Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Topcliff PCH DMA controller driver
0004  * Copyright (c) 2010 Intel Corporation
0005  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
0006  */
0007 
0008 #include <linux/dmaengine.h>
0009 #include <linux/dma-mapping.h>
0010 #include <linux/init.h>
0011 #include <linux/pci.h>
0012 #include <linux/slab.h>
0013 #include <linux/interrupt.h>
0014 #include <linux/module.h>
0015 #include <linux/pch_dma.h>
0016 
0017 #include "dmaengine.h"
0018 
0019 #define DRV_NAME "pch-dma"
0020 
0021 #define DMA_CTL0_DISABLE        0x0
0022 #define DMA_CTL0_SG         0x1
0023 #define DMA_CTL0_ONESHOT        0x2
0024 #define DMA_CTL0_MODE_MASK_BITS     0x3
0025 #define DMA_CTL0_DIR_SHIFT_BITS     2
0026 #define DMA_CTL0_BITS_PER_CH        4
0027 
0028 #define DMA_CTL2_START_SHIFT_BITS   8
0029 #define DMA_CTL2_IRQ_ENABLE_MASK    ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
0030 
0031 #define DMA_STATUS_IDLE         0x0
0032 #define DMA_STATUS_DESC_READ        0x1
0033 #define DMA_STATUS_WAIT         0x2
0034 #define DMA_STATUS_ACCESS       0x3
0035 #define DMA_STATUS_BITS_PER_CH      2
0036 #define DMA_STATUS_MASK_BITS        0x3
0037 #define DMA_STATUS_SHIFT_BITS       16
0038 #define DMA_STATUS_IRQ(x)       (0x1 << (x))
0039 #define DMA_STATUS0_ERR(x)      (0x1 << ((x) + 8))
0040 #define DMA_STATUS2_ERR(x)      (0x1 << (x))
0041 
0042 #define DMA_DESC_WIDTH_SHIFT_BITS   12
0043 #define DMA_DESC_WIDTH_1_BYTE       (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
0044 #define DMA_DESC_WIDTH_2_BYTES      (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
0045 #define DMA_DESC_WIDTH_4_BYTES      (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
0046 #define DMA_DESC_MAX_COUNT_1_BYTE   0x3FF
0047 #define DMA_DESC_MAX_COUNT_2_BYTES  0x3FF
0048 #define DMA_DESC_MAX_COUNT_4_BYTES  0x7FF
0049 #define DMA_DESC_END_WITHOUT_IRQ    0x0
0050 #define DMA_DESC_END_WITH_IRQ       0x1
0051 #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
0052 #define DMA_DESC_FOLLOW_WITH_IRQ    0x3
0053 
0054 #define MAX_CHAN_NR         12
0055 
0056 #define DMA_MASK_CTL0_MODE  0x33333333
0057 #define DMA_MASK_CTL2_MODE  0x00003333
0058 
0059 static unsigned int init_nr_desc_per_channel = 64;
0060 module_param(init_nr_desc_per_channel, uint, 0644);
0061 MODULE_PARM_DESC(init_nr_desc_per_channel,
0062          "initial descriptors per channel (default: 64)");
0063 
0064 struct pch_dma_desc_regs {
0065     u32 dev_addr;
0066     u32 mem_addr;
0067     u32 size;
0068     u32 next;
0069 };
0070 
0071 struct pch_dma_regs {
0072     u32 dma_ctl0;
0073     u32 dma_ctl1;
0074     u32 dma_ctl2;
0075     u32 dma_ctl3;
0076     u32 dma_sts0;
0077     u32 dma_sts1;
0078     u32 dma_sts2;
0079     u32 reserved3;
0080     struct pch_dma_desc_regs desc[MAX_CHAN_NR];
0081 };
0082 
0083 struct pch_dma_desc {
0084     struct pch_dma_desc_regs regs;
0085     struct dma_async_tx_descriptor txd;
0086     struct list_head    desc_node;
0087     struct list_head    tx_list;
0088 };
0089 
0090 struct pch_dma_chan {
0091     struct dma_chan     chan;
0092     void __iomem *membase;
0093     enum dma_transfer_direction dir;
0094     struct tasklet_struct   tasklet;
0095     unsigned long       err_status;
0096 
0097     spinlock_t      lock;
0098 
0099     struct list_head    active_list;
0100     struct list_head    queue;
0101     struct list_head    free_list;
0102     unsigned int        descs_allocated;
0103 };
0104 
0105 #define PDC_DEV_ADDR    0x00
0106 #define PDC_MEM_ADDR    0x04
0107 #define PDC_SIZE    0x08
0108 #define PDC_NEXT    0x0C
0109 
0110 #define channel_readl(pdc, name) \
0111     readl((pdc)->membase + PDC_##name)
0112 #define channel_writel(pdc, name, val) \
0113     writel((val), (pdc)->membase + PDC_##name)
0114 
0115 struct pch_dma {
0116     struct dma_device   dma;
0117     void __iomem *membase;
0118     struct dma_pool     *pool;
0119     struct pch_dma_regs regs;
0120     struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
0121     struct pch_dma_chan channels[MAX_CHAN_NR];
0122 };
0123 
0124 #define PCH_DMA_CTL0    0x00
0125 #define PCH_DMA_CTL1    0x04
0126 #define PCH_DMA_CTL2    0x08
0127 #define PCH_DMA_CTL3    0x0C
0128 #define PCH_DMA_STS0    0x10
0129 #define PCH_DMA_STS1    0x14
0130 #define PCH_DMA_STS2    0x18
0131 
0132 #define dma_readl(pd, name) \
0133     readl((pd)->membase + PCH_DMA_##name)
0134 #define dma_writel(pd, name, val) \
0135     writel((val), (pd)->membase + PCH_DMA_##name)
0136 
0137 static inline
0138 struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
0139 {
0140     return container_of(txd, struct pch_dma_desc, txd);
0141 }
0142 
0143 static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
0144 {
0145     return container_of(chan, struct pch_dma_chan, chan);
0146 }
0147 
0148 static inline struct pch_dma *to_pd(struct dma_device *ddev)
0149 {
0150     return container_of(ddev, struct pch_dma, dma);
0151 }
0152 
0153 static inline struct device *chan2dev(struct dma_chan *chan)
0154 {
0155     return &chan->dev->device;
0156 }
0157 
0158 static inline struct device *chan2parent(struct dma_chan *chan)
0159 {
0160     return chan->dev->device.parent;
0161 }
0162 
0163 static inline
0164 struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
0165 {
0166     return list_first_entry(&pd_chan->active_list,
0167                 struct pch_dma_desc, desc_node);
0168 }
0169 
0170 static inline
0171 struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
0172 {
0173     return list_first_entry(&pd_chan->queue,
0174                 struct pch_dma_desc, desc_node);
0175 }
0176 
0177 static void pdc_enable_irq(struct dma_chan *chan, int enable)
0178 {
0179     struct pch_dma *pd = to_pd(chan->device);
0180     u32 val;
0181     int pos;
0182 
0183     if (chan->chan_id < 8)
0184         pos = chan->chan_id;
0185     else
0186         pos = chan->chan_id + 8;
0187 
0188     val = dma_readl(pd, CTL2);
0189 
0190     if (enable)
0191         val |= 0x1 << pos;
0192     else
0193         val &= ~(0x1 << pos);
0194 
0195     dma_writel(pd, CTL2, val);
0196 
0197     dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
0198         chan->chan_id, val);
0199 }
0200 
0201 static void pdc_set_dir(struct dma_chan *chan)
0202 {
0203     struct pch_dma_chan *pd_chan = to_pd_chan(chan);
0204     struct pch_dma *pd = to_pd(chan->device);
0205     u32 val;
0206     u32 mask_mode;
0207     u32 mask_ctl;
0208 
0209     if (chan->chan_id < 8) {
0210         val = dma_readl(pd, CTL0);
0211 
0212         mask_mode = DMA_CTL0_MODE_MASK_BITS <<
0213                     (DMA_CTL0_BITS_PER_CH * chan->chan_id);
0214         mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
0215                        (DMA_CTL0_BITS_PER_CH * chan->chan_id));
0216         val &= mask_mode;
0217         if (pd_chan->dir == DMA_MEM_TO_DEV)
0218             val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
0219                        DMA_CTL0_DIR_SHIFT_BITS);
0220         else
0221             val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
0222                      DMA_CTL0_DIR_SHIFT_BITS));
0223 
0224         val |= mask_ctl;
0225         dma_writel(pd, CTL0, val);
0226     } else {
0227         int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
0228         val = dma_readl(pd, CTL3);
0229 
0230         mask_mode = DMA_CTL0_MODE_MASK_BITS <<
0231                         (DMA_CTL0_BITS_PER_CH * ch);
0232         mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
0233                          (DMA_CTL0_BITS_PER_CH * ch));
0234         val &= mask_mode;
0235         if (pd_chan->dir == DMA_MEM_TO_DEV)
0236             val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
0237                        DMA_CTL0_DIR_SHIFT_BITS);
0238         else
0239             val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
0240                      DMA_CTL0_DIR_SHIFT_BITS));
0241         val |= mask_ctl;
0242         dma_writel(pd, CTL3, val);
0243     }
0244 
0245     dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
0246         chan->chan_id, val);
0247 }
0248 
0249 static void pdc_set_mode(struct dma_chan *chan, u32 mode)
0250 {
0251     struct pch_dma *pd = to_pd(chan->device);
0252     u32 val;
0253     u32 mask_ctl;
0254     u32 mask_dir;
0255 
0256     if (chan->chan_id < 8) {
0257         mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
0258                (DMA_CTL0_BITS_PER_CH * chan->chan_id));
0259         mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\
0260                  DMA_CTL0_DIR_SHIFT_BITS);
0261         val = dma_readl(pd, CTL0);
0262         val &= mask_dir;
0263         val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
0264         val |= mask_ctl;
0265         dma_writel(pd, CTL0, val);
0266     } else {
0267         int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
0268         mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
0269                          (DMA_CTL0_BITS_PER_CH * ch));
0270         mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\
0271                  DMA_CTL0_DIR_SHIFT_BITS);
0272         val = dma_readl(pd, CTL3);
0273         val &= mask_dir;
0274         val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
0275         val |= mask_ctl;
0276         dma_writel(pd, CTL3, val);
0277     }
0278 
0279     dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
0280         chan->chan_id, val);
0281 }
0282 
0283 static u32 pdc_get_status0(struct pch_dma_chan *pd_chan)
0284 {
0285     struct pch_dma *pd = to_pd(pd_chan->chan.device);
0286     u32 val;
0287 
0288     val = dma_readl(pd, STS0);
0289     return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
0290             DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
0291 }
0292 
0293 static u32 pdc_get_status2(struct pch_dma_chan *pd_chan)
0294 {
0295     struct pch_dma *pd = to_pd(pd_chan->chan.device);
0296     u32 val;
0297 
0298     val = dma_readl(pd, STS2);
0299     return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
0300             DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8)));
0301 }
0302 
0303 static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
0304 {
0305     u32 sts;
0306 
0307     if (pd_chan->chan.chan_id < 8)
0308         sts = pdc_get_status0(pd_chan);
0309     else
0310         sts = pdc_get_status2(pd_chan);
0311 
0312 
0313     if (sts == DMA_STATUS_IDLE)
0314         return true;
0315     else
0316         return false;
0317 }
0318 
0319 static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
0320 {
0321     if (!pdc_is_idle(pd_chan)) {
0322         dev_err(chan2dev(&pd_chan->chan),
0323             "BUG: Attempt to start non-idle channel\n");
0324         return;
0325     }
0326 
0327     dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
0328         pd_chan->chan.chan_id, desc->regs.dev_addr);
0329     dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
0330         pd_chan->chan.chan_id, desc->regs.mem_addr);
0331     dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
0332         pd_chan->chan.chan_id, desc->regs.size);
0333     dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
0334         pd_chan->chan.chan_id, desc->regs.next);
0335 
0336     if (list_empty(&desc->tx_list)) {
0337         channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
0338         channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
0339         channel_writel(pd_chan, SIZE, desc->regs.size);
0340         channel_writel(pd_chan, NEXT, desc->regs.next);
0341         pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
0342     } else {
0343         channel_writel(pd_chan, NEXT, desc->txd.phys);
0344         pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
0345     }
0346 }
0347 
0348 static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
0349                    struct pch_dma_desc *desc)
0350 {
0351     struct dma_async_tx_descriptor *txd = &desc->txd;
0352     struct dmaengine_desc_callback cb;
0353 
0354     dmaengine_desc_get_callback(txd, &cb);
0355     list_splice_init(&desc->tx_list, &pd_chan->free_list);
0356     list_move(&desc->desc_node, &pd_chan->free_list);
0357 
0358     dmaengine_desc_callback_invoke(&cb, NULL);
0359 }
0360 
0361 static void pdc_complete_all(struct pch_dma_chan *pd_chan)
0362 {
0363     struct pch_dma_desc *desc, *_d;
0364     LIST_HEAD(list);
0365 
0366     BUG_ON(!pdc_is_idle(pd_chan));
0367 
0368     if (!list_empty(&pd_chan->queue))
0369         pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
0370 
0371     list_splice_init(&pd_chan->active_list, &list);
0372     list_splice_init(&pd_chan->queue, &pd_chan->active_list);
0373 
0374     list_for_each_entry_safe(desc, _d, &list, desc_node)
0375         pdc_chain_complete(pd_chan, desc);
0376 }
0377 
0378 static void pdc_handle_error(struct pch_dma_chan *pd_chan)
0379 {
0380     struct pch_dma_desc *bad_desc;
0381 
0382     bad_desc = pdc_first_active(pd_chan);
0383     list_del(&bad_desc->desc_node);
0384 
0385     list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
0386 
0387     if (!list_empty(&pd_chan->active_list))
0388         pdc_dostart(pd_chan, pdc_first_active(pd_chan));
0389 
0390     dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
0391     dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
0392          bad_desc->txd.cookie);
0393 
0394     pdc_chain_complete(pd_chan, bad_desc);
0395 }
0396 
0397 static void pdc_advance_work(struct pch_dma_chan *pd_chan)
0398 {
0399     if (list_empty(&pd_chan->active_list) ||
0400         list_is_singular(&pd_chan->active_list)) {
0401         pdc_complete_all(pd_chan);
0402     } else {
0403         pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
0404         pdc_dostart(pd_chan, pdc_first_active(pd_chan));
0405     }
0406 }
0407 
0408 static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
0409 {
0410     struct pch_dma_desc *desc = to_pd_desc(txd);
0411     struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
0412 
0413     spin_lock(&pd_chan->lock);
0414 
0415     if (list_empty(&pd_chan->active_list)) {
0416         list_add_tail(&desc->desc_node, &pd_chan->active_list);
0417         pdc_dostart(pd_chan, desc);
0418     } else {
0419         list_add_tail(&desc->desc_node, &pd_chan->queue);
0420     }
0421 
0422     spin_unlock(&pd_chan->lock);
0423     return 0;
0424 }
0425 
0426 static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
0427 {
0428     struct pch_dma_desc *desc = NULL;
0429     struct pch_dma *pd = to_pd(chan->device);
0430     dma_addr_t addr;
0431 
0432     desc = dma_pool_zalloc(pd->pool, flags, &addr);
0433     if (desc) {
0434         INIT_LIST_HEAD(&desc->tx_list);
0435         dma_async_tx_descriptor_init(&desc->txd, chan);
0436         desc->txd.tx_submit = pd_tx_submit;
0437         desc->txd.flags = DMA_CTRL_ACK;
0438         desc->txd.phys = addr;
0439     }
0440 
0441     return desc;
0442 }
0443 
0444 static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
0445 {
0446     struct pch_dma_desc *desc, *_d;
0447     struct pch_dma_desc *ret = NULL;
0448     int i = 0;
0449 
0450     spin_lock(&pd_chan->lock);
0451     list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
0452         i++;
0453         if (async_tx_test_ack(&desc->txd)) {
0454             list_del(&desc->desc_node);
0455             ret = desc;
0456             break;
0457         }
0458         dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
0459     }
0460     spin_unlock(&pd_chan->lock);
0461     dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
0462 
0463     if (!ret) {
0464         ret = pdc_alloc_desc(&pd_chan->chan, GFP_ATOMIC);
0465         if (ret) {
0466             spin_lock(&pd_chan->lock);
0467             pd_chan->descs_allocated++;
0468             spin_unlock(&pd_chan->lock);
0469         } else {
0470             dev_err(chan2dev(&pd_chan->chan),
0471                 "failed to alloc desc\n");
0472         }
0473     }
0474 
0475     return ret;
0476 }
0477 
0478 static void pdc_desc_put(struct pch_dma_chan *pd_chan,
0479              struct pch_dma_desc *desc)
0480 {
0481     if (desc) {
0482         spin_lock(&pd_chan->lock);
0483         list_splice_init(&desc->tx_list, &pd_chan->free_list);
0484         list_add(&desc->desc_node, &pd_chan->free_list);
0485         spin_unlock(&pd_chan->lock);
0486     }
0487 }
0488 
0489 static int pd_alloc_chan_resources(struct dma_chan *chan)
0490 {
0491     struct pch_dma_chan *pd_chan = to_pd_chan(chan);
0492     struct pch_dma_desc *desc;
0493     LIST_HEAD(tmp_list);
0494     int i;
0495 
0496     if (!pdc_is_idle(pd_chan)) {
0497         dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
0498         return -EIO;
0499     }
0500 
0501     if (!list_empty(&pd_chan->free_list))
0502         return pd_chan->descs_allocated;
0503 
0504     for (i = 0; i < init_nr_desc_per_channel; i++) {
0505         desc = pdc_alloc_desc(chan, GFP_KERNEL);
0506 
0507         if (!desc) {
0508             dev_warn(chan2dev(chan),
0509                 "Only allocated %d initial descriptors\n", i);
0510             break;
0511         }
0512 
0513         list_add_tail(&desc->desc_node, &tmp_list);
0514     }
0515 
0516     spin_lock_irq(&pd_chan->lock);
0517     list_splice(&tmp_list, &pd_chan->free_list);
0518     pd_chan->descs_allocated = i;
0519     dma_cookie_init(chan);
0520     spin_unlock_irq(&pd_chan->lock);
0521 
0522     pdc_enable_irq(chan, 1);
0523 
0524     return pd_chan->descs_allocated;
0525 }
0526 
0527 static void pd_free_chan_resources(struct dma_chan *chan)
0528 {
0529     struct pch_dma_chan *pd_chan = to_pd_chan(chan);
0530     struct pch_dma *pd = to_pd(chan->device);
0531     struct pch_dma_desc *desc, *_d;
0532     LIST_HEAD(tmp_list);
0533 
0534     BUG_ON(!pdc_is_idle(pd_chan));
0535     BUG_ON(!list_empty(&pd_chan->active_list));
0536     BUG_ON(!list_empty(&pd_chan->queue));
0537 
0538     spin_lock_irq(&pd_chan->lock);
0539     list_splice_init(&pd_chan->free_list, &tmp_list);
0540     pd_chan->descs_allocated = 0;
0541     spin_unlock_irq(&pd_chan->lock);
0542 
0543     list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
0544         dma_pool_free(pd->pool, desc, desc->txd.phys);
0545 
0546     pdc_enable_irq(chan, 0);
0547 }
0548 
0549 static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
0550                     struct dma_tx_state *txstate)
0551 {
0552     return dma_cookie_status(chan, cookie, txstate);
0553 }
0554 
0555 static void pd_issue_pending(struct dma_chan *chan)
0556 {
0557     struct pch_dma_chan *pd_chan = to_pd_chan(chan);
0558 
0559     if (pdc_is_idle(pd_chan)) {
0560         spin_lock(&pd_chan->lock);
0561         pdc_advance_work(pd_chan);
0562         spin_unlock(&pd_chan->lock);
0563     }
0564 }
0565 
0566 static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
0567             struct scatterlist *sgl, unsigned int sg_len,
0568             enum dma_transfer_direction direction, unsigned long flags,
0569             void *context)
0570 {
0571     struct pch_dma_chan *pd_chan = to_pd_chan(chan);
0572     struct pch_dma_slave *pd_slave = chan->private;
0573     struct pch_dma_desc *first = NULL;
0574     struct pch_dma_desc *prev = NULL;
0575     struct pch_dma_desc *desc = NULL;
0576     struct scatterlist *sg;
0577     dma_addr_t reg;
0578     int i;
0579 
0580     if (unlikely(!sg_len)) {
0581         dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
0582         return NULL;
0583     }
0584 
0585     if (direction == DMA_DEV_TO_MEM)
0586         reg = pd_slave->rx_reg;
0587     else if (direction == DMA_MEM_TO_DEV)
0588         reg = pd_slave->tx_reg;
0589     else
0590         return NULL;
0591 
0592     pd_chan->dir = direction;
0593     pdc_set_dir(chan);
0594 
0595     for_each_sg(sgl, sg, sg_len, i) {
0596         desc = pdc_desc_get(pd_chan);
0597 
0598         if (!desc)
0599             goto err_desc_get;
0600 
0601         desc->regs.dev_addr = reg;
0602         desc->regs.mem_addr = sg_dma_address(sg);
0603         desc->regs.size = sg_dma_len(sg);
0604         desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
0605 
0606         switch (pd_slave->width) {
0607         case PCH_DMA_WIDTH_1_BYTE:
0608             if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
0609                 goto err_desc_get;
0610             desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
0611             break;
0612         case PCH_DMA_WIDTH_2_BYTES:
0613             if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
0614                 goto err_desc_get;
0615             desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
0616             break;
0617         case PCH_DMA_WIDTH_4_BYTES:
0618             if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
0619                 goto err_desc_get;
0620             desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
0621             break;
0622         default:
0623             goto err_desc_get;
0624         }
0625 
0626         if (!first) {
0627             first = desc;
0628         } else {
0629             prev->regs.next |= desc->txd.phys;
0630             list_add_tail(&desc->desc_node, &first->tx_list);
0631         }
0632 
0633         prev = desc;
0634     }
0635 
0636     if (flags & DMA_PREP_INTERRUPT)
0637         desc->regs.next = DMA_DESC_END_WITH_IRQ;
0638     else
0639         desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
0640 
0641     first->txd.cookie = -EBUSY;
0642     desc->txd.flags = flags;
0643 
0644     return &first->txd;
0645 
0646 err_desc_get:
0647     dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
0648     pdc_desc_put(pd_chan, first);
0649     return NULL;
0650 }
0651 
0652 static int pd_device_terminate_all(struct dma_chan *chan)
0653 {
0654     struct pch_dma_chan *pd_chan = to_pd_chan(chan);
0655     struct pch_dma_desc *desc, *_d;
0656     LIST_HEAD(list);
0657 
0658     spin_lock_irq(&pd_chan->lock);
0659 
0660     pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
0661 
0662     list_splice_init(&pd_chan->active_list, &list);
0663     list_splice_init(&pd_chan->queue, &list);
0664 
0665     list_for_each_entry_safe(desc, _d, &list, desc_node)
0666         pdc_chain_complete(pd_chan, desc);
0667 
0668     spin_unlock_irq(&pd_chan->lock);
0669 
0670     return 0;
0671 }
0672 
0673 static void pdc_tasklet(struct tasklet_struct *t)
0674 {
0675     struct pch_dma_chan *pd_chan = from_tasklet(pd_chan, t, tasklet);
0676     unsigned long flags;
0677 
0678     if (!pdc_is_idle(pd_chan)) {
0679         dev_err(chan2dev(&pd_chan->chan),
0680             "BUG: handle non-idle channel in tasklet\n");
0681         return;
0682     }
0683 
0684     spin_lock_irqsave(&pd_chan->lock, flags);
0685     if (test_and_clear_bit(0, &pd_chan->err_status))
0686         pdc_handle_error(pd_chan);
0687     else
0688         pdc_advance_work(pd_chan);
0689     spin_unlock_irqrestore(&pd_chan->lock, flags);
0690 }
0691 
0692 static irqreturn_t pd_irq(int irq, void *devid)
0693 {
0694     struct pch_dma *pd = (struct pch_dma *)devid;
0695     struct pch_dma_chan *pd_chan;
0696     u32 sts0;
0697     u32 sts2;
0698     int i;
0699     int ret0 = IRQ_NONE;
0700     int ret2 = IRQ_NONE;
0701 
0702     sts0 = dma_readl(pd, STS0);
0703     sts2 = dma_readl(pd, STS2);
0704 
0705     dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
0706 
0707     for (i = 0; i < pd->dma.chancnt; i++) {
0708         pd_chan = &pd->channels[i];
0709 
0710         if (i < 8) {
0711             if (sts0 & DMA_STATUS_IRQ(i)) {
0712                 if (sts0 & DMA_STATUS0_ERR(i))
0713                     set_bit(0, &pd_chan->err_status);
0714 
0715                 tasklet_schedule(&pd_chan->tasklet);
0716                 ret0 = IRQ_HANDLED;
0717             }
0718         } else {
0719             if (sts2 & DMA_STATUS_IRQ(i - 8)) {
0720                 if (sts2 & DMA_STATUS2_ERR(i))
0721                     set_bit(0, &pd_chan->err_status);
0722 
0723                 tasklet_schedule(&pd_chan->tasklet);
0724                 ret2 = IRQ_HANDLED;
0725             }
0726         }
0727     }
0728 
0729     /* clear interrupt bits in status register */
0730     if (ret0)
0731         dma_writel(pd, STS0, sts0);
0732     if (ret2)
0733         dma_writel(pd, STS2, sts2);
0734 
0735     return ret0 | ret2;
0736 }
0737 
0738 static void __maybe_unused pch_dma_save_regs(struct pch_dma *pd)
0739 {
0740     struct pch_dma_chan *pd_chan;
0741     struct dma_chan *chan, *_c;
0742     int i = 0;
0743 
0744     pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
0745     pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
0746     pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
0747     pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
0748 
0749     list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
0750         pd_chan = to_pd_chan(chan);
0751 
0752         pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
0753         pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
0754         pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
0755         pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
0756 
0757         i++;
0758     }
0759 }
0760 
0761 static void __maybe_unused pch_dma_restore_regs(struct pch_dma *pd)
0762 {
0763     struct pch_dma_chan *pd_chan;
0764     struct dma_chan *chan, *_c;
0765     int i = 0;
0766 
0767     dma_writel(pd, CTL0, pd->regs.dma_ctl0);
0768     dma_writel(pd, CTL1, pd->regs.dma_ctl1);
0769     dma_writel(pd, CTL2, pd->regs.dma_ctl2);
0770     dma_writel(pd, CTL3, pd->regs.dma_ctl3);
0771 
0772     list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
0773         pd_chan = to_pd_chan(chan);
0774 
0775         channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
0776         channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
0777         channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
0778         channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
0779 
0780         i++;
0781     }
0782 }
0783 
0784 static int __maybe_unused pch_dma_suspend(struct device *dev)
0785 {
0786     struct pch_dma *pd = dev_get_drvdata(dev);
0787 
0788     if (pd)
0789         pch_dma_save_regs(pd);
0790 
0791     return 0;
0792 }
0793 
0794 static int __maybe_unused pch_dma_resume(struct device *dev)
0795 {
0796     struct pch_dma *pd = dev_get_drvdata(dev);
0797 
0798     if (pd)
0799         pch_dma_restore_regs(pd);
0800 
0801     return 0;
0802 }
0803 
0804 static int pch_dma_probe(struct pci_dev *pdev,
0805                    const struct pci_device_id *id)
0806 {
0807     struct pch_dma *pd;
0808     struct pch_dma_regs *regs;
0809     unsigned int nr_channels;
0810     int err;
0811     int i;
0812 
0813     nr_channels = id->driver_data;
0814     pd = kzalloc(sizeof(*pd), GFP_KERNEL);
0815     if (!pd)
0816         return -ENOMEM;
0817 
0818     pci_set_drvdata(pdev, pd);
0819 
0820     err = pci_enable_device(pdev);
0821     if (err) {
0822         dev_err(&pdev->dev, "Cannot enable PCI device\n");
0823         goto err_free_mem;
0824     }
0825 
0826     if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
0827         dev_err(&pdev->dev, "Cannot find proper base address\n");
0828         err = -ENODEV;
0829         goto err_disable_pdev;
0830     }
0831 
0832     err = pci_request_regions(pdev, DRV_NAME);
0833     if (err) {
0834         dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
0835         goto err_disable_pdev;
0836     }
0837 
0838     err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
0839     if (err) {
0840         dev_err(&pdev->dev, "Cannot set proper DMA config\n");
0841         goto err_free_res;
0842     }
0843 
0844     regs = pd->membase = pci_iomap(pdev, 1, 0);
0845     if (!pd->membase) {
0846         dev_err(&pdev->dev, "Cannot map MMIO registers\n");
0847         err = -ENOMEM;
0848         goto err_free_res;
0849     }
0850 
0851     pci_set_master(pdev);
0852     pd->dma.dev = &pdev->dev;
0853 
0854     err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
0855     if (err) {
0856         dev_err(&pdev->dev, "Failed to request IRQ\n");
0857         goto err_iounmap;
0858     }
0859 
0860     pd->pool = dma_pool_create("pch_dma_desc_pool", &pdev->dev,
0861                    sizeof(struct pch_dma_desc), 4, 0);
0862     if (!pd->pool) {
0863         dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
0864         err = -ENOMEM;
0865         goto err_free_irq;
0866     }
0867 
0868 
0869     INIT_LIST_HEAD(&pd->dma.channels);
0870 
0871     for (i = 0; i < nr_channels; i++) {
0872         struct pch_dma_chan *pd_chan = &pd->channels[i];
0873 
0874         pd_chan->chan.device = &pd->dma;
0875         dma_cookie_init(&pd_chan->chan);
0876 
0877         pd_chan->membase = &regs->desc[i];
0878 
0879         spin_lock_init(&pd_chan->lock);
0880 
0881         INIT_LIST_HEAD(&pd_chan->active_list);
0882         INIT_LIST_HEAD(&pd_chan->queue);
0883         INIT_LIST_HEAD(&pd_chan->free_list);
0884 
0885         tasklet_setup(&pd_chan->tasklet, pdc_tasklet);
0886         list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
0887     }
0888 
0889     dma_cap_zero(pd->dma.cap_mask);
0890     dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
0891     dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
0892 
0893     pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
0894     pd->dma.device_free_chan_resources = pd_free_chan_resources;
0895     pd->dma.device_tx_status = pd_tx_status;
0896     pd->dma.device_issue_pending = pd_issue_pending;
0897     pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
0898     pd->dma.device_terminate_all = pd_device_terminate_all;
0899 
0900     err = dma_async_device_register(&pd->dma);
0901     if (err) {
0902         dev_err(&pdev->dev, "Failed to register DMA device\n");
0903         goto err_free_pool;
0904     }
0905 
0906     return 0;
0907 
0908 err_free_pool:
0909     dma_pool_destroy(pd->pool);
0910 err_free_irq:
0911     free_irq(pdev->irq, pd);
0912 err_iounmap:
0913     pci_iounmap(pdev, pd->membase);
0914 err_free_res:
0915     pci_release_regions(pdev);
0916 err_disable_pdev:
0917     pci_disable_device(pdev);
0918 err_free_mem:
0919     kfree(pd);
0920     return err;
0921 }
0922 
0923 static void pch_dma_remove(struct pci_dev *pdev)
0924 {
0925     struct pch_dma *pd = pci_get_drvdata(pdev);
0926     struct pch_dma_chan *pd_chan;
0927     struct dma_chan *chan, *_c;
0928 
0929     if (pd) {
0930         dma_async_device_unregister(&pd->dma);
0931 
0932         free_irq(pdev->irq, pd);
0933 
0934         list_for_each_entry_safe(chan, _c, &pd->dma.channels,
0935                      device_node) {
0936             pd_chan = to_pd_chan(chan);
0937 
0938             tasklet_kill(&pd_chan->tasklet);
0939         }
0940 
0941         dma_pool_destroy(pd->pool);
0942         pci_iounmap(pdev, pd->membase);
0943         pci_release_regions(pdev);
0944         pci_disable_device(pdev);
0945         kfree(pd);
0946     }
0947 }
0948 
0949 /* PCI Device ID of DMA device */
0950 #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH        0x8810
0951 #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH        0x8815
0952 #define PCI_DEVICE_ID_ML7213_DMA1_8CH   0x8026
0953 #define PCI_DEVICE_ID_ML7213_DMA2_8CH   0x802B
0954 #define PCI_DEVICE_ID_ML7213_DMA3_4CH   0x8034
0955 #define PCI_DEVICE_ID_ML7213_DMA4_12CH  0x8032
0956 #define PCI_DEVICE_ID_ML7223_DMA1_4CH   0x800B
0957 #define PCI_DEVICE_ID_ML7223_DMA2_4CH   0x800E
0958 #define PCI_DEVICE_ID_ML7223_DMA3_4CH   0x8017
0959 #define PCI_DEVICE_ID_ML7223_DMA4_4CH   0x803B
0960 #define PCI_DEVICE_ID_ML7831_DMA1_8CH   0x8810
0961 #define PCI_DEVICE_ID_ML7831_DMA2_4CH   0x8815
0962 
0963 static const struct pci_device_id pch_dma_id_table[] = {
0964     { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
0965     { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
0966     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
0967     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
0968     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
0969     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
0970     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
0971     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
0972     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
0973     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
0974     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */
0975     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */
0976     { 0, },
0977 };
0978 
0979 static SIMPLE_DEV_PM_OPS(pch_dma_pm_ops, pch_dma_suspend, pch_dma_resume);
0980 
0981 static struct pci_driver pch_dma_driver = {
0982     .name       = DRV_NAME,
0983     .id_table   = pch_dma_id_table,
0984     .probe      = pch_dma_probe,
0985     .remove     = pch_dma_remove,
0986     .driver.pm  = &pch_dma_pm_ops,
0987 };
0988 
0989 module_pci_driver(pch_dma_driver);
0990 
0991 MODULE_DESCRIPTION("Intel EG20T PCH / LAPIS Semicon ML7213/ML7223/ML7831 IOH "
0992            "DMA controller driver");
0993 MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
0994 MODULE_LICENSE("GPL v2");
0995 MODULE_DEVICE_TABLE(pci, pch_dma_id_table);