0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include <crypto/internal/hash.h>
0011 #include <crypto/padlock.h>
0012 #include <crypto/sha1.h>
0013 #include <crypto/sha2.h>
0014 #include <linux/err.h>
0015 #include <linux/module.h>
0016 #include <linux/init.h>
0017 #include <linux/errno.h>
0018 #include <linux/interrupt.h>
0019 #include <linux/kernel.h>
0020 #include <linux/scatterlist.h>
0021 #include <asm/cpu_device_id.h>
0022 #include <asm/fpu/api.h>
0023
0024 struct padlock_sha_desc {
0025 struct shash_desc fallback;
0026 };
0027
0028 struct padlock_sha_ctx {
0029 struct crypto_shash *fallback;
0030 };
0031
0032 static int padlock_sha_init(struct shash_desc *desc)
0033 {
0034 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
0035 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
0036
0037 dctx->fallback.tfm = ctx->fallback;
0038 return crypto_shash_init(&dctx->fallback);
0039 }
0040
0041 static int padlock_sha_update(struct shash_desc *desc,
0042 const u8 *data, unsigned int length)
0043 {
0044 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
0045
0046 return crypto_shash_update(&dctx->fallback, data, length);
0047 }
0048
0049 static int padlock_sha_export(struct shash_desc *desc, void *out)
0050 {
0051 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
0052
0053 return crypto_shash_export(&dctx->fallback, out);
0054 }
0055
0056 static int padlock_sha_import(struct shash_desc *desc, const void *in)
0057 {
0058 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
0059 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
0060
0061 dctx->fallback.tfm = ctx->fallback;
0062 return crypto_shash_import(&dctx->fallback, in);
0063 }
0064
0065 static inline void padlock_output_block(uint32_t *src,
0066 uint32_t *dst, size_t count)
0067 {
0068 while (count--)
0069 *dst++ = swab32(*src++);
0070 }
0071
0072 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
0073 unsigned int count, u8 *out)
0074 {
0075
0076
0077
0078 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
0079 ((aligned(STACK_ALIGN)));
0080 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
0081 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
0082 struct sha1_state state;
0083 unsigned int space;
0084 unsigned int leftover;
0085 int err;
0086
0087 err = crypto_shash_export(&dctx->fallback, &state);
0088 if (err)
0089 goto out;
0090
0091 if (state.count + count > ULONG_MAX)
0092 return crypto_shash_finup(&dctx->fallback, in, count, out);
0093
0094 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
0095 space = SHA1_BLOCK_SIZE - leftover;
0096 if (space) {
0097 if (count > space) {
0098 err = crypto_shash_update(&dctx->fallback, in, space) ?:
0099 crypto_shash_export(&dctx->fallback, &state);
0100 if (err)
0101 goto out;
0102 count -= space;
0103 in += space;
0104 } else {
0105 memcpy(state.buffer + leftover, in, count);
0106 in = state.buffer;
0107 count += leftover;
0108 state.count &= ~(SHA1_BLOCK_SIZE - 1);
0109 }
0110 }
0111
0112 memcpy(result, &state.state, SHA1_DIGEST_SIZE);
0113
0114 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
0115 : \
0116 : "c"((unsigned long)state.count + count), \
0117 "a"((unsigned long)state.count), \
0118 "S"(in), "D"(result));
0119
0120 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
0121
0122 out:
0123 return err;
0124 }
0125
0126 static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
0127 {
0128 u8 buf[4];
0129
0130 return padlock_sha1_finup(desc, buf, 0, out);
0131 }
0132
0133 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
0134 unsigned int count, u8 *out)
0135 {
0136
0137
0138
0139 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
0140 ((aligned(STACK_ALIGN)));
0141 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
0142 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
0143 struct sha256_state state;
0144 unsigned int space;
0145 unsigned int leftover;
0146 int err;
0147
0148 err = crypto_shash_export(&dctx->fallback, &state);
0149 if (err)
0150 goto out;
0151
0152 if (state.count + count > ULONG_MAX)
0153 return crypto_shash_finup(&dctx->fallback, in, count, out);
0154
0155 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
0156 space = SHA256_BLOCK_SIZE - leftover;
0157 if (space) {
0158 if (count > space) {
0159 err = crypto_shash_update(&dctx->fallback, in, space) ?:
0160 crypto_shash_export(&dctx->fallback, &state);
0161 if (err)
0162 goto out;
0163 count -= space;
0164 in += space;
0165 } else {
0166 memcpy(state.buf + leftover, in, count);
0167 in = state.buf;
0168 count += leftover;
0169 state.count &= ~(SHA1_BLOCK_SIZE - 1);
0170 }
0171 }
0172
0173 memcpy(result, &state.state, SHA256_DIGEST_SIZE);
0174
0175 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
0176 : \
0177 : "c"((unsigned long)state.count + count), \
0178 "a"((unsigned long)state.count), \
0179 "S"(in), "D"(result));
0180
0181 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
0182
0183 out:
0184 return err;
0185 }
0186
0187 static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
0188 {
0189 u8 buf[4];
0190
0191 return padlock_sha256_finup(desc, buf, 0, out);
0192 }
0193
0194 static int padlock_init_tfm(struct crypto_shash *hash)
0195 {
0196 const char *fallback_driver_name = crypto_shash_alg_name(hash);
0197 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
0198 struct crypto_shash *fallback_tfm;
0199
0200
0201 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
0202 CRYPTO_ALG_NEED_FALLBACK);
0203 if (IS_ERR(fallback_tfm)) {
0204 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
0205 fallback_driver_name);
0206 return PTR_ERR(fallback_tfm);
0207 }
0208
0209 ctx->fallback = fallback_tfm;
0210 hash->descsize += crypto_shash_descsize(fallback_tfm);
0211 return 0;
0212 }
0213
0214 static void padlock_exit_tfm(struct crypto_shash *hash)
0215 {
0216 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
0217
0218 crypto_free_shash(ctx->fallback);
0219 }
0220
0221 static struct shash_alg sha1_alg = {
0222 .digestsize = SHA1_DIGEST_SIZE,
0223 .init = padlock_sha_init,
0224 .update = padlock_sha_update,
0225 .finup = padlock_sha1_finup,
0226 .final = padlock_sha1_final,
0227 .export = padlock_sha_export,
0228 .import = padlock_sha_import,
0229 .init_tfm = padlock_init_tfm,
0230 .exit_tfm = padlock_exit_tfm,
0231 .descsize = sizeof(struct padlock_sha_desc),
0232 .statesize = sizeof(struct sha1_state),
0233 .base = {
0234 .cra_name = "sha1",
0235 .cra_driver_name = "sha1-padlock",
0236 .cra_priority = PADLOCK_CRA_PRIORITY,
0237 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
0238 .cra_blocksize = SHA1_BLOCK_SIZE,
0239 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
0240 .cra_module = THIS_MODULE,
0241 }
0242 };
0243
0244 static struct shash_alg sha256_alg = {
0245 .digestsize = SHA256_DIGEST_SIZE,
0246 .init = padlock_sha_init,
0247 .update = padlock_sha_update,
0248 .finup = padlock_sha256_finup,
0249 .final = padlock_sha256_final,
0250 .export = padlock_sha_export,
0251 .import = padlock_sha_import,
0252 .init_tfm = padlock_init_tfm,
0253 .exit_tfm = padlock_exit_tfm,
0254 .descsize = sizeof(struct padlock_sha_desc),
0255 .statesize = sizeof(struct sha256_state),
0256 .base = {
0257 .cra_name = "sha256",
0258 .cra_driver_name = "sha256-padlock",
0259 .cra_priority = PADLOCK_CRA_PRIORITY,
0260 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
0261 .cra_blocksize = SHA256_BLOCK_SIZE,
0262 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
0263 .cra_module = THIS_MODULE,
0264 }
0265 };
0266
0267
0268
0269 static int padlock_sha1_init_nano(struct shash_desc *desc)
0270 {
0271 struct sha1_state *sctx = shash_desc_ctx(desc);
0272
0273 *sctx = (struct sha1_state){
0274 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
0275 };
0276
0277 return 0;
0278 }
0279
0280 static int padlock_sha1_update_nano(struct shash_desc *desc,
0281 const u8 *data, unsigned int len)
0282 {
0283 struct sha1_state *sctx = shash_desc_ctx(desc);
0284 unsigned int partial, done;
0285 const u8 *src;
0286
0287 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
0288 ((aligned(STACK_ALIGN)));
0289 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
0290
0291 partial = sctx->count & 0x3f;
0292 sctx->count += len;
0293 done = 0;
0294 src = data;
0295 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
0296
0297 if ((partial + len) >= SHA1_BLOCK_SIZE) {
0298
0299
0300 if (partial) {
0301 done = -partial;
0302 memcpy(sctx->buffer + partial, data,
0303 done + SHA1_BLOCK_SIZE);
0304 src = sctx->buffer;
0305 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
0306 : "+S"(src), "+D"(dst) \
0307 : "a"((long)-1), "c"((unsigned long)1));
0308 done += SHA1_BLOCK_SIZE;
0309 src = data + done;
0310 }
0311
0312
0313 if (len - done >= SHA1_BLOCK_SIZE) {
0314 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
0315 : "+S"(src), "+D"(dst)
0316 : "a"((long)-1),
0317 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
0318 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
0319 src = data + done;
0320 }
0321 partial = 0;
0322 }
0323 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
0324 memcpy(sctx->buffer + partial, src, len - done);
0325
0326 return 0;
0327 }
0328
0329 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
0330 {
0331 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
0332 unsigned int partial, padlen;
0333 __be64 bits;
0334 static const u8 padding[64] = { 0x80, };
0335
0336 bits = cpu_to_be64(state->count << 3);
0337
0338
0339 partial = state->count & 0x3f;
0340 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
0341 padlock_sha1_update_nano(desc, padding, padlen);
0342
0343
0344 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
0345
0346
0347 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
0348
0349 return 0;
0350 }
0351
0352 static int padlock_sha256_init_nano(struct shash_desc *desc)
0353 {
0354 struct sha256_state *sctx = shash_desc_ctx(desc);
0355
0356 *sctx = (struct sha256_state){
0357 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
0358 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
0359 };
0360
0361 return 0;
0362 }
0363
0364 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
0365 unsigned int len)
0366 {
0367 struct sha256_state *sctx = shash_desc_ctx(desc);
0368 unsigned int partial, done;
0369 const u8 *src;
0370
0371 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
0372 ((aligned(STACK_ALIGN)));
0373 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
0374
0375 partial = sctx->count & 0x3f;
0376 sctx->count += len;
0377 done = 0;
0378 src = data;
0379 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
0380
0381 if ((partial + len) >= SHA256_BLOCK_SIZE) {
0382
0383
0384 if (partial) {
0385 done = -partial;
0386 memcpy(sctx->buf + partial, data,
0387 done + SHA256_BLOCK_SIZE);
0388 src = sctx->buf;
0389 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
0390 : "+S"(src), "+D"(dst)
0391 : "a"((long)-1), "c"((unsigned long)1));
0392 done += SHA256_BLOCK_SIZE;
0393 src = data + done;
0394 }
0395
0396
0397 if (len - done >= SHA256_BLOCK_SIZE) {
0398 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
0399 : "+S"(src), "+D"(dst)
0400 : "a"((long)-1),
0401 "c"((unsigned long)((len - done) / 64)));
0402 done += ((len - done) - (len - done) % 64);
0403 src = data + done;
0404 }
0405 partial = 0;
0406 }
0407 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
0408 memcpy(sctx->buf + partial, src, len - done);
0409
0410 return 0;
0411 }
0412
0413 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
0414 {
0415 struct sha256_state *state =
0416 (struct sha256_state *)shash_desc_ctx(desc);
0417 unsigned int partial, padlen;
0418 __be64 bits;
0419 static const u8 padding[64] = { 0x80, };
0420
0421 bits = cpu_to_be64(state->count << 3);
0422
0423
0424 partial = state->count & 0x3f;
0425 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
0426 padlock_sha256_update_nano(desc, padding, padlen);
0427
0428
0429 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
0430
0431
0432 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
0433
0434 return 0;
0435 }
0436
0437 static int padlock_sha_export_nano(struct shash_desc *desc,
0438 void *out)
0439 {
0440 int statesize = crypto_shash_statesize(desc->tfm);
0441 void *sctx = shash_desc_ctx(desc);
0442
0443 memcpy(out, sctx, statesize);
0444 return 0;
0445 }
0446
0447 static int padlock_sha_import_nano(struct shash_desc *desc,
0448 const void *in)
0449 {
0450 int statesize = crypto_shash_statesize(desc->tfm);
0451 void *sctx = shash_desc_ctx(desc);
0452
0453 memcpy(sctx, in, statesize);
0454 return 0;
0455 }
0456
0457 static struct shash_alg sha1_alg_nano = {
0458 .digestsize = SHA1_DIGEST_SIZE,
0459 .init = padlock_sha1_init_nano,
0460 .update = padlock_sha1_update_nano,
0461 .final = padlock_sha1_final_nano,
0462 .export = padlock_sha_export_nano,
0463 .import = padlock_sha_import_nano,
0464 .descsize = sizeof(struct sha1_state),
0465 .statesize = sizeof(struct sha1_state),
0466 .base = {
0467 .cra_name = "sha1",
0468 .cra_driver_name = "sha1-padlock-nano",
0469 .cra_priority = PADLOCK_CRA_PRIORITY,
0470 .cra_blocksize = SHA1_BLOCK_SIZE,
0471 .cra_module = THIS_MODULE,
0472 }
0473 };
0474
0475 static struct shash_alg sha256_alg_nano = {
0476 .digestsize = SHA256_DIGEST_SIZE,
0477 .init = padlock_sha256_init_nano,
0478 .update = padlock_sha256_update_nano,
0479 .final = padlock_sha256_final_nano,
0480 .export = padlock_sha_export_nano,
0481 .import = padlock_sha_import_nano,
0482 .descsize = sizeof(struct sha256_state),
0483 .statesize = sizeof(struct sha256_state),
0484 .base = {
0485 .cra_name = "sha256",
0486 .cra_driver_name = "sha256-padlock-nano",
0487 .cra_priority = PADLOCK_CRA_PRIORITY,
0488 .cra_blocksize = SHA256_BLOCK_SIZE,
0489 .cra_module = THIS_MODULE,
0490 }
0491 };
0492
0493 static const struct x86_cpu_id padlock_sha_ids[] = {
0494 X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
0495 {}
0496 };
0497 MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
0498
0499 static int __init padlock_init(void)
0500 {
0501 int rc = -ENODEV;
0502 struct cpuinfo_x86 *c = &cpu_data(0);
0503 struct shash_alg *sha1;
0504 struct shash_alg *sha256;
0505
0506 if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
0507 return -ENODEV;
0508
0509
0510
0511 if (c->x86_model < 0x0f) {
0512 sha1 = &sha1_alg;
0513 sha256 = &sha256_alg;
0514 } else {
0515 sha1 = &sha1_alg_nano;
0516 sha256 = &sha256_alg_nano;
0517 }
0518
0519 rc = crypto_register_shash(sha1);
0520 if (rc)
0521 goto out;
0522
0523 rc = crypto_register_shash(sha256);
0524 if (rc)
0525 goto out_unreg1;
0526
0527 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
0528
0529 return 0;
0530
0531 out_unreg1:
0532 crypto_unregister_shash(sha1);
0533
0534 out:
0535 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
0536 return rc;
0537 }
0538
0539 static void __exit padlock_fini(void)
0540 {
0541 struct cpuinfo_x86 *c = &cpu_data(0);
0542
0543 if (c->x86_model >= 0x0f) {
0544 crypto_unregister_shash(&sha1_alg_nano);
0545 crypto_unregister_shash(&sha256_alg_nano);
0546 } else {
0547 crypto_unregister_shash(&sha1_alg);
0548 crypto_unregister_shash(&sha256_alg);
0549 }
0550 }
0551
0552 module_init(padlock_init);
0553 module_exit(padlock_fini);
0554
0555 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
0556 MODULE_LICENSE("GPL");
0557 MODULE_AUTHOR("Michal Ludvig");
0558
0559 MODULE_ALIAS_CRYPTO("sha1-all");
0560 MODULE_ALIAS_CRYPTO("sha256-all");
0561 MODULE_ALIAS_CRYPTO("sha1-padlock");
0562 MODULE_ALIAS_CRYPTO("sha256-padlock");