Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 //
0003 // drivers/dma/imx-sdma.c
0004 //
0005 // This file contains a driver for the Freescale Smart DMA engine
0006 //
0007 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
0008 //
0009 // Based on code from Freescale:
0010 //
0011 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
0012 
0013 #include <linux/init.h>
0014 #include <linux/iopoll.h>
0015 #include <linux/module.h>
0016 #include <linux/types.h>
0017 #include <linux/bitfield.h>
0018 #include <linux/bitops.h>
0019 #include <linux/mm.h>
0020 #include <linux/interrupt.h>
0021 #include <linux/clk.h>
0022 #include <linux/delay.h>
0023 #include <linux/sched.h>
0024 #include <linux/semaphore.h>
0025 #include <linux/spinlock.h>
0026 #include <linux/device.h>
0027 #include <linux/dma-mapping.h>
0028 #include <linux/firmware.h>
0029 #include <linux/slab.h>
0030 #include <linux/platform_device.h>
0031 #include <linux/dmaengine.h>
0032 #include <linux/of.h>
0033 #include <linux/of_address.h>
0034 #include <linux/of_device.h>
0035 #include <linux/of_dma.h>
0036 #include <linux/workqueue.h>
0037 
0038 #include <asm/irq.h>
0039 #include <linux/dma/imx-dma.h>
0040 #include <linux/regmap.h>
0041 #include <linux/mfd/syscon.h>
0042 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
0043 
0044 #include "dmaengine.h"
0045 #include "virt-dma.h"
0046 
0047 /* SDMA registers */
0048 #define SDMA_H_C0PTR        0x000
0049 #define SDMA_H_INTR     0x004
0050 #define SDMA_H_STATSTOP     0x008
0051 #define SDMA_H_START        0x00c
0052 #define SDMA_H_EVTOVR       0x010
0053 #define SDMA_H_DSPOVR       0x014
0054 #define SDMA_H_HOSTOVR      0x018
0055 #define SDMA_H_EVTPEND      0x01c
0056 #define SDMA_H_DSPENBL      0x020
0057 #define SDMA_H_RESET        0x024
0058 #define SDMA_H_EVTERR       0x028
0059 #define SDMA_H_INTRMSK      0x02c
0060 #define SDMA_H_PSW      0x030
0061 #define SDMA_H_EVTERRDBG    0x034
0062 #define SDMA_H_CONFIG       0x038
0063 #define SDMA_ONCE_ENB       0x040
0064 #define SDMA_ONCE_DATA      0x044
0065 #define SDMA_ONCE_INSTR     0x048
0066 #define SDMA_ONCE_STAT      0x04c
0067 #define SDMA_ONCE_CMD       0x050
0068 #define SDMA_EVT_MIRROR     0x054
0069 #define SDMA_ILLINSTADDR    0x058
0070 #define SDMA_CHN0ADDR       0x05c
0071 #define SDMA_ONCE_RTB       0x060
0072 #define SDMA_XTRIG_CONF1    0x070
0073 #define SDMA_XTRIG_CONF2    0x074
0074 #define SDMA_CHNENBL0_IMX35 0x200
0075 #define SDMA_CHNENBL0_IMX31 0x080
0076 #define SDMA_CHNPRI_0       0x100
0077 #define SDMA_DONE0_CONFIG   0x1000
0078 
0079 /*
0080  * Buffer descriptor status values.
0081  */
0082 #define BD_DONE  0x01
0083 #define BD_WRAP  0x02
0084 #define BD_CONT  0x04
0085 #define BD_INTR  0x08
0086 #define BD_RROR  0x10
0087 #define BD_LAST  0x20
0088 #define BD_EXTD  0x80
0089 
0090 /*
0091  * Data Node descriptor status values.
0092  */
0093 #define DND_END_OF_FRAME  0x80
0094 #define DND_END_OF_XFER   0x40
0095 #define DND_DONE          0x20
0096 #define DND_UNUSED        0x01
0097 
0098 /*
0099  * IPCV2 descriptor status values.
0100  */
0101 #define BD_IPCV2_END_OF_FRAME  0x40
0102 
0103 #define IPCV2_MAX_NODES        50
0104 /*
0105  * Error bit set in the CCB status field by the SDMA,
0106  * in setbd routine, in case of a transfer error
0107  */
0108 #define DATA_ERROR  0x10000000
0109 
0110 /*
0111  * Buffer descriptor commands.
0112  */
0113 #define C0_ADDR             0x01
0114 #define C0_LOAD             0x02
0115 #define C0_DUMP             0x03
0116 #define C0_SETCTX           0x07
0117 #define C0_GETCTX           0x03
0118 #define C0_SETDM            0x01
0119 #define C0_SETPM            0x04
0120 #define C0_GETDM            0x02
0121 #define C0_GETPM            0x08
0122 /*
0123  * Change endianness indicator in the BD command field
0124  */
0125 #define CHANGE_ENDIANNESS   0x80
0126 
0127 /*
0128  *  p_2_p watermark_level description
0129  *  Bits        Name            Description
0130  *  0-7     Lower WML       Lower watermark level
0131  *  8       PS          1: Pad Swallowing
0132  *                      0: No Pad Swallowing
0133  *  9       PA          1: Pad Adding
0134  *                      0: No Pad Adding
0135  *  10      SPDIF           If this bit is set both source
0136  *                      and destination are on SPBA
0137  *  11      Source Bit(SP)      1: Source on SPBA
0138  *                      0: Source on AIPS
0139  *  12      Destination Bit(DP) 1: Destination on SPBA
0140  *                      0: Destination on AIPS
0141  *  13-15       ---------       MUST BE 0
0142  *  16-23       Higher WML      HWML
0143  *  24-27       N           Total number of samples after
0144  *                      which Pad adding/Swallowing
0145  *                      must be done. It must be odd.
0146  *  28      Lower WML Event(LWE)    SDMA events reg to check for
0147  *                      LWML event mask
0148  *                      0: LWE in EVENTS register
0149  *                      1: LWE in EVENTS2 register
0150  *  29      Higher WML Event(HWE)   SDMA events reg to check for
0151  *                      HWML event mask
0152  *                      0: HWE in EVENTS register
0153  *                      1: HWE in EVENTS2 register
0154  *  30      ---------       MUST BE 0
0155  *  31      CONT            1: Amount of samples to be
0156  *                      transferred is unknown and
0157  *                      script will keep on
0158  *                      transferring samples as long as
0159  *                      both events are detected and
0160  *                      script must be manually stopped
0161  *                      by the application
0162  *                      0: The amount of samples to be
0163  *                      transferred is equal to the
0164  *                      count field of mode word
0165  */
0166 #define SDMA_WATERMARK_LEVEL_LWML   0xFF
0167 #define SDMA_WATERMARK_LEVEL_PS     BIT(8)
0168 #define SDMA_WATERMARK_LEVEL_PA     BIT(9)
0169 #define SDMA_WATERMARK_LEVEL_SPDIF  BIT(10)
0170 #define SDMA_WATERMARK_LEVEL_SP     BIT(11)
0171 #define SDMA_WATERMARK_LEVEL_DP     BIT(12)
0172 #define SDMA_WATERMARK_LEVEL_HWML   (0xFF << 16)
0173 #define SDMA_WATERMARK_LEVEL_LWE    BIT(28)
0174 #define SDMA_WATERMARK_LEVEL_HWE    BIT(29)
0175 #define SDMA_WATERMARK_LEVEL_CONT   BIT(31)
0176 
0177 #define SDMA_DMA_BUSWIDTHS  (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
0178                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
0179                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
0180 
0181 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
0182                  BIT(DMA_MEM_TO_DEV) | \
0183                  BIT(DMA_DEV_TO_DEV))
0184 
0185 #define SDMA_WATERMARK_LEVEL_N_FIFOS    GENMASK(15, 12)
0186 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
0187 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
0188 #define SDMA_WATERMARK_LEVEL_SW_DONE    BIT(23)
0189 
0190 #define SDMA_DONE0_CONFIG_DONE_SEL  BIT(7)
0191 #define SDMA_DONE0_CONFIG_DONE_DIS  BIT(6)
0192 
0193 /*
0194  * struct sdma_script_start_addrs - SDMA script start pointers
0195  *
0196  * start addresses of the different functions in the physical
0197  * address space of the SDMA engine.
0198  */
0199 struct sdma_script_start_addrs {
0200     s32 ap_2_ap_addr;
0201     s32 ap_2_bp_addr;
0202     s32 ap_2_ap_fixed_addr;
0203     s32 bp_2_ap_addr;
0204     s32 loopback_on_dsp_side_addr;
0205     s32 mcu_interrupt_only_addr;
0206     s32 firi_2_per_addr;
0207     s32 firi_2_mcu_addr;
0208     s32 per_2_firi_addr;
0209     s32 mcu_2_firi_addr;
0210     s32 uart_2_per_addr;
0211     s32 uart_2_mcu_addr;
0212     s32 per_2_app_addr;
0213     s32 mcu_2_app_addr;
0214     s32 per_2_per_addr;
0215     s32 uartsh_2_per_addr;
0216     s32 uartsh_2_mcu_addr;
0217     s32 per_2_shp_addr;
0218     s32 mcu_2_shp_addr;
0219     s32 ata_2_mcu_addr;
0220     s32 mcu_2_ata_addr;
0221     s32 app_2_per_addr;
0222     s32 app_2_mcu_addr;
0223     s32 shp_2_per_addr;
0224     s32 shp_2_mcu_addr;
0225     s32 mshc_2_mcu_addr;
0226     s32 mcu_2_mshc_addr;
0227     s32 spdif_2_mcu_addr;
0228     s32 mcu_2_spdif_addr;
0229     s32 asrc_2_mcu_addr;
0230     s32 ext_mem_2_ipu_addr;
0231     s32 descrambler_addr;
0232     s32 dptc_dvfs_addr;
0233     s32 utra_addr;
0234     s32 ram_code_start_addr;
0235     /* End of v1 array */
0236     s32 mcu_2_ssish_addr;
0237     s32 ssish_2_mcu_addr;
0238     s32 hdmi_dma_addr;
0239     /* End of v2 array */
0240     s32 zcanfd_2_mcu_addr;
0241     s32 zqspi_2_mcu_addr;
0242     s32 mcu_2_ecspi_addr;
0243     s32 mcu_2_sai_addr;
0244     s32 sai_2_mcu_addr;
0245     s32 uart_2_mcu_rom_addr;
0246     s32 uartsh_2_mcu_rom_addr;
0247     /* End of v3 array */
0248     s32 mcu_2_zqspi_addr;
0249     /* End of v4 array */
0250 };
0251 
0252 /*
0253  * Mode/Count of data node descriptors - IPCv2
0254  */
0255 struct sdma_mode_count {
0256 #define SDMA_BD_MAX_CNT 0xffff
0257     u32 count   : 16; /* size of the buffer pointed by this BD */
0258     u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
0259     u32 command :  8; /* command mostly used for channel 0 */
0260 };
0261 
0262 /*
0263  * Buffer descriptor
0264  */
0265 struct sdma_buffer_descriptor {
0266     struct sdma_mode_count  mode;
0267     u32 buffer_addr;    /* address of the buffer described */
0268     u32 ext_buffer_addr;    /* extended buffer address */
0269 } __attribute__ ((packed));
0270 
0271 /**
0272  * struct sdma_channel_control - Channel control Block
0273  *
0274  * @current_bd_ptr: current buffer descriptor processed
0275  * @base_bd_ptr:    first element of buffer descriptor array
0276  * @unused:     padding. The SDMA engine expects an array of 128 byte
0277  *          control blocks
0278  */
0279 struct sdma_channel_control {
0280     u32 current_bd_ptr;
0281     u32 base_bd_ptr;
0282     u32 unused[2];
0283 } __attribute__ ((packed));
0284 
0285 /**
0286  * struct sdma_state_registers - SDMA context for a channel
0287  *
0288  * @pc:     program counter
0289  * @unused1:    unused
0290  * @t:      test bit: status of arithmetic & test instruction
0291  * @rpc:    return program counter
0292  * @unused0:    unused
0293  * @sf:     source fault while loading data
0294  * @spc:    loop start program counter
0295  * @unused2:    unused
0296  * @df:     destination fault while storing data
0297  * @epc:    loop end program counter
0298  * @lm:     loop mode
0299  */
0300 struct sdma_state_registers {
0301     u32 pc     :14;
0302     u32 unused1: 1;
0303     u32 t      : 1;
0304     u32 rpc    :14;
0305     u32 unused0: 1;
0306     u32 sf     : 1;
0307     u32 spc    :14;
0308     u32 unused2: 1;
0309     u32 df     : 1;
0310     u32 epc    :14;
0311     u32 lm     : 2;
0312 } __attribute__ ((packed));
0313 
0314 /**
0315  * struct sdma_context_data - sdma context specific to a channel
0316  *
0317  * @channel_state:  channel state bits
0318  * @gReg:       general registers
0319  * @mda:        burst dma destination address register
0320  * @msa:        burst dma source address register
0321  * @ms:         burst dma status register
0322  * @md:         burst dma data register
0323  * @pda:        peripheral dma destination address register
0324  * @psa:        peripheral dma source address register
0325  * @ps:         peripheral dma status register
0326  * @pd:         peripheral dma data register
0327  * @ca:         CRC polynomial register
0328  * @cs:         CRC accumulator register
0329  * @dda:        dedicated core destination address register
0330  * @dsa:        dedicated core source address register
0331  * @ds:         dedicated core status register
0332  * @dd:         dedicated core data register
0333  * @scratch0:       1st word of dedicated ram for context switch
0334  * @scratch1:       2nd word of dedicated ram for context switch
0335  * @scratch2:       3rd word of dedicated ram for context switch
0336  * @scratch3:       4th word of dedicated ram for context switch
0337  * @scratch4:       5th word of dedicated ram for context switch
0338  * @scratch5:       6th word of dedicated ram for context switch
0339  * @scratch6:       7th word of dedicated ram for context switch
0340  * @scratch7:       8th word of dedicated ram for context switch
0341  */
0342 struct sdma_context_data {
0343     struct sdma_state_registers  channel_state;
0344     u32  gReg[8];
0345     u32  mda;
0346     u32  msa;
0347     u32  ms;
0348     u32  md;
0349     u32  pda;
0350     u32  psa;
0351     u32  ps;
0352     u32  pd;
0353     u32  ca;
0354     u32  cs;
0355     u32  dda;
0356     u32  dsa;
0357     u32  ds;
0358     u32  dd;
0359     u32  scratch0;
0360     u32  scratch1;
0361     u32  scratch2;
0362     u32  scratch3;
0363     u32  scratch4;
0364     u32  scratch5;
0365     u32  scratch6;
0366     u32  scratch7;
0367 } __attribute__ ((packed));
0368 
0369 
0370 struct sdma_engine;
0371 
0372 /**
0373  * struct sdma_desc - descriptor structor for one transfer
0374  * @vd:         descriptor for virt dma
0375  * @num_bd:     number of descriptors currently handling
0376  * @bd_phys:        physical address of bd
0377  * @buf_tail:       ID of the buffer that was processed
0378  * @buf_ptail:      ID of the previous buffer that was processed
0379  * @period_len:     period length, used in cyclic.
0380  * @chn_real_count: the real count updated from bd->mode.count
0381  * @chn_count:      the transfer count set
0382  * @sdmac:      sdma_channel pointer
0383  * @bd:         pointer of allocate bd
0384  */
0385 struct sdma_desc {
0386     struct virt_dma_desc    vd;
0387     unsigned int        num_bd;
0388     dma_addr_t      bd_phys;
0389     unsigned int        buf_tail;
0390     unsigned int        buf_ptail;
0391     unsigned int        period_len;
0392     unsigned int        chn_real_count;
0393     unsigned int        chn_count;
0394     struct sdma_channel *sdmac;
0395     struct sdma_buffer_descriptor *bd;
0396 };
0397 
0398 /**
0399  * struct sdma_channel - housekeeping for a SDMA channel
0400  *
0401  * @vc:         virt_dma base structure
0402  * @desc:       sdma description including vd and other special member
0403  * @sdma:       pointer to the SDMA engine for this channel
0404  * @channel:        the channel number, matches dmaengine chan_id + 1
0405  * @direction:      transfer type. Needed for setting SDMA script
0406  * @slave_config:   Slave configuration
0407  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
0408  * @event_id0:      aka dma request line
0409  * @event_id1:      for channels that use 2 events
0410  * @word_size:      peripheral access size
0411  * @pc_from_device: script address for those device_2_memory
0412  * @pc_to_device:   script address for those memory_2_device
0413  * @device_to_device:   script address for those device_2_device
0414  * @pc_to_pc:       script address for those memory_2_memory
0415  * @flags:      loop mode or not
0416  * @per_address:    peripheral source or destination address in common case
0417  *                      destination address in p_2_p case
0418  * @per_address2:   peripheral source address in p_2_p case
0419  * @event_mask:     event mask used in p_2_p script
0420  * @watermark_level:    value for gReg[7], some script will extend it from
0421  *          basic watermark such as p_2_p
0422  * @shp_addr:       value for gReg[6]
0423  * @per_addr:       value for gReg[2]
0424  * @status:     status of dma channel
0425  * @context_loaded: ensure context is only loaded once
0426  * @data:       specific sdma interface structure
0427  * @bd_pool:        dma_pool for bd
0428  * @terminate_worker:   used to call back into terminate work function
0429  * @terminated:     terminated list
0430  * @is_ram_script:  flag for script in ram
0431  * @n_fifos_src:    number of source device fifos
0432  * @n_fifos_dst:    number of destination device fifos
0433  * @sw_done:        software done flag
0434  * @stride_fifos_src:   stride for source device FIFOs
0435  * @stride_fifos_dst:   stride for destination device FIFOs
0436  * @words_per_fifo: copy number of words one time for one FIFO
0437  */
0438 struct sdma_channel {
0439     struct virt_dma_chan        vc;
0440     struct sdma_desc        *desc;
0441     struct sdma_engine      *sdma;
0442     unsigned int            channel;
0443     enum dma_transfer_direction     direction;
0444     struct dma_slave_config     slave_config;
0445     enum sdma_peripheral_type   peripheral_type;
0446     unsigned int            event_id0;
0447     unsigned int            event_id1;
0448     enum dma_slave_buswidth     word_size;
0449     unsigned int            pc_from_device, pc_to_device;
0450     unsigned int            device_to_device;
0451     unsigned int                    pc_to_pc;
0452     unsigned long           flags;
0453     dma_addr_t          per_address, per_address2;
0454     unsigned long           event_mask[2];
0455     unsigned long           watermark_level;
0456     u32             shp_addr, per_addr;
0457     enum dma_status         status;
0458     struct imx_dma_data     data;
0459     struct work_struct      terminate_worker;
0460     struct list_head                terminated;
0461     bool                is_ram_script;
0462     unsigned int            n_fifos_src;
0463     unsigned int            n_fifos_dst;
0464     unsigned int            stride_fifos_src;
0465     unsigned int            stride_fifos_dst;
0466     unsigned int            words_per_fifo;
0467     bool                sw_done;
0468 };
0469 
0470 #define IMX_DMA_SG_LOOP     BIT(0)
0471 
0472 #define MAX_DMA_CHANNELS 32
0473 #define MXC_SDMA_DEFAULT_PRIORITY 1
0474 #define MXC_SDMA_MIN_PRIORITY 1
0475 #define MXC_SDMA_MAX_PRIORITY 7
0476 
0477 #define SDMA_FIRMWARE_MAGIC 0x414d4453
0478 
0479 /**
0480  * struct sdma_firmware_header - Layout of the firmware image
0481  *
0482  * @magic:      "SDMA"
0483  * @version_major:  increased whenever layout of struct
0484  *          sdma_script_start_addrs changes.
0485  * @version_minor:  firmware minor version (for binary compatible changes)
0486  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
0487  * @num_script_addrs:   Number of script addresses in this image
0488  * @ram_code_start: offset of SDMA ram image in this firmware image
0489  * @ram_code_size:  size of SDMA ram image
0490  * @script_addrs:   Stores the start address of the SDMA scripts
0491  *          (in SDMA memory space)
0492  */
0493 struct sdma_firmware_header {
0494     u32 magic;
0495     u32 version_major;
0496     u32 version_minor;
0497     u32 script_addrs_start;
0498     u32 num_script_addrs;
0499     u32 ram_code_start;
0500     u32 ram_code_size;
0501 };
0502 
0503 struct sdma_driver_data {
0504     int chnenbl0;
0505     int num_events;
0506     struct sdma_script_start_addrs  *script_addrs;
0507     bool check_ratio;
0508     /*
0509      * ecspi ERR009165 fixed should be done in sdma script
0510      * and it has been fixed in soc from i.mx6ul.
0511      * please get more information from the below link:
0512      * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
0513      */
0514     bool ecspi_fixed;
0515 };
0516 
0517 struct sdma_engine {
0518     struct device           *dev;
0519     struct sdma_channel     channel[MAX_DMA_CHANNELS];
0520     struct sdma_channel_control *channel_control;
0521     void __iomem            *regs;
0522     struct sdma_context_data    *context;
0523     dma_addr_t          context_phys;
0524     struct dma_device       dma_device;
0525     struct clk          *clk_ipg;
0526     struct clk          *clk_ahb;
0527     spinlock_t          channel_0_lock;
0528     u32             script_number;
0529     struct sdma_script_start_addrs  *script_addrs;
0530     const struct sdma_driver_data   *drvdata;
0531     u32             spba_start_addr;
0532     u32             spba_end_addr;
0533     unsigned int            irq;
0534     dma_addr_t          bd0_phys;
0535     struct sdma_buffer_descriptor   *bd0;
0536     /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
0537     bool                clk_ratio;
0538     bool                            fw_loaded;
0539 };
0540 
0541 static int sdma_config_write(struct dma_chan *chan,
0542                struct dma_slave_config *dmaengine_cfg,
0543                enum dma_transfer_direction direction);
0544 
0545 static struct sdma_driver_data sdma_imx31 = {
0546     .chnenbl0 = SDMA_CHNENBL0_IMX31,
0547     .num_events = 32,
0548 };
0549 
0550 static struct sdma_script_start_addrs sdma_script_imx25 = {
0551     .ap_2_ap_addr = 729,
0552     .uart_2_mcu_addr = 904,
0553     .per_2_app_addr = 1255,
0554     .mcu_2_app_addr = 834,
0555     .uartsh_2_mcu_addr = 1120,
0556     .per_2_shp_addr = 1329,
0557     .mcu_2_shp_addr = 1048,
0558     .ata_2_mcu_addr = 1560,
0559     .mcu_2_ata_addr = 1479,
0560     .app_2_per_addr = 1189,
0561     .app_2_mcu_addr = 770,
0562     .shp_2_per_addr = 1407,
0563     .shp_2_mcu_addr = 979,
0564 };
0565 
0566 static struct sdma_driver_data sdma_imx25 = {
0567     .chnenbl0 = SDMA_CHNENBL0_IMX35,
0568     .num_events = 48,
0569     .script_addrs = &sdma_script_imx25,
0570 };
0571 
0572 static struct sdma_driver_data sdma_imx35 = {
0573     .chnenbl0 = SDMA_CHNENBL0_IMX35,
0574     .num_events = 48,
0575 };
0576 
0577 static struct sdma_script_start_addrs sdma_script_imx51 = {
0578     .ap_2_ap_addr = 642,
0579     .uart_2_mcu_addr = 817,
0580     .mcu_2_app_addr = 747,
0581     .mcu_2_shp_addr = 961,
0582     .ata_2_mcu_addr = 1473,
0583     .mcu_2_ata_addr = 1392,
0584     .app_2_per_addr = 1033,
0585     .app_2_mcu_addr = 683,
0586     .shp_2_per_addr = 1251,
0587     .shp_2_mcu_addr = 892,
0588 };
0589 
0590 static struct sdma_driver_data sdma_imx51 = {
0591     .chnenbl0 = SDMA_CHNENBL0_IMX35,
0592     .num_events = 48,
0593     .script_addrs = &sdma_script_imx51,
0594 };
0595 
0596 static struct sdma_script_start_addrs sdma_script_imx53 = {
0597     .ap_2_ap_addr = 642,
0598     .app_2_mcu_addr = 683,
0599     .mcu_2_app_addr = 747,
0600     .uart_2_mcu_addr = 817,
0601     .shp_2_mcu_addr = 891,
0602     .mcu_2_shp_addr = 960,
0603     .uartsh_2_mcu_addr = 1032,
0604     .spdif_2_mcu_addr = 1100,
0605     .mcu_2_spdif_addr = 1134,
0606     .firi_2_mcu_addr = 1193,
0607     .mcu_2_firi_addr = 1290,
0608 };
0609 
0610 static struct sdma_driver_data sdma_imx53 = {
0611     .chnenbl0 = SDMA_CHNENBL0_IMX35,
0612     .num_events = 48,
0613     .script_addrs = &sdma_script_imx53,
0614 };
0615 
0616 static struct sdma_script_start_addrs sdma_script_imx6q = {
0617     .ap_2_ap_addr = 642,
0618     .uart_2_mcu_addr = 817,
0619     .mcu_2_app_addr = 747,
0620     .per_2_per_addr = 6331,
0621     .uartsh_2_mcu_addr = 1032,
0622     .mcu_2_shp_addr = 960,
0623     .app_2_mcu_addr = 683,
0624     .shp_2_mcu_addr = 891,
0625     .spdif_2_mcu_addr = 1100,
0626     .mcu_2_spdif_addr = 1134,
0627 };
0628 
0629 static struct sdma_driver_data sdma_imx6q = {
0630     .chnenbl0 = SDMA_CHNENBL0_IMX35,
0631     .num_events = 48,
0632     .script_addrs = &sdma_script_imx6q,
0633 };
0634 
0635 static struct sdma_driver_data sdma_imx6ul = {
0636     .chnenbl0 = SDMA_CHNENBL0_IMX35,
0637     .num_events = 48,
0638     .script_addrs = &sdma_script_imx6q,
0639     .ecspi_fixed = true,
0640 };
0641 
0642 static struct sdma_script_start_addrs sdma_script_imx7d = {
0643     .ap_2_ap_addr = 644,
0644     .uart_2_mcu_addr = 819,
0645     .mcu_2_app_addr = 749,
0646     .uartsh_2_mcu_addr = 1034,
0647     .mcu_2_shp_addr = 962,
0648     .app_2_mcu_addr = 685,
0649     .shp_2_mcu_addr = 893,
0650     .spdif_2_mcu_addr = 1102,
0651     .mcu_2_spdif_addr = 1136,
0652 };
0653 
0654 static struct sdma_driver_data sdma_imx7d = {
0655     .chnenbl0 = SDMA_CHNENBL0_IMX35,
0656     .num_events = 48,
0657     .script_addrs = &sdma_script_imx7d,
0658 };
0659 
0660 static struct sdma_driver_data sdma_imx8mq = {
0661     .chnenbl0 = SDMA_CHNENBL0_IMX35,
0662     .num_events = 48,
0663     .script_addrs = &sdma_script_imx7d,
0664     .check_ratio = 1,
0665 };
0666 
0667 static const struct of_device_id sdma_dt_ids[] = {
0668     { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
0669     { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
0670     { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
0671     { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
0672     { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
0673     { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
0674     { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
0675     { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
0676     { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
0677     { /* sentinel */ }
0678 };
0679 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
0680 
0681 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
0682 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
0683 #define SDMA_H_CONFIG_ACR   BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
0684 #define SDMA_H_CONFIG_CSM   (3)       /* indicates which context switch mode is selected*/
0685 
0686 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
0687 {
0688     u32 chnenbl0 = sdma->drvdata->chnenbl0;
0689     return chnenbl0 + event * 4;
0690 }
0691 
0692 static int sdma_config_ownership(struct sdma_channel *sdmac,
0693         bool event_override, bool mcu_override, bool dsp_override)
0694 {
0695     struct sdma_engine *sdma = sdmac->sdma;
0696     int channel = sdmac->channel;
0697     unsigned long evt, mcu, dsp;
0698 
0699     if (event_override && mcu_override && dsp_override)
0700         return -EINVAL;
0701 
0702     evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
0703     mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
0704     dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
0705 
0706     if (dsp_override)
0707         __clear_bit(channel, &dsp);
0708     else
0709         __set_bit(channel, &dsp);
0710 
0711     if (event_override)
0712         __clear_bit(channel, &evt);
0713     else
0714         __set_bit(channel, &evt);
0715 
0716     if (mcu_override)
0717         __clear_bit(channel, &mcu);
0718     else
0719         __set_bit(channel, &mcu);
0720 
0721     writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
0722     writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
0723     writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
0724 
0725     return 0;
0726 }
0727 
0728 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
0729 {
0730     return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
0731 }
0732 
0733 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
0734 {
0735     writel(BIT(channel), sdma->regs + SDMA_H_START);
0736 }
0737 
0738 /*
0739  * sdma_run_channel0 - run a channel and wait till it's done
0740  */
0741 static int sdma_run_channel0(struct sdma_engine *sdma)
0742 {
0743     int ret;
0744     u32 reg;
0745 
0746     sdma_enable_channel(sdma, 0);
0747 
0748     ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
0749                         reg, !(reg & 1), 1, 500);
0750     if (ret)
0751         dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
0752 
0753     /* Set bits of CONFIG register with dynamic context switching */
0754     reg = readl(sdma->regs + SDMA_H_CONFIG);
0755     if ((reg & SDMA_H_CONFIG_CSM) == 0) {
0756         reg |= SDMA_H_CONFIG_CSM;
0757         writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
0758     }
0759 
0760     return ret;
0761 }
0762 
0763 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
0764         u32 address)
0765 {
0766     struct sdma_buffer_descriptor *bd0 = sdma->bd0;
0767     void *buf_virt;
0768     dma_addr_t buf_phys;
0769     int ret;
0770     unsigned long flags;
0771 
0772     buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
0773     if (!buf_virt)
0774         return -ENOMEM;
0775 
0776     spin_lock_irqsave(&sdma->channel_0_lock, flags);
0777 
0778     bd0->mode.command = C0_SETPM;
0779     bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
0780     bd0->mode.count = size / 2;
0781     bd0->buffer_addr = buf_phys;
0782     bd0->ext_buffer_addr = address;
0783 
0784     memcpy(buf_virt, buf, size);
0785 
0786     ret = sdma_run_channel0(sdma);
0787 
0788     spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
0789 
0790     dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
0791 
0792     return ret;
0793 }
0794 
0795 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
0796 {
0797     struct sdma_engine *sdma = sdmac->sdma;
0798     int channel = sdmac->channel;
0799     unsigned long val;
0800     u32 chnenbl = chnenbl_ofs(sdma, event);
0801 
0802     val = readl_relaxed(sdma->regs + chnenbl);
0803     __set_bit(channel, &val);
0804     writel_relaxed(val, sdma->regs + chnenbl);
0805 
0806     /* Set SDMA_DONEx_CONFIG is sw_done enabled */
0807     if (sdmac->sw_done) {
0808         val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
0809         val |= SDMA_DONE0_CONFIG_DONE_SEL;
0810         val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
0811         writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
0812     }
0813 }
0814 
0815 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
0816 {
0817     struct sdma_engine *sdma = sdmac->sdma;
0818     int channel = sdmac->channel;
0819     u32 chnenbl = chnenbl_ofs(sdma, event);
0820     unsigned long val;
0821 
0822     val = readl_relaxed(sdma->regs + chnenbl);
0823     __clear_bit(channel, &val);
0824     writel_relaxed(val, sdma->regs + chnenbl);
0825 }
0826 
0827 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
0828 {
0829     return container_of(t, struct sdma_desc, vd.tx);
0830 }
0831 
0832 static void sdma_start_desc(struct sdma_channel *sdmac)
0833 {
0834     struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
0835     struct sdma_desc *desc;
0836     struct sdma_engine *sdma = sdmac->sdma;
0837     int channel = sdmac->channel;
0838 
0839     if (!vd) {
0840         sdmac->desc = NULL;
0841         return;
0842     }
0843     sdmac->desc = desc = to_sdma_desc(&vd->tx);
0844 
0845     list_del(&vd->node);
0846 
0847     sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
0848     sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
0849     sdma_enable_channel(sdma, sdmac->channel);
0850 }
0851 
0852 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
0853 {
0854     struct sdma_buffer_descriptor *bd;
0855     int error = 0;
0856     enum dma_status old_status = sdmac->status;
0857 
0858     /*
0859      * loop mode. Iterate over descriptors, re-setup them and
0860      * call callback function.
0861      */
0862     while (sdmac->desc) {
0863         struct sdma_desc *desc = sdmac->desc;
0864 
0865         bd = &desc->bd[desc->buf_tail];
0866 
0867         if (bd->mode.status & BD_DONE)
0868             break;
0869 
0870         if (bd->mode.status & BD_RROR) {
0871             bd->mode.status &= ~BD_RROR;
0872             sdmac->status = DMA_ERROR;
0873             error = -EIO;
0874         }
0875 
0876            /*
0877         * We use bd->mode.count to calculate the residue, since contains
0878         * the number of bytes present in the current buffer descriptor.
0879         */
0880 
0881         desc->chn_real_count = bd->mode.count;
0882         bd->mode.count = desc->period_len;
0883         desc->buf_ptail = desc->buf_tail;
0884         desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
0885 
0886         /*
0887          * The callback is called from the interrupt context in order
0888          * to reduce latency and to avoid the risk of altering the
0889          * SDMA transaction status by the time the client tasklet is
0890          * executed.
0891          */
0892         spin_unlock(&sdmac->vc.lock);
0893         dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
0894         spin_lock(&sdmac->vc.lock);
0895 
0896         /* Assign buffer ownership to SDMA */
0897         bd->mode.status |= BD_DONE;
0898 
0899         if (error)
0900             sdmac->status = old_status;
0901     }
0902 
0903     /*
0904      * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
0905      * owned buffer is available (i.e. BD_DONE was set too late).
0906      */
0907     if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
0908         dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
0909         sdma_enable_channel(sdmac->sdma, sdmac->channel);
0910     }
0911 }
0912 
0913 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
0914 {
0915     struct sdma_channel *sdmac = (struct sdma_channel *) data;
0916     struct sdma_buffer_descriptor *bd;
0917     int i, error = 0;
0918 
0919     sdmac->desc->chn_real_count = 0;
0920     /*
0921      * non loop mode. Iterate over all descriptors, collect
0922      * errors and call callback function
0923      */
0924     for (i = 0; i < sdmac->desc->num_bd; i++) {
0925         bd = &sdmac->desc->bd[i];
0926 
0927         if (bd->mode.status & (BD_DONE | BD_RROR))
0928             error = -EIO;
0929         sdmac->desc->chn_real_count += bd->mode.count;
0930     }
0931 
0932     if (error)
0933         sdmac->status = DMA_ERROR;
0934     else
0935         sdmac->status = DMA_COMPLETE;
0936 }
0937 
0938 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
0939 {
0940     struct sdma_engine *sdma = dev_id;
0941     unsigned long stat;
0942 
0943     stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
0944     writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
0945     /* channel 0 is special and not handled here, see run_channel0() */
0946     stat &= ~1;
0947 
0948     while (stat) {
0949         int channel = fls(stat) - 1;
0950         struct sdma_channel *sdmac = &sdma->channel[channel];
0951         struct sdma_desc *desc;
0952 
0953         spin_lock(&sdmac->vc.lock);
0954         desc = sdmac->desc;
0955         if (desc) {
0956             if (sdmac->flags & IMX_DMA_SG_LOOP) {
0957                 sdma_update_channel_loop(sdmac);
0958             } else {
0959                 mxc_sdma_handle_channel_normal(sdmac);
0960                 vchan_cookie_complete(&desc->vd);
0961                 sdma_start_desc(sdmac);
0962             }
0963         }
0964 
0965         spin_unlock(&sdmac->vc.lock);
0966         __clear_bit(channel, &stat);
0967     }
0968 
0969     return IRQ_HANDLED;
0970 }
0971 
0972 /*
0973  * sets the pc of SDMA script according to the peripheral type
0974  */
0975 static int sdma_get_pc(struct sdma_channel *sdmac,
0976         enum sdma_peripheral_type peripheral_type)
0977 {
0978     struct sdma_engine *sdma = sdmac->sdma;
0979     int per_2_emi = 0, emi_2_per = 0;
0980     /*
0981      * These are needed once we start to support transfers between
0982      * two peripherals or memory-to-memory transfers
0983      */
0984     int per_2_per = 0, emi_2_emi = 0;
0985 
0986     sdmac->pc_from_device = 0;
0987     sdmac->pc_to_device = 0;
0988     sdmac->device_to_device = 0;
0989     sdmac->pc_to_pc = 0;
0990     sdmac->is_ram_script = false;
0991 
0992     switch (peripheral_type) {
0993     case IMX_DMATYPE_MEMORY:
0994         emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
0995         break;
0996     case IMX_DMATYPE_DSP:
0997         emi_2_per = sdma->script_addrs->bp_2_ap_addr;
0998         per_2_emi = sdma->script_addrs->ap_2_bp_addr;
0999         break;
1000     case IMX_DMATYPE_FIRI:
1001         per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1002         emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1003         break;
1004     case IMX_DMATYPE_UART:
1005         per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1006         emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1007         break;
1008     case IMX_DMATYPE_UART_SP:
1009         per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1010         emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1011         break;
1012     case IMX_DMATYPE_ATA:
1013         per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1014         emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1015         break;
1016     case IMX_DMATYPE_CSPI:
1017         per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1018 
1019         /* Use rom script mcu_2_app if ERR009165 fixed */
1020         if (sdmac->sdma->drvdata->ecspi_fixed) {
1021             emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1022         } else {
1023             emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1024             sdmac->is_ram_script = true;
1025         }
1026 
1027         break;
1028     case IMX_DMATYPE_EXT:
1029     case IMX_DMATYPE_SSI:
1030     case IMX_DMATYPE_SAI:
1031         per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1032         emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1033         break;
1034     case IMX_DMATYPE_SSI_DUAL:
1035         per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1036         emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1037         sdmac->is_ram_script = true;
1038         break;
1039     case IMX_DMATYPE_SSI_SP:
1040     case IMX_DMATYPE_MMC:
1041     case IMX_DMATYPE_SDHC:
1042     case IMX_DMATYPE_CSPI_SP:
1043     case IMX_DMATYPE_ESAI:
1044     case IMX_DMATYPE_MSHC_SP:
1045         per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1046         emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1047         break;
1048     case IMX_DMATYPE_ASRC:
1049         per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1050         emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1051         per_2_per = sdma->script_addrs->per_2_per_addr;
1052         sdmac->is_ram_script = true;
1053         break;
1054     case IMX_DMATYPE_ASRC_SP:
1055         per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1056         emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1057         per_2_per = sdma->script_addrs->per_2_per_addr;
1058         break;
1059     case IMX_DMATYPE_MSHC:
1060         per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1061         emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1062         break;
1063     case IMX_DMATYPE_CCM:
1064         per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1065         break;
1066     case IMX_DMATYPE_SPDIF:
1067         per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1068         emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1069         break;
1070     case IMX_DMATYPE_IPU_MEMORY:
1071         emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1072         break;
1073     case IMX_DMATYPE_MULTI_SAI:
1074         per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1075         emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1076         break;
1077     default:
1078         dev_err(sdma->dev, "Unsupported transfer type %d\n",
1079             peripheral_type);
1080         return -EINVAL;
1081     }
1082 
1083     sdmac->pc_from_device = per_2_emi;
1084     sdmac->pc_to_device = emi_2_per;
1085     sdmac->device_to_device = per_2_per;
1086     sdmac->pc_to_pc = emi_2_emi;
1087 
1088     return 0;
1089 }
1090 
1091 static int sdma_load_context(struct sdma_channel *sdmac)
1092 {
1093     struct sdma_engine *sdma = sdmac->sdma;
1094     int channel = sdmac->channel;
1095     int load_address;
1096     struct sdma_context_data *context = sdma->context;
1097     struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1098     int ret;
1099     unsigned long flags;
1100 
1101     if (sdmac->direction == DMA_DEV_TO_MEM)
1102         load_address = sdmac->pc_from_device;
1103     else if (sdmac->direction == DMA_DEV_TO_DEV)
1104         load_address = sdmac->device_to_device;
1105     else if (sdmac->direction == DMA_MEM_TO_MEM)
1106         load_address = sdmac->pc_to_pc;
1107     else
1108         load_address = sdmac->pc_to_device;
1109 
1110     if (load_address < 0)
1111         return load_address;
1112 
1113     dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1114     dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1115     dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1116     dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1117     dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1118     dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1119 
1120     spin_lock_irqsave(&sdma->channel_0_lock, flags);
1121 
1122     memset(context, 0, sizeof(*context));
1123     context->channel_state.pc = load_address;
1124 
1125     /* Send by context the event mask,base address for peripheral
1126      * and watermark level
1127      */
1128     context->gReg[0] = sdmac->event_mask[1];
1129     context->gReg[1] = sdmac->event_mask[0];
1130     context->gReg[2] = sdmac->per_addr;
1131     context->gReg[6] = sdmac->shp_addr;
1132     context->gReg[7] = sdmac->watermark_level;
1133 
1134     bd0->mode.command = C0_SETDM;
1135     bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1136     bd0->mode.count = sizeof(*context) / 4;
1137     bd0->buffer_addr = sdma->context_phys;
1138     bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1139     ret = sdma_run_channel0(sdma);
1140 
1141     spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1142 
1143     return ret;
1144 }
1145 
1146 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1147 {
1148     return container_of(chan, struct sdma_channel, vc.chan);
1149 }
1150 
1151 static int sdma_disable_channel(struct dma_chan *chan)
1152 {
1153     struct sdma_channel *sdmac = to_sdma_chan(chan);
1154     struct sdma_engine *sdma = sdmac->sdma;
1155     int channel = sdmac->channel;
1156 
1157     writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1158     sdmac->status = DMA_ERROR;
1159 
1160     return 0;
1161 }
1162 static void sdma_channel_terminate_work(struct work_struct *work)
1163 {
1164     struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1165                           terminate_worker);
1166     /*
1167      * According to NXP R&D team a delay of one BD SDMA cost time
1168      * (maximum is 1ms) should be added after disable of the channel
1169      * bit, to ensure SDMA core has really been stopped after SDMA
1170      * clients call .device_terminate_all.
1171      */
1172     usleep_range(1000, 2000);
1173 
1174     vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1175 }
1176 
1177 static int sdma_terminate_all(struct dma_chan *chan)
1178 {
1179     struct sdma_channel *sdmac = to_sdma_chan(chan);
1180     unsigned long flags;
1181 
1182     spin_lock_irqsave(&sdmac->vc.lock, flags);
1183 
1184     sdma_disable_channel(chan);
1185 
1186     if (sdmac->desc) {
1187         vchan_terminate_vdesc(&sdmac->desc->vd);
1188         /*
1189          * move out current descriptor into terminated list so that
1190          * it could be free in sdma_channel_terminate_work alone
1191          * later without potential involving next descriptor raised
1192          * up before the last descriptor terminated.
1193          */
1194         vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1195         sdmac->desc = NULL;
1196         schedule_work(&sdmac->terminate_worker);
1197     }
1198 
1199     spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1200 
1201     return 0;
1202 }
1203 
1204 static void sdma_channel_synchronize(struct dma_chan *chan)
1205 {
1206     struct sdma_channel *sdmac = to_sdma_chan(chan);
1207 
1208     vchan_synchronize(&sdmac->vc);
1209 
1210     flush_work(&sdmac->terminate_worker);
1211 }
1212 
1213 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1214 {
1215     struct sdma_engine *sdma = sdmac->sdma;
1216 
1217     int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1218     int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1219 
1220     set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1221     set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1222 
1223     if (sdmac->event_id0 > 31)
1224         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1225 
1226     if (sdmac->event_id1 > 31)
1227         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1228 
1229     /*
1230      * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1231      * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1232      * r0(event_mask[1]) and r1(event_mask[0]).
1233      */
1234     if (lwml > hwml) {
1235         sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1236                         SDMA_WATERMARK_LEVEL_HWML);
1237         sdmac->watermark_level |= hwml;
1238         sdmac->watermark_level |= lwml << 16;
1239         swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1240     }
1241 
1242     if (sdmac->per_address2 >= sdma->spba_start_addr &&
1243             sdmac->per_address2 <= sdma->spba_end_addr)
1244         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1245 
1246     if (sdmac->per_address >= sdma->spba_start_addr &&
1247             sdmac->per_address <= sdma->spba_end_addr)
1248         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1249 
1250     sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1251 }
1252 
1253 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1254 {
1255     unsigned int n_fifos;
1256     unsigned int stride_fifos;
1257     unsigned int words_per_fifo;
1258 
1259     if (sdmac->sw_done)
1260         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1261 
1262     if (sdmac->direction == DMA_DEV_TO_MEM) {
1263         n_fifos = sdmac->n_fifos_src;
1264         stride_fifos = sdmac->stride_fifos_src;
1265     } else {
1266         n_fifos = sdmac->n_fifos_dst;
1267         stride_fifos = sdmac->stride_fifos_dst;
1268     }
1269 
1270     words_per_fifo = sdmac->words_per_fifo;
1271 
1272     sdmac->watermark_level |=
1273             FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1274     sdmac->watermark_level |=
1275             FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1276     if (words_per_fifo)
1277         sdmac->watermark_level |=
1278             FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1279 }
1280 
1281 static int sdma_config_channel(struct dma_chan *chan)
1282 {
1283     struct sdma_channel *sdmac = to_sdma_chan(chan);
1284     int ret;
1285 
1286     sdma_disable_channel(chan);
1287 
1288     sdmac->event_mask[0] = 0;
1289     sdmac->event_mask[1] = 0;
1290     sdmac->shp_addr = 0;
1291     sdmac->per_addr = 0;
1292 
1293     switch (sdmac->peripheral_type) {
1294     case IMX_DMATYPE_DSP:
1295         sdma_config_ownership(sdmac, false, true, true);
1296         break;
1297     case IMX_DMATYPE_MEMORY:
1298         sdma_config_ownership(sdmac, false, true, false);
1299         break;
1300     default:
1301         sdma_config_ownership(sdmac, true, true, false);
1302         break;
1303     }
1304 
1305     ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1306     if (ret)
1307         return ret;
1308 
1309     if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1310             (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1311         /* Handle multiple event channels differently */
1312         if (sdmac->event_id1) {
1313             if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1314                 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1315                 sdma_set_watermarklevel_for_p2p(sdmac);
1316         } else {
1317             if (sdmac->peripheral_type ==
1318                     IMX_DMATYPE_MULTI_SAI)
1319                 sdma_set_watermarklevel_for_sais(sdmac);
1320 
1321             __set_bit(sdmac->event_id0, sdmac->event_mask);
1322         }
1323 
1324         /* Address */
1325         sdmac->shp_addr = sdmac->per_address;
1326         sdmac->per_addr = sdmac->per_address2;
1327     } else {
1328         sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1329     }
1330 
1331     return 0;
1332 }
1333 
1334 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1335                      unsigned int priority)
1336 {
1337     struct sdma_engine *sdma = sdmac->sdma;
1338     int channel = sdmac->channel;
1339 
1340     if (priority < MXC_SDMA_MIN_PRIORITY
1341         || priority > MXC_SDMA_MAX_PRIORITY) {
1342         return -EINVAL;
1343     }
1344 
1345     writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1346 
1347     return 0;
1348 }
1349 
1350 static int sdma_request_channel0(struct sdma_engine *sdma)
1351 {
1352     int ret = -EBUSY;
1353 
1354     sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1355                        GFP_NOWAIT);
1356     if (!sdma->bd0) {
1357         ret = -ENOMEM;
1358         goto out;
1359     }
1360 
1361     sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1362     sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1363 
1364     sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1365     return 0;
1366 out:
1367 
1368     return ret;
1369 }
1370 
1371 
1372 static int sdma_alloc_bd(struct sdma_desc *desc)
1373 {
1374     u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1375     int ret = 0;
1376 
1377     desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1378                       &desc->bd_phys, GFP_NOWAIT);
1379     if (!desc->bd) {
1380         ret = -ENOMEM;
1381         goto out;
1382     }
1383 out:
1384     return ret;
1385 }
1386 
1387 static void sdma_free_bd(struct sdma_desc *desc)
1388 {
1389     u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1390 
1391     dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1392               desc->bd_phys);
1393 }
1394 
1395 static void sdma_desc_free(struct virt_dma_desc *vd)
1396 {
1397     struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1398 
1399     sdma_free_bd(desc);
1400     kfree(desc);
1401 }
1402 
1403 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1404 {
1405     struct sdma_channel *sdmac = to_sdma_chan(chan);
1406     struct imx_dma_data *data = chan->private;
1407     struct imx_dma_data mem_data;
1408     int prio, ret;
1409 
1410     /*
1411      * MEMCPY may never setup chan->private by filter function such as
1412      * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1413      * Please note in any other slave case, you have to setup chan->private
1414      * with 'struct imx_dma_data' in your own filter function if you want to
1415      * request dma channel by dma_request_channel() rather than
1416      * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1417      * to warn you to correct your filter function.
1418      */
1419     if (!data) {
1420         dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1421         mem_data.priority = 2;
1422         mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1423         mem_data.dma_request = 0;
1424         mem_data.dma_request2 = 0;
1425         data = &mem_data;
1426 
1427         ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1428         if (ret)
1429             return ret;
1430     }
1431 
1432     switch (data->priority) {
1433     case DMA_PRIO_HIGH:
1434         prio = 3;
1435         break;
1436     case DMA_PRIO_MEDIUM:
1437         prio = 2;
1438         break;
1439     case DMA_PRIO_LOW:
1440     default:
1441         prio = 1;
1442         break;
1443     }
1444 
1445     sdmac->peripheral_type = data->peripheral_type;
1446     sdmac->event_id0 = data->dma_request;
1447     sdmac->event_id1 = data->dma_request2;
1448 
1449     ret = clk_enable(sdmac->sdma->clk_ipg);
1450     if (ret)
1451         return ret;
1452     ret = clk_enable(sdmac->sdma->clk_ahb);
1453     if (ret)
1454         goto disable_clk_ipg;
1455 
1456     ret = sdma_set_channel_priority(sdmac, prio);
1457     if (ret)
1458         goto disable_clk_ahb;
1459 
1460     return 0;
1461 
1462 disable_clk_ahb:
1463     clk_disable(sdmac->sdma->clk_ahb);
1464 disable_clk_ipg:
1465     clk_disable(sdmac->sdma->clk_ipg);
1466     return ret;
1467 }
1468 
1469 static void sdma_free_chan_resources(struct dma_chan *chan)
1470 {
1471     struct sdma_channel *sdmac = to_sdma_chan(chan);
1472     struct sdma_engine *sdma = sdmac->sdma;
1473 
1474     sdma_terminate_all(chan);
1475 
1476     sdma_channel_synchronize(chan);
1477 
1478     sdma_event_disable(sdmac, sdmac->event_id0);
1479     if (sdmac->event_id1)
1480         sdma_event_disable(sdmac, sdmac->event_id1);
1481 
1482     sdmac->event_id0 = 0;
1483     sdmac->event_id1 = 0;
1484 
1485     sdma_set_channel_priority(sdmac, 0);
1486 
1487     clk_disable(sdma->clk_ipg);
1488     clk_disable(sdma->clk_ahb);
1489 }
1490 
1491 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1492                 enum dma_transfer_direction direction, u32 bds)
1493 {
1494     struct sdma_desc *desc;
1495 
1496     if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1497         dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1498         goto err_out;
1499     }
1500 
1501     desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1502     if (!desc)
1503         goto err_out;
1504 
1505     sdmac->status = DMA_IN_PROGRESS;
1506     sdmac->direction = direction;
1507     sdmac->flags = 0;
1508 
1509     desc->chn_count = 0;
1510     desc->chn_real_count = 0;
1511     desc->buf_tail = 0;
1512     desc->buf_ptail = 0;
1513     desc->sdmac = sdmac;
1514     desc->num_bd = bds;
1515 
1516     if (sdma_alloc_bd(desc))
1517         goto err_desc_out;
1518 
1519     /* No slave_config called in MEMCPY case, so do here */
1520     if (direction == DMA_MEM_TO_MEM)
1521         sdma_config_ownership(sdmac, false, true, false);
1522 
1523     if (sdma_load_context(sdmac))
1524         goto err_desc_out;
1525 
1526     return desc;
1527 
1528 err_desc_out:
1529     kfree(desc);
1530 err_out:
1531     return NULL;
1532 }
1533 
1534 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1535         struct dma_chan *chan, dma_addr_t dma_dst,
1536         dma_addr_t dma_src, size_t len, unsigned long flags)
1537 {
1538     struct sdma_channel *sdmac = to_sdma_chan(chan);
1539     struct sdma_engine *sdma = sdmac->sdma;
1540     int channel = sdmac->channel;
1541     size_t count;
1542     int i = 0, param;
1543     struct sdma_buffer_descriptor *bd;
1544     struct sdma_desc *desc;
1545 
1546     if (!chan || !len)
1547         return NULL;
1548 
1549     dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1550         &dma_src, &dma_dst, len, channel);
1551 
1552     desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1553                     len / SDMA_BD_MAX_CNT + 1);
1554     if (!desc)
1555         return NULL;
1556 
1557     do {
1558         count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1559         bd = &desc->bd[i];
1560         bd->buffer_addr = dma_src;
1561         bd->ext_buffer_addr = dma_dst;
1562         bd->mode.count = count;
1563         desc->chn_count += count;
1564         bd->mode.command = 0;
1565 
1566         dma_src += count;
1567         dma_dst += count;
1568         len -= count;
1569         i++;
1570 
1571         param = BD_DONE | BD_EXTD | BD_CONT;
1572         /* last bd */
1573         if (!len) {
1574             param |= BD_INTR;
1575             param |= BD_LAST;
1576             param &= ~BD_CONT;
1577         }
1578 
1579         dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1580                 i, count, bd->buffer_addr,
1581                 param & BD_WRAP ? "wrap" : "",
1582                 param & BD_INTR ? " intr" : "");
1583 
1584         bd->mode.status = param;
1585     } while (len);
1586 
1587     return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1588 }
1589 
1590 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1591         struct dma_chan *chan, struct scatterlist *sgl,
1592         unsigned int sg_len, enum dma_transfer_direction direction,
1593         unsigned long flags, void *context)
1594 {
1595     struct sdma_channel *sdmac = to_sdma_chan(chan);
1596     struct sdma_engine *sdma = sdmac->sdma;
1597     int i, count;
1598     int channel = sdmac->channel;
1599     struct scatterlist *sg;
1600     struct sdma_desc *desc;
1601 
1602     sdma_config_write(chan, &sdmac->slave_config, direction);
1603 
1604     desc = sdma_transfer_init(sdmac, direction, sg_len);
1605     if (!desc)
1606         goto err_out;
1607 
1608     dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1609             sg_len, channel);
1610 
1611     for_each_sg(sgl, sg, sg_len, i) {
1612         struct sdma_buffer_descriptor *bd = &desc->bd[i];
1613         int param;
1614 
1615         bd->buffer_addr = sg->dma_address;
1616 
1617         count = sg_dma_len(sg);
1618 
1619         if (count > SDMA_BD_MAX_CNT) {
1620             dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1621                     channel, count, SDMA_BD_MAX_CNT);
1622             goto err_bd_out;
1623         }
1624 
1625         bd->mode.count = count;
1626         desc->chn_count += count;
1627 
1628         if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1629             goto err_bd_out;
1630 
1631         switch (sdmac->word_size) {
1632         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1633             bd->mode.command = 0;
1634             if (count & 3 || sg->dma_address & 3)
1635                 goto err_bd_out;
1636             break;
1637         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1638             bd->mode.command = 2;
1639             if (count & 1 || sg->dma_address & 1)
1640                 goto err_bd_out;
1641             break;
1642         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1643             bd->mode.command = 1;
1644             break;
1645         default:
1646             goto err_bd_out;
1647         }
1648 
1649         param = BD_DONE | BD_EXTD | BD_CONT;
1650 
1651         if (i + 1 == sg_len) {
1652             param |= BD_INTR;
1653             param |= BD_LAST;
1654             param &= ~BD_CONT;
1655         }
1656 
1657         dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1658                 i, count, (u64)sg->dma_address,
1659                 param & BD_WRAP ? "wrap" : "",
1660                 param & BD_INTR ? " intr" : "");
1661 
1662         bd->mode.status = param;
1663     }
1664 
1665     return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1666 err_bd_out:
1667     sdma_free_bd(desc);
1668     kfree(desc);
1669 err_out:
1670     sdmac->status = DMA_ERROR;
1671     return NULL;
1672 }
1673 
1674 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1675         struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1676         size_t period_len, enum dma_transfer_direction direction,
1677         unsigned long flags)
1678 {
1679     struct sdma_channel *sdmac = to_sdma_chan(chan);
1680     struct sdma_engine *sdma = sdmac->sdma;
1681     int num_periods = buf_len / period_len;
1682     int channel = sdmac->channel;
1683     int i = 0, buf = 0;
1684     struct sdma_desc *desc;
1685 
1686     dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1687 
1688     sdma_config_write(chan, &sdmac->slave_config, direction);
1689 
1690     desc = sdma_transfer_init(sdmac, direction, num_periods);
1691     if (!desc)
1692         goto err_out;
1693 
1694     desc->period_len = period_len;
1695 
1696     sdmac->flags |= IMX_DMA_SG_LOOP;
1697 
1698     if (period_len > SDMA_BD_MAX_CNT) {
1699         dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1700                 channel, period_len, SDMA_BD_MAX_CNT);
1701         goto err_bd_out;
1702     }
1703 
1704     while (buf < buf_len) {
1705         struct sdma_buffer_descriptor *bd = &desc->bd[i];
1706         int param;
1707 
1708         bd->buffer_addr = dma_addr;
1709 
1710         bd->mode.count = period_len;
1711 
1712         if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1713             goto err_bd_out;
1714         if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1715             bd->mode.command = 0;
1716         else
1717             bd->mode.command = sdmac->word_size;
1718 
1719         param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1720         if (i + 1 == num_periods)
1721             param |= BD_WRAP;
1722 
1723         dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1724                 i, period_len, (u64)dma_addr,
1725                 param & BD_WRAP ? "wrap" : "",
1726                 param & BD_INTR ? " intr" : "");
1727 
1728         bd->mode.status = param;
1729 
1730         dma_addr += period_len;
1731         buf += period_len;
1732 
1733         i++;
1734     }
1735 
1736     return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1737 err_bd_out:
1738     sdma_free_bd(desc);
1739     kfree(desc);
1740 err_out:
1741     sdmac->status = DMA_ERROR;
1742     return NULL;
1743 }
1744 
1745 static int sdma_config_write(struct dma_chan *chan,
1746                struct dma_slave_config *dmaengine_cfg,
1747                enum dma_transfer_direction direction)
1748 {
1749     struct sdma_channel *sdmac = to_sdma_chan(chan);
1750 
1751     if (direction == DMA_DEV_TO_MEM) {
1752         sdmac->per_address = dmaengine_cfg->src_addr;
1753         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1754             dmaengine_cfg->src_addr_width;
1755         sdmac->word_size = dmaengine_cfg->src_addr_width;
1756     } else if (direction == DMA_DEV_TO_DEV) {
1757         sdmac->per_address2 = dmaengine_cfg->src_addr;
1758         sdmac->per_address = dmaengine_cfg->dst_addr;
1759         sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1760             SDMA_WATERMARK_LEVEL_LWML;
1761         sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1762             SDMA_WATERMARK_LEVEL_HWML;
1763         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1764     } else {
1765         sdmac->per_address = dmaengine_cfg->dst_addr;
1766         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1767             dmaengine_cfg->dst_addr_width;
1768         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1769     }
1770     sdmac->direction = direction;
1771     return sdma_config_channel(chan);
1772 }
1773 
1774 static int sdma_config(struct dma_chan *chan,
1775                struct dma_slave_config *dmaengine_cfg)
1776 {
1777     struct sdma_channel *sdmac = to_sdma_chan(chan);
1778     struct sdma_engine *sdma = sdmac->sdma;
1779 
1780     memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1781 
1782     if (dmaengine_cfg->peripheral_config) {
1783         struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1784         if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1785             dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1786                 dmaengine_cfg->peripheral_size,
1787                 sizeof(struct sdma_peripheral_config));
1788             return -EINVAL;
1789         }
1790         sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1791         sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1792         sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1793         sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1794         sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1795         sdmac->sw_done = sdmacfg->sw_done;
1796     }
1797 
1798     /* Set ENBLn earlier to make sure dma request triggered after that */
1799     if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1800         return -EINVAL;
1801     sdma_event_enable(sdmac, sdmac->event_id0);
1802 
1803     if (sdmac->event_id1) {
1804         if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1805             return -EINVAL;
1806         sdma_event_enable(sdmac, sdmac->event_id1);
1807     }
1808 
1809     return 0;
1810 }
1811 
1812 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1813                       dma_cookie_t cookie,
1814                       struct dma_tx_state *txstate)
1815 {
1816     struct sdma_channel *sdmac = to_sdma_chan(chan);
1817     struct sdma_desc *desc = NULL;
1818     u32 residue;
1819     struct virt_dma_desc *vd;
1820     enum dma_status ret;
1821     unsigned long flags;
1822 
1823     ret = dma_cookie_status(chan, cookie, txstate);
1824     if (ret == DMA_COMPLETE || !txstate)
1825         return ret;
1826 
1827     spin_lock_irqsave(&sdmac->vc.lock, flags);
1828 
1829     vd = vchan_find_desc(&sdmac->vc, cookie);
1830     if (vd)
1831         desc = to_sdma_desc(&vd->tx);
1832     else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1833         desc = sdmac->desc;
1834 
1835     if (desc) {
1836         if (sdmac->flags & IMX_DMA_SG_LOOP)
1837             residue = (desc->num_bd - desc->buf_ptail) *
1838                 desc->period_len - desc->chn_real_count;
1839         else
1840             residue = desc->chn_count - desc->chn_real_count;
1841     } else {
1842         residue = 0;
1843     }
1844 
1845     spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1846 
1847     dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1848              residue);
1849 
1850     return sdmac->status;
1851 }
1852 
1853 static void sdma_issue_pending(struct dma_chan *chan)
1854 {
1855     struct sdma_channel *sdmac = to_sdma_chan(chan);
1856     unsigned long flags;
1857 
1858     spin_lock_irqsave(&sdmac->vc.lock, flags);
1859     if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1860         sdma_start_desc(sdmac);
1861     spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1862 }
1863 
1864 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1865 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1866 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45
1867 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46
1868 
1869 static void sdma_add_scripts(struct sdma_engine *sdma,
1870                  const struct sdma_script_start_addrs *addr)
1871 {
1872     s32 *addr_arr = (u32 *)addr;
1873     s32 *saddr_arr = (u32 *)sdma->script_addrs;
1874     int i;
1875 
1876     /* use the default firmware in ROM if missing external firmware */
1877     if (!sdma->script_number)
1878         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1879 
1880     if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1881                   / sizeof(s32)) {
1882         dev_err(sdma->dev,
1883             "SDMA script number %d not match with firmware.\n",
1884             sdma->script_number);
1885         return;
1886     }
1887 
1888     for (i = 0; i < sdma->script_number; i++)
1889         if (addr_arr[i] > 0)
1890             saddr_arr[i] = addr_arr[i];
1891 
1892     /*
1893      * For compatibility with NXP internal legacy kernel before 4.19 which
1894      * is based on uart ram script and mainline kernel based on uart rom
1895      * script, both uart ram/rom scripts are present in newer sdma
1896      * firmware. Use the rom versions if they are present (V3 or newer).
1897      */
1898     if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1899         if (addr->uart_2_mcu_rom_addr)
1900             sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1901         if (addr->uartsh_2_mcu_rom_addr)
1902             sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1903     }
1904 }
1905 
1906 static void sdma_load_firmware(const struct firmware *fw, void *context)
1907 {
1908     struct sdma_engine *sdma = context;
1909     const struct sdma_firmware_header *header;
1910     const struct sdma_script_start_addrs *addr;
1911     unsigned short *ram_code;
1912 
1913     if (!fw) {
1914         dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1915         /* In this case we just use the ROM firmware. */
1916         return;
1917     }
1918 
1919     if (fw->size < sizeof(*header))
1920         goto err_firmware;
1921 
1922     header = (struct sdma_firmware_header *)fw->data;
1923 
1924     if (header->magic != SDMA_FIRMWARE_MAGIC)
1925         goto err_firmware;
1926     if (header->ram_code_start + header->ram_code_size > fw->size)
1927         goto err_firmware;
1928     switch (header->version_major) {
1929     case 1:
1930         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1931         break;
1932     case 2:
1933         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1934         break;
1935     case 3:
1936         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1937         break;
1938     case 4:
1939         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1940         break;
1941     default:
1942         dev_err(sdma->dev, "unknown firmware version\n");
1943         goto err_firmware;
1944     }
1945 
1946     addr = (void *)header + header->script_addrs_start;
1947     ram_code = (void *)header + header->ram_code_start;
1948 
1949     clk_enable(sdma->clk_ipg);
1950     clk_enable(sdma->clk_ahb);
1951     /* download the RAM image for SDMA */
1952     sdma_load_script(sdma, ram_code,
1953              header->ram_code_size,
1954              addr->ram_code_start_addr);
1955     clk_disable(sdma->clk_ipg);
1956     clk_disable(sdma->clk_ahb);
1957 
1958     sdma_add_scripts(sdma, addr);
1959 
1960     sdma->fw_loaded = true;
1961 
1962     dev_info(sdma->dev, "loaded firmware %d.%d\n",
1963          header->version_major,
1964          header->version_minor);
1965 
1966 err_firmware:
1967     release_firmware(fw);
1968 }
1969 
1970 #define EVENT_REMAP_CELLS 3
1971 
1972 static int sdma_event_remap(struct sdma_engine *sdma)
1973 {
1974     struct device_node *np = sdma->dev->of_node;
1975     struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1976     struct property *event_remap;
1977     struct regmap *gpr;
1978     char propname[] = "fsl,sdma-event-remap";
1979     u32 reg, val, shift, num_map, i;
1980     int ret = 0;
1981 
1982     if (IS_ERR(np) || !gpr_np)
1983         goto out;
1984 
1985     event_remap = of_find_property(np, propname, NULL);
1986     num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1987     if (!num_map) {
1988         dev_dbg(sdma->dev, "no event needs to be remapped\n");
1989         goto out;
1990     } else if (num_map % EVENT_REMAP_CELLS) {
1991         dev_err(sdma->dev, "the property %s must modulo %d\n",
1992                 propname, EVENT_REMAP_CELLS);
1993         ret = -EINVAL;
1994         goto out;
1995     }
1996 
1997     gpr = syscon_node_to_regmap(gpr_np);
1998     if (IS_ERR(gpr)) {
1999         dev_err(sdma->dev, "failed to get gpr regmap\n");
2000         ret = PTR_ERR(gpr);
2001         goto out;
2002     }
2003 
2004     for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2005         ret = of_property_read_u32_index(np, propname, i, &reg);
2006         if (ret) {
2007             dev_err(sdma->dev, "failed to read property %s index %d\n",
2008                     propname, i);
2009             goto out;
2010         }
2011 
2012         ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2013         if (ret) {
2014             dev_err(sdma->dev, "failed to read property %s index %d\n",
2015                     propname, i + 1);
2016             goto out;
2017         }
2018 
2019         ret = of_property_read_u32_index(np, propname, i + 2, &val);
2020         if (ret) {
2021             dev_err(sdma->dev, "failed to read property %s index %d\n",
2022                     propname, i + 2);
2023             goto out;
2024         }
2025 
2026         regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2027     }
2028 
2029 out:
2030     if (gpr_np)
2031         of_node_put(gpr_np);
2032 
2033     return ret;
2034 }
2035 
2036 static int sdma_get_firmware(struct sdma_engine *sdma,
2037         const char *fw_name)
2038 {
2039     int ret;
2040 
2041     ret = request_firmware_nowait(THIS_MODULE,
2042             FW_ACTION_UEVENT, fw_name, sdma->dev,
2043             GFP_KERNEL, sdma, sdma_load_firmware);
2044 
2045     return ret;
2046 }
2047 
2048 static int sdma_init(struct sdma_engine *sdma)
2049 {
2050     int i, ret;
2051     dma_addr_t ccb_phys;
2052 
2053     ret = clk_enable(sdma->clk_ipg);
2054     if (ret)
2055         return ret;
2056     ret = clk_enable(sdma->clk_ahb);
2057     if (ret)
2058         goto disable_clk_ipg;
2059 
2060     if (sdma->drvdata->check_ratio &&
2061         (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2062         sdma->clk_ratio = 1;
2063 
2064     /* Be sure SDMA has not started yet */
2065     writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2066 
2067     sdma->channel_control = dma_alloc_coherent(sdma->dev,
2068             MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2069             sizeof(struct sdma_context_data),
2070             &ccb_phys, GFP_KERNEL);
2071 
2072     if (!sdma->channel_control) {
2073         ret = -ENOMEM;
2074         goto err_dma_alloc;
2075     }
2076 
2077     sdma->context = (void *)sdma->channel_control +
2078         MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2079     sdma->context_phys = ccb_phys +
2080         MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2081 
2082     /* disable all channels */
2083     for (i = 0; i < sdma->drvdata->num_events; i++)
2084         writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2085 
2086     /* All channels have priority 0 */
2087     for (i = 0; i < MAX_DMA_CHANNELS; i++)
2088         writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2089 
2090     ret = sdma_request_channel0(sdma);
2091     if (ret)
2092         goto err_dma_alloc;
2093 
2094     sdma_config_ownership(&sdma->channel[0], false, true, false);
2095 
2096     /* Set Command Channel (Channel Zero) */
2097     writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2098 
2099     /* Set bits of CONFIG register but with static context switching */
2100     if (sdma->clk_ratio)
2101         writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2102     else
2103         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2104 
2105     writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2106 
2107     /* Initializes channel's priorities */
2108     sdma_set_channel_priority(&sdma->channel[0], 7);
2109 
2110     clk_disable(sdma->clk_ipg);
2111     clk_disable(sdma->clk_ahb);
2112 
2113     return 0;
2114 
2115 err_dma_alloc:
2116     clk_disable(sdma->clk_ahb);
2117 disable_clk_ipg:
2118     clk_disable(sdma->clk_ipg);
2119     dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2120     return ret;
2121 }
2122 
2123 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2124 {
2125     struct sdma_channel *sdmac = to_sdma_chan(chan);
2126     struct imx_dma_data *data = fn_param;
2127 
2128     if (!imx_dma_is_general_purpose(chan))
2129         return false;
2130 
2131     sdmac->data = *data;
2132     chan->private = &sdmac->data;
2133 
2134     return true;
2135 }
2136 
2137 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2138                    struct of_dma *ofdma)
2139 {
2140     struct sdma_engine *sdma = ofdma->of_dma_data;
2141     dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2142     struct imx_dma_data data;
2143 
2144     if (dma_spec->args_count != 3)
2145         return NULL;
2146 
2147     data.dma_request = dma_spec->args[0];
2148     data.peripheral_type = dma_spec->args[1];
2149     data.priority = dma_spec->args[2];
2150     /*
2151      * init dma_request2 to zero, which is not used by the dts.
2152      * For P2P, dma_request2 is init from dma_request_channel(),
2153      * chan->private will point to the imx_dma_data, and in
2154      * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2155      * be set to sdmac->event_id1.
2156      */
2157     data.dma_request2 = 0;
2158 
2159     return __dma_request_channel(&mask, sdma_filter_fn, &data,
2160                      ofdma->of_node);
2161 }
2162 
2163 static int sdma_probe(struct platform_device *pdev)
2164 {
2165     struct device_node *np = pdev->dev.of_node;
2166     struct device_node *spba_bus;
2167     const char *fw_name;
2168     int ret;
2169     int irq;
2170     struct resource *iores;
2171     struct resource spba_res;
2172     int i;
2173     struct sdma_engine *sdma;
2174     s32 *saddr_arr;
2175 
2176     ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2177     if (ret)
2178         return ret;
2179 
2180     sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2181     if (!sdma)
2182         return -ENOMEM;
2183 
2184     spin_lock_init(&sdma->channel_0_lock);
2185 
2186     sdma->dev = &pdev->dev;
2187     sdma->drvdata = of_device_get_match_data(sdma->dev);
2188 
2189     irq = platform_get_irq(pdev, 0);
2190     if (irq < 0)
2191         return irq;
2192 
2193     iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2194     sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2195     if (IS_ERR(sdma->regs))
2196         return PTR_ERR(sdma->regs);
2197 
2198     sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2199     if (IS_ERR(sdma->clk_ipg))
2200         return PTR_ERR(sdma->clk_ipg);
2201 
2202     sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2203     if (IS_ERR(sdma->clk_ahb))
2204         return PTR_ERR(sdma->clk_ahb);
2205 
2206     ret = clk_prepare(sdma->clk_ipg);
2207     if (ret)
2208         return ret;
2209 
2210     ret = clk_prepare(sdma->clk_ahb);
2211     if (ret)
2212         goto err_clk;
2213 
2214     ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2215                 dev_name(&pdev->dev), sdma);
2216     if (ret)
2217         goto err_irq;
2218 
2219     sdma->irq = irq;
2220 
2221     sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2222     if (!sdma->script_addrs) {
2223         ret = -ENOMEM;
2224         goto err_irq;
2225     }
2226 
2227     /* initially no scripts available */
2228     saddr_arr = (s32 *)sdma->script_addrs;
2229     for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2230         saddr_arr[i] = -EINVAL;
2231 
2232     dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2233     dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2234     dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2235 
2236     INIT_LIST_HEAD(&sdma->dma_device.channels);
2237     /* Initialize channel parameters */
2238     for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2239         struct sdma_channel *sdmac = &sdma->channel[i];
2240 
2241         sdmac->sdma = sdma;
2242 
2243         sdmac->channel = i;
2244         sdmac->vc.desc_free = sdma_desc_free;
2245         INIT_LIST_HEAD(&sdmac->terminated);
2246         INIT_WORK(&sdmac->terminate_worker,
2247                 sdma_channel_terminate_work);
2248         /*
2249          * Add the channel to the DMAC list. Do not add channel 0 though
2250          * because we need it internally in the SDMA driver. This also means
2251          * that channel 0 in dmaengine counting matches sdma channel 1.
2252          */
2253         if (i)
2254             vchan_init(&sdmac->vc, &sdma->dma_device);
2255     }
2256 
2257     ret = sdma_init(sdma);
2258     if (ret)
2259         goto err_init;
2260 
2261     ret = sdma_event_remap(sdma);
2262     if (ret)
2263         goto err_init;
2264 
2265     if (sdma->drvdata->script_addrs)
2266         sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2267 
2268     sdma->dma_device.dev = &pdev->dev;
2269 
2270     sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2271     sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2272     sdma->dma_device.device_tx_status = sdma_tx_status;
2273     sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2274     sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2275     sdma->dma_device.device_config = sdma_config;
2276     sdma->dma_device.device_terminate_all = sdma_terminate_all;
2277     sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2278     sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2279     sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2280     sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2281     sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2282     sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2283     sdma->dma_device.device_issue_pending = sdma_issue_pending;
2284     sdma->dma_device.copy_align = 2;
2285     dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2286 
2287     platform_set_drvdata(pdev, sdma);
2288 
2289     ret = dma_async_device_register(&sdma->dma_device);
2290     if (ret) {
2291         dev_err(&pdev->dev, "unable to register\n");
2292         goto err_init;
2293     }
2294 
2295     if (np) {
2296         ret = of_dma_controller_register(np, sdma_xlate, sdma);
2297         if (ret) {
2298             dev_err(&pdev->dev, "failed to register controller\n");
2299             goto err_register;
2300         }
2301 
2302         spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2303         ret = of_address_to_resource(spba_bus, 0, &spba_res);
2304         if (!ret) {
2305             sdma->spba_start_addr = spba_res.start;
2306             sdma->spba_end_addr = spba_res.end;
2307         }
2308         of_node_put(spba_bus);
2309     }
2310 
2311     /*
2312      * Because that device tree does not encode ROM script address,
2313      * the RAM script in firmware is mandatory for device tree
2314      * probe, otherwise it fails.
2315      */
2316     ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2317                       &fw_name);
2318     if (ret) {
2319         dev_warn(&pdev->dev, "failed to get firmware name\n");
2320     } else {
2321         ret = sdma_get_firmware(sdma, fw_name);
2322         if (ret)
2323             dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2324     }
2325 
2326     return 0;
2327 
2328 err_register:
2329     dma_async_device_unregister(&sdma->dma_device);
2330 err_init:
2331     kfree(sdma->script_addrs);
2332 err_irq:
2333     clk_unprepare(sdma->clk_ahb);
2334 err_clk:
2335     clk_unprepare(sdma->clk_ipg);
2336     return ret;
2337 }
2338 
2339 static int sdma_remove(struct platform_device *pdev)
2340 {
2341     struct sdma_engine *sdma = platform_get_drvdata(pdev);
2342     int i;
2343 
2344     devm_free_irq(&pdev->dev, sdma->irq, sdma);
2345     dma_async_device_unregister(&sdma->dma_device);
2346     kfree(sdma->script_addrs);
2347     clk_unprepare(sdma->clk_ahb);
2348     clk_unprepare(sdma->clk_ipg);
2349     /* Kill the tasklet */
2350     for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2351         struct sdma_channel *sdmac = &sdma->channel[i];
2352 
2353         tasklet_kill(&sdmac->vc.task);
2354         sdma_free_chan_resources(&sdmac->vc.chan);
2355     }
2356 
2357     platform_set_drvdata(pdev, NULL);
2358     return 0;
2359 }
2360 
2361 static struct platform_driver sdma_driver = {
2362     .driver     = {
2363         .name   = "imx-sdma",
2364         .of_match_table = sdma_dt_ids,
2365     },
2366     .remove     = sdma_remove,
2367     .probe      = sdma_probe,
2368 };
2369 
2370 module_platform_driver(sdma_driver);
2371 
2372 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2373 MODULE_DESCRIPTION("i.MX SDMA driver");
2374 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2375 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2376 #endif
2377 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2378 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2379 #endif
2380 MODULE_LICENSE("GPL");