0001
0002
0003
0004
0005
0006 #include <linux/clk.h>
0007 #include <linux/delay.h>
0008 #include <linux/device.h>
0009 #include <linux/dmaengine.h>
0010 #include <linux/dma-mapping.h>
0011 #include <linux/dma/qcom_adm.h>
0012 #include <linux/init.h>
0013 #include <linux/interrupt.h>
0014 #include <linux/io.h>
0015 #include <linux/kernel.h>
0016 #include <linux/module.h>
0017 #include <linux/of.h>
0018 #include <linux/of_address.h>
0019 #include <linux/of_irq.h>
0020 #include <linux/of_dma.h>
0021 #include <linux/platform_device.h>
0022 #include <linux/reset.h>
0023 #include <linux/scatterlist.h>
0024 #include <linux/slab.h>
0025
0026 #include "../dmaengine.h"
0027 #include "../virt-dma.h"
0028
0029
0030 #define ADM_CHAN_MULTI 0x4
0031 #define ADM_CI_MULTI 0x4
0032 #define ADM_CRCI_MULTI 0x4
0033 #define ADM_EE_MULTI 0x800
0034 #define ADM_CHAN_OFFS(chan) (ADM_CHAN_MULTI * (chan))
0035 #define ADM_EE_OFFS(ee) (ADM_EE_MULTI * (ee))
0036 #define ADM_CHAN_EE_OFFS(chan, ee) (ADM_CHAN_OFFS(chan) + ADM_EE_OFFS(ee))
0037 #define ADM_CHAN_OFFS(chan) (ADM_CHAN_MULTI * (chan))
0038 #define ADM_CI_OFFS(ci) (ADM_CHAN_OFF(ci))
0039 #define ADM_CH_CMD_PTR(chan, ee) (ADM_CHAN_EE_OFFS(chan, ee))
0040 #define ADM_CH_RSLT(chan, ee) (0x40 + ADM_CHAN_EE_OFFS(chan, ee))
0041 #define ADM_CH_FLUSH_STATE0(chan, ee) (0x80 + ADM_CHAN_EE_OFFS(chan, ee))
0042 #define ADM_CH_STATUS_SD(chan, ee) (0x200 + ADM_CHAN_EE_OFFS(chan, ee))
0043 #define ADM_CH_CONF(chan) (0x240 + ADM_CHAN_OFFS(chan))
0044 #define ADM_CH_RSLT_CONF(chan, ee) (0x300 + ADM_CHAN_EE_OFFS(chan, ee))
0045 #define ADM_SEC_DOMAIN_IRQ_STATUS(ee) (0x380 + ADM_EE_OFFS(ee))
0046 #define ADM_CI_CONF(ci) (0x390 + (ci) * ADM_CI_MULTI)
0047 #define ADM_GP_CTL 0x3d8
0048 #define ADM_CRCI_CTL(crci, ee) (0x400 + (crci) * ADM_CRCI_MULTI + \
0049 ADM_EE_OFFS(ee))
0050
0051
0052 #define ADM_CH_STATUS_VALID BIT(1)
0053
0054
0055 #define ADM_CH_RSLT_VALID BIT(31)
0056 #define ADM_CH_RSLT_ERR BIT(3)
0057 #define ADM_CH_RSLT_FLUSH BIT(2)
0058 #define ADM_CH_RSLT_TPD BIT(1)
0059
0060
0061 #define ADM_CH_CONF_SHADOW_EN BIT(12)
0062 #define ADM_CH_CONF_MPU_DISABLE BIT(11)
0063 #define ADM_CH_CONF_PERM_MPU_CONF BIT(9)
0064 #define ADM_CH_CONF_FORCE_RSLT_EN BIT(7)
0065 #define ADM_CH_CONF_SEC_DOMAIN(ee) ((((ee) & 0x3) << 4) | (((ee) & 0x4) << 11))
0066
0067
0068 #define ADM_CH_RSLT_CONF_FLUSH_EN BIT(1)
0069 #define ADM_CH_RSLT_CONF_IRQ_EN BIT(0)
0070
0071
0072 #define ADM_CRCI_CTL_MUX_SEL BIT(18)
0073 #define ADM_CRCI_CTL_RST BIT(17)
0074
0075
0076 #define ADM_CI_RANGE_END(x) ((x) << 24)
0077 #define ADM_CI_RANGE_START(x) ((x) << 16)
0078 #define ADM_CI_BURST_4_WORDS BIT(2)
0079 #define ADM_CI_BURST_8_WORDS BIT(3)
0080
0081
0082 #define ADM_GP_CTL_LP_EN BIT(12)
0083 #define ADM_GP_CTL_LP_CNT(x) ((x) << 8)
0084
0085
0086 #define ADM_CPLE_LP BIT(31)
0087 #define ADM_CPLE_CMD_PTR_LIST BIT(29)
0088
0089
0090 #define ADM_CMD_LC BIT(31)
0091 #define ADM_CMD_DST_CRCI(n) (((n) & 0xf) << 7)
0092 #define ADM_CMD_SRC_CRCI(n) (((n) & 0xf) << 3)
0093
0094 #define ADM_CMD_TYPE_SINGLE 0x0
0095 #define ADM_CMD_TYPE_BOX 0x3
0096
0097 #define ADM_CRCI_MUX_SEL BIT(4)
0098 #define ADM_DESC_ALIGN 8
0099 #define ADM_MAX_XFER (SZ_64K - 1)
0100 #define ADM_MAX_ROWS (SZ_64K - 1)
0101 #define ADM_MAX_CHANNELS 16
0102
0103 struct adm_desc_hw_box {
0104 u32 cmd;
0105 u32 src_addr;
0106 u32 dst_addr;
0107 u32 row_len;
0108 u32 num_rows;
0109 u32 row_offset;
0110 };
0111
0112 struct adm_desc_hw_single {
0113 u32 cmd;
0114 u32 src_addr;
0115 u32 dst_addr;
0116 u32 len;
0117 };
0118
0119 struct adm_async_desc {
0120 struct virt_dma_desc vd;
0121 struct adm_device *adev;
0122
0123 size_t length;
0124 enum dma_transfer_direction dir;
0125 dma_addr_t dma_addr;
0126 size_t dma_len;
0127
0128 void *cpl;
0129 dma_addr_t cp_addr;
0130 u32 crci;
0131 u32 mux;
0132 u32 blk_size;
0133 };
0134
0135 struct adm_chan {
0136 struct virt_dma_chan vc;
0137 struct adm_device *adev;
0138
0139
0140 u32 id;
0141
0142 struct adm_async_desc *curr_txd;
0143 struct dma_slave_config slave;
0144 u32 crci;
0145 u32 mux;
0146 struct list_head node;
0147
0148 int error;
0149 int initialized;
0150 };
0151
0152 static inline struct adm_chan *to_adm_chan(struct dma_chan *common)
0153 {
0154 return container_of(common, struct adm_chan, vc.chan);
0155 }
0156
0157 struct adm_device {
0158 void __iomem *regs;
0159 struct device *dev;
0160 struct dma_device common;
0161 struct device_dma_parameters dma_parms;
0162 struct adm_chan *channels;
0163
0164 u32 ee;
0165
0166 struct clk *core_clk;
0167 struct clk *iface_clk;
0168
0169 struct reset_control *clk_reset;
0170 struct reset_control *c0_reset;
0171 struct reset_control *c1_reset;
0172 struct reset_control *c2_reset;
0173 int irq;
0174 };
0175
0176
0177
0178
0179
0180
0181
0182
0183 static void adm_free_chan(struct dma_chan *chan)
0184 {
0185
0186 vchan_free_chan_resources(to_virt_chan(chan));
0187 }
0188
0189
0190
0191
0192
0193
0194 static int adm_get_blksize(unsigned int burst)
0195 {
0196 int ret;
0197
0198 switch (burst) {
0199 case 16:
0200 case 32:
0201 case 64:
0202 case 128:
0203 ret = ffs(burst >> 4) - 1;
0204 break;
0205 case 192:
0206 ret = 4;
0207 break;
0208 case 256:
0209 ret = 5;
0210 break;
0211 default:
0212 ret = -EINVAL;
0213 break;
0214 }
0215
0216 return ret;
0217 }
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229 static void *adm_process_fc_descriptors(struct adm_chan *achan, void *desc,
0230 struct scatterlist *sg, u32 crci,
0231 u32 burst,
0232 enum dma_transfer_direction direction)
0233 {
0234 struct adm_desc_hw_box *box_desc = NULL;
0235 struct adm_desc_hw_single *single_desc;
0236 u32 remainder = sg_dma_len(sg);
0237 u32 rows, row_offset, crci_cmd;
0238 u32 mem_addr = sg_dma_address(sg);
0239 u32 *incr_addr = &mem_addr;
0240 u32 *src, *dst;
0241
0242 if (direction == DMA_DEV_TO_MEM) {
0243 crci_cmd = ADM_CMD_SRC_CRCI(crci);
0244 row_offset = burst;
0245 src = &achan->slave.src_addr;
0246 dst = &mem_addr;
0247 } else {
0248 crci_cmd = ADM_CMD_DST_CRCI(crci);
0249 row_offset = burst << 16;
0250 src = &mem_addr;
0251 dst = &achan->slave.dst_addr;
0252 }
0253
0254 while (remainder >= burst) {
0255 box_desc = desc;
0256 box_desc->cmd = ADM_CMD_TYPE_BOX | crci_cmd;
0257 box_desc->row_offset = row_offset;
0258 box_desc->src_addr = *src;
0259 box_desc->dst_addr = *dst;
0260
0261 rows = remainder / burst;
0262 rows = min_t(u32, rows, ADM_MAX_ROWS);
0263 box_desc->num_rows = rows << 16 | rows;
0264 box_desc->row_len = burst << 16 | burst;
0265
0266 *incr_addr += burst * rows;
0267 remainder -= burst * rows;
0268 desc += sizeof(*box_desc);
0269 }
0270
0271
0272 if (remainder) {
0273 single_desc = desc;
0274 single_desc->cmd = ADM_CMD_TYPE_SINGLE | crci_cmd;
0275 single_desc->len = remainder;
0276 single_desc->src_addr = *src;
0277 single_desc->dst_addr = *dst;
0278 desc += sizeof(*single_desc);
0279
0280 if (sg_is_last(sg))
0281 single_desc->cmd |= ADM_CMD_LC;
0282 } else {
0283 if (box_desc && sg_is_last(sg))
0284 box_desc->cmd |= ADM_CMD_LC;
0285 }
0286
0287 return desc;
0288 }
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298 static void *adm_process_non_fc_descriptors(struct adm_chan *achan, void *desc,
0299 struct scatterlist *sg,
0300 enum dma_transfer_direction direction)
0301 {
0302 struct adm_desc_hw_single *single_desc;
0303 u32 remainder = sg_dma_len(sg);
0304 u32 mem_addr = sg_dma_address(sg);
0305 u32 *incr_addr = &mem_addr;
0306 u32 *src, *dst;
0307
0308 if (direction == DMA_DEV_TO_MEM) {
0309 src = &achan->slave.src_addr;
0310 dst = &mem_addr;
0311 } else {
0312 src = &mem_addr;
0313 dst = &achan->slave.dst_addr;
0314 }
0315
0316 do {
0317 single_desc = desc;
0318 single_desc->cmd = ADM_CMD_TYPE_SINGLE;
0319 single_desc->src_addr = *src;
0320 single_desc->dst_addr = *dst;
0321 single_desc->len = (remainder > ADM_MAX_XFER) ?
0322 ADM_MAX_XFER : remainder;
0323
0324 remainder -= single_desc->len;
0325 *incr_addr += single_desc->len;
0326 desc += sizeof(*single_desc);
0327 } while (remainder);
0328
0329
0330 if (sg_is_last(sg))
0331 single_desc->cmd |= ADM_CMD_LC;
0332
0333 return desc;
0334 }
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346 static struct dma_async_tx_descriptor *adm_prep_slave_sg(struct dma_chan *chan,
0347 struct scatterlist *sgl,
0348 unsigned int sg_len,
0349 enum dma_transfer_direction direction,
0350 unsigned long flags,
0351 void *context)
0352 {
0353 struct adm_chan *achan = to_adm_chan(chan);
0354 struct adm_device *adev = achan->adev;
0355 struct adm_async_desc *async_desc;
0356 struct scatterlist *sg;
0357 dma_addr_t cple_addr;
0358 u32 i, burst;
0359 u32 single_count = 0, box_count = 0, crci = 0;
0360 void *desc;
0361 u32 *cple;
0362 int blk_size = 0;
0363
0364 if (!is_slave_direction(direction)) {
0365 dev_err(adev->dev, "invalid dma direction\n");
0366 return NULL;
0367 }
0368
0369
0370
0371
0372 burst = (direction == DMA_MEM_TO_DEV) ?
0373 achan->slave.dst_maxburst :
0374 achan->slave.src_maxburst;
0375
0376
0377 if (achan->slave.device_fc) {
0378 blk_size = adm_get_blksize(burst);
0379 if (blk_size < 0) {
0380 dev_err(adev->dev, "invalid burst value: %d\n",
0381 burst);
0382 return ERR_PTR(-EINVAL);
0383 }
0384
0385 crci = achan->crci & 0xf;
0386 if (!crci || achan->crci > 0x1f) {
0387 dev_err(adev->dev, "invalid crci value\n");
0388 return ERR_PTR(-EINVAL);
0389 }
0390 }
0391
0392
0393 for_each_sg(sgl, sg, sg_len, i) {
0394 if (achan->slave.device_fc) {
0395 box_count += DIV_ROUND_UP(sg_dma_len(sg) / burst,
0396 ADM_MAX_ROWS);
0397 if (sg_dma_len(sg) % burst)
0398 single_count++;
0399 } else {
0400 single_count += DIV_ROUND_UP(sg_dma_len(sg),
0401 ADM_MAX_XFER);
0402 }
0403 }
0404
0405 async_desc = kzalloc(sizeof(*async_desc), GFP_NOWAIT);
0406 if (!async_desc)
0407 return ERR_PTR(-ENOMEM);
0408
0409 async_desc->mux = achan->mux ? ADM_CRCI_CTL_MUX_SEL : 0;
0410 async_desc->crci = crci;
0411 async_desc->blk_size = blk_size;
0412 async_desc->dma_len = single_count * sizeof(struct adm_desc_hw_single) +
0413 box_count * sizeof(struct adm_desc_hw_box) +
0414 sizeof(*cple) + 2 * ADM_DESC_ALIGN;
0415
0416 async_desc->cpl = kzalloc(async_desc->dma_len, GFP_NOWAIT);
0417 if (!async_desc->cpl)
0418 goto free;
0419
0420 async_desc->adev = adev;
0421
0422
0423 cple = PTR_ALIGN(async_desc->cpl, ADM_DESC_ALIGN);
0424 desc = PTR_ALIGN(cple + 1, ADM_DESC_ALIGN);
0425
0426 for_each_sg(sgl, sg, sg_len, i) {
0427 async_desc->length += sg_dma_len(sg);
0428
0429 if (achan->slave.device_fc)
0430 desc = adm_process_fc_descriptors(achan, desc, sg, crci,
0431 burst, direction);
0432 else
0433 desc = adm_process_non_fc_descriptors(achan, desc, sg,
0434 direction);
0435 }
0436
0437 async_desc->dma_addr = dma_map_single(adev->dev, async_desc->cpl,
0438 async_desc->dma_len,
0439 DMA_TO_DEVICE);
0440 if (dma_mapping_error(adev->dev, async_desc->dma_addr))
0441 goto free;
0442
0443 cple_addr = async_desc->dma_addr + ((void *)cple - async_desc->cpl);
0444
0445
0446 dma_sync_single_for_cpu(adev->dev, cple_addr, sizeof(*cple),
0447 DMA_TO_DEVICE);
0448 *cple = ADM_CPLE_LP;
0449 *cple |= (async_desc->dma_addr + ADM_DESC_ALIGN) >> 3;
0450 dma_sync_single_for_device(adev->dev, cple_addr, sizeof(*cple),
0451 DMA_TO_DEVICE);
0452
0453 return vchan_tx_prep(&achan->vc, &async_desc->vd, flags);
0454
0455 free:
0456 kfree(async_desc);
0457 return ERR_PTR(-ENOMEM);
0458 }
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468 static int adm_terminate_all(struct dma_chan *chan)
0469 {
0470 struct adm_chan *achan = to_adm_chan(chan);
0471 struct adm_device *adev = achan->adev;
0472 unsigned long flags;
0473 LIST_HEAD(head);
0474
0475 spin_lock_irqsave(&achan->vc.lock, flags);
0476 vchan_get_all_descriptors(&achan->vc, &head);
0477
0478
0479 writel_relaxed(0x0,
0480 adev->regs + ADM_CH_FLUSH_STATE0(achan->id, adev->ee));
0481
0482 spin_unlock_irqrestore(&achan->vc.lock, flags);
0483
0484 vchan_dma_desc_free_list(&achan->vc, &head);
0485
0486 return 0;
0487 }
0488
0489 static int adm_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
0490 {
0491 struct adm_chan *achan = to_adm_chan(chan);
0492 struct qcom_adm_peripheral_config *config = cfg->peripheral_config;
0493 unsigned long flag;
0494
0495 spin_lock_irqsave(&achan->vc.lock, flag);
0496 memcpy(&achan->slave, cfg, sizeof(struct dma_slave_config));
0497 if (cfg->peripheral_size == sizeof(config))
0498 achan->crci = config->crci;
0499 spin_unlock_irqrestore(&achan->vc.lock, flag);
0500
0501 return 0;
0502 }
0503
0504
0505
0506
0507
0508 static void adm_start_dma(struct adm_chan *achan)
0509 {
0510 struct virt_dma_desc *vd = vchan_next_desc(&achan->vc);
0511 struct adm_device *adev = achan->adev;
0512 struct adm_async_desc *async_desc;
0513
0514 lockdep_assert_held(&achan->vc.lock);
0515
0516 if (!vd)
0517 return;
0518
0519 list_del(&vd->node);
0520
0521
0522 async_desc = container_of(vd, struct adm_async_desc, vd);
0523 achan->curr_txd = async_desc;
0524
0525
0526 achan->error = 0;
0527
0528 if (!achan->initialized) {
0529
0530 writel(ADM_CH_CONF_SHADOW_EN |
0531 ADM_CH_CONF_PERM_MPU_CONF |
0532 ADM_CH_CONF_MPU_DISABLE |
0533 ADM_CH_CONF_SEC_DOMAIN(adev->ee),
0534 adev->regs + ADM_CH_CONF(achan->id));
0535
0536 writel(ADM_CH_RSLT_CONF_IRQ_EN | ADM_CH_RSLT_CONF_FLUSH_EN,
0537 adev->regs + ADM_CH_RSLT_CONF(achan->id, adev->ee));
0538
0539 achan->initialized = 1;
0540 }
0541
0542
0543 if (async_desc->crci) {
0544 writel(async_desc->mux | async_desc->blk_size,
0545 adev->regs + ADM_CRCI_CTL(async_desc->crci, adev->ee));
0546 }
0547
0548
0549 wmb();
0550
0551
0552 writel(ALIGN(async_desc->dma_addr, ADM_DESC_ALIGN) >> 3,
0553 adev->regs + ADM_CH_CMD_PTR(achan->id, adev->ee));
0554 }
0555
0556
0557
0558
0559
0560
0561
0562
0563 static irqreturn_t adm_dma_irq(int irq, void *data)
0564 {
0565 struct adm_device *adev = data;
0566 u32 srcs, i;
0567 struct adm_async_desc *async_desc;
0568 unsigned long flags;
0569
0570 srcs = readl_relaxed(adev->regs +
0571 ADM_SEC_DOMAIN_IRQ_STATUS(adev->ee));
0572
0573 for (i = 0; i < ADM_MAX_CHANNELS; i++) {
0574 struct adm_chan *achan = &adev->channels[i];
0575 u32 status, result;
0576
0577 if (srcs & BIT(i)) {
0578 status = readl_relaxed(adev->regs +
0579 ADM_CH_STATUS_SD(i, adev->ee));
0580
0581
0582 if (!(status & ADM_CH_STATUS_VALID))
0583 continue;
0584
0585 result = readl_relaxed(adev->regs +
0586 ADM_CH_RSLT(i, adev->ee));
0587
0588
0589 if (!(result & ADM_CH_RSLT_VALID))
0590 continue;
0591
0592
0593 if (result & (ADM_CH_RSLT_ERR | ADM_CH_RSLT_FLUSH))
0594 achan->error = 1;
0595
0596 spin_lock_irqsave(&achan->vc.lock, flags);
0597 async_desc = achan->curr_txd;
0598
0599 achan->curr_txd = NULL;
0600
0601 if (async_desc) {
0602 vchan_cookie_complete(&async_desc->vd);
0603
0604
0605 adm_start_dma(achan);
0606 }
0607
0608 spin_unlock_irqrestore(&achan->vc.lock, flags);
0609 }
0610 }
0611
0612 return IRQ_HANDLED;
0613 }
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623 static enum dma_status adm_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
0624 struct dma_tx_state *txstate)
0625 {
0626 struct adm_chan *achan = to_adm_chan(chan);
0627 struct virt_dma_desc *vd;
0628 enum dma_status ret;
0629 unsigned long flags;
0630 size_t residue = 0;
0631
0632 ret = dma_cookie_status(chan, cookie, txstate);
0633 if (ret == DMA_COMPLETE || !txstate)
0634 return ret;
0635
0636 spin_lock_irqsave(&achan->vc.lock, flags);
0637
0638 vd = vchan_find_desc(&achan->vc, cookie);
0639 if (vd)
0640 residue = container_of(vd, struct adm_async_desc, vd)->length;
0641
0642 spin_unlock_irqrestore(&achan->vc.lock, flags);
0643
0644
0645
0646
0647
0648
0649 dma_set_residue(txstate, residue);
0650
0651 if (achan->error)
0652 return DMA_ERROR;
0653
0654 return ret;
0655 }
0656
0657
0658
0659
0660
0661
0662
0663 static void adm_issue_pending(struct dma_chan *chan)
0664 {
0665 struct adm_chan *achan = to_adm_chan(chan);
0666 unsigned long flags;
0667
0668 spin_lock_irqsave(&achan->vc.lock, flags);
0669
0670 if (vchan_issue_pending(&achan->vc) && !achan->curr_txd)
0671 adm_start_dma(achan);
0672 spin_unlock_irqrestore(&achan->vc.lock, flags);
0673 }
0674
0675
0676
0677
0678
0679
0680 static void adm_dma_free_desc(struct virt_dma_desc *vd)
0681 {
0682 struct adm_async_desc *async_desc = container_of(vd,
0683 struct adm_async_desc, vd);
0684
0685 dma_unmap_single(async_desc->adev->dev, async_desc->dma_addr,
0686 async_desc->dma_len, DMA_TO_DEVICE);
0687 kfree(async_desc->cpl);
0688 kfree(async_desc);
0689 }
0690
0691 static void adm_channel_init(struct adm_device *adev, struct adm_chan *achan,
0692 u32 index)
0693 {
0694 achan->id = index;
0695 achan->adev = adev;
0696
0697 vchan_init(&achan->vc, &adev->common);
0698 achan->vc.desc_free = adm_dma_free_desc;
0699 }
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712 static struct dma_chan *adm_dma_xlate(struct of_phandle_args *dma_spec,
0713 struct of_dma *ofdma)
0714 {
0715 struct dma_device *dev = ofdma->of_dma_data;
0716 struct dma_chan *chan, *candidate = NULL;
0717 struct adm_chan *achan;
0718
0719 if (!dev || dma_spec->args_count > 2)
0720 return NULL;
0721
0722 list_for_each_entry(chan, &dev->channels, device_node)
0723 if (chan->chan_id == dma_spec->args[0]) {
0724 candidate = chan;
0725 break;
0726 }
0727
0728 if (!candidate)
0729 return NULL;
0730
0731 achan = to_adm_chan(candidate);
0732 if (dma_spec->args_count == 2)
0733 achan->crci = dma_spec->args[1];
0734 else
0735 achan->crci = 0;
0736
0737 return dma_get_slave_channel(candidate);
0738 }
0739
0740 static int adm_dma_probe(struct platform_device *pdev)
0741 {
0742 struct adm_device *adev;
0743 int ret;
0744 u32 i;
0745
0746 adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
0747 if (!adev)
0748 return -ENOMEM;
0749
0750 adev->dev = &pdev->dev;
0751
0752 adev->regs = devm_platform_ioremap_resource(pdev, 0);
0753 if (IS_ERR(adev->regs))
0754 return PTR_ERR(adev->regs);
0755
0756 adev->irq = platform_get_irq(pdev, 0);
0757 if (adev->irq < 0)
0758 return adev->irq;
0759
0760 ret = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &adev->ee);
0761 if (ret) {
0762 dev_err(adev->dev, "Execution environment unspecified\n");
0763 return ret;
0764 }
0765
0766 adev->core_clk = devm_clk_get(adev->dev, "core");
0767 if (IS_ERR(adev->core_clk))
0768 return PTR_ERR(adev->core_clk);
0769
0770 adev->iface_clk = devm_clk_get(adev->dev, "iface");
0771 if (IS_ERR(adev->iface_clk))
0772 return PTR_ERR(adev->iface_clk);
0773
0774 adev->clk_reset = devm_reset_control_get_exclusive(&pdev->dev, "clk");
0775 if (IS_ERR(adev->clk_reset)) {
0776 dev_err(adev->dev, "failed to get ADM0 reset\n");
0777 return PTR_ERR(adev->clk_reset);
0778 }
0779
0780 adev->c0_reset = devm_reset_control_get_exclusive(&pdev->dev, "c0");
0781 if (IS_ERR(adev->c0_reset)) {
0782 dev_err(adev->dev, "failed to get ADM0 C0 reset\n");
0783 return PTR_ERR(adev->c0_reset);
0784 }
0785
0786 adev->c1_reset = devm_reset_control_get_exclusive(&pdev->dev, "c1");
0787 if (IS_ERR(adev->c1_reset)) {
0788 dev_err(adev->dev, "failed to get ADM0 C1 reset\n");
0789 return PTR_ERR(adev->c1_reset);
0790 }
0791
0792 adev->c2_reset = devm_reset_control_get_exclusive(&pdev->dev, "c2");
0793 if (IS_ERR(adev->c2_reset)) {
0794 dev_err(adev->dev, "failed to get ADM0 C2 reset\n");
0795 return PTR_ERR(adev->c2_reset);
0796 }
0797
0798 ret = clk_prepare_enable(adev->core_clk);
0799 if (ret) {
0800 dev_err(adev->dev, "failed to prepare/enable core clock\n");
0801 return ret;
0802 }
0803
0804 ret = clk_prepare_enable(adev->iface_clk);
0805 if (ret) {
0806 dev_err(adev->dev, "failed to prepare/enable iface clock\n");
0807 goto err_disable_core_clk;
0808 }
0809
0810 reset_control_assert(adev->clk_reset);
0811 reset_control_assert(adev->c0_reset);
0812 reset_control_assert(adev->c1_reset);
0813 reset_control_assert(adev->c2_reset);
0814
0815 udelay(2);
0816
0817 reset_control_deassert(adev->clk_reset);
0818 reset_control_deassert(adev->c0_reset);
0819 reset_control_deassert(adev->c1_reset);
0820 reset_control_deassert(adev->c2_reset);
0821
0822 adev->channels = devm_kcalloc(adev->dev, ADM_MAX_CHANNELS,
0823 sizeof(*adev->channels), GFP_KERNEL);
0824
0825 if (!adev->channels) {
0826 ret = -ENOMEM;
0827 goto err_disable_clks;
0828 }
0829
0830
0831 INIT_LIST_HEAD(&adev->common.channels);
0832
0833 for (i = 0; i < ADM_MAX_CHANNELS; i++)
0834 adm_channel_init(adev, &adev->channels[i], i);
0835
0836
0837 for (i = 0; i < 16; i++)
0838 writel(ADM_CRCI_CTL_RST, adev->regs +
0839 ADM_CRCI_CTL(i, adev->ee));
0840
0841
0842 writel(ADM_CI_RANGE_START(0x40) | ADM_CI_RANGE_END(0xb0) |
0843 ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(0));
0844 writel(ADM_CI_RANGE_START(0x2a) | ADM_CI_RANGE_END(0x2c) |
0845 ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(1));
0846 writel(ADM_CI_RANGE_START(0x12) | ADM_CI_RANGE_END(0x28) |
0847 ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(2));
0848 writel(ADM_GP_CTL_LP_EN | ADM_GP_CTL_LP_CNT(0xf),
0849 adev->regs + ADM_GP_CTL);
0850
0851 ret = devm_request_irq(adev->dev, adev->irq, adm_dma_irq,
0852 0, "adm_dma", adev);
0853 if (ret)
0854 goto err_disable_clks;
0855
0856 platform_set_drvdata(pdev, adev);
0857
0858 adev->common.dev = adev->dev;
0859 adev->common.dev->dma_parms = &adev->dma_parms;
0860
0861
0862 dma_cap_zero(adev->common.cap_mask);
0863 dma_cap_set(DMA_SLAVE, adev->common.cap_mask);
0864 dma_cap_set(DMA_PRIVATE, adev->common.cap_mask);
0865
0866
0867 adev->common.directions = BIT(DMA_DEV_TO_MEM | DMA_MEM_TO_DEV);
0868 adev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
0869 adev->common.src_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES;
0870 adev->common.dst_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES;
0871 adev->common.device_free_chan_resources = adm_free_chan;
0872 adev->common.device_prep_slave_sg = adm_prep_slave_sg;
0873 adev->common.device_issue_pending = adm_issue_pending;
0874 adev->common.device_tx_status = adm_tx_status;
0875 adev->common.device_terminate_all = adm_terminate_all;
0876 adev->common.device_config = adm_slave_config;
0877
0878 ret = dma_async_device_register(&adev->common);
0879 if (ret) {
0880 dev_err(adev->dev, "failed to register dma async device\n");
0881 goto err_disable_clks;
0882 }
0883
0884 ret = of_dma_controller_register(pdev->dev.of_node, adm_dma_xlate,
0885 &adev->common);
0886 if (ret)
0887 goto err_unregister_dma;
0888
0889 return 0;
0890
0891 err_unregister_dma:
0892 dma_async_device_unregister(&adev->common);
0893 err_disable_clks:
0894 clk_disable_unprepare(adev->iface_clk);
0895 err_disable_core_clk:
0896 clk_disable_unprepare(adev->core_clk);
0897
0898 return ret;
0899 }
0900
0901 static int adm_dma_remove(struct platform_device *pdev)
0902 {
0903 struct adm_device *adev = platform_get_drvdata(pdev);
0904 struct adm_chan *achan;
0905 u32 i;
0906
0907 of_dma_controller_free(pdev->dev.of_node);
0908 dma_async_device_unregister(&adev->common);
0909
0910 for (i = 0; i < ADM_MAX_CHANNELS; i++) {
0911 achan = &adev->channels[i];
0912
0913
0914 writel(0, adev->regs + ADM_CH_RSLT_CONF(achan->id, adev->ee));
0915
0916 tasklet_kill(&adev->channels[i].vc.task);
0917 adm_terminate_all(&adev->channels[i].vc.chan);
0918 }
0919
0920 devm_free_irq(adev->dev, adev->irq, adev);
0921
0922 clk_disable_unprepare(adev->core_clk);
0923 clk_disable_unprepare(adev->iface_clk);
0924
0925 return 0;
0926 }
0927
0928 static const struct of_device_id adm_of_match[] = {
0929 { .compatible = "qcom,adm", },
0930 {}
0931 };
0932 MODULE_DEVICE_TABLE(of, adm_of_match);
0933
0934 static struct platform_driver adm_dma_driver = {
0935 .probe = adm_dma_probe,
0936 .remove = adm_dma_remove,
0937 .driver = {
0938 .name = "adm-dma-engine",
0939 .of_match_table = adm_of_match,
0940 },
0941 };
0942
0943 module_platform_driver(adm_dma_driver);
0944
0945 MODULE_AUTHOR("Andy Gross <agross@codeaurora.org>");
0946 MODULE_DESCRIPTION("QCOM ADM DMA engine driver");
0947 MODULE_LICENSE("GPL v2");