Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
0004  *      http://www.samsung.com
0005  *
0006  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
0007  *  Jaswinder Singh <jassi.brar@samsung.com>
0008  */
0009 
0010 #include <linux/debugfs.h>
0011 #include <linux/kernel.h>
0012 #include <linux/io.h>
0013 #include <linux/init.h>
0014 #include <linux/slab.h>
0015 #include <linux/module.h>
0016 #include <linux/string.h>
0017 #include <linux/delay.h>
0018 #include <linux/interrupt.h>
0019 #include <linux/dma-mapping.h>
0020 #include <linux/dmaengine.h>
0021 #include <linux/amba/bus.h>
0022 #include <linux/scatterlist.h>
0023 #include <linux/of.h>
0024 #include <linux/of_dma.h>
0025 #include <linux/err.h>
0026 #include <linux/pm_runtime.h>
0027 #include <linux/bug.h>
0028 #include <linux/reset.h>
0029 
0030 #include "dmaengine.h"
0031 #define PL330_MAX_CHAN      8
0032 #define PL330_MAX_IRQS      32
0033 #define PL330_MAX_PERI      32
0034 #define PL330_MAX_BURST         16
0035 
0036 #define PL330_QUIRK_BROKEN_NO_FLUSHP    BIT(0)
0037 #define PL330_QUIRK_PERIPH_BURST    BIT(1)
0038 
0039 enum pl330_cachectrl {
0040     CCTRL0,     /* Noncacheable and nonbufferable */
0041     CCTRL1,     /* Bufferable only */
0042     CCTRL2,     /* Cacheable, but do not allocate */
0043     CCTRL3,     /* Cacheable and bufferable, but do not allocate */
0044     INVALID1,   /* AWCACHE = 0x1000 */
0045     INVALID2,
0046     CCTRL6,     /* Cacheable write-through, allocate on writes only */
0047     CCTRL7,     /* Cacheable write-back, allocate on writes only */
0048 };
0049 
0050 enum pl330_byteswap {
0051     SWAP_NO,
0052     SWAP_2,
0053     SWAP_4,
0054     SWAP_8,
0055     SWAP_16,
0056 };
0057 
0058 /* Register and Bit field Definitions */
0059 #define DS          0x0
0060 #define DS_ST_STOP      0x0
0061 #define DS_ST_EXEC      0x1
0062 #define DS_ST_CMISS     0x2
0063 #define DS_ST_UPDTPC        0x3
0064 #define DS_ST_WFE       0x4
0065 #define DS_ST_ATBRR     0x5
0066 #define DS_ST_QBUSY     0x6
0067 #define DS_ST_WFP       0x7
0068 #define DS_ST_KILL      0x8
0069 #define DS_ST_CMPLT     0x9
0070 #define DS_ST_FLTCMP        0xe
0071 #define DS_ST_FAULT     0xf
0072 
0073 #define DPC         0x4
0074 #define INTEN           0x20
0075 #define ES          0x24
0076 #define INTSTATUS       0x28
0077 #define INTCLR          0x2c
0078 #define FSM         0x30
0079 #define FSC         0x34
0080 #define FTM         0x38
0081 
0082 #define _FTC            0x40
0083 #define FTC(n)          (_FTC + (n)*0x4)
0084 
0085 #define _CS         0x100
0086 #define CS(n)           (_CS + (n)*0x8)
0087 #define CS_CNS          (1 << 21)
0088 
0089 #define _CPC            0x104
0090 #define CPC(n)          (_CPC + (n)*0x8)
0091 
0092 #define _SA         0x400
0093 #define SA(n)           (_SA + (n)*0x20)
0094 
0095 #define _DA         0x404
0096 #define DA(n)           (_DA + (n)*0x20)
0097 
0098 #define _CC         0x408
0099 #define CC(n)           (_CC + (n)*0x20)
0100 
0101 #define CC_SRCINC       (1 << 0)
0102 #define CC_DSTINC       (1 << 14)
0103 #define CC_SRCPRI       (1 << 8)
0104 #define CC_DSTPRI       (1 << 22)
0105 #define CC_SRCNS        (1 << 9)
0106 #define CC_DSTNS        (1 << 23)
0107 #define CC_SRCIA        (1 << 10)
0108 #define CC_DSTIA        (1 << 24)
0109 #define CC_SRCBRSTLEN_SHFT  4
0110 #define CC_DSTBRSTLEN_SHFT  18
0111 #define CC_SRCBRSTSIZE_SHFT 1
0112 #define CC_DSTBRSTSIZE_SHFT 15
0113 #define CC_SRCCCTRL_SHFT    11
0114 #define CC_SRCCCTRL_MASK    0x7
0115 #define CC_DSTCCTRL_SHFT    25
0116 #define CC_DRCCCTRL_MASK    0x7
0117 #define CC_SWAP_SHFT        28
0118 
0119 #define _LC0            0x40c
0120 #define LC0(n)          (_LC0 + (n)*0x20)
0121 
0122 #define _LC1            0x410
0123 #define LC1(n)          (_LC1 + (n)*0x20)
0124 
0125 #define DBGSTATUS       0xd00
0126 #define DBG_BUSY        (1 << 0)
0127 
0128 #define DBGCMD          0xd04
0129 #define DBGINST0        0xd08
0130 #define DBGINST1        0xd0c
0131 
0132 #define CR0         0xe00
0133 #define CR1         0xe04
0134 #define CR2         0xe08
0135 #define CR3         0xe0c
0136 #define CR4         0xe10
0137 #define CRD         0xe14
0138 
0139 #define PERIPH_ID       0xfe0
0140 #define PERIPH_REV_SHIFT    20
0141 #define PERIPH_REV_MASK     0xf
0142 #define PERIPH_REV_R0P0     0
0143 #define PERIPH_REV_R1P0     1
0144 #define PERIPH_REV_R1P1     2
0145 
0146 #define CR0_PERIPH_REQ_SET  (1 << 0)
0147 #define CR0_BOOT_EN_SET     (1 << 1)
0148 #define CR0_BOOT_MAN_NS     (1 << 2)
0149 #define CR0_NUM_CHANS_SHIFT 4
0150 #define CR0_NUM_CHANS_MASK  0x7
0151 #define CR0_NUM_PERIPH_SHIFT    12
0152 #define CR0_NUM_PERIPH_MASK 0x1f
0153 #define CR0_NUM_EVENTS_SHIFT    17
0154 #define CR0_NUM_EVENTS_MASK 0x1f
0155 
0156 #define CR1_ICACHE_LEN_SHIFT    0
0157 #define CR1_ICACHE_LEN_MASK 0x7
0158 #define CR1_NUM_ICACHELINES_SHIFT   4
0159 #define CR1_NUM_ICACHELINES_MASK    0xf
0160 
0161 #define CRD_DATA_WIDTH_SHIFT    0
0162 #define CRD_DATA_WIDTH_MASK 0x7
0163 #define CRD_WR_CAP_SHIFT    4
0164 #define CRD_WR_CAP_MASK     0x7
0165 #define CRD_WR_Q_DEP_SHIFT  8
0166 #define CRD_WR_Q_DEP_MASK   0xf
0167 #define CRD_RD_CAP_SHIFT    12
0168 #define CRD_RD_CAP_MASK     0x7
0169 #define CRD_RD_Q_DEP_SHIFT  16
0170 #define CRD_RD_Q_DEP_MASK   0xf
0171 #define CRD_DATA_BUFF_SHIFT 20
0172 #define CRD_DATA_BUFF_MASK  0x3ff
0173 
0174 #define PART            0x330
0175 #define DESIGNER        0x41
0176 #define REVISION        0x0
0177 #define INTEG_CFG       0x0
0178 #define PERIPH_ID_VAL       ((PART << 0) | (DESIGNER << 12))
0179 
0180 #define PL330_STATE_STOPPED     (1 << 0)
0181 #define PL330_STATE_EXECUTING       (1 << 1)
0182 #define PL330_STATE_WFE         (1 << 2)
0183 #define PL330_STATE_FAULTING        (1 << 3)
0184 #define PL330_STATE_COMPLETING      (1 << 4)
0185 #define PL330_STATE_WFP         (1 << 5)
0186 #define PL330_STATE_KILLING     (1 << 6)
0187 #define PL330_STATE_FAULT_COMPLETING    (1 << 7)
0188 #define PL330_STATE_CACHEMISS       (1 << 8)
0189 #define PL330_STATE_UPDTPC      (1 << 9)
0190 #define PL330_STATE_ATBARRIER       (1 << 10)
0191 #define PL330_STATE_QUEUEBUSY       (1 << 11)
0192 #define PL330_STATE_INVALID     (1 << 15)
0193 
0194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
0195                 | PL330_STATE_WFE | PL330_STATE_FAULTING)
0196 
0197 #define CMD_DMAADDH     0x54
0198 #define CMD_DMAEND      0x00
0199 #define CMD_DMAFLUSHP       0x35
0200 #define CMD_DMAGO       0xa0
0201 #define CMD_DMALD       0x04
0202 #define CMD_DMALDP      0x25
0203 #define CMD_DMALP       0x20
0204 #define CMD_DMALPEND        0x28
0205 #define CMD_DMAKILL     0x01
0206 #define CMD_DMAMOV      0xbc
0207 #define CMD_DMANOP      0x18
0208 #define CMD_DMARMB      0x12
0209 #define CMD_DMASEV      0x34
0210 #define CMD_DMAST       0x08
0211 #define CMD_DMASTP      0x29
0212 #define CMD_DMASTZ      0x0c
0213 #define CMD_DMAWFE      0x36
0214 #define CMD_DMAWFP      0x30
0215 #define CMD_DMAWMB      0x13
0216 
0217 #define SZ_DMAADDH      3
0218 #define SZ_DMAEND       1
0219 #define SZ_DMAFLUSHP        2
0220 #define SZ_DMALD        1
0221 #define SZ_DMALDP       2
0222 #define SZ_DMALP        2
0223 #define SZ_DMALPEND     2
0224 #define SZ_DMAKILL      1
0225 #define SZ_DMAMOV       6
0226 #define SZ_DMANOP       1
0227 #define SZ_DMARMB       1
0228 #define SZ_DMASEV       2
0229 #define SZ_DMAST        1
0230 #define SZ_DMASTP       2
0231 #define SZ_DMASTZ       1
0232 #define SZ_DMAWFE       2
0233 #define SZ_DMAWFP       2
0234 #define SZ_DMAWMB       1
0235 #define SZ_DMAGO        6
0236 
0237 #define BRST_LEN(ccr)       ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
0238 #define BRST_SIZE(ccr)      (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
0239 
0240 #define BYTE_TO_BURST(b, ccr)   ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
0241 #define BURST_TO_BYTE(c, ccr)   ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
0242 
0243 /*
0244  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
0245  * at 1byte/burst for P<->M and M<->M respectively.
0246  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
0247  * should be enough for P<->M and M<->M respectively.
0248  */
0249 #define MCODE_BUFF_PER_REQ  256
0250 
0251 /* Use this _only_ to wait on transient states */
0252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
0253 
0254 #ifdef PL330_DEBUG_MCGEN
0255 static unsigned cmd_line;
0256 #define PL330_DBGCMD_DUMP(off, x...)    do { \
0257                         printk("%x:", cmd_line); \
0258                         printk(KERN_CONT x); \
0259                         cmd_line += off; \
0260                     } while (0)
0261 #define PL330_DBGMC_START(addr)     (cmd_line = addr)
0262 #else
0263 #define PL330_DBGCMD_DUMP(off, x...)    do {} while (0)
0264 #define PL330_DBGMC_START(addr)     do {} while (0)
0265 #endif
0266 
0267 /* The number of default descriptors */
0268 
0269 #define NR_DEFAULT_DESC 16
0270 
0271 /* Delay for runtime PM autosuspend, ms */
0272 #define PL330_AUTOSUSPEND_DELAY 20
0273 
0274 /* Populated by the PL330 core driver for DMA API driver's info */
0275 struct pl330_config {
0276     u32 periph_id;
0277 #define DMAC_MODE_NS    (1 << 0)
0278     unsigned int    mode;
0279     unsigned int    data_bus_width:10; /* In number of bits */
0280     unsigned int    data_buf_dep:11;
0281     unsigned int    num_chan:4;
0282     unsigned int    num_peri:6;
0283     u32     peri_ns;
0284     unsigned int    num_events:6;
0285     u32     irq_ns;
0286 };
0287 
0288 /*
0289  * Request Configuration.
0290  * The PL330 core does not modify this and uses the last
0291  * working configuration if the request doesn't provide any.
0292  *
0293  * The Client may want to provide this info only for the
0294  * first request and a request with new settings.
0295  */
0296 struct pl330_reqcfg {
0297     /* Address Incrementing */
0298     unsigned dst_inc:1;
0299     unsigned src_inc:1;
0300 
0301     /*
0302      * For now, the SRC & DST protection levels
0303      * and burst size/length are assumed same.
0304      */
0305     bool nonsecure;
0306     bool privileged;
0307     bool insnaccess;
0308     unsigned brst_len:5;
0309     unsigned brst_size:3; /* in power of 2 */
0310 
0311     enum pl330_cachectrl dcctl;
0312     enum pl330_cachectrl scctl;
0313     enum pl330_byteswap swap;
0314     struct pl330_config *pcfg;
0315 };
0316 
0317 /*
0318  * One cycle of DMAC operation.
0319  * There may be more than one xfer in a request.
0320  */
0321 struct pl330_xfer {
0322     u32 src_addr;
0323     u32 dst_addr;
0324     /* Size to xfer */
0325     u32 bytes;
0326 };
0327 
0328 /* The xfer callbacks are made with one of these arguments. */
0329 enum pl330_op_err {
0330     /* The all xfers in the request were success. */
0331     PL330_ERR_NONE,
0332     /* If req aborted due to global error. */
0333     PL330_ERR_ABORT,
0334     /* If req failed due to problem with Channel. */
0335     PL330_ERR_FAIL,
0336 };
0337 
0338 enum dmamov_dst {
0339     SAR = 0,
0340     CCR,
0341     DAR,
0342 };
0343 
0344 enum pl330_dst {
0345     SRC = 0,
0346     DST,
0347 };
0348 
0349 enum pl330_cond {
0350     SINGLE,
0351     BURST,
0352     ALWAYS,
0353 };
0354 
0355 struct dma_pl330_desc;
0356 
0357 struct _pl330_req {
0358     u32 mc_bus;
0359     void *mc_cpu;
0360     struct dma_pl330_desc *desc;
0361 };
0362 
0363 /* ToBeDone for tasklet */
0364 struct _pl330_tbd {
0365     bool reset_dmac;
0366     bool reset_mngr;
0367     u8 reset_chan;
0368 };
0369 
0370 /* A DMAC Thread */
0371 struct pl330_thread {
0372     u8 id;
0373     int ev;
0374     /* If the channel is not yet acquired by any client */
0375     bool free;
0376     /* Parent DMAC */
0377     struct pl330_dmac *dmac;
0378     /* Only two at a time */
0379     struct _pl330_req req[2];
0380     /* Index of the last enqueued request */
0381     unsigned lstenq;
0382     /* Index of the last submitted request or -1 if the DMA is stopped */
0383     int req_running;
0384 };
0385 
0386 enum pl330_dmac_state {
0387     UNINIT,
0388     INIT,
0389     DYING,
0390 };
0391 
0392 enum desc_status {
0393     /* In the DMAC pool */
0394     FREE,
0395     /*
0396      * Allocated to some channel during prep_xxx
0397      * Also may be sitting on the work_list.
0398      */
0399     PREP,
0400     /*
0401      * Sitting on the work_list and already submitted
0402      * to the PL330 core. Not more than two descriptors
0403      * of a channel can be BUSY at any time.
0404      */
0405     BUSY,
0406     /*
0407      * Sitting on the channel work_list but xfer done
0408      * by PL330 core
0409      */
0410     DONE,
0411 };
0412 
0413 struct dma_pl330_chan {
0414     /* Schedule desc completion */
0415     struct tasklet_struct task;
0416 
0417     /* DMA-Engine Channel */
0418     struct dma_chan chan;
0419 
0420     /* List of submitted descriptors */
0421     struct list_head submitted_list;
0422     /* List of issued descriptors */
0423     struct list_head work_list;
0424     /* List of completed descriptors */
0425     struct list_head completed_list;
0426 
0427     /* Pointer to the DMAC that manages this channel,
0428      * NULL if the channel is available to be acquired.
0429      * As the parent, this DMAC also provides descriptors
0430      * to the channel.
0431      */
0432     struct pl330_dmac *dmac;
0433 
0434     /* To protect channel manipulation */
0435     spinlock_t lock;
0436 
0437     /*
0438      * Hardware channel thread of PL330 DMAC. NULL if the channel is
0439      * available.
0440      */
0441     struct pl330_thread *thread;
0442 
0443     /* For D-to-M and M-to-D channels */
0444     int burst_sz; /* the peripheral fifo width */
0445     int burst_len; /* the number of burst */
0446     phys_addr_t fifo_addr;
0447     /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
0448     dma_addr_t fifo_dma;
0449     enum dma_data_direction dir;
0450     struct dma_slave_config slave_config;
0451 
0452     /* for cyclic capability */
0453     bool cyclic;
0454 
0455     /* for runtime pm tracking */
0456     bool active;
0457 };
0458 
0459 struct pl330_dmac {
0460     /* DMA-Engine Device */
0461     struct dma_device ddma;
0462 
0463     /* Pool of descriptors available for the DMAC's channels */
0464     struct list_head desc_pool;
0465     /* To protect desc_pool manipulation */
0466     spinlock_t pool_lock;
0467 
0468     /* Size of MicroCode buffers for each channel. */
0469     unsigned mcbufsz;
0470     /* ioremap'ed address of PL330 registers. */
0471     void __iomem    *base;
0472     /* Populated by the PL330 core driver during pl330_add */
0473     struct pl330_config pcfg;
0474 
0475     spinlock_t      lock;
0476     /* Maximum possible events/irqs */
0477     int         events[32];
0478     /* BUS address of MicroCode buffer */
0479     dma_addr_t      mcode_bus;
0480     /* CPU address of MicroCode buffer */
0481     void            *mcode_cpu;
0482     /* List of all Channel threads */
0483     struct pl330_thread *channels;
0484     /* Pointer to the MANAGER thread */
0485     struct pl330_thread *manager;
0486     /* To handle bad news in interrupt */
0487     struct tasklet_struct   tasks;
0488     struct _pl330_tbd   dmac_tbd;
0489     /* State of DMAC operation */
0490     enum pl330_dmac_state   state;
0491     /* Holds list of reqs with due callbacks */
0492     struct list_head        req_done;
0493 
0494     /* Peripheral channels connected to this DMAC */
0495     unsigned int num_peripherals;
0496     struct dma_pl330_chan *peripherals; /* keep at end */
0497     int quirks;
0498 
0499     struct reset_control    *rstc;
0500     struct reset_control    *rstc_ocp;
0501 };
0502 
0503 static struct pl330_of_quirks {
0504     char *quirk;
0505     int id;
0506 } of_quirks[] = {
0507     {
0508         .quirk = "arm,pl330-broken-no-flushp",
0509         .id = PL330_QUIRK_BROKEN_NO_FLUSHP,
0510     },
0511     {
0512         .quirk = "arm,pl330-periph-burst",
0513         .id = PL330_QUIRK_PERIPH_BURST,
0514     }
0515 };
0516 
0517 struct dma_pl330_desc {
0518     /* To attach to a queue as child */
0519     struct list_head node;
0520 
0521     /* Descriptor for the DMA Engine API */
0522     struct dma_async_tx_descriptor txd;
0523 
0524     /* Xfer for PL330 core */
0525     struct pl330_xfer px;
0526 
0527     struct pl330_reqcfg rqcfg;
0528 
0529     enum desc_status status;
0530 
0531     int bytes_requested;
0532     bool last;
0533 
0534     /* The channel which currently holds this desc */
0535     struct dma_pl330_chan *pchan;
0536 
0537     enum dma_transfer_direction rqtype;
0538     /* Index of peripheral for the xfer. */
0539     unsigned peri:5;
0540     /* Hook to attach to DMAC's list of reqs with due callback */
0541     struct list_head rqd;
0542 };
0543 
0544 struct _xfer_spec {
0545     u32 ccr;
0546     struct dma_pl330_desc *desc;
0547 };
0548 
0549 static int pl330_config_write(struct dma_chan *chan,
0550             struct dma_slave_config *slave_config,
0551             enum dma_transfer_direction direction);
0552 
0553 static inline bool _queue_full(struct pl330_thread *thrd)
0554 {
0555     return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
0556 }
0557 
0558 static inline bool is_manager(struct pl330_thread *thrd)
0559 {
0560     return thrd->dmac->manager == thrd;
0561 }
0562 
0563 /* If manager of the thread is in Non-Secure mode */
0564 static inline bool _manager_ns(struct pl330_thread *thrd)
0565 {
0566     return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
0567 }
0568 
0569 static inline u32 get_revision(u32 periph_id)
0570 {
0571     return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
0572 }
0573 
0574 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
0575 {
0576     if (dry_run)
0577         return SZ_DMAEND;
0578 
0579     buf[0] = CMD_DMAEND;
0580 
0581     PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
0582 
0583     return SZ_DMAEND;
0584 }
0585 
0586 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
0587 {
0588     if (dry_run)
0589         return SZ_DMAFLUSHP;
0590 
0591     buf[0] = CMD_DMAFLUSHP;
0592 
0593     peri &= 0x1f;
0594     peri <<= 3;
0595     buf[1] = peri;
0596 
0597     PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
0598 
0599     return SZ_DMAFLUSHP;
0600 }
0601 
0602 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],  enum pl330_cond cond)
0603 {
0604     if (dry_run)
0605         return SZ_DMALD;
0606 
0607     buf[0] = CMD_DMALD;
0608 
0609     if (cond == SINGLE)
0610         buf[0] |= (0 << 1) | (1 << 0);
0611     else if (cond == BURST)
0612         buf[0] |= (1 << 1) | (1 << 0);
0613 
0614     PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
0615         cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
0616 
0617     return SZ_DMALD;
0618 }
0619 
0620 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
0621         enum pl330_cond cond, u8 peri)
0622 {
0623     if (dry_run)
0624         return SZ_DMALDP;
0625 
0626     buf[0] = CMD_DMALDP;
0627 
0628     if (cond == BURST)
0629         buf[0] |= (1 << 1);
0630 
0631     peri &= 0x1f;
0632     peri <<= 3;
0633     buf[1] = peri;
0634 
0635     PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
0636         cond == SINGLE ? 'S' : 'B', peri >> 3);
0637 
0638     return SZ_DMALDP;
0639 }
0640 
0641 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
0642         unsigned loop, u8 cnt)
0643 {
0644     if (dry_run)
0645         return SZ_DMALP;
0646 
0647     buf[0] = CMD_DMALP;
0648 
0649     if (loop)
0650         buf[0] |= (1 << 1);
0651 
0652     cnt--; /* DMAC increments by 1 internally */
0653     buf[1] = cnt;
0654 
0655     PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
0656 
0657     return SZ_DMALP;
0658 }
0659 
0660 struct _arg_LPEND {
0661     enum pl330_cond cond;
0662     bool forever;
0663     unsigned loop;
0664     u8 bjump;
0665 };
0666 
0667 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
0668         const struct _arg_LPEND *arg)
0669 {
0670     enum pl330_cond cond = arg->cond;
0671     bool forever = arg->forever;
0672     unsigned loop = arg->loop;
0673     u8 bjump = arg->bjump;
0674 
0675     if (dry_run)
0676         return SZ_DMALPEND;
0677 
0678     buf[0] = CMD_DMALPEND;
0679 
0680     if (loop)
0681         buf[0] |= (1 << 2);
0682 
0683     if (!forever)
0684         buf[0] |= (1 << 4);
0685 
0686     if (cond == SINGLE)
0687         buf[0] |= (0 << 1) | (1 << 0);
0688     else if (cond == BURST)
0689         buf[0] |= (1 << 1) | (1 << 0);
0690 
0691     buf[1] = bjump;
0692 
0693     PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
0694             forever ? "FE" : "END",
0695             cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
0696             loop ? '1' : '0',
0697             bjump);
0698 
0699     return SZ_DMALPEND;
0700 }
0701 
0702 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
0703 {
0704     if (dry_run)
0705         return SZ_DMAKILL;
0706 
0707     buf[0] = CMD_DMAKILL;
0708 
0709     return SZ_DMAKILL;
0710 }
0711 
0712 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
0713         enum dmamov_dst dst, u32 val)
0714 {
0715     if (dry_run)
0716         return SZ_DMAMOV;
0717 
0718     buf[0] = CMD_DMAMOV;
0719     buf[1] = dst;
0720     buf[2] = val;
0721     buf[3] = val >> 8;
0722     buf[4] = val >> 16;
0723     buf[5] = val >> 24;
0724 
0725     PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
0726         dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
0727 
0728     return SZ_DMAMOV;
0729 }
0730 
0731 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
0732 {
0733     if (dry_run)
0734         return SZ_DMARMB;
0735 
0736     buf[0] = CMD_DMARMB;
0737 
0738     PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
0739 
0740     return SZ_DMARMB;
0741 }
0742 
0743 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
0744 {
0745     if (dry_run)
0746         return SZ_DMASEV;
0747 
0748     buf[0] = CMD_DMASEV;
0749 
0750     ev &= 0x1f;
0751     ev <<= 3;
0752     buf[1] = ev;
0753 
0754     PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
0755 
0756     return SZ_DMASEV;
0757 }
0758 
0759 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
0760 {
0761     if (dry_run)
0762         return SZ_DMAST;
0763 
0764     buf[0] = CMD_DMAST;
0765 
0766     if (cond == SINGLE)
0767         buf[0] |= (0 << 1) | (1 << 0);
0768     else if (cond == BURST)
0769         buf[0] |= (1 << 1) | (1 << 0);
0770 
0771     PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
0772         cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
0773 
0774     return SZ_DMAST;
0775 }
0776 
0777 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
0778         enum pl330_cond cond, u8 peri)
0779 {
0780     if (dry_run)
0781         return SZ_DMASTP;
0782 
0783     buf[0] = CMD_DMASTP;
0784 
0785     if (cond == BURST)
0786         buf[0] |= (1 << 1);
0787 
0788     peri &= 0x1f;
0789     peri <<= 3;
0790     buf[1] = peri;
0791 
0792     PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
0793         cond == SINGLE ? 'S' : 'B', peri >> 3);
0794 
0795     return SZ_DMASTP;
0796 }
0797 
0798 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
0799         enum pl330_cond cond, u8 peri)
0800 {
0801     if (dry_run)
0802         return SZ_DMAWFP;
0803 
0804     buf[0] = CMD_DMAWFP;
0805 
0806     if (cond == SINGLE)
0807         buf[0] |= (0 << 1) | (0 << 0);
0808     else if (cond == BURST)
0809         buf[0] |= (1 << 1) | (0 << 0);
0810     else
0811         buf[0] |= (0 << 1) | (1 << 0);
0812 
0813     peri &= 0x1f;
0814     peri <<= 3;
0815     buf[1] = peri;
0816 
0817     PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
0818         cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
0819 
0820     return SZ_DMAWFP;
0821 }
0822 
0823 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
0824 {
0825     if (dry_run)
0826         return SZ_DMAWMB;
0827 
0828     buf[0] = CMD_DMAWMB;
0829 
0830     PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
0831 
0832     return SZ_DMAWMB;
0833 }
0834 
0835 struct _arg_GO {
0836     u8 chan;
0837     u32 addr;
0838     unsigned ns;
0839 };
0840 
0841 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
0842         const struct _arg_GO *arg)
0843 {
0844     u8 chan = arg->chan;
0845     u32 addr = arg->addr;
0846     unsigned ns = arg->ns;
0847 
0848     if (dry_run)
0849         return SZ_DMAGO;
0850 
0851     buf[0] = CMD_DMAGO;
0852     buf[0] |= (ns << 1);
0853     buf[1] = chan & 0x7;
0854     buf[2] = addr;
0855     buf[3] = addr >> 8;
0856     buf[4] = addr >> 16;
0857     buf[5] = addr >> 24;
0858 
0859     return SZ_DMAGO;
0860 }
0861 
0862 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
0863 
0864 /* Returns Time-Out */
0865 static bool _until_dmac_idle(struct pl330_thread *thrd)
0866 {
0867     void __iomem *regs = thrd->dmac->base;
0868     unsigned long loops = msecs_to_loops(5);
0869 
0870     do {
0871         /* Until Manager is Idle */
0872         if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
0873             break;
0874 
0875         cpu_relax();
0876     } while (--loops);
0877 
0878     if (!loops)
0879         return true;
0880 
0881     return false;
0882 }
0883 
0884 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
0885         u8 insn[], bool as_manager)
0886 {
0887     void __iomem *regs = thrd->dmac->base;
0888     u32 val;
0889 
0890     /* If timed out due to halted state-machine */
0891     if (_until_dmac_idle(thrd)) {
0892         dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
0893         return;
0894     }
0895 
0896     val = (insn[0] << 16) | (insn[1] << 24);
0897     if (!as_manager) {
0898         val |= (1 << 0);
0899         val |= (thrd->id << 8); /* Channel Number */
0900     }
0901     writel(val, regs + DBGINST0);
0902 
0903     val = le32_to_cpu(*((__le32 *)&insn[2]));
0904     writel(val, regs + DBGINST1);
0905 
0906     /* Get going */
0907     writel(0, regs + DBGCMD);
0908 }
0909 
0910 static inline u32 _state(struct pl330_thread *thrd)
0911 {
0912     void __iomem *regs = thrd->dmac->base;
0913     u32 val;
0914 
0915     if (is_manager(thrd))
0916         val = readl(regs + DS) & 0xf;
0917     else
0918         val = readl(regs + CS(thrd->id)) & 0xf;
0919 
0920     switch (val) {
0921     case DS_ST_STOP:
0922         return PL330_STATE_STOPPED;
0923     case DS_ST_EXEC:
0924         return PL330_STATE_EXECUTING;
0925     case DS_ST_CMISS:
0926         return PL330_STATE_CACHEMISS;
0927     case DS_ST_UPDTPC:
0928         return PL330_STATE_UPDTPC;
0929     case DS_ST_WFE:
0930         return PL330_STATE_WFE;
0931     case DS_ST_FAULT:
0932         return PL330_STATE_FAULTING;
0933     case DS_ST_ATBRR:
0934         if (is_manager(thrd))
0935             return PL330_STATE_INVALID;
0936         else
0937             return PL330_STATE_ATBARRIER;
0938     case DS_ST_QBUSY:
0939         if (is_manager(thrd))
0940             return PL330_STATE_INVALID;
0941         else
0942             return PL330_STATE_QUEUEBUSY;
0943     case DS_ST_WFP:
0944         if (is_manager(thrd))
0945             return PL330_STATE_INVALID;
0946         else
0947             return PL330_STATE_WFP;
0948     case DS_ST_KILL:
0949         if (is_manager(thrd))
0950             return PL330_STATE_INVALID;
0951         else
0952             return PL330_STATE_KILLING;
0953     case DS_ST_CMPLT:
0954         if (is_manager(thrd))
0955             return PL330_STATE_INVALID;
0956         else
0957             return PL330_STATE_COMPLETING;
0958     case DS_ST_FLTCMP:
0959         if (is_manager(thrd))
0960             return PL330_STATE_INVALID;
0961         else
0962             return PL330_STATE_FAULT_COMPLETING;
0963     default:
0964         return PL330_STATE_INVALID;
0965     }
0966 }
0967 
0968 static void _stop(struct pl330_thread *thrd)
0969 {
0970     void __iomem *regs = thrd->dmac->base;
0971     u8 insn[6] = {0, 0, 0, 0, 0, 0};
0972     u32 inten = readl(regs + INTEN);
0973 
0974     if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
0975         UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
0976 
0977     /* Return if nothing needs to be done */
0978     if (_state(thrd) == PL330_STATE_COMPLETING
0979           || _state(thrd) == PL330_STATE_KILLING
0980           || _state(thrd) == PL330_STATE_STOPPED)
0981         return;
0982 
0983     _emit_KILL(0, insn);
0984 
0985     _execute_DBGINSN(thrd, insn, is_manager(thrd));
0986 
0987     /* clear the event */
0988     if (inten & (1 << thrd->ev))
0989         writel(1 << thrd->ev, regs + INTCLR);
0990     /* Stop generating interrupts for SEV */
0991     writel(inten & ~(1 << thrd->ev), regs + INTEN);
0992 }
0993 
0994 /* Start doing req 'idx' of thread 'thrd' */
0995 static bool _trigger(struct pl330_thread *thrd)
0996 {
0997     void __iomem *regs = thrd->dmac->base;
0998     struct _pl330_req *req;
0999     struct dma_pl330_desc *desc;
1000     struct _arg_GO go;
1001     unsigned ns;
1002     u8 insn[6] = {0, 0, 0, 0, 0, 0};
1003     int idx;
1004 
1005     /* Return if already ACTIVE */
1006     if (_state(thrd) != PL330_STATE_STOPPED)
1007         return true;
1008 
1009     idx = 1 - thrd->lstenq;
1010     if (thrd->req[idx].desc != NULL) {
1011         req = &thrd->req[idx];
1012     } else {
1013         idx = thrd->lstenq;
1014         if (thrd->req[idx].desc != NULL)
1015             req = &thrd->req[idx];
1016         else
1017             req = NULL;
1018     }
1019 
1020     /* Return if no request */
1021     if (!req)
1022         return true;
1023 
1024     /* Return if req is running */
1025     if (idx == thrd->req_running)
1026         return true;
1027 
1028     desc = req->desc;
1029 
1030     ns = desc->rqcfg.nonsecure ? 1 : 0;
1031 
1032     /* See 'Abort Sources' point-4 at Page 2-25 */
1033     if (_manager_ns(thrd) && !ns)
1034         dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1035             __func__, __LINE__);
1036 
1037     go.chan = thrd->id;
1038     go.addr = req->mc_bus;
1039     go.ns = ns;
1040     _emit_GO(0, insn, &go);
1041 
1042     /* Set to generate interrupts for SEV */
1043     writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1044 
1045     /* Only manager can execute GO */
1046     _execute_DBGINSN(thrd, insn, true);
1047 
1048     thrd->req_running = idx;
1049 
1050     return true;
1051 }
1052 
1053 static bool _start(struct pl330_thread *thrd)
1054 {
1055     switch (_state(thrd)) {
1056     case PL330_STATE_FAULT_COMPLETING:
1057         UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1058 
1059         if (_state(thrd) == PL330_STATE_KILLING)
1060             UNTIL(thrd, PL330_STATE_STOPPED)
1061         fallthrough;
1062 
1063     case PL330_STATE_FAULTING:
1064         _stop(thrd);
1065         fallthrough;
1066 
1067     case PL330_STATE_KILLING:
1068     case PL330_STATE_COMPLETING:
1069         UNTIL(thrd, PL330_STATE_STOPPED)
1070         fallthrough;
1071 
1072     case PL330_STATE_STOPPED:
1073         return _trigger(thrd);
1074 
1075     case PL330_STATE_WFP:
1076     case PL330_STATE_QUEUEBUSY:
1077     case PL330_STATE_ATBARRIER:
1078     case PL330_STATE_UPDTPC:
1079     case PL330_STATE_CACHEMISS:
1080     case PL330_STATE_EXECUTING:
1081         return true;
1082 
1083     case PL330_STATE_WFE: /* For RESUME, nothing yet */
1084     default:
1085         return false;
1086     }
1087 }
1088 
1089 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1090         const struct _xfer_spec *pxs, int cyc)
1091 {
1092     int off = 0;
1093     struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1094 
1095     /* check lock-up free version */
1096     if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1097         while (cyc--) {
1098             off += _emit_LD(dry_run, &buf[off], ALWAYS);
1099             off += _emit_ST(dry_run, &buf[off], ALWAYS);
1100         }
1101     } else {
1102         while (cyc--) {
1103             off += _emit_LD(dry_run, &buf[off], ALWAYS);
1104             off += _emit_RMB(dry_run, &buf[off]);
1105             off += _emit_ST(dry_run, &buf[off], ALWAYS);
1106             off += _emit_WMB(dry_run, &buf[off]);
1107         }
1108     }
1109 
1110     return off;
1111 }
1112 
1113 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1114     enum pl330_cond cond, enum dma_transfer_direction direction,
1115     u8 peri)
1116 {
1117     int off = 0;
1118 
1119     switch (direction) {
1120     case DMA_MEM_TO_MEM:
1121     case DMA_MEM_TO_DEV:
1122         off += _emit_LD(dry_run, &buf[off], cond);
1123         break;
1124 
1125     case DMA_DEV_TO_MEM:
1126         if (cond == ALWAYS) {
1127             off += _emit_LDP(dry_run, &buf[off], SINGLE,
1128                 peri);
1129             off += _emit_LDP(dry_run, &buf[off], BURST,
1130                 peri);
1131         } else {
1132             off += _emit_LDP(dry_run, &buf[off], cond,
1133                 peri);
1134         }
1135         break;
1136 
1137     default:
1138         /* this code should be unreachable */
1139         WARN_ON(1);
1140         break;
1141     }
1142 
1143     return off;
1144 }
1145 
1146 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1147     enum pl330_cond cond, enum dma_transfer_direction direction,
1148     u8 peri)
1149 {
1150     int off = 0;
1151 
1152     switch (direction) {
1153     case DMA_MEM_TO_MEM:
1154     case DMA_DEV_TO_MEM:
1155         off += _emit_ST(dry_run, &buf[off], cond);
1156         break;
1157 
1158     case DMA_MEM_TO_DEV:
1159         if (cond == ALWAYS) {
1160             off += _emit_STP(dry_run, &buf[off], SINGLE,
1161                 peri);
1162             off += _emit_STP(dry_run, &buf[off], BURST,
1163                 peri);
1164         } else {
1165             off += _emit_STP(dry_run, &buf[off], cond,
1166                 peri);
1167         }
1168         break;
1169 
1170     default:
1171         /* this code should be unreachable */
1172         WARN_ON(1);
1173         break;
1174     }
1175 
1176     return off;
1177 }
1178 
1179 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1180                  unsigned dry_run, u8 buf[],
1181                  const struct _xfer_spec *pxs, int cyc,
1182                  enum pl330_cond cond)
1183 {
1184     int off = 0;
1185 
1186     /*
1187      * do FLUSHP at beginning to clear any stale dma requests before the
1188      * first WFP.
1189      */
1190     if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1191         off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1192     while (cyc--) {
1193         off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1194         off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1195             pxs->desc->peri);
1196         off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1197             pxs->desc->peri);
1198     }
1199 
1200     return off;
1201 }
1202 
1203 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1204         const struct _xfer_spec *pxs, int cyc)
1205 {
1206     int off = 0;
1207     enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1208 
1209     if (pl330->quirks & PL330_QUIRK_PERIPH_BURST)
1210         cond = BURST;
1211 
1212     switch (pxs->desc->rqtype) {
1213     case DMA_MEM_TO_DEV:
1214     case DMA_DEV_TO_MEM:
1215         off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1216             cond);
1217         break;
1218 
1219     case DMA_MEM_TO_MEM:
1220         off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1221         break;
1222 
1223     default:
1224         /* this code should be unreachable */
1225         WARN_ON(1);
1226         break;
1227     }
1228 
1229     return off;
1230 }
1231 
1232 /*
1233  * only the unaligned burst transfers have the dregs.
1234  * so, still transfer dregs with a reduced size burst
1235  * for mem-to-mem, mem-to-dev or dev-to-mem.
1236  */
1237 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1238         const struct _xfer_spec *pxs, int transfer_length)
1239 {
1240     int off = 0;
1241     int dregs_ccr;
1242 
1243     if (transfer_length == 0)
1244         return off;
1245 
1246     /*
1247      * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) /
1248      *             BRST_SIZE(ccr)
1249      * the dregs len must be smaller than burst len,
1250      * so, for higher efficiency, we can modify CCR
1251      * to use a reduced size burst len for the dregs.
1252      */
1253     dregs_ccr = pxs->ccr;
1254     dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1255         (0xf << CC_DSTBRSTLEN_SHFT));
1256     dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1257         CC_SRCBRSTLEN_SHFT);
1258     dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1259         CC_DSTBRSTLEN_SHFT);
1260 
1261     switch (pxs->desc->rqtype) {
1262     case DMA_MEM_TO_DEV:
1263     case DMA_DEV_TO_MEM:
1264         off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1265         off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1,
1266                     BURST);
1267         break;
1268 
1269     case DMA_MEM_TO_MEM:
1270         off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1271         off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1272         break;
1273 
1274     default:
1275         /* this code should be unreachable */
1276         WARN_ON(1);
1277         break;
1278     }
1279 
1280     return off;
1281 }
1282 
1283 /* Returns bytes consumed and updates bursts */
1284 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1285         unsigned long *bursts, const struct _xfer_spec *pxs)
1286 {
1287     int cyc, cycmax, szlp, szlpend, szbrst, off;
1288     unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1289     struct _arg_LPEND lpend;
1290 
1291     if (*bursts == 1)
1292         return _bursts(pl330, dry_run, buf, pxs, 1);
1293 
1294     /* Max iterations possible in DMALP is 256 */
1295     if (*bursts >= 256*256) {
1296         lcnt1 = 256;
1297         lcnt0 = 256;
1298         cyc = *bursts / lcnt1 / lcnt0;
1299     } else if (*bursts > 256) {
1300         lcnt1 = 256;
1301         lcnt0 = *bursts / lcnt1;
1302         cyc = 1;
1303     } else {
1304         lcnt1 = *bursts;
1305         lcnt0 = 0;
1306         cyc = 1;
1307     }
1308 
1309     szlp = _emit_LP(1, buf, 0, 0);
1310     szbrst = _bursts(pl330, 1, buf, pxs, 1);
1311 
1312     lpend.cond = ALWAYS;
1313     lpend.forever = false;
1314     lpend.loop = 0;
1315     lpend.bjump = 0;
1316     szlpend = _emit_LPEND(1, buf, &lpend);
1317 
1318     if (lcnt0) {
1319         szlp *= 2;
1320         szlpend *= 2;
1321     }
1322 
1323     /*
1324      * Max bursts that we can unroll due to limit on the
1325      * size of backward jump that can be encoded in DMALPEND
1326      * which is 8-bits and hence 255
1327      */
1328     cycmax = (255 - (szlp + szlpend)) / szbrst;
1329 
1330     cyc = (cycmax < cyc) ? cycmax : cyc;
1331 
1332     off = 0;
1333 
1334     if (lcnt0) {
1335         off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1336         ljmp0 = off;
1337     }
1338 
1339     off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1340     ljmp1 = off;
1341 
1342     off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1343 
1344     lpend.cond = ALWAYS;
1345     lpend.forever = false;
1346     lpend.loop = 1;
1347     lpend.bjump = off - ljmp1;
1348     off += _emit_LPEND(dry_run, &buf[off], &lpend);
1349 
1350     if (lcnt0) {
1351         lpend.cond = ALWAYS;
1352         lpend.forever = false;
1353         lpend.loop = 0;
1354         lpend.bjump = off - ljmp0;
1355         off += _emit_LPEND(dry_run, &buf[off], &lpend);
1356     }
1357 
1358     *bursts = lcnt1 * cyc;
1359     if (lcnt0)
1360         *bursts *= lcnt0;
1361 
1362     return off;
1363 }
1364 
1365 static inline int _setup_loops(struct pl330_dmac *pl330,
1366                    unsigned dry_run, u8 buf[],
1367                    const struct _xfer_spec *pxs)
1368 {
1369     struct pl330_xfer *x = &pxs->desc->px;
1370     u32 ccr = pxs->ccr;
1371     unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1372     int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1373         BRST_SIZE(ccr);
1374     int off = 0;
1375 
1376     while (bursts) {
1377         c = bursts;
1378         off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1379         bursts -= c;
1380     }
1381     off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1382 
1383     return off;
1384 }
1385 
1386 static inline int _setup_xfer(struct pl330_dmac *pl330,
1387                   unsigned dry_run, u8 buf[],
1388                   const struct _xfer_spec *pxs)
1389 {
1390     struct pl330_xfer *x = &pxs->desc->px;
1391     int off = 0;
1392 
1393     /* DMAMOV SAR, x->src_addr */
1394     off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1395     /* DMAMOV DAR, x->dst_addr */
1396     off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1397 
1398     /* Setup Loop(s) */
1399     off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1400 
1401     return off;
1402 }
1403 
1404 /*
1405  * A req is a sequence of one or more xfer units.
1406  * Returns the number of bytes taken to setup the MC for the req.
1407  */
1408 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1409               struct pl330_thread *thrd, unsigned index,
1410               struct _xfer_spec *pxs)
1411 {
1412     struct _pl330_req *req = &thrd->req[index];
1413     u8 *buf = req->mc_cpu;
1414     int off = 0;
1415 
1416     PL330_DBGMC_START(req->mc_bus);
1417 
1418     /* DMAMOV CCR, ccr */
1419     off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1420 
1421     off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1422 
1423     /* DMASEV peripheral/event */
1424     off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1425     /* DMAEND */
1426     off += _emit_END(dry_run, &buf[off]);
1427 
1428     return off;
1429 }
1430 
1431 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1432 {
1433     u32 ccr = 0;
1434 
1435     if (rqc->src_inc)
1436         ccr |= CC_SRCINC;
1437 
1438     if (rqc->dst_inc)
1439         ccr |= CC_DSTINC;
1440 
1441     /* We set same protection levels for Src and DST for now */
1442     if (rqc->privileged)
1443         ccr |= CC_SRCPRI | CC_DSTPRI;
1444     if (rqc->nonsecure)
1445         ccr |= CC_SRCNS | CC_DSTNS;
1446     if (rqc->insnaccess)
1447         ccr |= CC_SRCIA | CC_DSTIA;
1448 
1449     ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1450     ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1451 
1452     ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1453     ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1454 
1455     ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1456     ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1457 
1458     ccr |= (rqc->swap << CC_SWAP_SHFT);
1459 
1460     return ccr;
1461 }
1462 
1463 /*
1464  * Submit a list of xfers after which the client wants notification.
1465  * Client is not notified after each xfer unit, just once after all
1466  * xfer units are done or some error occurs.
1467  */
1468 static int pl330_submit_req(struct pl330_thread *thrd,
1469     struct dma_pl330_desc *desc)
1470 {
1471     struct pl330_dmac *pl330 = thrd->dmac;
1472     struct _xfer_spec xs;
1473     unsigned long flags;
1474     unsigned idx;
1475     u32 ccr;
1476     int ret = 0;
1477 
1478     switch (desc->rqtype) {
1479     case DMA_MEM_TO_DEV:
1480         break;
1481 
1482     case DMA_DEV_TO_MEM:
1483         break;
1484 
1485     case DMA_MEM_TO_MEM:
1486         break;
1487 
1488     default:
1489         return -ENOTSUPP;
1490     }
1491 
1492     if (pl330->state == DYING
1493         || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1494         dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1495             __func__, __LINE__);
1496         return -EAGAIN;
1497     }
1498 
1499     /* If request for non-existing peripheral */
1500     if (desc->rqtype != DMA_MEM_TO_MEM &&
1501         desc->peri >= pl330->pcfg.num_peri) {
1502         dev_info(thrd->dmac->ddma.dev,
1503                 "%s:%d Invalid peripheral(%u)!\n",
1504                 __func__, __LINE__, desc->peri);
1505         return -EINVAL;
1506     }
1507 
1508     spin_lock_irqsave(&pl330->lock, flags);
1509 
1510     if (_queue_full(thrd)) {
1511         ret = -EAGAIN;
1512         goto xfer_exit;
1513     }
1514 
1515     /* Prefer Secure Channel */
1516     if (!_manager_ns(thrd))
1517         desc->rqcfg.nonsecure = 0;
1518     else
1519         desc->rqcfg.nonsecure = 1;
1520 
1521     ccr = _prepare_ccr(&desc->rqcfg);
1522 
1523     idx = thrd->req[0].desc == NULL ? 0 : 1;
1524 
1525     xs.ccr = ccr;
1526     xs.desc = desc;
1527 
1528     /* First dry run to check if req is acceptable */
1529     ret = _setup_req(pl330, 1, thrd, idx, &xs);
1530 
1531     if (ret > pl330->mcbufsz / 2) {
1532         dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1533                 __func__, __LINE__, ret, pl330->mcbufsz / 2);
1534         ret = -ENOMEM;
1535         goto xfer_exit;
1536     }
1537 
1538     /* Hook the request */
1539     thrd->lstenq = idx;
1540     thrd->req[idx].desc = desc;
1541     _setup_req(pl330, 0, thrd, idx, &xs);
1542 
1543     ret = 0;
1544 
1545 xfer_exit:
1546     spin_unlock_irqrestore(&pl330->lock, flags);
1547 
1548     return ret;
1549 }
1550 
1551 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1552 {
1553     struct dma_pl330_chan *pch;
1554     unsigned long flags;
1555 
1556     if (!desc)
1557         return;
1558 
1559     pch = desc->pchan;
1560 
1561     /* If desc aborted */
1562     if (!pch)
1563         return;
1564 
1565     spin_lock_irqsave(&pch->lock, flags);
1566 
1567     desc->status = DONE;
1568 
1569     spin_unlock_irqrestore(&pch->lock, flags);
1570 
1571     tasklet_schedule(&pch->task);
1572 }
1573 
1574 static void pl330_dotask(struct tasklet_struct *t)
1575 {
1576     struct pl330_dmac *pl330 = from_tasklet(pl330, t, tasks);
1577     unsigned long flags;
1578     int i;
1579 
1580     spin_lock_irqsave(&pl330->lock, flags);
1581 
1582     /* The DMAC itself gone nuts */
1583     if (pl330->dmac_tbd.reset_dmac) {
1584         pl330->state = DYING;
1585         /* Reset the manager too */
1586         pl330->dmac_tbd.reset_mngr = true;
1587         /* Clear the reset flag */
1588         pl330->dmac_tbd.reset_dmac = false;
1589     }
1590 
1591     if (pl330->dmac_tbd.reset_mngr) {
1592         _stop(pl330->manager);
1593         /* Reset all channels */
1594         pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1595         /* Clear the reset flag */
1596         pl330->dmac_tbd.reset_mngr = false;
1597     }
1598 
1599     for (i = 0; i < pl330->pcfg.num_chan; i++) {
1600 
1601         if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1602             struct pl330_thread *thrd = &pl330->channels[i];
1603             void __iomem *regs = pl330->base;
1604             enum pl330_op_err err;
1605 
1606             _stop(thrd);
1607 
1608             if (readl(regs + FSC) & (1 << thrd->id))
1609                 err = PL330_ERR_FAIL;
1610             else
1611                 err = PL330_ERR_ABORT;
1612 
1613             spin_unlock_irqrestore(&pl330->lock, flags);
1614             dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1615             dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1616             spin_lock_irqsave(&pl330->lock, flags);
1617 
1618             thrd->req[0].desc = NULL;
1619             thrd->req[1].desc = NULL;
1620             thrd->req_running = -1;
1621 
1622             /* Clear the reset flag */
1623             pl330->dmac_tbd.reset_chan &= ~(1 << i);
1624         }
1625     }
1626 
1627     spin_unlock_irqrestore(&pl330->lock, flags);
1628 
1629     return;
1630 }
1631 
1632 /* Returns 1 if state was updated, 0 otherwise */
1633 static int pl330_update(struct pl330_dmac *pl330)
1634 {
1635     struct dma_pl330_desc *descdone;
1636     unsigned long flags;
1637     void __iomem *regs;
1638     u32 val;
1639     int id, ev, ret = 0;
1640 
1641     regs = pl330->base;
1642 
1643     spin_lock_irqsave(&pl330->lock, flags);
1644 
1645     val = readl(regs + FSM) & 0x1;
1646     if (val)
1647         pl330->dmac_tbd.reset_mngr = true;
1648     else
1649         pl330->dmac_tbd.reset_mngr = false;
1650 
1651     val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1652     pl330->dmac_tbd.reset_chan |= val;
1653     if (val) {
1654         int i = 0;
1655         while (i < pl330->pcfg.num_chan) {
1656             if (val & (1 << i)) {
1657                 dev_info(pl330->ddma.dev,
1658                     "Reset Channel-%d\t CS-%x FTC-%x\n",
1659                         i, readl(regs + CS(i)),
1660                         readl(regs + FTC(i)));
1661                 _stop(&pl330->channels[i]);
1662             }
1663             i++;
1664         }
1665     }
1666 
1667     /* Check which event happened i.e, thread notified */
1668     val = readl(regs + ES);
1669     if (pl330->pcfg.num_events < 32
1670             && val & ~((1 << pl330->pcfg.num_events) - 1)) {
1671         pl330->dmac_tbd.reset_dmac = true;
1672         dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1673             __LINE__);
1674         ret = 1;
1675         goto updt_exit;
1676     }
1677 
1678     for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1679         if (val & (1 << ev)) { /* Event occurred */
1680             struct pl330_thread *thrd;
1681             u32 inten = readl(regs + INTEN);
1682             int active;
1683 
1684             /* Clear the event */
1685             if (inten & (1 << ev))
1686                 writel(1 << ev, regs + INTCLR);
1687 
1688             ret = 1;
1689 
1690             id = pl330->events[ev];
1691 
1692             thrd = &pl330->channels[id];
1693 
1694             active = thrd->req_running;
1695             if (active == -1) /* Aborted */
1696                 continue;
1697 
1698             /* Detach the req */
1699             descdone = thrd->req[active].desc;
1700             thrd->req[active].desc = NULL;
1701 
1702             thrd->req_running = -1;
1703 
1704             /* Get going again ASAP */
1705             _start(thrd);
1706 
1707             /* For now, just make a list of callbacks to be done */
1708             list_add_tail(&descdone->rqd, &pl330->req_done);
1709         }
1710     }
1711 
1712     /* Now that we are in no hurry, do the callbacks */
1713     while (!list_empty(&pl330->req_done)) {
1714         descdone = list_first_entry(&pl330->req_done,
1715                         struct dma_pl330_desc, rqd);
1716         list_del(&descdone->rqd);
1717         spin_unlock_irqrestore(&pl330->lock, flags);
1718         dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1719         spin_lock_irqsave(&pl330->lock, flags);
1720     }
1721 
1722 updt_exit:
1723     spin_unlock_irqrestore(&pl330->lock, flags);
1724 
1725     if (pl330->dmac_tbd.reset_dmac
1726             || pl330->dmac_tbd.reset_mngr
1727             || pl330->dmac_tbd.reset_chan) {
1728         ret = 1;
1729         tasklet_schedule(&pl330->tasks);
1730     }
1731 
1732     return ret;
1733 }
1734 
1735 /* Reserve an event */
1736 static inline int _alloc_event(struct pl330_thread *thrd)
1737 {
1738     struct pl330_dmac *pl330 = thrd->dmac;
1739     int ev;
1740 
1741     for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1742         if (pl330->events[ev] == -1) {
1743             pl330->events[ev] = thrd->id;
1744             return ev;
1745         }
1746 
1747     return -1;
1748 }
1749 
1750 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1751 {
1752     return pl330->pcfg.irq_ns & (1 << i);
1753 }
1754 
1755 /* Upon success, returns IdentityToken for the
1756  * allocated channel, NULL otherwise.
1757  */
1758 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1759 {
1760     struct pl330_thread *thrd = NULL;
1761     int chans, i;
1762 
1763     if (pl330->state == DYING)
1764         return NULL;
1765 
1766     chans = pl330->pcfg.num_chan;
1767 
1768     for (i = 0; i < chans; i++) {
1769         thrd = &pl330->channels[i];
1770         if ((thrd->free) && (!_manager_ns(thrd) ||
1771                     _chan_ns(pl330, i))) {
1772             thrd->ev = _alloc_event(thrd);
1773             if (thrd->ev >= 0) {
1774                 thrd->free = false;
1775                 thrd->lstenq = 1;
1776                 thrd->req[0].desc = NULL;
1777                 thrd->req[1].desc = NULL;
1778                 thrd->req_running = -1;
1779                 break;
1780             }
1781         }
1782         thrd = NULL;
1783     }
1784 
1785     return thrd;
1786 }
1787 
1788 /* Release an event */
1789 static inline void _free_event(struct pl330_thread *thrd, int ev)
1790 {
1791     struct pl330_dmac *pl330 = thrd->dmac;
1792 
1793     /* If the event is valid and was held by the thread */
1794     if (ev >= 0 && ev < pl330->pcfg.num_events
1795             && pl330->events[ev] == thrd->id)
1796         pl330->events[ev] = -1;
1797 }
1798 
1799 static void pl330_release_channel(struct pl330_thread *thrd)
1800 {
1801     if (!thrd || thrd->free)
1802         return;
1803 
1804     _stop(thrd);
1805 
1806     dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1807     dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1808 
1809     _free_event(thrd, thrd->ev);
1810     thrd->free = true;
1811 }
1812 
1813 /* Initialize the structure for PL330 configuration, that can be used
1814  * by the client driver the make best use of the DMAC
1815  */
1816 static void read_dmac_config(struct pl330_dmac *pl330)
1817 {
1818     void __iomem *regs = pl330->base;
1819     u32 val;
1820 
1821     val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1822     val &= CRD_DATA_WIDTH_MASK;
1823     pl330->pcfg.data_bus_width = 8 * (1 << val);
1824 
1825     val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1826     val &= CRD_DATA_BUFF_MASK;
1827     pl330->pcfg.data_buf_dep = val + 1;
1828 
1829     val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1830     val &= CR0_NUM_CHANS_MASK;
1831     val += 1;
1832     pl330->pcfg.num_chan = val;
1833 
1834     val = readl(regs + CR0);
1835     if (val & CR0_PERIPH_REQ_SET) {
1836         val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1837         val += 1;
1838         pl330->pcfg.num_peri = val;
1839         pl330->pcfg.peri_ns = readl(regs + CR4);
1840     } else {
1841         pl330->pcfg.num_peri = 0;
1842     }
1843 
1844     val = readl(regs + CR0);
1845     if (val & CR0_BOOT_MAN_NS)
1846         pl330->pcfg.mode |= DMAC_MODE_NS;
1847     else
1848         pl330->pcfg.mode &= ~DMAC_MODE_NS;
1849 
1850     val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1851     val &= CR0_NUM_EVENTS_MASK;
1852     val += 1;
1853     pl330->pcfg.num_events = val;
1854 
1855     pl330->pcfg.irq_ns = readl(regs + CR3);
1856 }
1857 
1858 static inline void _reset_thread(struct pl330_thread *thrd)
1859 {
1860     struct pl330_dmac *pl330 = thrd->dmac;
1861 
1862     thrd->req[0].mc_cpu = pl330->mcode_cpu
1863                 + (thrd->id * pl330->mcbufsz);
1864     thrd->req[0].mc_bus = pl330->mcode_bus
1865                 + (thrd->id * pl330->mcbufsz);
1866     thrd->req[0].desc = NULL;
1867 
1868     thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1869                 + pl330->mcbufsz / 2;
1870     thrd->req[1].mc_bus = thrd->req[0].mc_bus
1871                 + pl330->mcbufsz / 2;
1872     thrd->req[1].desc = NULL;
1873 
1874     thrd->req_running = -1;
1875 }
1876 
1877 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1878 {
1879     int chans = pl330->pcfg.num_chan;
1880     struct pl330_thread *thrd;
1881     int i;
1882 
1883     /* Allocate 1 Manager and 'chans' Channel threads */
1884     pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
1885                     GFP_KERNEL);
1886     if (!pl330->channels)
1887         return -ENOMEM;
1888 
1889     /* Init Channel threads */
1890     for (i = 0; i < chans; i++) {
1891         thrd = &pl330->channels[i];
1892         thrd->id = i;
1893         thrd->dmac = pl330;
1894         _reset_thread(thrd);
1895         thrd->free = true;
1896     }
1897 
1898     /* MANAGER is indexed at the end */
1899     thrd = &pl330->channels[chans];
1900     thrd->id = chans;
1901     thrd->dmac = pl330;
1902     thrd->free = false;
1903     pl330->manager = thrd;
1904 
1905     return 0;
1906 }
1907 
1908 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1909 {
1910     int chans = pl330->pcfg.num_chan;
1911     int ret;
1912 
1913     /*
1914      * Alloc MicroCode buffer for 'chans' Channel threads.
1915      * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1916      */
1917     pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1918                 chans * pl330->mcbufsz,
1919                 &pl330->mcode_bus, GFP_KERNEL,
1920                 DMA_ATTR_PRIVILEGED);
1921     if (!pl330->mcode_cpu) {
1922         dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1923             __func__, __LINE__);
1924         return -ENOMEM;
1925     }
1926 
1927     ret = dmac_alloc_threads(pl330);
1928     if (ret) {
1929         dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1930             __func__, __LINE__);
1931         dma_free_attrs(pl330->ddma.dev,
1932                 chans * pl330->mcbufsz,
1933                 pl330->mcode_cpu, pl330->mcode_bus,
1934                 DMA_ATTR_PRIVILEGED);
1935         return ret;
1936     }
1937 
1938     return 0;
1939 }
1940 
1941 static int pl330_add(struct pl330_dmac *pl330)
1942 {
1943     int i, ret;
1944 
1945     /* Check if we can handle this DMAC */
1946     if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1947         dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1948             pl330->pcfg.periph_id);
1949         return -EINVAL;
1950     }
1951 
1952     /* Read the configuration of the DMAC */
1953     read_dmac_config(pl330);
1954 
1955     if (pl330->pcfg.num_events == 0) {
1956         dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1957             __func__, __LINE__);
1958         return -EINVAL;
1959     }
1960 
1961     spin_lock_init(&pl330->lock);
1962 
1963     INIT_LIST_HEAD(&pl330->req_done);
1964 
1965     /* Use default MC buffer size if not provided */
1966     if (!pl330->mcbufsz)
1967         pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1968 
1969     /* Mark all events as free */
1970     for (i = 0; i < pl330->pcfg.num_events; i++)
1971         pl330->events[i] = -1;
1972 
1973     /* Allocate resources needed by the DMAC */
1974     ret = dmac_alloc_resources(pl330);
1975     if (ret) {
1976         dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1977         return ret;
1978     }
1979 
1980     tasklet_setup(&pl330->tasks, pl330_dotask);
1981 
1982     pl330->state = INIT;
1983 
1984     return 0;
1985 }
1986 
1987 static int dmac_free_threads(struct pl330_dmac *pl330)
1988 {
1989     struct pl330_thread *thrd;
1990     int i;
1991 
1992     /* Release Channel threads */
1993     for (i = 0; i < pl330->pcfg.num_chan; i++) {
1994         thrd = &pl330->channels[i];
1995         pl330_release_channel(thrd);
1996     }
1997 
1998     /* Free memory */
1999     kfree(pl330->channels);
2000 
2001     return 0;
2002 }
2003 
2004 static void pl330_del(struct pl330_dmac *pl330)
2005 {
2006     pl330->state = UNINIT;
2007 
2008     tasklet_kill(&pl330->tasks);
2009 
2010     /* Free DMAC resources */
2011     dmac_free_threads(pl330);
2012 
2013     dma_free_attrs(pl330->ddma.dev,
2014         pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
2015         pl330->mcode_bus, DMA_ATTR_PRIVILEGED);
2016 }
2017 
2018 /* forward declaration */
2019 static struct amba_driver pl330_driver;
2020 
2021 static inline struct dma_pl330_chan *
2022 to_pchan(struct dma_chan *ch)
2023 {
2024     if (!ch)
2025         return NULL;
2026 
2027     return container_of(ch, struct dma_pl330_chan, chan);
2028 }
2029 
2030 static inline struct dma_pl330_desc *
2031 to_desc(struct dma_async_tx_descriptor *tx)
2032 {
2033     return container_of(tx, struct dma_pl330_desc, txd);
2034 }
2035 
2036 static inline void fill_queue(struct dma_pl330_chan *pch)
2037 {
2038     struct dma_pl330_desc *desc;
2039     int ret;
2040 
2041     list_for_each_entry(desc, &pch->work_list, node) {
2042 
2043         /* If already submitted */
2044         if (desc->status == BUSY)
2045             continue;
2046 
2047         ret = pl330_submit_req(pch->thread, desc);
2048         if (!ret) {
2049             desc->status = BUSY;
2050         } else if (ret == -EAGAIN) {
2051             /* QFull or DMAC Dying */
2052             break;
2053         } else {
2054             /* Unacceptable request */
2055             desc->status = DONE;
2056             dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2057                     __func__, __LINE__, desc->txd.cookie);
2058             tasklet_schedule(&pch->task);
2059         }
2060     }
2061 }
2062 
2063 static void pl330_tasklet(struct tasklet_struct *t)
2064 {
2065     struct dma_pl330_chan *pch = from_tasklet(pch, t, task);
2066     struct dma_pl330_desc *desc, *_dt;
2067     unsigned long flags;
2068     bool power_down = false;
2069 
2070     spin_lock_irqsave(&pch->lock, flags);
2071 
2072     /* Pick up ripe tomatoes */
2073     list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2074         if (desc->status == DONE) {
2075             if (!pch->cyclic)
2076                 dma_cookie_complete(&desc->txd);
2077             list_move_tail(&desc->node, &pch->completed_list);
2078         }
2079 
2080     /* Try to submit a req imm. next to the last completed cookie */
2081     fill_queue(pch);
2082 
2083     if (list_empty(&pch->work_list)) {
2084         spin_lock(&pch->thread->dmac->lock);
2085         _stop(pch->thread);
2086         spin_unlock(&pch->thread->dmac->lock);
2087         power_down = true;
2088         pch->active = false;
2089     } else {
2090         /* Make sure the PL330 Channel thread is active */
2091         spin_lock(&pch->thread->dmac->lock);
2092         _start(pch->thread);
2093         spin_unlock(&pch->thread->dmac->lock);
2094     }
2095 
2096     while (!list_empty(&pch->completed_list)) {
2097         struct dmaengine_desc_callback cb;
2098 
2099         desc = list_first_entry(&pch->completed_list,
2100                     struct dma_pl330_desc, node);
2101 
2102         dmaengine_desc_get_callback(&desc->txd, &cb);
2103 
2104         if (pch->cyclic) {
2105             desc->status = PREP;
2106             list_move_tail(&desc->node, &pch->work_list);
2107             if (power_down) {
2108                 pch->active = true;
2109                 spin_lock(&pch->thread->dmac->lock);
2110                 _start(pch->thread);
2111                 spin_unlock(&pch->thread->dmac->lock);
2112                 power_down = false;
2113             }
2114         } else {
2115             desc->status = FREE;
2116             list_move_tail(&desc->node, &pch->dmac->desc_pool);
2117         }
2118 
2119         dma_descriptor_unmap(&desc->txd);
2120 
2121         if (dmaengine_desc_callback_valid(&cb)) {
2122             spin_unlock_irqrestore(&pch->lock, flags);
2123             dmaengine_desc_callback_invoke(&cb, NULL);
2124             spin_lock_irqsave(&pch->lock, flags);
2125         }
2126     }
2127     spin_unlock_irqrestore(&pch->lock, flags);
2128 
2129     /* If work list empty, power down */
2130     if (power_down) {
2131         pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2132         pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2133     }
2134 }
2135 
2136 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2137                         struct of_dma *ofdma)
2138 {
2139     int count = dma_spec->args_count;
2140     struct pl330_dmac *pl330 = ofdma->of_dma_data;
2141     unsigned int chan_id;
2142 
2143     if (!pl330)
2144         return NULL;
2145 
2146     if (count != 1)
2147         return NULL;
2148 
2149     chan_id = dma_spec->args[0];
2150     if (chan_id >= pl330->num_peripherals)
2151         return NULL;
2152 
2153     return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2154 }
2155 
2156 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2157 {
2158     struct dma_pl330_chan *pch = to_pchan(chan);
2159     struct pl330_dmac *pl330 = pch->dmac;
2160     unsigned long flags;
2161 
2162     spin_lock_irqsave(&pl330->lock, flags);
2163 
2164     dma_cookie_init(chan);
2165     pch->cyclic = false;
2166 
2167     pch->thread = pl330_request_channel(pl330);
2168     if (!pch->thread) {
2169         spin_unlock_irqrestore(&pl330->lock, flags);
2170         return -ENOMEM;
2171     }
2172 
2173     tasklet_setup(&pch->task, pl330_tasklet);
2174 
2175     spin_unlock_irqrestore(&pl330->lock, flags);
2176 
2177     return 1;
2178 }
2179 
2180 /*
2181  * We need the data direction between the DMAC (the dma-mapping "device") and
2182  * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2183  */
2184 static enum dma_data_direction
2185 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2186 {
2187     switch (dir) {
2188     case DMA_MEM_TO_DEV:
2189         return DMA_FROM_DEVICE;
2190     case DMA_DEV_TO_MEM:
2191         return DMA_TO_DEVICE;
2192     case DMA_DEV_TO_DEV:
2193         return DMA_BIDIRECTIONAL;
2194     default:
2195         return DMA_NONE;
2196     }
2197 }
2198 
2199 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2200 {
2201     if (pch->dir != DMA_NONE)
2202         dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2203                    1 << pch->burst_sz, pch->dir, 0);
2204     pch->dir = DMA_NONE;
2205 }
2206 
2207 
2208 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2209                   enum dma_transfer_direction dir)
2210 {
2211     struct device *dev = pch->chan.device->dev;
2212     enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2213 
2214     /* Already mapped for this config? */
2215     if (pch->dir == dma_dir)
2216         return true;
2217 
2218     pl330_unprep_slave_fifo(pch);
2219     pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2220                      1 << pch->burst_sz, dma_dir, 0);
2221     if (dma_mapping_error(dev, pch->fifo_dma))
2222         return false;
2223 
2224     pch->dir = dma_dir;
2225     return true;
2226 }
2227 
2228 static int fixup_burst_len(int max_burst_len, int quirks)
2229 {
2230     if (max_burst_len > PL330_MAX_BURST)
2231         return PL330_MAX_BURST;
2232     else if (max_burst_len < 1)
2233         return 1;
2234     else
2235         return max_burst_len;
2236 }
2237 
2238 static int pl330_config_write(struct dma_chan *chan,
2239             struct dma_slave_config *slave_config,
2240             enum dma_transfer_direction direction)
2241 {
2242     struct dma_pl330_chan *pch = to_pchan(chan);
2243 
2244     pl330_unprep_slave_fifo(pch);
2245     if (direction == DMA_MEM_TO_DEV) {
2246         if (slave_config->dst_addr)
2247             pch->fifo_addr = slave_config->dst_addr;
2248         if (slave_config->dst_addr_width)
2249             pch->burst_sz = __ffs(slave_config->dst_addr_width);
2250         pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2251             pch->dmac->quirks);
2252     } else if (direction == DMA_DEV_TO_MEM) {
2253         if (slave_config->src_addr)
2254             pch->fifo_addr = slave_config->src_addr;
2255         if (slave_config->src_addr_width)
2256             pch->burst_sz = __ffs(slave_config->src_addr_width);
2257         pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2258             pch->dmac->quirks);
2259     }
2260 
2261     return 0;
2262 }
2263 
2264 static int pl330_config(struct dma_chan *chan,
2265             struct dma_slave_config *slave_config)
2266 {
2267     struct dma_pl330_chan *pch = to_pchan(chan);
2268 
2269     memcpy(&pch->slave_config, slave_config, sizeof(*slave_config));
2270 
2271     return 0;
2272 }
2273 
2274 static int pl330_terminate_all(struct dma_chan *chan)
2275 {
2276     struct dma_pl330_chan *pch = to_pchan(chan);
2277     struct dma_pl330_desc *desc;
2278     unsigned long flags;
2279     struct pl330_dmac *pl330 = pch->dmac;
2280     bool power_down = false;
2281 
2282     pm_runtime_get_sync(pl330->ddma.dev);
2283     spin_lock_irqsave(&pch->lock, flags);
2284 
2285     spin_lock(&pl330->lock);
2286     _stop(pch->thread);
2287     pch->thread->req[0].desc = NULL;
2288     pch->thread->req[1].desc = NULL;
2289     pch->thread->req_running = -1;
2290     spin_unlock(&pl330->lock);
2291 
2292     power_down = pch->active;
2293     pch->active = false;
2294 
2295     /* Mark all desc done */
2296     list_for_each_entry(desc, &pch->submitted_list, node) {
2297         desc->status = FREE;
2298         dma_cookie_complete(&desc->txd);
2299     }
2300 
2301     list_for_each_entry(desc, &pch->work_list , node) {
2302         desc->status = FREE;
2303         dma_cookie_complete(&desc->txd);
2304     }
2305 
2306     list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2307     list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2308     list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2309     spin_unlock_irqrestore(&pch->lock, flags);
2310     pm_runtime_mark_last_busy(pl330->ddma.dev);
2311     if (power_down)
2312         pm_runtime_put_autosuspend(pl330->ddma.dev);
2313     pm_runtime_put_autosuspend(pl330->ddma.dev);
2314 
2315     return 0;
2316 }
2317 
2318 /*
2319  * We don't support DMA_RESUME command because of hardware
2320  * limitations, so after pausing the channel we cannot restore
2321  * it to active state. We have to terminate channel and setup
2322  * DMA transfer again. This pause feature was implemented to
2323  * allow safely read residue before channel termination.
2324  */
2325 static int pl330_pause(struct dma_chan *chan)
2326 {
2327     struct dma_pl330_chan *pch = to_pchan(chan);
2328     struct pl330_dmac *pl330 = pch->dmac;
2329     unsigned long flags;
2330 
2331     pm_runtime_get_sync(pl330->ddma.dev);
2332     spin_lock_irqsave(&pch->lock, flags);
2333 
2334     spin_lock(&pl330->lock);
2335     _stop(pch->thread);
2336     spin_unlock(&pl330->lock);
2337 
2338     spin_unlock_irqrestore(&pch->lock, flags);
2339     pm_runtime_mark_last_busy(pl330->ddma.dev);
2340     pm_runtime_put_autosuspend(pl330->ddma.dev);
2341 
2342     return 0;
2343 }
2344 
2345 static void pl330_free_chan_resources(struct dma_chan *chan)
2346 {
2347     struct dma_pl330_chan *pch = to_pchan(chan);
2348     struct pl330_dmac *pl330 = pch->dmac;
2349     unsigned long flags;
2350 
2351     tasklet_kill(&pch->task);
2352 
2353     pm_runtime_get_sync(pch->dmac->ddma.dev);
2354     spin_lock_irqsave(&pl330->lock, flags);
2355 
2356     pl330_release_channel(pch->thread);
2357     pch->thread = NULL;
2358 
2359     if (pch->cyclic)
2360         list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2361 
2362     spin_unlock_irqrestore(&pl330->lock, flags);
2363     pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2364     pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2365     pl330_unprep_slave_fifo(pch);
2366 }
2367 
2368 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2369                        struct dma_pl330_desc *desc)
2370 {
2371     struct pl330_thread *thrd = pch->thread;
2372     struct pl330_dmac *pl330 = pch->dmac;
2373     void __iomem *regs = thrd->dmac->base;
2374     u32 val, addr;
2375 
2376     pm_runtime_get_sync(pl330->ddma.dev);
2377     val = addr = 0;
2378     if (desc->rqcfg.src_inc) {
2379         val = readl(regs + SA(thrd->id));
2380         addr = desc->px.src_addr;
2381     } else {
2382         val = readl(regs + DA(thrd->id));
2383         addr = desc->px.dst_addr;
2384     }
2385     pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2386     pm_runtime_put_autosuspend(pl330->ddma.dev);
2387 
2388     /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2389     if (!val)
2390         return 0;
2391 
2392     return val - addr;
2393 }
2394 
2395 static enum dma_status
2396 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2397          struct dma_tx_state *txstate)
2398 {
2399     enum dma_status ret;
2400     unsigned long flags;
2401     struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2402     struct dma_pl330_chan *pch = to_pchan(chan);
2403     unsigned int transferred, residual = 0;
2404 
2405     ret = dma_cookie_status(chan, cookie, txstate);
2406 
2407     if (!txstate)
2408         return ret;
2409 
2410     if (ret == DMA_COMPLETE)
2411         goto out;
2412 
2413     spin_lock_irqsave(&pch->lock, flags);
2414     spin_lock(&pch->thread->dmac->lock);
2415 
2416     if (pch->thread->req_running != -1)
2417         running = pch->thread->req[pch->thread->req_running].desc;
2418 
2419     last_enq = pch->thread->req[pch->thread->lstenq].desc;
2420 
2421     /* Check in pending list */
2422     list_for_each_entry(desc, &pch->work_list, node) {
2423         if (desc->status == DONE)
2424             transferred = desc->bytes_requested;
2425         else if (running && desc == running)
2426             transferred =
2427                 pl330_get_current_xferred_count(pch, desc);
2428         else if (desc->status == BUSY)
2429             /*
2430              * Busy but not running means either just enqueued,
2431              * or finished and not yet marked done
2432              */
2433             if (desc == last_enq)
2434                 transferred = 0;
2435             else
2436                 transferred = desc->bytes_requested;
2437         else
2438             transferred = 0;
2439         residual += desc->bytes_requested - transferred;
2440         if (desc->txd.cookie == cookie) {
2441             switch (desc->status) {
2442             case DONE:
2443                 ret = DMA_COMPLETE;
2444                 break;
2445             case PREP:
2446             case BUSY:
2447                 ret = DMA_IN_PROGRESS;
2448                 break;
2449             default:
2450                 WARN_ON(1);
2451             }
2452             break;
2453         }
2454         if (desc->last)
2455             residual = 0;
2456     }
2457     spin_unlock(&pch->thread->dmac->lock);
2458     spin_unlock_irqrestore(&pch->lock, flags);
2459 
2460 out:
2461     dma_set_residue(txstate, residual);
2462 
2463     return ret;
2464 }
2465 
2466 static void pl330_issue_pending(struct dma_chan *chan)
2467 {
2468     struct dma_pl330_chan *pch = to_pchan(chan);
2469     unsigned long flags;
2470 
2471     spin_lock_irqsave(&pch->lock, flags);
2472     if (list_empty(&pch->work_list)) {
2473         /*
2474          * Warn on nothing pending. Empty submitted_list may
2475          * break our pm_runtime usage counter as it is
2476          * updated on work_list emptiness status.
2477          */
2478         WARN_ON(list_empty(&pch->submitted_list));
2479         pch->active = true;
2480         pm_runtime_get_sync(pch->dmac->ddma.dev);
2481     }
2482     list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2483     spin_unlock_irqrestore(&pch->lock, flags);
2484 
2485     pl330_tasklet(&pch->task);
2486 }
2487 
2488 /*
2489  * We returned the last one of the circular list of descriptor(s)
2490  * from prep_xxx, so the argument to submit corresponds to the last
2491  * descriptor of the list.
2492  */
2493 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2494 {
2495     struct dma_pl330_desc *desc, *last = to_desc(tx);
2496     struct dma_pl330_chan *pch = to_pchan(tx->chan);
2497     dma_cookie_t cookie;
2498     unsigned long flags;
2499 
2500     spin_lock_irqsave(&pch->lock, flags);
2501 
2502     /* Assign cookies to all nodes */
2503     while (!list_empty(&last->node)) {
2504         desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2505         if (pch->cyclic) {
2506             desc->txd.callback = last->txd.callback;
2507             desc->txd.callback_param = last->txd.callback_param;
2508         }
2509         desc->last = false;
2510 
2511         dma_cookie_assign(&desc->txd);
2512 
2513         list_move_tail(&desc->node, &pch->submitted_list);
2514     }
2515 
2516     last->last = true;
2517     cookie = dma_cookie_assign(&last->txd);
2518     list_add_tail(&last->node, &pch->submitted_list);
2519     spin_unlock_irqrestore(&pch->lock, flags);
2520 
2521     return cookie;
2522 }
2523 
2524 static inline void _init_desc(struct dma_pl330_desc *desc)
2525 {
2526     desc->rqcfg.swap = SWAP_NO;
2527     desc->rqcfg.scctl = CCTRL0;
2528     desc->rqcfg.dcctl = CCTRL0;
2529     desc->txd.tx_submit = pl330_tx_submit;
2530 
2531     INIT_LIST_HEAD(&desc->node);
2532 }
2533 
2534 /* Returns the number of descriptors added to the DMAC pool */
2535 static int add_desc(struct list_head *pool, spinlock_t *lock,
2536             gfp_t flg, int count)
2537 {
2538     struct dma_pl330_desc *desc;
2539     unsigned long flags;
2540     int i;
2541 
2542     desc = kcalloc(count, sizeof(*desc), flg);
2543     if (!desc)
2544         return 0;
2545 
2546     spin_lock_irqsave(lock, flags);
2547 
2548     for (i = 0; i < count; i++) {
2549         _init_desc(&desc[i]);
2550         list_add_tail(&desc[i].node, pool);
2551     }
2552 
2553     spin_unlock_irqrestore(lock, flags);
2554 
2555     return count;
2556 }
2557 
2558 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2559                      spinlock_t *lock)
2560 {
2561     struct dma_pl330_desc *desc = NULL;
2562     unsigned long flags;
2563 
2564     spin_lock_irqsave(lock, flags);
2565 
2566     if (!list_empty(pool)) {
2567         desc = list_entry(pool->next,
2568                 struct dma_pl330_desc, node);
2569 
2570         list_del_init(&desc->node);
2571 
2572         desc->status = PREP;
2573         desc->txd.callback = NULL;
2574     }
2575 
2576     spin_unlock_irqrestore(lock, flags);
2577 
2578     return desc;
2579 }
2580 
2581 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2582 {
2583     struct pl330_dmac *pl330 = pch->dmac;
2584     u8 *peri_id = pch->chan.private;
2585     struct dma_pl330_desc *desc;
2586 
2587     /* Pluck one desc from the pool of DMAC */
2588     desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2589 
2590     /* If the DMAC pool is empty, alloc new */
2591     if (!desc) {
2592         static DEFINE_SPINLOCK(lock);
2593         LIST_HEAD(pool);
2594 
2595         if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2596             return NULL;
2597 
2598         desc = pluck_desc(&pool, &lock);
2599         WARN_ON(!desc || !list_empty(&pool));
2600     }
2601 
2602     /* Initialize the descriptor */
2603     desc->pchan = pch;
2604     desc->txd.cookie = 0;
2605     async_tx_ack(&desc->txd);
2606 
2607     desc->peri = peri_id ? pch->chan.chan_id : 0;
2608     desc->rqcfg.pcfg = &pch->dmac->pcfg;
2609 
2610     dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2611 
2612     return desc;
2613 }
2614 
2615 static inline void fill_px(struct pl330_xfer *px,
2616         dma_addr_t dst, dma_addr_t src, size_t len)
2617 {
2618     px->bytes = len;
2619     px->dst_addr = dst;
2620     px->src_addr = src;
2621 }
2622 
2623 static struct dma_pl330_desc *
2624 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2625         dma_addr_t src, size_t len)
2626 {
2627     struct dma_pl330_desc *desc = pl330_get_desc(pch);
2628 
2629     if (!desc) {
2630         dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2631             __func__, __LINE__);
2632         return NULL;
2633     }
2634 
2635     /*
2636      * Ideally we should lookout for reqs bigger than
2637      * those that can be programmed with 256 bytes of
2638      * MC buffer, but considering a req size is seldom
2639      * going to be word-unaligned and more than 200MB,
2640      * we take it easy.
2641      * Also, should the limit is reached we'd rather
2642      * have the platform increase MC buffer size than
2643      * complicating this API driver.
2644      */
2645     fill_px(&desc->px, dst, src, len);
2646 
2647     return desc;
2648 }
2649 
2650 /* Call after fixing burst size */
2651 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2652 {
2653     struct dma_pl330_chan *pch = desc->pchan;
2654     struct pl330_dmac *pl330 = pch->dmac;
2655     int burst_len;
2656 
2657     burst_len = pl330->pcfg.data_bus_width / 8;
2658     burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2659     burst_len >>= desc->rqcfg.brst_size;
2660 
2661     /* src/dst_burst_len can't be more than 16 */
2662     if (burst_len > PL330_MAX_BURST)
2663         burst_len = PL330_MAX_BURST;
2664 
2665     return burst_len;
2666 }
2667 
2668 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2669         struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2670         size_t period_len, enum dma_transfer_direction direction,
2671         unsigned long flags)
2672 {
2673     struct dma_pl330_desc *desc = NULL, *first = NULL;
2674     struct dma_pl330_chan *pch = to_pchan(chan);
2675     struct pl330_dmac *pl330 = pch->dmac;
2676     unsigned int i;
2677     dma_addr_t dst;
2678     dma_addr_t src;
2679 
2680     if (len % period_len != 0)
2681         return NULL;
2682 
2683     if (!is_slave_direction(direction)) {
2684         dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2685         __func__, __LINE__);
2686         return NULL;
2687     }
2688 
2689     pl330_config_write(chan, &pch->slave_config, direction);
2690 
2691     if (!pl330_prep_slave_fifo(pch, direction))
2692         return NULL;
2693 
2694     for (i = 0; i < len / period_len; i++) {
2695         desc = pl330_get_desc(pch);
2696         if (!desc) {
2697             unsigned long iflags;
2698 
2699             dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2700                 __func__, __LINE__);
2701 
2702             if (!first)
2703                 return NULL;
2704 
2705             spin_lock_irqsave(&pl330->pool_lock, iflags);
2706 
2707             while (!list_empty(&first->node)) {
2708                 desc = list_entry(first->node.next,
2709                         struct dma_pl330_desc, node);
2710                 list_move_tail(&desc->node, &pl330->desc_pool);
2711             }
2712 
2713             list_move_tail(&first->node, &pl330->desc_pool);
2714 
2715             spin_unlock_irqrestore(&pl330->pool_lock, iflags);
2716 
2717             return NULL;
2718         }
2719 
2720         switch (direction) {
2721         case DMA_MEM_TO_DEV:
2722             desc->rqcfg.src_inc = 1;
2723             desc->rqcfg.dst_inc = 0;
2724             src = dma_addr;
2725             dst = pch->fifo_dma;
2726             break;
2727         case DMA_DEV_TO_MEM:
2728             desc->rqcfg.src_inc = 0;
2729             desc->rqcfg.dst_inc = 1;
2730             src = pch->fifo_dma;
2731             dst = dma_addr;
2732             break;
2733         default:
2734             break;
2735         }
2736 
2737         desc->rqtype = direction;
2738         desc->rqcfg.brst_size = pch->burst_sz;
2739         desc->rqcfg.brst_len = pch->burst_len;
2740         desc->bytes_requested = period_len;
2741         fill_px(&desc->px, dst, src, period_len);
2742 
2743         if (!first)
2744             first = desc;
2745         else
2746             list_add_tail(&desc->node, &first->node);
2747 
2748         dma_addr += period_len;
2749     }
2750 
2751     if (!desc)
2752         return NULL;
2753 
2754     pch->cyclic = true;
2755     desc->txd.flags = flags;
2756 
2757     return &desc->txd;
2758 }
2759 
2760 static struct dma_async_tx_descriptor *
2761 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2762         dma_addr_t src, size_t len, unsigned long flags)
2763 {
2764     struct dma_pl330_desc *desc;
2765     struct dma_pl330_chan *pch = to_pchan(chan);
2766     struct pl330_dmac *pl330;
2767     int burst;
2768 
2769     if (unlikely(!pch || !len))
2770         return NULL;
2771 
2772     pl330 = pch->dmac;
2773 
2774     desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2775     if (!desc)
2776         return NULL;
2777 
2778     desc->rqcfg.src_inc = 1;
2779     desc->rqcfg.dst_inc = 1;
2780     desc->rqtype = DMA_MEM_TO_MEM;
2781 
2782     /* Select max possible burst size */
2783     burst = pl330->pcfg.data_bus_width / 8;
2784 
2785     /*
2786      * Make sure we use a burst size that aligns with all the memcpy
2787      * parameters because our DMA programming algorithm doesn't cope with
2788      * transfers which straddle an entry in the DMA device's MFIFO.
2789      */
2790     while ((src | dst | len) & (burst - 1))
2791         burst /= 2;
2792 
2793     desc->rqcfg.brst_size = 0;
2794     while (burst != (1 << desc->rqcfg.brst_size))
2795         desc->rqcfg.brst_size++;
2796 
2797     desc->rqcfg.brst_len = get_burst_len(desc, len);
2798     /*
2799      * If burst size is smaller than bus width then make sure we only
2800      * transfer one at a time to avoid a burst stradling an MFIFO entry.
2801      */
2802     if (burst * 8 < pl330->pcfg.data_bus_width)
2803         desc->rqcfg.brst_len = 1;
2804 
2805     desc->bytes_requested = len;
2806 
2807     desc->txd.flags = flags;
2808 
2809     return &desc->txd;
2810 }
2811 
2812 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2813                   struct dma_pl330_desc *first)
2814 {
2815     unsigned long flags;
2816     struct dma_pl330_desc *desc;
2817 
2818     if (!first)
2819         return;
2820 
2821     spin_lock_irqsave(&pl330->pool_lock, flags);
2822 
2823     while (!list_empty(&first->node)) {
2824         desc = list_entry(first->node.next,
2825                 struct dma_pl330_desc, node);
2826         list_move_tail(&desc->node, &pl330->desc_pool);
2827     }
2828 
2829     list_move_tail(&first->node, &pl330->desc_pool);
2830 
2831     spin_unlock_irqrestore(&pl330->pool_lock, flags);
2832 }
2833 
2834 static struct dma_async_tx_descriptor *
2835 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2836         unsigned int sg_len, enum dma_transfer_direction direction,
2837         unsigned long flg, void *context)
2838 {
2839     struct dma_pl330_desc *first, *desc = NULL;
2840     struct dma_pl330_chan *pch = to_pchan(chan);
2841     struct scatterlist *sg;
2842     int i;
2843 
2844     if (unlikely(!pch || !sgl || !sg_len))
2845         return NULL;
2846 
2847     pl330_config_write(chan, &pch->slave_config, direction);
2848 
2849     if (!pl330_prep_slave_fifo(pch, direction))
2850         return NULL;
2851 
2852     first = NULL;
2853 
2854     for_each_sg(sgl, sg, sg_len, i) {
2855 
2856         desc = pl330_get_desc(pch);
2857         if (!desc) {
2858             struct pl330_dmac *pl330 = pch->dmac;
2859 
2860             dev_err(pch->dmac->ddma.dev,
2861                 "%s:%d Unable to fetch desc\n",
2862                 __func__, __LINE__);
2863             __pl330_giveback_desc(pl330, first);
2864 
2865             return NULL;
2866         }
2867 
2868         if (!first)
2869             first = desc;
2870         else
2871             list_add_tail(&desc->node, &first->node);
2872 
2873         if (direction == DMA_MEM_TO_DEV) {
2874             desc->rqcfg.src_inc = 1;
2875             desc->rqcfg.dst_inc = 0;
2876             fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2877                 sg_dma_len(sg));
2878         } else {
2879             desc->rqcfg.src_inc = 0;
2880             desc->rqcfg.dst_inc = 1;
2881             fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2882                 sg_dma_len(sg));
2883         }
2884 
2885         desc->rqcfg.brst_size = pch->burst_sz;
2886         desc->rqcfg.brst_len = pch->burst_len;
2887         desc->rqtype = direction;
2888         desc->bytes_requested = sg_dma_len(sg);
2889     }
2890 
2891     /* Return the last desc in the chain */
2892     desc->txd.flags = flg;
2893     return &desc->txd;
2894 }
2895 
2896 static irqreturn_t pl330_irq_handler(int irq, void *data)
2897 {
2898     if (pl330_update(data))
2899         return IRQ_HANDLED;
2900     else
2901         return IRQ_NONE;
2902 }
2903 
2904 #define PL330_DMA_BUSWIDTHS \
2905     BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2906     BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2907     BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2908     BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2909     BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2910 
2911 #ifdef CONFIG_DEBUG_FS
2912 static int pl330_debugfs_show(struct seq_file *s, void *data)
2913 {
2914     struct pl330_dmac *pl330 = s->private;
2915     int chans, pchs, ch, pr;
2916 
2917     chans = pl330->pcfg.num_chan;
2918     pchs = pl330->num_peripherals;
2919 
2920     seq_puts(s, "PL330 physical channels:\n");
2921     seq_puts(s, "THREAD:\t\tCHANNEL:\n");
2922     seq_puts(s, "--------\t-----\n");
2923     for (ch = 0; ch < chans; ch++) {
2924         struct pl330_thread *thrd = &pl330->channels[ch];
2925         int found = -1;
2926 
2927         for (pr = 0; pr < pchs; pr++) {
2928             struct dma_pl330_chan *pch = &pl330->peripherals[pr];
2929 
2930             if (!pch->thread || thrd->id != pch->thread->id)
2931                 continue;
2932 
2933             found = pr;
2934         }
2935 
2936         seq_printf(s, "%d\t\t", thrd->id);
2937         if (found == -1)
2938             seq_puts(s, "--\n");
2939         else
2940             seq_printf(s, "%d\n", found);
2941     }
2942 
2943     return 0;
2944 }
2945 
2946 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs);
2947 
2948 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2949 {
2950     debugfs_create_file(dev_name(pl330->ddma.dev),
2951                 S_IFREG | 0444, NULL, pl330,
2952                 &pl330_debugfs_fops);
2953 }
2954 #else
2955 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2956 {
2957 }
2958 #endif
2959 
2960 /*
2961  * Runtime PM callbacks are provided by amba/bus.c driver.
2962  *
2963  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2964  * bus driver will only disable/enable the clock in runtime PM callbacks.
2965  */
2966 static int __maybe_unused pl330_suspend(struct device *dev)
2967 {
2968     struct amba_device *pcdev = to_amba_device(dev);
2969 
2970     pm_runtime_force_suspend(dev);
2971     clk_unprepare(pcdev->pclk);
2972 
2973     return 0;
2974 }
2975 
2976 static int __maybe_unused pl330_resume(struct device *dev)
2977 {
2978     struct amba_device *pcdev = to_amba_device(dev);
2979     int ret;
2980 
2981     ret = clk_prepare(pcdev->pclk);
2982     if (ret)
2983         return ret;
2984 
2985     pm_runtime_force_resume(dev);
2986 
2987     return ret;
2988 }
2989 
2990 static const struct dev_pm_ops pl330_pm = {
2991     SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume)
2992 };
2993 
2994 static int
2995 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2996 {
2997     struct pl330_config *pcfg;
2998     struct pl330_dmac *pl330;
2999     struct dma_pl330_chan *pch, *_p;
3000     struct dma_device *pd;
3001     struct resource *res;
3002     int i, ret, irq;
3003     int num_chan;
3004     struct device_node *np = adev->dev.of_node;
3005 
3006     ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
3007     if (ret)
3008         return ret;
3009 
3010     /* Allocate a new DMAC and its Channels */
3011     pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
3012     if (!pl330)
3013         return -ENOMEM;
3014 
3015     pd = &pl330->ddma;
3016     pd->dev = &adev->dev;
3017 
3018     pl330->mcbufsz = 0;
3019 
3020     /* get quirk */
3021     for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
3022         if (of_property_read_bool(np, of_quirks[i].quirk))
3023             pl330->quirks |= of_quirks[i].id;
3024 
3025     res = &adev->res;
3026     pl330->base = devm_ioremap_resource(&adev->dev, res);
3027     if (IS_ERR(pl330->base))
3028         return PTR_ERR(pl330->base);
3029 
3030     amba_set_drvdata(adev, pl330);
3031 
3032     pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma");
3033     if (IS_ERR(pl330->rstc)) {
3034         return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc), "Failed to get reset!\n");
3035     } else {
3036         ret = reset_control_deassert(pl330->rstc);
3037         if (ret) {
3038             dev_err(&adev->dev, "Couldn't deassert the device from reset!\n");
3039             return ret;
3040         }
3041     }
3042 
3043     pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp");
3044     if (IS_ERR(pl330->rstc_ocp)) {
3045         return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc_ocp),
3046                      "Failed to get OCP reset!\n");
3047     } else {
3048         ret = reset_control_deassert(pl330->rstc_ocp);
3049         if (ret) {
3050             dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n");
3051             return ret;
3052         }
3053     }
3054 
3055     for (i = 0; i < AMBA_NR_IRQS; i++) {
3056         irq = adev->irq[i];
3057         if (irq) {
3058             ret = devm_request_irq(&adev->dev, irq,
3059                            pl330_irq_handler, 0,
3060                            dev_name(&adev->dev), pl330);
3061             if (ret)
3062                 return ret;
3063         } else {
3064             break;
3065         }
3066     }
3067 
3068     pcfg = &pl330->pcfg;
3069 
3070     pcfg->periph_id = adev->periphid;
3071     ret = pl330_add(pl330);
3072     if (ret)
3073         return ret;
3074 
3075     INIT_LIST_HEAD(&pl330->desc_pool);
3076     spin_lock_init(&pl330->pool_lock);
3077 
3078     /* Create a descriptor pool of default size */
3079     if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
3080               GFP_KERNEL, NR_DEFAULT_DESC))
3081         dev_warn(&adev->dev, "unable to allocate desc\n");
3082 
3083     INIT_LIST_HEAD(&pd->channels);
3084 
3085     /* Initialize channel parameters */
3086     num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
3087 
3088     pl330->num_peripherals = num_chan;
3089 
3090     pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
3091     if (!pl330->peripherals) {
3092         ret = -ENOMEM;
3093         goto probe_err2;
3094     }
3095 
3096     for (i = 0; i < num_chan; i++) {
3097         pch = &pl330->peripherals[i];
3098 
3099         pch->chan.private = adev->dev.of_node;
3100         INIT_LIST_HEAD(&pch->submitted_list);
3101         INIT_LIST_HEAD(&pch->work_list);
3102         INIT_LIST_HEAD(&pch->completed_list);
3103         spin_lock_init(&pch->lock);
3104         pch->thread = NULL;
3105         pch->chan.device = pd;
3106         pch->dmac = pl330;
3107         pch->dir = DMA_NONE;
3108 
3109         /* Add the channel to the DMAC list */
3110         list_add_tail(&pch->chan.device_node, &pd->channels);
3111     }
3112 
3113     dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3114     if (pcfg->num_peri) {
3115         dma_cap_set(DMA_SLAVE, pd->cap_mask);
3116         dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3117         dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3118     }
3119 
3120     pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3121     pd->device_free_chan_resources = pl330_free_chan_resources;
3122     pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3123     pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3124     pd->device_tx_status = pl330_tx_status;
3125     pd->device_prep_slave_sg = pl330_prep_slave_sg;
3126     pd->device_config = pl330_config;
3127     pd->device_pause = pl330_pause;
3128     pd->device_terminate_all = pl330_terminate_all;
3129     pd->device_issue_pending = pl330_issue_pending;
3130     pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3131     pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3132     pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3133     pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3134     pd->max_burst = PL330_MAX_BURST;
3135 
3136     ret = dma_async_device_register(pd);
3137     if (ret) {
3138         dev_err(&adev->dev, "unable to register DMAC\n");
3139         goto probe_err3;
3140     }
3141 
3142     if (adev->dev.of_node) {
3143         ret = of_dma_controller_register(adev->dev.of_node,
3144                      of_dma_pl330_xlate, pl330);
3145         if (ret) {
3146             dev_err(&adev->dev,
3147             "unable to register DMA to the generic DT DMA helpers\n");
3148         }
3149     }
3150 
3151     /*
3152      * This is the limit for transfers with a buswidth of 1, larger
3153      * buswidths will have larger limits.
3154      */
3155     ret = dma_set_max_seg_size(&adev->dev, 1900800);
3156     if (ret)
3157         dev_err(&adev->dev, "unable to set the seg size\n");
3158 
3159 
3160     init_pl330_debugfs(pl330);
3161     dev_info(&adev->dev,
3162         "Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3163     dev_info(&adev->dev,
3164         "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3165         pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3166         pcfg->num_peri, pcfg->num_events);
3167 
3168     pm_runtime_irq_safe(&adev->dev);
3169     pm_runtime_use_autosuspend(&adev->dev);
3170     pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3171     pm_runtime_mark_last_busy(&adev->dev);
3172     pm_runtime_put_autosuspend(&adev->dev);
3173 
3174     return 0;
3175 probe_err3:
3176     /* Idle the DMAC */
3177     list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3178             chan.device_node) {
3179 
3180         /* Remove the channel */
3181         list_del(&pch->chan.device_node);
3182 
3183         /* Flush the channel */
3184         if (pch->thread) {
3185             pl330_terminate_all(&pch->chan);
3186             pl330_free_chan_resources(&pch->chan);
3187         }
3188     }
3189 probe_err2:
3190     pl330_del(pl330);
3191 
3192     if (pl330->rstc_ocp)
3193         reset_control_assert(pl330->rstc_ocp);
3194 
3195     if (pl330->rstc)
3196         reset_control_assert(pl330->rstc);
3197     return ret;
3198 }
3199 
3200 static void pl330_remove(struct amba_device *adev)
3201 {
3202     struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3203     struct dma_pl330_chan *pch, *_p;
3204     int i, irq;
3205 
3206     pm_runtime_get_noresume(pl330->ddma.dev);
3207 
3208     if (adev->dev.of_node)
3209         of_dma_controller_free(adev->dev.of_node);
3210 
3211     for (i = 0; i < AMBA_NR_IRQS; i++) {
3212         irq = adev->irq[i];
3213         if (irq)
3214             devm_free_irq(&adev->dev, irq, pl330);
3215     }
3216 
3217     dma_async_device_unregister(&pl330->ddma);
3218 
3219     /* Idle the DMAC */
3220     list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3221             chan.device_node) {
3222 
3223         /* Remove the channel */
3224         list_del(&pch->chan.device_node);
3225 
3226         /* Flush the channel */
3227         if (pch->thread) {
3228             pl330_terminate_all(&pch->chan);
3229             pl330_free_chan_resources(&pch->chan);
3230         }
3231     }
3232 
3233     pl330_del(pl330);
3234 
3235     if (pl330->rstc_ocp)
3236         reset_control_assert(pl330->rstc_ocp);
3237 
3238     if (pl330->rstc)
3239         reset_control_assert(pl330->rstc);
3240 }
3241 
3242 static const struct amba_id pl330_ids[] = {
3243     {
3244         .id = 0x00041330,
3245         .mask   = 0x000fffff,
3246     },
3247     { 0, 0 },
3248 };
3249 
3250 MODULE_DEVICE_TABLE(amba, pl330_ids);
3251 
3252 static struct amba_driver pl330_driver = {
3253     .drv = {
3254         .owner = THIS_MODULE,
3255         .name = "dma-pl330",
3256         .pm = &pl330_pm,
3257     },
3258     .id_table = pl330_ids,
3259     .probe = pl330_probe,
3260     .remove = pl330_remove,
3261 };
3262 
3263 module_amba_driver(pl330_driver);
3264 
3265 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3266 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3267 MODULE_LICENSE("GPL");