unsigned int size = min(len, max_chunk_size);
0982 
0983 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
0984             /*
0985              * Prevent individual transfers from crossing 4GB
0986              * boundaries.
0987              */
0988             if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
0989                 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
0990                 cross_boundary = true;
0991             }
0992             if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
0993                 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
0994                 cross_boundary = true;
0995             }
0996 #endif
0997 
0998             chunk = rcar_dmac_xfer_chunk_get(chan);
0999             if (!chunk) {
1000                 rcar_dmac_desc_put(chan, desc);
1001                 return NULL;
1002             }
1003 
1004             if (dir == DMA_DEV_TO_MEM) {
1005                 chunk->src_addr = dev_addr;
1006                 chunk->dst_addr = mem_addr;
1007             } else {
1008                 chunk->src_addr = mem_addr;
1009                 chunk->dst_addr = dev_addr;
1010             }
1011 
1012             chunk->size = size;
1013 
1014             dev_dbg(chan->chan.device->dev,
1015                 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
1016                 chan->index, chunk, desc, i, sg, size, len,
1017                 &chunk->src_addr, &chunk->dst_addr);
1018 
1019             mem_addr += size;
1020             if (dir == DMA_MEM_TO_MEM)
1021                 dev_addr += size;
1022 
1023             len -= size;
1024 
1025             list_add_tail(&chunk->node, &desc->chunks);
1026             nchunks++;
1027         }
1028     }
1029 
1030     desc->nchunks = nchunks;
1031     desc->size = full_size;
1032 
1033     /*
1034      * Use hardware descriptor lists if possible when more than one chunk
1035      * needs to be transferred (otherwise they don't make much sense).
1036      *
1037      * Source/Destination address should be located in same 4GiB region
1038      * in the 40bit address space when it uses Hardware descriptor,
1039      * and cross_boundary is checking it.
1040      */
1041     desc->hwdescs.use = !cross_boundary && nchunks > 1;
1042     if (desc->hwdescs.use) {
1043         if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
1044             desc->hwdescs.use = false;
1045     }
1046 
1047     return &desc->async_tx;
1048 }
1049 
1050 /* -----------------------------------------------------------------------------
1051  * DMA engine operations
1052  */
1053 
1054 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
1055 {
1056     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1057     int ret;
1058 
1059     INIT_LIST_HEAD(&rchan->desc.chunks_free);
1060     INIT_LIST_HEAD(&rchan->desc.pages);
1061 
1062     /* Preallocate descriptors. */
1063     ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
1064     if (ret < 0)
1065         return -ENOMEM;
1066 
1067     ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
1068     if (ret < 0)
1069         return -ENOMEM;
1070 
1071     return pm_runtime_get_sync(chan->device->dev);
1072 }
1073 
1074 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1075 {
1076     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1077     struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1078     struct rcar_dmac_chan_map *map = &rchan->map;
1079     struct rcar_dmac_desc_page *page, *_page;
1080     struct rcar_dmac_desc *desc;
1081     LIST_HEAD(list);
1082 
1083     /* Protect against ISR */
1084     spin_lock_irq(&rchan->lock);
1085     rcar_dmac_chan_halt(rchan);
1086     spin_unlock_irq(&rchan->lock);
1087 
1088     /*
1089      * Now no new interrupts will occur, but one might already be
1090      * running. Wait for it to finish before freeing resources.
1091      */
1092     synchronize_irq(rchan->irq);
1093 
1094     if (rchan->mid_rid >= 0) {
1095         /* The caller is holding dma_list_mutex */
1096         clear_bit(rchan->mid_rid, dmac->modules);
1097         rchan->mid_rid = -EINVAL;
1098     }
1099 
1100     list_splice_init(&rchan->desc.free, &list);
1101     list_splice_init(&rchan->desc.pending, &list);
1102     list_splice_init(&rchan->desc.active, &list);
1103     list_splice_init(&rchan->desc.done, &list);
1104     list_splice_init(&rchan->desc.wait, &list);
1105 
1106     rchan->desc.running = NULL;
1107 
1108     list_for_each_entry(desc, &list, node)
1109         rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1110 
1111     list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1112         list_del(&page->node);
1113         free_page((unsigned long)page);
1114     }
1115 
1116     /* Remove slave mapping if present. */
1117     if (map->slave.xfer_size) {
1118         dma_unmap_resource(chan->device->dev, map->addr,
1119                    map->slave.xfer_size, map->dir, 0);
1120         map->slave.xfer_size = 0;
1121     }
1122 
1123     pm_runtime_put(chan->device->dev);
1124 }
1125 
1126 static struct dma_async_tx_descriptor *
1127 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1128               dma_addr_t dma_src, size_t len, unsigned long flags)
1129 {
1130     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1131     struct scatterlist sgl;
1132 
1133     if (!len)
1134         return NULL;
1135 
1136     sg_init_table(&sgl, 1);
1137     sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1138             offset_in_page(dma_src));
1139     sg_dma_address(&sgl) = dma_src;
1140     sg_dma_len(&sgl) = len;
1141 
1142     return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1143                       DMA_MEM_TO_MEM, flags, false);
1144 }
1145 
1146 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1147                     enum dma_transfer_direction dir)
1148 {
1149     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1150     struct rcar_dmac_chan_map *map = &rchan->map;
1151     phys_addr_t dev_addr;
1152     size_t dev_size;
1153     enum dma_data_direction dev_dir;
1154 
1155     if (dir == DMA_DEV_TO_MEM) {
1156         dev_addr = rchan->src.slave_addr;
1157         dev_size = rchan->src.xfer_size;
1158         dev_dir = DMA_TO_DEVICE;
1159     } else {
1160         dev_addr = rchan->dst.slave_addr;
1161         dev_size = rchan->dst.xfer_size;
1162         dev_dir = DMA_FROM_DEVICE;
1163     }
1164 
1165     /* Reuse current map if possible. */
1166     if (dev_addr == map->slave.slave_addr &&
1167         dev_size == map->slave.xfer_size &&
1168         dev_dir == map->dir)
1169         return 0;
1170 
1171     /* Remove old mapping if present. */
1172     if (map->slave.xfer_size)
1173         dma_unmap_resource(chan->device->dev, map->addr,
1174                    map->slave.xfer_size, map->dir, 0);
1175     map->slave.xfer_size = 0;
1176 
1177     /* Create new slave address map. */
1178     map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1179                      dev_dir, 0);
1180 
1181     if (dma_mapping_error(chan->device->dev, map->addr)) {
1182         dev_err(chan->device->dev,
1183             "chan%u: failed to map %zx@%pap", rchan->index,
1184             dev_size, &dev_addr);
1185         return -EIO;
1186     }
1187 
1188     dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1189         rchan->index, dev_size, &dev_addr, &map->addr,
1190         dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1191 
1192     map->slave.slave_addr = dev_addr;
1193     map->slave.xfer_size = dev_size;
1194     map->dir = dev_dir;
1195 
1196     return 0;
1197 }
1198 
1199 static struct dma_async_tx_descriptor *
1200 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1201             unsigned int sg_len, enum dma_transfer_direction dir,
1202             unsigned long flags, void *context)
1203 {
1204     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1205 
1206     /* Someone calling slave DMA on a generic channel? */
1207     if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1208         dev_warn(chan->device->dev,
1209              "%s: bad parameter: len=%d, id=%d\n",
1210              __func__, sg_len, rchan->mid_rid);
1211         return NULL;
1212     }
1213 
1214     if (rcar_dmac_map_slave_addr(chan, dir))
1215         return NULL;
1216 
1217     return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1218                       dir, flags, false);
1219 }
1220 
1221 #define RCAR_DMAC_MAX_SG_LEN    32
1222 
1223 static struct dma_async_tx_descriptor *
1224 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1225               size_t buf_len, size_t period_len,
1226               enum dma_transfer_direction dir, unsigned long flags)
1227 {
1228     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1229     struct dma_async_tx_descriptor *desc;
1230     struct scatterlist *sgl;
1231     unsigned int sg_len;
1232     unsigned int i;
1233 
1234     /* Someone calling slave DMA on a generic channel? */
1235     if (rchan->mid_rid < 0 || buf_len < period_len) {
1236         dev_warn(chan->device->dev,
1237             "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1238             __func__, buf_len, period_len, rchan->mid_rid);
1239         return NULL;
1240     }
1241 
1242     if (rcar_dmac_map_slave_addr(chan, dir))
1243         return NULL;
1244 
1245     sg_len = buf_len / period_len;
1246     if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1247         dev_err(chan->device->dev,
1248             "chan%u: sg length %d exceeds limit %d",
1249             rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1250         return NULL;
1251     }
1252 
1253     /*
1254      * Allocate the sg list dynamically as it would consume too much stack
1255      * space.
1256      */
1257     sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT);
1258     if (!sgl)
1259         return NULL;
1260 
1261     sg_init_table(sgl, sg_len);
1262 
1263     for (i = 0; i < sg_len; ++i) {
1264         dma_addr_t src = buf_addr + (period_len * i);
1265 
1266         sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1267                 offset_in_page(src));
1268         sg_dma_address(&sgl[i]) = src;
1269         sg_dma_len(&sgl[i]) = period_len;
1270     }
1271 
1272     desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1273                       dir, flags, true);
1274 
1275     kfree(sgl);
1276     return desc;
1277 }
1278 
1279 static int rcar_dmac_device_config(struct dma_chan *chan,
1280                    struct dma_slave_config *cfg)
1281 {
1282     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1283 
1284     /*
1285      * We could lock this, but you shouldn't be configuring the
1286      * channel, while using it...
1287      */
1288     rchan->src.slave_addr = cfg->src_addr;
1289     rchan->dst.slave_addr = cfg->dst_addr;
1290     rchan->src.xfer_size = cfg->src_addr_width;
1291     rchan->dst.xfer_size = cfg->dst_addr_width;
1292 
1293     return 0;
1294 }
1295 
1296 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1297 {
1298     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1299     unsigned long flags;
1300 
1301     spin_lock_irqsave(&rchan->lock, flags);
1302     rcar_dmac_chan_halt(rchan);
1303     spin_unlock_irqrestore(&rchan->lock, flags);
1304 
1305     /*
1306      * FIXME: No new interrupt can occur now, but the IRQ thread might still
1307      * be running.
1308      */
1309 
1310     rcar_dmac_chan_reinit(rchan);
1311 
1312     return 0;
1313 }
1314 
1315 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1316                            dma_cookie_t cookie)
1317 {
1318     struct rcar_dmac_desc *desc = chan->desc.running;
1319     struct rcar_dmac_xfer_chunk *running = NULL;
1320     struct rcar_dmac_xfer_chunk *chunk;
1321     enum dma_status status;
1322     unsigned int residue = 0;
1323     unsigned int dptr = 0;
1324     unsigned int chcrb;
1325     unsigned int tcrb;
1326     unsigned int i;
1327 
1328     if (!desc)
1329         return 0;
1330 
1331     /*
1332      * If the cookie corresponds to a descriptor that has been completed
1333      * there is no residue. The same check has already been performed by the
1334      * caller but without holding the channel lock, so the descriptor could
1335      * now be complete.
1336      */
1337     status = dma_cookie_status(&chan->chan, cookie, NULL);
1338     if (status == DMA_COMPLETE)
1339         return 0;
1340 
1341     /*
1342      * If the cookie doesn't correspond to the currently running transfer
1343      * then the descriptor hasn't been processed yet, and the residue is
1344      * equal to the full descriptor size.
1345      * Also, a client driver is possible to call this function before
1346      * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1347      * will be the next descriptor, and the done list will appear. So, if
1348      * the argument cookie matches the done list's cookie, we can assume
1349      * the residue is zero.
1350      */
1351     if (cookie != desc->async_tx.cookie) {
1352         list_for_each_entry(desc, &chan->desc.done, node) {
1353             if (cookie == desc->async_tx.cookie)
1354                 return 0;
1355         }
1356         list_for_each_entry(desc, &chan->desc.pending, node) {
1357             if (cookie == desc->async_tx.cookie)
1358                 return desc->size;
1359         }
1360         list_for_each_entry(desc, &chan->desc.active, node) {
1361             if (cookie == desc->async_tx.cookie)
1362                 return desc->size;
1363         }
1364 
1365         /*
1366          * No descriptor found for the cookie, there's thus no residue.
1367          * This shouldn't happen if the calling driver passes a correct
1368          * cookie value.
1369          */
1370         WARN(1, "No descriptor for cookie!");
1371         return 0;
1372     }
1373 
1374     /*
1375      * We need to read two registers.
1376      * Make sure the control register does not skip to next chunk
1377      * while reading the counter.
1378      * Trying it 3 times should be enough: Initial read, retry, retry
1379      * for the paranoid.
1380      */
1381     for (i = 0; i < 3; i++) {
1382         chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1383                         RCAR_DMACHCRB_DPTR_MASK;
1384         tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
1385         /* Still the same? */
1386         if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1387                   RCAR_DMACHCRB_DPTR_MASK))
1388             break;
1389     }
1390     WARN_ONCE(i >= 3, "residue might be not continuous!");
1391 
1392     /*
1393      * In descriptor mode the descriptor running pointer is not maintained
1394      * by the interrupt handler, find the running descriptor from the
1395      * descriptor pointer field in the CHCRB register. In non-descriptor
1396      * mode just use the running descriptor pointer.
1397      */
1398     if (desc->hwdescs.use) {
1399         dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
1400         if (dptr == 0)
1401             dptr = desc->nchunks;
1402         dptr--;
1403         WARN_ON(dptr >= desc->nchunks);
1404     } else {
1405         running = desc->running;
1406     }
1407 
1408     /* Compute the size of all chunks still to be transferred. */
1409     list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1410         if (chunk == running || ++dptr == desc->nchunks)
1411             break;
1412 
1413         residue += chunk->size;
1414     }
1415 
1416     /* Add the residue for the current chunk. */
1417     residue += tcrb << desc->xfer_shift;
1418 
1419     return residue;
1420 }
1421 
1422 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1423                        dma_cookie_t cookie,
1424                        struct dma_tx_state *txstate)
1425 {
1426     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1427     enum dma_status status;
1428     unsigned long flags;
1429     unsigned int residue;
1430     bool cyclic;
1431 
1432     status = dma_cookie_status(chan, cookie, txstate);
1433     if (status == DMA_COMPLETE || !txstate)
1434         return status;
1435 
1436     spin_lock_irqsave(&rchan->lock, flags);
1437     residue = rcar_dmac_chan_get_residue(rchan, cookie);
1438     cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1439     spin_unlock_irqrestore(&rchan->lock, flags);
1440 
1441     /* if there's no residue, the cookie is complete */
1442     if (!residue && !cyclic)
1443         return DMA_COMPLETE;
1444 
1445     dma_set_residue(txstate, residue);
1446 
1447     return status;
1448 }
1449 
1450 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1451 {
1452     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1453     unsigned long flags;
1454 
1455     spin_lock_irqsave(&rchan->lock, flags);
1456 
1457     if (list_empty(&rchan->desc.pending))
1458         goto done;
1459 
1460     /* Append the pending list to the active list. */
1461     list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1462 
1463     /*
1464      * If no transfer is running pick the first descriptor from the active
1465      * list and start the transfer.
1466      */
1467     if (!rchan->desc.running) {
1468         struct rcar_dmac_desc *desc;
1469 
1470         desc = list_first_entry(&rchan->desc.active,
1471                     struct rcar_dmac_desc, node);
1472         rchan->desc.running = desc;
1473 
1474         rcar_dmac_chan_start_xfer(rchan);
1475     }
1476 
1477 done:
1478     spin_unlock_irqrestore(&rchan->lock, flags);
1479 }
1480 
1481 static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1482 {
1483     struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1484 
1485     synchronize_irq(rchan->irq);
1486 }
1487 
1488 /* -----------------------------------------------------------------------------
1489  * IRQ handling
1490  */
1491 
1492 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1493 {
1494     struct rcar_dmac_desc *desc = chan->desc.running;
1495     unsigned int stage;
1496 
1497     if (WARN_ON(!desc || !desc->cyclic)) {
1498         /*
1499          * This should never happen, there should always be a running
1500          * cyclic descriptor when a descriptor stage end interrupt is
1501          * triggered. Warn and return.
1502          */
1503         return IRQ_NONE;
1504     }
1505 
1506     /* Program the interrupt pointer to the next stage. */
1507     stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1508          RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1509     rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1510 
1511     return IRQ_WAKE_THREAD;
1512 }
1513 
1514 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1515 {
1516     struct rcar_dmac_desc *desc = chan->desc.running;
1517     irqreturn_t ret = IRQ_WAKE_THREAD;
1518 
1519     if (WARN_ON_ONCE(!desc)) {
1520         /*
1521          * This should never happen, there should always be a running
1522          * descriptor when a transfer end interrupt is triggered. Warn
1523          * and return.
1524          */
1525         return IRQ_NONE;
1526     }
1527 
1528     /*
1529      * The transfer end interrupt isn't generated for each chunk when using
1530      * descriptor mode. Only update the running chunk pointer in
1531      * non-descriptor mode.
1532      */
1533     if (!desc->hwdescs.use) {
1534         /*
1535          * If we haven't completed the last transfer chunk simply move
1536          * to the next one. Only wake the IRQ thread if the transfer is
1537          * cyclic.
1538          */
1539         if (!list_is_last(&desc->running->node, &desc->chunks)) {
1540             desc->running = list_next_entry(desc->running, node);
1541             if (!desc->cyclic)
1542                 ret = IRQ_HANDLED;
1543             goto done;
1544         }
1545 
1546         /*
1547          * We've completed the last transfer chunk. If the transfer is
1548          * cyclic, move back to the first one.
1549          */
1550         if (desc->cyclic) {
1551             desc->running =
1552                 list_first_entry(&desc->chunks,
1553                          struct rcar_dmac_xfer_chunk,
1554                          node);
1555             goto done;
1556         }
1557     }
1558 
1559     /* The descriptor is complete, move it to the done list. */
1560     list_move_tail(&desc->node, &chan->desc.done);
1561 
1562     /* Queue the next descriptor, if any. */
1563     if (!list_empty(&chan->desc.active))
1564         chan->desc.running = list_first_entry(&chan->desc.active,
1565                               struct rcar_dmac_desc,
1566                               node);
1567     else
1568         chan->desc.running = NULL;
1569 
1570 done:
1571     if (chan->desc.running)
1572         rcar_dmac_chan_start_xfer(chan);
1573 
1574     return ret;
1575 }
1576 
1577 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1578 {
1579     u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1580     struct rcar_dmac_chan *chan = dev;
1581     irqreturn_t ret = IRQ_NONE;
1582     bool reinit = false;
1583     u32 chcr;
1584 
1585     spin_lock(&chan->lock);
1586 
1587     chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1588     if (chcr & RCAR_DMACHCR_CAE) {
1589         struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
1590 
1591         /*
1592          * We don't need to call rcar_dmac_chan_halt()
1593          * because channel is already stopped in error case.
1594          * We need to clear register and check DE bit as recovery.
1595          */
1596         rcar_dmac_chan_clear(dmac, chan);
1597         rcar_dmac_chcr_de_barrier(chan);
1598         reinit = true;
1599         goto spin_lock_end;
1600     }
1601 
1602     if (chcr & RCAR_DMACHCR_TE)
1603         mask |= RCAR_DMACHCR_DE;
1604     rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1605     if (mask & RCAR_DMACHCR_DE)
1606         rcar_dmac_chcr_de_barrier(chan);
1607 
1608     if (chcr & RCAR_DMACHCR_DSE)
1609         ret |= rcar_dmac_isr_desc_stage_end(chan);
1610 
1611     if (chcr & RCAR_DMACHCR_TE)
1612         ret |= rcar_dmac_isr_transfer_end(chan);
1613 
1614 spin_lock_end:
1615     spin_unlock(&chan->lock);
1616 
1617     if (reinit) {
1618         dev_err(chan->chan.device->dev, "Channel Address Error\n");
1619 
1620         rcar_dmac_chan_reinit(chan);
1621         ret = IRQ_HANDLED;
1622     }
1623 
1624     return ret;
1625 }
1626 
1627 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1628 {
1629     struct rcar_dmac_chan *chan = dev;
1630     struct rcar_dmac_desc *desc;
1631     struct dmaengine_desc_callback cb;
1632 
1633     spin_lock_irq(&chan->lock);
1634 
1635     /* For cyclic transfers notify the user after every chunk. */
1636     if (chan->desc.running && chan->desc.running->cyclic) {
1637         desc = chan->desc.running;
1638         dmaengine_desc_get_callback(&desc->async_tx, &cb);
1639 
1640         if (dmaengine_desc_callback_valid(&cb)) {
1641             spin_unlock_irq(&chan->lock);
1642             dmaengine_desc_callback_invoke(&cb, NULL);
1643             spin_lock_irq(&chan->lock);
1644         }
1645     }
1646 
1647     /*
1648      * Call the callback function for all descriptors on the done list and
1649      * move them to the ack wait list.
1650      */
1651     while (!list_empty(&chan->desc.done)) {
1652         desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1653                     node);
1654         dma_cookie_complete(&desc->async_tx);
1655         list_del(&desc->node);
1656 
1657         dmaengine_desc_get_callback(&desc->async_tx, &cb);
1658         if (dmaengine_desc_callback_valid(&cb)) {
1659             spin_unlock_irq(&chan->lock);
1660             /*
1661              * We own the only reference to this descriptor, we can
1662              * safely dereference it without holding the channel
1663              * lock.
1664              */
1665             dmaengine_desc_callback_invoke(&cb, NULL);
1666             spin_lock_irq(&chan->lock);
1667         }
1668 
1669         list_add_tail(&desc->node, &chan->desc.wait);
1670     }
1671 
1672     spin_unlock_irq(&chan->lock);
1673 
1674     /* Recycle all acked descriptors. */
1675     rcar_dmac_desc_recycle_acked(chan);
1676 
1677     return IRQ_HANDLED;
1678 }
1679 
1680 /* -----------------------------------------------------------------------------
1681  * OF xlate and channel filter
1682  */
1683 
1684 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1685 {
1686     struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1687     struct of_phandle_args *dma_spec = arg;
1688 
1689     /*
1690      * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1691      * function knows from which device it wants to allocate a channel from,
1692      * and would be perfectly capable of selecting the channel it wants.
1693      * Forcing it to call dma_request_channel() and iterate through all
1694      * channels from all controllers is just pointless.
1695      */
1696     if (chan->device->device_config != rcar_dmac_device_config)
1697         return false;
1698 
1699     return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1700 }
1701 
1702 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1703                        struct of_dma *ofdma)
1704 {
1705     struct rcar_dmac_chan *rchan;
1706     struct dma_chan *chan;
1707     dma_cap_mask_t mask;
1708 
1709     if (dma_spec->args_count != 1)
1710         return NULL;
1711 
1712     /* Only slave DMA channels can be allocated via DT */
1713     dma_cap_zero(mask);
1714     dma_cap_set(DMA_SLAVE, mask);
1715 
1716     chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
1717                      ofdma->of_node);
1718     if (!chan)
1719         return NULL;
1720 
1721     rchan = to_rcar_dmac_chan(chan);
1722     rchan->mid_rid = dma_spec->args[0];
1723 
1724     return chan;
1725 }
1726 
1727 /* -----------------------------------------------------------------------------
1728  * Power management
1729  */
1730 
1731 #ifdef CONFIG_PM
1732 static int rcar_dmac_runtime_suspend(struct device *dev)
1733 {
1734     return 0;
1735 }
1736 
1737 static int rcar_dmac_runtime_resume(struct device *dev)
1738 {
1739     struct rcar_dmac *dmac = dev_get_drvdata(dev);
1740 
1741     return rcar_dmac_init(dmac);
1742 }
1743 #endif
1744 
1745 static const struct dev_pm_ops rcar_dmac_pm = {
1746     /*
1747      * TODO for system sleep/resume:
1748      *   - Wait for the current transfer to complete and stop the device,
1749      *   - Resume transfers, if any.
1750      */
1751     SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1752                       pm_runtime_force_resume)
1753     SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1754                NULL)
1755 };
1756 
1757 /* -----------------------------------------------------------------------------
1758  * Probe and remove
1759  */
1760 
1761 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1762                 struct rcar_dmac_chan *rchan)
1763 {
1764     struct platform_device *pdev = to_platform_device(dmac->dev);
1765     struct dma_chan *chan = &rchan->chan;
1766     char pdev_irqname[5];
1767     char *irqname;
1768     int ret;
1769 
1770     rchan->mid_rid = -EINVAL;
1771 
1772     spin_lock_init(&rchan->lock);
1773 
1774     INIT_LIST_HEAD(&rchan->desc.free);
1775     INIT_LIST_HEAD(&rchan->desc.pending);
1776     INIT_LIST_HEAD(&rchan->desc.active);
1777     INIT_LIST_HEAD(&rchan->desc.done);
1778     INIT_LIST_HEAD(&rchan->desc.wait);
1779 
1780     /* Request the channel interrupt. */
1781     sprintf(pdev_irqname, "ch%u", rchan->index);
1782     rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1783     if (rchan->irq < 0)
1784         return -ENODEV;
1785 
1786     irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1787                  dev_name(dmac->dev), rchan->index);
1788     if (!irqname)
1789         return -ENOMEM;
1790 
1791     /*
1792      * Initialize the DMA engine channel and add it to the DMA engine
1793      * channels list.
1794      */
1795     chan->device = &dmac->engine;
1796     dma_cookie_init(chan);
1797 
1798     list_add_tail(&chan->device_node, &dmac->engine.channels);
1799 
1800     ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1801                     rcar_dmac_isr_channel,
1802                     rcar_dmac_isr_channel_thread, 0,
1803                     irqname, rchan);
1804     if (ret) {
1805         dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1806             rchan->irq, ret);
1807         return ret;
1808     }
1809 
1810     return 0;
1811 }
1812 
1813 #define RCAR_DMAC_MAX_CHANNELS  32
1814 
1815 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1816 {
1817     struct device_node *np = dev->of_node;
1818     int ret;
1819 
1820     ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1821     if (ret < 0) {
1822         dev_err(dev, "unable to read dma-channels property\n");
1823         return ret;
1824     }
1825 
1826     /* The hardware and driver don't support more than 32 bits in CHCLR */
1827     if (dmac->n_channels <= 0 ||
1828         dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
1829         dev_err(dev, "invalid number of channels %u\n",
1830             dmac->n_channels);
1831         return -EINVAL;
1832     }
1833 
1834     /*
1835      * If the driver is unable to read dma-channel-mask property,
1836      * the driver assumes that it can use all channels.
1837      */
1838     dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
1839     of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
1840 
1841     /* If the property has out-of-channel mask, this driver clears it */
1842     dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
1843 
1844     return 0;
1845 }
1846 
1847 static int rcar_dmac_probe(struct platform_device *pdev)
1848 {
1849     const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1850         DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1851         DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1852         DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1853     const struct rcar_dmac_of_data *data;
1854     struct rcar_dmac_chan *chan;
1855     struct dma_device *engine;
1856     void __iomem *chan_base;
1857     struct rcar_dmac *dmac;
1858     unsigned int i;
1859     int ret;
1860 
1861     data = of_device_get_match_data(&pdev->dev);
1862     if (!data)
1863         return -EINVAL;
1864 
1865     dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1866     if (!dmac)
1867         return -ENOMEM;
1868 
1869     dmac->dev = &pdev->dev;
1870     platform_set_drvdata(pdev, dmac);
1871     ret = dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1872     if (ret)
1873         return ret;
1874 
1875     ret = dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1876     if (ret)
1877         return ret;
1878 
1879     ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1880     if (ret < 0)
1881         return ret;
1882 
1883     /*
1884      * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1885      * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1886      * is connected to microTLB 0 on currently supported platforms, so we
1887      * can't use it with the IPMMU. As the IOMMU API operates at the device
1888      * level we can't disable it selectively, so ignore channel 0 for now if
1889      * the device is part of an IOMMU group.
1890      */
1891     if (device_iommu_mapped(&pdev->dev))
1892         dmac->channels_mask &= ~BIT(0);
1893 
1894     dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1895                       sizeof(*dmac->channels), GFP_KERNEL);
1896     if (!dmac->channels)
1897         return -ENOMEM;
1898 
1899     /* Request resources. */
1900     dmac->dmac_base = devm_platform_ioremap_resource(pdev, 0);
1901     if (IS_ERR(dmac->dmac_base))
1902         return PTR_ERR(dmac->dmac_base);
1903 
1904     if (!data->chan_offset_base) {
1905         dmac->chan_base = devm_platform_ioremap_resource(pdev, 1);
1906         if (IS_ERR(dmac->chan_base))
1907             return PTR_ERR(dmac->chan_base);
1908 
1909         chan_base = dmac->chan_base;
1910     } else {
1911         chan_base = dmac->dmac_base + data->chan_offset_base;
1912     }
1913 
1914     for_each_rcar_dmac_chan(i, dmac, chan) {
1915         chan->index = i;
1916         chan->iomem = chan_base + i * data->chan_offset_stride;
1917     }
1918 
1919     /* Enable runtime PM and initialize the device. */
1920     pm_runtime_enable(&pdev->dev);
1921     ret = pm_runtime_resume_and_get(&pdev->dev);
1922     if (ret < 0) {
1923         dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1924         goto err_pm_disable;
1925     }
1926 
1927     ret = rcar_dmac_init(dmac);
1928     pm_runtime_put(&pdev->dev);
1929 
1930     if (ret) {
1931         dev_err(&pdev->dev, "failed to reset device\n");
1932         goto err_pm_disable;
1933     }
1934 
1935     /* Initialize engine */
1936     engine = &dmac->engine;
1937 
1938     dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1939     dma_cap_set(DMA_SLAVE, engine->cap_mask);
1940 
1941     engine->dev     = &pdev->dev;
1942     engine->copy_align  = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1943 
1944     engine->src_addr_widths = widths;
1945     engine->dst_addr_widths = widths;
1946     engine->directions  = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1947     engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1948 
1949     engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1950     engine->device_free_chan_resources  = rcar_dmac_free_chan_resources;
1951     engine->device_prep_dma_memcpy      = rcar_dmac_prep_dma_memcpy;
1952     engine->device_prep_slave_sg        = rcar_dmac_prep_slave_sg;
1953     engine->device_prep_dma_cyclic      = rcar_dmac_prep_dma_cyclic;
1954     engine->device_config           = rcar_dmac_device_config;
1955     engine->device_pause            = rcar_dmac_chan_pause;
1956     engine->device_terminate_all        = rcar_dmac_chan_terminate_all;
1957     engine->device_tx_status        = rcar_dmac_tx_status;
1958     engine->device_issue_pending        = rcar_dmac_issue_pending;
1959     engine->device_synchronize      = rcar_dmac_device_synchronize;
1960 
1961     INIT_LIST_HEAD(&engine->channels);
1962 
1963     for_each_rcar_dmac_chan(i, dmac, chan) {
1964         ret = rcar_dmac_chan_probe(dmac, chan);
1965         if (ret < 0)
1966             goto err_pm_disable;
1967     }
1968 
1969     /* Register the DMAC as a DMA provider for DT. */
1970     ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1971                      NULL);
1972     if (ret < 0)
1973         goto err_pm_disable;
1974 
1975     /*
1976      * Register the DMA engine device.
1977      *
1978      * Default transfer size of 32 bytes requires 32-byte alignment.
1979      */
1980     ret = dma_async_device_register(engine);
1981     if (ret < 0)
1982         goto err_dma_free;
1983 
1984     return 0;
1985 
1986 err_dma_free:
1987     of_dma_controller_free(pdev->dev.of_node);
1988 err_pm_disable:
1989     pm_runtime_disable(&pdev->dev);
1990     return ret;
1991 }
1992 
1993 static int rcar_dmac_remove(struct platform_device *pdev)
1994 {
1995     struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1996 
1997     of_dma_controller_free(pdev->dev.of_node);
1998     dma_async_device_unregister(&dmac->engine);
1999 
2000     pm_runtime_disable(&pdev->dev);
2001 
2002     return 0;
2003 }
2004 
2005 static void rcar_dmac_shutdown(struct platform_device *pdev)
2006 {
2007     struct rcar_dmac *dmac = platform_get_drvdata(pdev);
2008 
2009     rcar_dmac_stop_all_chan(dmac);
2010 }
2011 
2012 static const struct rcar_dmac_of_data rcar_dmac_data = {
2013     .chan_offset_base   = 0x8000,
2014     .chan_offset_stride = 0x80,
2015 };
2016 
2017 static const struct rcar_dmac_of_data rcar_gen4_dmac_data = {
2018     .chan_offset_base   = 0x0,
2019     .chan_offset_stride = 0x1000,
2020 };
2021 
2022 static const struct of_device_id rcar_dmac_of_ids[] = {
2023     {
2024         .compatible = "renesas,rcar-dmac",
2025         .data = &rcar_dmac_data,
2026     }, {
2027         .compatible = "renesas,rcar-gen4-dmac",
2028         .data = &rcar_gen4_dmac_data,
2029     }, {
2030         .compatible = "renesas,dmac-r8a779a0",
2031         .data = &rcar_gen4_dmac_data,
2032     },
2033     { /* Sentinel */ }
2034 };
2035 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
2036 
2037 static struct platform_driver rcar_dmac_driver = {
2038     .driver     = {
2039         .pm = &rcar_dmac_pm,
2040         .name   = "rcar-dmac",
2041         .of_match_table = rcar_dmac_of_ids,
2042     },
2043     .probe      = rcar_dmac_probe,
2044     .remove     = rcar_dmac_remove,
2045     .shutdown   = rcar_dmac_shutdown,
2046 };
2047 
2048 module_platform_driver(rcar_dmac_driver);
2049 
2050 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2051 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2052 MODULE_LICENSE("GPL v2");