0001
0002
0003
0004
0005
0006
0007 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0008
0009 #include <linux/kernel.h>
0010 #include <linux/module.h>
0011 #include <linux/of.h>
0012 #include <linux/of_device.h>
0013 #include <linux/cpumask.h>
0014 #include <linux/slab.h>
0015 #include <linux/interrupt.h>
0016 #include <linux/crypto.h>
0017 #include <crypto/md5.h>
0018 #include <crypto/sha1.h>
0019 #include <crypto/sha2.h>
0020 #include <crypto/aes.h>
0021 #include <crypto/internal/des.h>
0022 #include <linux/mutex.h>
0023 #include <linux/delay.h>
0024 #include <linux/sched.h>
0025
0026 #include <crypto/internal/hash.h>
0027 #include <crypto/internal/skcipher.h>
0028 #include <crypto/scatterwalk.h>
0029 #include <crypto/algapi.h>
0030
0031 #include <asm/hypervisor.h>
0032 #include <asm/mdesc.h>
0033
0034 #include "n2_core.h"
0035
0036 #define DRV_MODULE_NAME "n2_crypto"
0037 #define DRV_MODULE_VERSION "0.2"
0038 #define DRV_MODULE_RELDATE "July 28, 2011"
0039
0040 static const char version[] =
0041 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
0042
0043 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
0044 MODULE_DESCRIPTION("Niagara2 Crypto driver");
0045 MODULE_LICENSE("GPL");
0046 MODULE_VERSION(DRV_MODULE_VERSION);
0047
0048 #define N2_CRA_PRIORITY 200
0049
0050 static DEFINE_MUTEX(spu_lock);
0051
0052 struct spu_queue {
0053 cpumask_t sharing;
0054 unsigned long qhandle;
0055
0056 spinlock_t lock;
0057 u8 q_type;
0058 void *q;
0059 unsigned long head;
0060 unsigned long tail;
0061 struct list_head jobs;
0062
0063 unsigned long devino;
0064
0065 char irq_name[32];
0066 unsigned int irq;
0067
0068 struct list_head list;
0069 };
0070
0071 struct spu_qreg {
0072 struct spu_queue *queue;
0073 unsigned long type;
0074 };
0075
0076 static struct spu_queue **cpu_to_cwq;
0077 static struct spu_queue **cpu_to_mau;
0078
0079 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
0080 {
0081 if (q->q_type == HV_NCS_QTYPE_MAU) {
0082 off += MAU_ENTRY_SIZE;
0083 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
0084 off = 0;
0085 } else {
0086 off += CWQ_ENTRY_SIZE;
0087 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
0088 off = 0;
0089 }
0090 return off;
0091 }
0092
0093 struct n2_request_common {
0094 struct list_head entry;
0095 unsigned int offset;
0096 };
0097 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
0098
0099
0100
0101
0102
0103 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
0104 unsigned long old_head, unsigned long new_head)
0105 {
0106 if (old_head <= new_head) {
0107 if (offset > old_head && offset <= new_head)
0108 return true;
0109 } else {
0110 if (offset > old_head || offset <= new_head)
0111 return true;
0112 }
0113 return false;
0114 }
0115
0116
0117
0118
0119
0120
0121 static irqreturn_t cwq_intr(int irq, void *dev_id)
0122 {
0123 unsigned long off, new_head, hv_ret;
0124 struct spu_queue *q = dev_id;
0125
0126 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
0127 smp_processor_id(), q->qhandle);
0128
0129 spin_lock(&q->lock);
0130
0131 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
0132
0133 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
0134 smp_processor_id(), new_head, hv_ret);
0135
0136 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
0137
0138 }
0139
0140 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
0141 if (hv_ret == HV_EOK)
0142 q->head = new_head;
0143
0144 spin_unlock(&q->lock);
0145
0146 return IRQ_HANDLED;
0147 }
0148
0149 static irqreturn_t mau_intr(int irq, void *dev_id)
0150 {
0151 struct spu_queue *q = dev_id;
0152 unsigned long head, hv_ret;
0153
0154 spin_lock(&q->lock);
0155
0156 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
0157 smp_processor_id(), q->qhandle);
0158
0159 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
0160
0161 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
0162 smp_processor_id(), head, hv_ret);
0163
0164 sun4v_ncs_sethead_marker(q->qhandle, head);
0165
0166 spin_unlock(&q->lock);
0167
0168 return IRQ_HANDLED;
0169 }
0170
0171 static void *spu_queue_next(struct spu_queue *q, void *cur)
0172 {
0173 return q->q + spu_next_offset(q, cur - q->q);
0174 }
0175
0176 static int spu_queue_num_free(struct spu_queue *q)
0177 {
0178 unsigned long head = q->head;
0179 unsigned long tail = q->tail;
0180 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
0181 unsigned long diff;
0182
0183 if (head > tail)
0184 diff = head - tail;
0185 else
0186 diff = (end - tail) + head;
0187
0188 return (diff / CWQ_ENTRY_SIZE) - 1;
0189 }
0190
0191 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
0192 {
0193 int avail = spu_queue_num_free(q);
0194
0195 if (avail >= num_entries)
0196 return q->q + q->tail;
0197
0198 return NULL;
0199 }
0200
0201 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
0202 {
0203 unsigned long hv_ret, new_tail;
0204
0205 new_tail = spu_next_offset(q, last - q->q);
0206
0207 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
0208 if (hv_ret == HV_EOK)
0209 q->tail = new_tail;
0210 return hv_ret;
0211 }
0212
0213 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
0214 int enc_type, int auth_type,
0215 unsigned int hash_len,
0216 bool sfas, bool sob, bool eob, bool encrypt,
0217 int opcode)
0218 {
0219 u64 word = (len - 1) & CONTROL_LEN;
0220
0221 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
0222 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
0223 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
0224 if (sfas)
0225 word |= CONTROL_STORE_FINAL_AUTH_STATE;
0226 if (sob)
0227 word |= CONTROL_START_OF_BLOCK;
0228 if (eob)
0229 word |= CONTROL_END_OF_BLOCK;
0230 if (encrypt)
0231 word |= CONTROL_ENCRYPT;
0232 if (hmac_key_len)
0233 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
0234 if (hash_len)
0235 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
0236
0237 return word;
0238 }
0239
0240 #if 0
0241 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
0242 {
0243 if (this_len >= 64 ||
0244 qp->head != qp->tail)
0245 return true;
0246 return false;
0247 }
0248 #endif
0249
0250 struct n2_ahash_alg {
0251 struct list_head entry;
0252 const u8 *hash_zero;
0253 const u8 *hash_init;
0254 u8 hw_op_hashsz;
0255 u8 digest_size;
0256 u8 auth_type;
0257 u8 hmac_type;
0258 struct ahash_alg alg;
0259 };
0260
0261 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
0262 {
0263 struct crypto_alg *alg = tfm->__crt_alg;
0264 struct ahash_alg *ahash_alg;
0265
0266 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
0267
0268 return container_of(ahash_alg, struct n2_ahash_alg, alg);
0269 }
0270
0271 struct n2_hmac_alg {
0272 const char *child_alg;
0273 struct n2_ahash_alg derived;
0274 };
0275
0276 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
0277 {
0278 struct crypto_alg *alg = tfm->__crt_alg;
0279 struct ahash_alg *ahash_alg;
0280
0281 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
0282
0283 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
0284 }
0285
0286 struct n2_hash_ctx {
0287 struct crypto_ahash *fallback_tfm;
0288 };
0289
0290 #define N2_HASH_KEY_MAX 32
0291
0292 struct n2_hmac_ctx {
0293 struct n2_hash_ctx base;
0294
0295 struct crypto_shash *child_shash;
0296
0297 int hash_key_len;
0298 unsigned char hash_key[N2_HASH_KEY_MAX];
0299 };
0300
0301 struct n2_hash_req_ctx {
0302 union {
0303 struct md5_state md5;
0304 struct sha1_state sha1;
0305 struct sha256_state sha256;
0306 } u;
0307
0308 struct ahash_request fallback_req;
0309 };
0310
0311 static int n2_hash_async_init(struct ahash_request *req)
0312 {
0313 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0314 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0315 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0316
0317 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0318 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0319
0320 return crypto_ahash_init(&rctx->fallback_req);
0321 }
0322
0323 static int n2_hash_async_update(struct ahash_request *req)
0324 {
0325 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0326 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0327 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0328
0329 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0330 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0331 rctx->fallback_req.nbytes = req->nbytes;
0332 rctx->fallback_req.src = req->src;
0333
0334 return crypto_ahash_update(&rctx->fallback_req);
0335 }
0336
0337 static int n2_hash_async_final(struct ahash_request *req)
0338 {
0339 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0340 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0341 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0342
0343 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0344 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0345 rctx->fallback_req.result = req->result;
0346
0347 return crypto_ahash_final(&rctx->fallback_req);
0348 }
0349
0350 static int n2_hash_async_finup(struct ahash_request *req)
0351 {
0352 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0353 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0354 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0355
0356 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0357 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0358 rctx->fallback_req.nbytes = req->nbytes;
0359 rctx->fallback_req.src = req->src;
0360 rctx->fallback_req.result = req->result;
0361
0362 return crypto_ahash_finup(&rctx->fallback_req);
0363 }
0364
0365 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
0366 {
0367 return -ENOSYS;
0368 }
0369
0370 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
0371 {
0372 return -ENOSYS;
0373 }
0374
0375 static int n2_hash_cra_init(struct crypto_tfm *tfm)
0376 {
0377 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
0378 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0379 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
0380 struct crypto_ahash *fallback_tfm;
0381 int err;
0382
0383 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
0384 CRYPTO_ALG_NEED_FALLBACK);
0385 if (IS_ERR(fallback_tfm)) {
0386 pr_warn("Fallback driver '%s' could not be loaded!\n",
0387 fallback_driver_name);
0388 err = PTR_ERR(fallback_tfm);
0389 goto out;
0390 }
0391
0392 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
0393 crypto_ahash_reqsize(fallback_tfm)));
0394
0395 ctx->fallback_tfm = fallback_tfm;
0396 return 0;
0397
0398 out:
0399 return err;
0400 }
0401
0402 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
0403 {
0404 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0405 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
0406
0407 crypto_free_ahash(ctx->fallback_tfm);
0408 }
0409
0410 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
0411 {
0412 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
0413 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0414 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
0415 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
0416 struct crypto_ahash *fallback_tfm;
0417 struct crypto_shash *child_shash;
0418 int err;
0419
0420 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
0421 CRYPTO_ALG_NEED_FALLBACK);
0422 if (IS_ERR(fallback_tfm)) {
0423 pr_warn("Fallback driver '%s' could not be loaded!\n",
0424 fallback_driver_name);
0425 err = PTR_ERR(fallback_tfm);
0426 goto out;
0427 }
0428
0429 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
0430 if (IS_ERR(child_shash)) {
0431 pr_warn("Child shash '%s' could not be loaded!\n",
0432 n2alg->child_alg);
0433 err = PTR_ERR(child_shash);
0434 goto out_free_fallback;
0435 }
0436
0437 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
0438 crypto_ahash_reqsize(fallback_tfm)));
0439
0440 ctx->child_shash = child_shash;
0441 ctx->base.fallback_tfm = fallback_tfm;
0442 return 0;
0443
0444 out_free_fallback:
0445 crypto_free_ahash(fallback_tfm);
0446
0447 out:
0448 return err;
0449 }
0450
0451 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
0452 {
0453 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0454 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
0455
0456 crypto_free_ahash(ctx->base.fallback_tfm);
0457 crypto_free_shash(ctx->child_shash);
0458 }
0459
0460 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
0461 unsigned int keylen)
0462 {
0463 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
0464 struct crypto_shash *child_shash = ctx->child_shash;
0465 struct crypto_ahash *fallback_tfm;
0466 int err, bs, ds;
0467
0468 fallback_tfm = ctx->base.fallback_tfm;
0469 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
0470 if (err)
0471 return err;
0472
0473 bs = crypto_shash_blocksize(child_shash);
0474 ds = crypto_shash_digestsize(child_shash);
0475 BUG_ON(ds > N2_HASH_KEY_MAX);
0476 if (keylen > bs) {
0477 err = crypto_shash_tfm_digest(child_shash, key, keylen,
0478 ctx->hash_key);
0479 if (err)
0480 return err;
0481 keylen = ds;
0482 } else if (keylen <= N2_HASH_KEY_MAX)
0483 memcpy(ctx->hash_key, key, keylen);
0484
0485 ctx->hash_key_len = keylen;
0486
0487 return err;
0488 }
0489
0490 static unsigned long wait_for_tail(struct spu_queue *qp)
0491 {
0492 unsigned long head, hv_ret;
0493
0494 do {
0495 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
0496 if (hv_ret != HV_EOK) {
0497 pr_err("Hypervisor error on gethead\n");
0498 break;
0499 }
0500 if (head == qp->tail) {
0501 qp->head = head;
0502 break;
0503 }
0504 } while (1);
0505 return hv_ret;
0506 }
0507
0508 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
0509 struct cwq_initial_entry *ent)
0510 {
0511 unsigned long hv_ret = spu_queue_submit(qp, ent);
0512
0513 if (hv_ret == HV_EOK)
0514 hv_ret = wait_for_tail(qp);
0515
0516 return hv_ret;
0517 }
0518
0519 static int n2_do_async_digest(struct ahash_request *req,
0520 unsigned int auth_type, unsigned int digest_size,
0521 unsigned int result_size, void *hash_loc,
0522 unsigned long auth_key, unsigned int auth_key_len)
0523 {
0524 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0525 struct cwq_initial_entry *ent;
0526 struct crypto_hash_walk walk;
0527 struct spu_queue *qp;
0528 unsigned long flags;
0529 int err = -ENODEV;
0530 int nbytes, cpu;
0531
0532
0533
0534
0535 if (unlikely(req->nbytes > (1 << 16))) {
0536 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0537 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0538
0539 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0540 rctx->fallback_req.base.flags =
0541 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0542 rctx->fallback_req.nbytes = req->nbytes;
0543 rctx->fallback_req.src = req->src;
0544 rctx->fallback_req.result = req->result;
0545
0546 return crypto_ahash_digest(&rctx->fallback_req);
0547 }
0548
0549 nbytes = crypto_hash_walk_first(req, &walk);
0550
0551 cpu = get_cpu();
0552 qp = cpu_to_cwq[cpu];
0553 if (!qp)
0554 goto out;
0555
0556 spin_lock_irqsave(&qp->lock, flags);
0557
0558
0559
0560
0561 ent = qp->q + qp->tail;
0562
0563 ent->control = control_word_base(nbytes, auth_key_len, 0,
0564 auth_type, digest_size,
0565 false, true, false, false,
0566 OPCODE_INPLACE_BIT |
0567 OPCODE_AUTH_MAC);
0568 ent->src_addr = __pa(walk.data);
0569 ent->auth_key_addr = auth_key;
0570 ent->auth_iv_addr = __pa(hash_loc);
0571 ent->final_auth_state_addr = 0UL;
0572 ent->enc_key_addr = 0UL;
0573 ent->enc_iv_addr = 0UL;
0574 ent->dest_addr = __pa(hash_loc);
0575
0576 nbytes = crypto_hash_walk_done(&walk, 0);
0577 while (nbytes > 0) {
0578 ent = spu_queue_next(qp, ent);
0579
0580 ent->control = (nbytes - 1);
0581 ent->src_addr = __pa(walk.data);
0582 ent->auth_key_addr = 0UL;
0583 ent->auth_iv_addr = 0UL;
0584 ent->final_auth_state_addr = 0UL;
0585 ent->enc_key_addr = 0UL;
0586 ent->enc_iv_addr = 0UL;
0587 ent->dest_addr = 0UL;
0588
0589 nbytes = crypto_hash_walk_done(&walk, 0);
0590 }
0591 ent->control |= CONTROL_END_OF_BLOCK;
0592
0593 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
0594 err = -EINVAL;
0595 else
0596 err = 0;
0597
0598 spin_unlock_irqrestore(&qp->lock, flags);
0599
0600 if (!err)
0601 memcpy(req->result, hash_loc, result_size);
0602 out:
0603 put_cpu();
0604
0605 return err;
0606 }
0607
0608 static int n2_hash_async_digest(struct ahash_request *req)
0609 {
0610 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
0611 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0612 int ds;
0613
0614 ds = n2alg->digest_size;
0615 if (unlikely(req->nbytes == 0)) {
0616 memcpy(req->result, n2alg->hash_zero, ds);
0617 return 0;
0618 }
0619 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
0620
0621 return n2_do_async_digest(req, n2alg->auth_type,
0622 n2alg->hw_op_hashsz, ds,
0623 &rctx->u, 0UL, 0);
0624 }
0625
0626 static int n2_hmac_async_digest(struct ahash_request *req)
0627 {
0628 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
0629 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0630 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0631 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
0632 int ds;
0633
0634 ds = n2alg->derived.digest_size;
0635 if (unlikely(req->nbytes == 0) ||
0636 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
0637 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0638 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0639
0640 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0641 rctx->fallback_req.base.flags =
0642 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0643 rctx->fallback_req.nbytes = req->nbytes;
0644 rctx->fallback_req.src = req->src;
0645 rctx->fallback_req.result = req->result;
0646
0647 return crypto_ahash_digest(&rctx->fallback_req);
0648 }
0649 memcpy(&rctx->u, n2alg->derived.hash_init,
0650 n2alg->derived.hw_op_hashsz);
0651
0652 return n2_do_async_digest(req, n2alg->derived.hmac_type,
0653 n2alg->derived.hw_op_hashsz, ds,
0654 &rctx->u,
0655 __pa(&ctx->hash_key),
0656 ctx->hash_key_len);
0657 }
0658
0659 struct n2_skcipher_context {
0660 int key_len;
0661 int enc_type;
0662 union {
0663 u8 aes[AES_MAX_KEY_SIZE];
0664 u8 des[DES_KEY_SIZE];
0665 u8 des3[3 * DES_KEY_SIZE];
0666 } key;
0667 };
0668
0669 #define N2_CHUNK_ARR_LEN 16
0670
0671 struct n2_crypto_chunk {
0672 struct list_head entry;
0673 unsigned long iv_paddr : 44;
0674 unsigned long arr_len : 20;
0675 unsigned long dest_paddr;
0676 unsigned long dest_final;
0677 struct {
0678 unsigned long src_paddr : 44;
0679 unsigned long src_len : 20;
0680 } arr[N2_CHUNK_ARR_LEN];
0681 };
0682
0683 struct n2_request_context {
0684 struct skcipher_walk walk;
0685 struct list_head chunk_list;
0686 struct n2_crypto_chunk chunk;
0687 u8 temp_iv[16];
0688 };
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709 struct n2_skcipher_alg {
0710 struct list_head entry;
0711 u8 enc_type;
0712 struct skcipher_alg skcipher;
0713 };
0714
0715 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
0716 {
0717 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
0718
0719 return container_of(alg, struct n2_skcipher_alg, skcipher);
0720 }
0721
0722 struct n2_skcipher_request_context {
0723 struct skcipher_walk walk;
0724 };
0725
0726 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
0727 unsigned int keylen)
0728 {
0729 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
0730 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
0731 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
0732
0733 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
0734
0735 switch (keylen) {
0736 case AES_KEYSIZE_128:
0737 ctx->enc_type |= ENC_TYPE_ALG_AES128;
0738 break;
0739 case AES_KEYSIZE_192:
0740 ctx->enc_type |= ENC_TYPE_ALG_AES192;
0741 break;
0742 case AES_KEYSIZE_256:
0743 ctx->enc_type |= ENC_TYPE_ALG_AES256;
0744 break;
0745 default:
0746 return -EINVAL;
0747 }
0748
0749 ctx->key_len = keylen;
0750 memcpy(ctx->key.aes, key, keylen);
0751 return 0;
0752 }
0753
0754 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
0755 unsigned int keylen)
0756 {
0757 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
0758 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
0759 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
0760 int err;
0761
0762 err = verify_skcipher_des_key(skcipher, key);
0763 if (err)
0764 return err;
0765
0766 ctx->enc_type = n2alg->enc_type;
0767
0768 ctx->key_len = keylen;
0769 memcpy(ctx->key.des, key, keylen);
0770 return 0;
0771 }
0772
0773 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
0774 unsigned int keylen)
0775 {
0776 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
0777 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
0778 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
0779 int err;
0780
0781 err = verify_skcipher_des3_key(skcipher, key);
0782 if (err)
0783 return err;
0784
0785 ctx->enc_type = n2alg->enc_type;
0786
0787 ctx->key_len = keylen;
0788 memcpy(ctx->key.des3, key, keylen);
0789 return 0;
0790 }
0791
0792 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
0793 {
0794 int this_len = nbytes;
0795
0796 this_len -= (nbytes & (block_size - 1));
0797 return this_len > (1 << 16) ? (1 << 16) : this_len;
0798 }
0799
0800 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
0801 struct n2_crypto_chunk *cp,
0802 struct spu_queue *qp, bool encrypt)
0803 {
0804 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
0805 struct cwq_initial_entry *ent;
0806 bool in_place;
0807 int i;
0808
0809 ent = spu_queue_alloc(qp, cp->arr_len);
0810 if (!ent) {
0811 pr_info("queue_alloc() of %d fails\n",
0812 cp->arr_len);
0813 return -EBUSY;
0814 }
0815
0816 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
0817
0818 ent->control = control_word_base(cp->arr[0].src_len,
0819 0, ctx->enc_type, 0, 0,
0820 false, true, false, encrypt,
0821 OPCODE_ENCRYPT |
0822 (in_place ? OPCODE_INPLACE_BIT : 0));
0823 ent->src_addr = cp->arr[0].src_paddr;
0824 ent->auth_key_addr = 0UL;
0825 ent->auth_iv_addr = 0UL;
0826 ent->final_auth_state_addr = 0UL;
0827 ent->enc_key_addr = __pa(&ctx->key);
0828 ent->enc_iv_addr = cp->iv_paddr;
0829 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
0830
0831 for (i = 1; i < cp->arr_len; i++) {
0832 ent = spu_queue_next(qp, ent);
0833
0834 ent->control = cp->arr[i].src_len - 1;
0835 ent->src_addr = cp->arr[i].src_paddr;
0836 ent->auth_key_addr = 0UL;
0837 ent->auth_iv_addr = 0UL;
0838 ent->final_auth_state_addr = 0UL;
0839 ent->enc_key_addr = 0UL;
0840 ent->enc_iv_addr = 0UL;
0841 ent->dest_addr = 0UL;
0842 }
0843 ent->control |= CONTROL_END_OF_BLOCK;
0844
0845 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
0846 }
0847
0848 static int n2_compute_chunks(struct skcipher_request *req)
0849 {
0850 struct n2_request_context *rctx = skcipher_request_ctx(req);
0851 struct skcipher_walk *walk = &rctx->walk;
0852 struct n2_crypto_chunk *chunk;
0853 unsigned long dest_prev;
0854 unsigned int tot_len;
0855 bool prev_in_place;
0856 int err, nbytes;
0857
0858 err = skcipher_walk_async(walk, req);
0859 if (err)
0860 return err;
0861
0862 INIT_LIST_HEAD(&rctx->chunk_list);
0863
0864 chunk = &rctx->chunk;
0865 INIT_LIST_HEAD(&chunk->entry);
0866
0867 chunk->iv_paddr = 0UL;
0868 chunk->arr_len = 0;
0869 chunk->dest_paddr = 0UL;
0870
0871 prev_in_place = false;
0872 dest_prev = ~0UL;
0873 tot_len = 0;
0874
0875 while ((nbytes = walk->nbytes) != 0) {
0876 unsigned long dest_paddr, src_paddr;
0877 bool in_place;
0878 int this_len;
0879
0880 src_paddr = (page_to_phys(walk->src.phys.page) +
0881 walk->src.phys.offset);
0882 dest_paddr = (page_to_phys(walk->dst.phys.page) +
0883 walk->dst.phys.offset);
0884 in_place = (src_paddr == dest_paddr);
0885 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
0886
0887 if (chunk->arr_len != 0) {
0888 if (in_place != prev_in_place ||
0889 (!prev_in_place &&
0890 dest_paddr != dest_prev) ||
0891 chunk->arr_len == N2_CHUNK_ARR_LEN ||
0892 tot_len + this_len > (1 << 16)) {
0893 chunk->dest_final = dest_prev;
0894 list_add_tail(&chunk->entry,
0895 &rctx->chunk_list);
0896 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
0897 if (!chunk) {
0898 err = -ENOMEM;
0899 break;
0900 }
0901 INIT_LIST_HEAD(&chunk->entry);
0902 }
0903 }
0904 if (chunk->arr_len == 0) {
0905 chunk->dest_paddr = dest_paddr;
0906 tot_len = 0;
0907 }
0908 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
0909 chunk->arr[chunk->arr_len].src_len = this_len;
0910 chunk->arr_len++;
0911
0912 dest_prev = dest_paddr + this_len;
0913 prev_in_place = in_place;
0914 tot_len += this_len;
0915
0916 err = skcipher_walk_done(walk, nbytes - this_len);
0917 if (err)
0918 break;
0919 }
0920 if (!err && chunk->arr_len != 0) {
0921 chunk->dest_final = dest_prev;
0922 list_add_tail(&chunk->entry, &rctx->chunk_list);
0923 }
0924
0925 return err;
0926 }
0927
0928 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
0929 {
0930 struct n2_request_context *rctx = skcipher_request_ctx(req);
0931 struct n2_crypto_chunk *c, *tmp;
0932
0933 if (final_iv)
0934 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
0935
0936 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
0937 list_del(&c->entry);
0938 if (unlikely(c != &rctx->chunk))
0939 kfree(c);
0940 }
0941
0942 }
0943
0944 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
0945 {
0946 struct n2_request_context *rctx = skcipher_request_ctx(req);
0947 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
0948 int err = n2_compute_chunks(req);
0949 struct n2_crypto_chunk *c, *tmp;
0950 unsigned long flags, hv_ret;
0951 struct spu_queue *qp;
0952
0953 if (err)
0954 return err;
0955
0956 qp = cpu_to_cwq[get_cpu()];
0957 err = -ENODEV;
0958 if (!qp)
0959 goto out;
0960
0961 spin_lock_irqsave(&qp->lock, flags);
0962
0963 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
0964 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
0965 if (err)
0966 break;
0967 list_del(&c->entry);
0968 if (unlikely(c != &rctx->chunk))
0969 kfree(c);
0970 }
0971 if (!err) {
0972 hv_ret = wait_for_tail(qp);
0973 if (hv_ret != HV_EOK)
0974 err = -EINVAL;
0975 }
0976
0977 spin_unlock_irqrestore(&qp->lock, flags);
0978
0979 out:
0980 put_cpu();
0981
0982 n2_chunk_complete(req, NULL);
0983 return err;
0984 }
0985
0986 static int n2_encrypt_ecb(struct skcipher_request *req)
0987 {
0988 return n2_do_ecb(req, true);
0989 }
0990
0991 static int n2_decrypt_ecb(struct skcipher_request *req)
0992 {
0993 return n2_do_ecb(req, false);
0994 }
0995
0996 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
0997 {
0998 struct n2_request_context *rctx = skcipher_request_ctx(req);
0999 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1000 unsigned long flags, hv_ret, iv_paddr;
1001 int err = n2_compute_chunks(req);
1002 struct n2_crypto_chunk *c, *tmp;
1003 struct spu_queue *qp;
1004 void *final_iv_addr;
1005
1006 final_iv_addr = NULL;
1007
1008 if (err)
1009 return err;
1010
1011 qp = cpu_to_cwq[get_cpu()];
1012 err = -ENODEV;
1013 if (!qp)
1014 goto out;
1015
1016 spin_lock_irqsave(&qp->lock, flags);
1017
1018 if (encrypt) {
1019 iv_paddr = __pa(rctx->walk.iv);
1020 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1021 entry) {
1022 c->iv_paddr = iv_paddr;
1023 err = __n2_crypt_chunk(tfm, c, qp, true);
1024 if (err)
1025 break;
1026 iv_paddr = c->dest_final - rctx->walk.blocksize;
1027 list_del(&c->entry);
1028 if (unlikely(c != &rctx->chunk))
1029 kfree(c);
1030 }
1031 final_iv_addr = __va(iv_paddr);
1032 } else {
1033 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1034 entry) {
1035 if (c == &rctx->chunk) {
1036 iv_paddr = __pa(rctx->walk.iv);
1037 } else {
1038 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1039 tmp->arr[tmp->arr_len-1].src_len -
1040 rctx->walk.blocksize);
1041 }
1042 if (!final_iv_addr) {
1043 unsigned long pa;
1044
1045 pa = (c->arr[c->arr_len-1].src_paddr +
1046 c->arr[c->arr_len-1].src_len -
1047 rctx->walk.blocksize);
1048 final_iv_addr = rctx->temp_iv;
1049 memcpy(rctx->temp_iv, __va(pa),
1050 rctx->walk.blocksize);
1051 }
1052 c->iv_paddr = iv_paddr;
1053 err = __n2_crypt_chunk(tfm, c, qp, false);
1054 if (err)
1055 break;
1056 list_del(&c->entry);
1057 if (unlikely(c != &rctx->chunk))
1058 kfree(c);
1059 }
1060 }
1061 if (!err) {
1062 hv_ret = wait_for_tail(qp);
1063 if (hv_ret != HV_EOK)
1064 err = -EINVAL;
1065 }
1066
1067 spin_unlock_irqrestore(&qp->lock, flags);
1068
1069 out:
1070 put_cpu();
1071
1072 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1073 return err;
1074 }
1075
1076 static int n2_encrypt_chaining(struct skcipher_request *req)
1077 {
1078 return n2_do_chaining(req, true);
1079 }
1080
1081 static int n2_decrypt_chaining(struct skcipher_request *req)
1082 {
1083 return n2_do_chaining(req, false);
1084 }
1085
1086 struct n2_skcipher_tmpl {
1087 const char *name;
1088 const char *drv_name;
1089 u8 block_size;
1090 u8 enc_type;
1091 struct skcipher_alg skcipher;
1092 };
1093
1094 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1095
1096 { .name = "ecb(des)",
1097 .drv_name = "ecb-des",
1098 .block_size = DES_BLOCK_SIZE,
1099 .enc_type = (ENC_TYPE_ALG_DES |
1100 ENC_TYPE_CHAINING_ECB),
1101 .skcipher = {
1102 .min_keysize = DES_KEY_SIZE,
1103 .max_keysize = DES_KEY_SIZE,
1104 .setkey = n2_des_setkey,
1105 .encrypt = n2_encrypt_ecb,
1106 .decrypt = n2_decrypt_ecb,
1107 },
1108 },
1109 { .name = "cbc(des)",
1110 .drv_name = "cbc-des",
1111 .block_size = DES_BLOCK_SIZE,
1112 .enc_type = (ENC_TYPE_ALG_DES |
1113 ENC_TYPE_CHAINING_CBC),
1114 .skcipher = {
1115 .ivsize = DES_BLOCK_SIZE,
1116 .min_keysize = DES_KEY_SIZE,
1117 .max_keysize = DES_KEY_SIZE,
1118 .setkey = n2_des_setkey,
1119 .encrypt = n2_encrypt_chaining,
1120 .decrypt = n2_decrypt_chaining,
1121 },
1122 },
1123 { .name = "cfb(des)",
1124 .drv_name = "cfb-des",
1125 .block_size = DES_BLOCK_SIZE,
1126 .enc_type = (ENC_TYPE_ALG_DES |
1127 ENC_TYPE_CHAINING_CFB),
1128 .skcipher = {
1129 .min_keysize = DES_KEY_SIZE,
1130 .max_keysize = DES_KEY_SIZE,
1131 .setkey = n2_des_setkey,
1132 .encrypt = n2_encrypt_chaining,
1133 .decrypt = n2_decrypt_chaining,
1134 },
1135 },
1136
1137
1138 { .name = "ecb(des3_ede)",
1139 .drv_name = "ecb-3des",
1140 .block_size = DES_BLOCK_SIZE,
1141 .enc_type = (ENC_TYPE_ALG_3DES |
1142 ENC_TYPE_CHAINING_ECB),
1143 .skcipher = {
1144 .min_keysize = 3 * DES_KEY_SIZE,
1145 .max_keysize = 3 * DES_KEY_SIZE,
1146 .setkey = n2_3des_setkey,
1147 .encrypt = n2_encrypt_ecb,
1148 .decrypt = n2_decrypt_ecb,
1149 },
1150 },
1151 { .name = "cbc(des3_ede)",
1152 .drv_name = "cbc-3des",
1153 .block_size = DES_BLOCK_SIZE,
1154 .enc_type = (ENC_TYPE_ALG_3DES |
1155 ENC_TYPE_CHAINING_CBC),
1156 .skcipher = {
1157 .ivsize = DES_BLOCK_SIZE,
1158 .min_keysize = 3 * DES_KEY_SIZE,
1159 .max_keysize = 3 * DES_KEY_SIZE,
1160 .setkey = n2_3des_setkey,
1161 .encrypt = n2_encrypt_chaining,
1162 .decrypt = n2_decrypt_chaining,
1163 },
1164 },
1165 { .name = "cfb(des3_ede)",
1166 .drv_name = "cfb-3des",
1167 .block_size = DES_BLOCK_SIZE,
1168 .enc_type = (ENC_TYPE_ALG_3DES |
1169 ENC_TYPE_CHAINING_CFB),
1170 .skcipher = {
1171 .min_keysize = 3 * DES_KEY_SIZE,
1172 .max_keysize = 3 * DES_KEY_SIZE,
1173 .setkey = n2_3des_setkey,
1174 .encrypt = n2_encrypt_chaining,
1175 .decrypt = n2_decrypt_chaining,
1176 },
1177 },
1178
1179 { .name = "ecb(aes)",
1180 .drv_name = "ecb-aes",
1181 .block_size = AES_BLOCK_SIZE,
1182 .enc_type = (ENC_TYPE_ALG_AES128 |
1183 ENC_TYPE_CHAINING_ECB),
1184 .skcipher = {
1185 .min_keysize = AES_MIN_KEY_SIZE,
1186 .max_keysize = AES_MAX_KEY_SIZE,
1187 .setkey = n2_aes_setkey,
1188 .encrypt = n2_encrypt_ecb,
1189 .decrypt = n2_decrypt_ecb,
1190 },
1191 },
1192 { .name = "cbc(aes)",
1193 .drv_name = "cbc-aes",
1194 .block_size = AES_BLOCK_SIZE,
1195 .enc_type = (ENC_TYPE_ALG_AES128 |
1196 ENC_TYPE_CHAINING_CBC),
1197 .skcipher = {
1198 .ivsize = AES_BLOCK_SIZE,
1199 .min_keysize = AES_MIN_KEY_SIZE,
1200 .max_keysize = AES_MAX_KEY_SIZE,
1201 .setkey = n2_aes_setkey,
1202 .encrypt = n2_encrypt_chaining,
1203 .decrypt = n2_decrypt_chaining,
1204 },
1205 },
1206 { .name = "ctr(aes)",
1207 .drv_name = "ctr-aes",
1208 .block_size = AES_BLOCK_SIZE,
1209 .enc_type = (ENC_TYPE_ALG_AES128 |
1210 ENC_TYPE_CHAINING_COUNTER),
1211 .skcipher = {
1212 .ivsize = AES_BLOCK_SIZE,
1213 .min_keysize = AES_MIN_KEY_SIZE,
1214 .max_keysize = AES_MAX_KEY_SIZE,
1215 .setkey = n2_aes_setkey,
1216 .encrypt = n2_encrypt_chaining,
1217 .decrypt = n2_encrypt_chaining,
1218 },
1219 },
1220
1221 };
1222 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1223
1224 static LIST_HEAD(skcipher_algs);
1225
1226 struct n2_hash_tmpl {
1227 const char *name;
1228 const u8 *hash_zero;
1229 const u8 *hash_init;
1230 u8 hw_op_hashsz;
1231 u8 digest_size;
1232 u8 block_size;
1233 u8 auth_type;
1234 u8 hmac_type;
1235 };
1236
1237 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1238 cpu_to_le32(MD5_H0),
1239 cpu_to_le32(MD5_H1),
1240 cpu_to_le32(MD5_H2),
1241 cpu_to_le32(MD5_H3),
1242 };
1243 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1244 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1245 };
1246 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1247 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1248 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1249 };
1250 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1251 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1252 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1253 };
1254
1255 static const struct n2_hash_tmpl hash_tmpls[] = {
1256 { .name = "md5",
1257 .hash_zero = md5_zero_message_hash,
1258 .hash_init = (u8 *)n2_md5_init,
1259 .auth_type = AUTH_TYPE_MD5,
1260 .hmac_type = AUTH_TYPE_HMAC_MD5,
1261 .hw_op_hashsz = MD5_DIGEST_SIZE,
1262 .digest_size = MD5_DIGEST_SIZE,
1263 .block_size = MD5_HMAC_BLOCK_SIZE },
1264 { .name = "sha1",
1265 .hash_zero = sha1_zero_message_hash,
1266 .hash_init = (u8 *)n2_sha1_init,
1267 .auth_type = AUTH_TYPE_SHA1,
1268 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1269 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1270 .digest_size = SHA1_DIGEST_SIZE,
1271 .block_size = SHA1_BLOCK_SIZE },
1272 { .name = "sha256",
1273 .hash_zero = sha256_zero_message_hash,
1274 .hash_init = (u8 *)n2_sha256_init,
1275 .auth_type = AUTH_TYPE_SHA256,
1276 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1277 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1278 .digest_size = SHA256_DIGEST_SIZE,
1279 .block_size = SHA256_BLOCK_SIZE },
1280 { .name = "sha224",
1281 .hash_zero = sha224_zero_message_hash,
1282 .hash_init = (u8 *)n2_sha224_init,
1283 .auth_type = AUTH_TYPE_SHA256,
1284 .hmac_type = AUTH_TYPE_RESERVED,
1285 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1286 .digest_size = SHA224_DIGEST_SIZE,
1287 .block_size = SHA224_BLOCK_SIZE },
1288 };
1289 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1290
1291 static LIST_HEAD(ahash_algs);
1292 static LIST_HEAD(hmac_algs);
1293
1294 static int algs_registered;
1295
1296 static void __n2_unregister_algs(void)
1297 {
1298 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1299 struct n2_ahash_alg *alg, *alg_tmp;
1300 struct n2_hmac_alg *hmac, *hmac_tmp;
1301
1302 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1303 crypto_unregister_skcipher(&skcipher->skcipher);
1304 list_del(&skcipher->entry);
1305 kfree(skcipher);
1306 }
1307 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1308 crypto_unregister_ahash(&hmac->derived.alg);
1309 list_del(&hmac->derived.entry);
1310 kfree(hmac);
1311 }
1312 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1313 crypto_unregister_ahash(&alg->alg);
1314 list_del(&alg->entry);
1315 kfree(alg);
1316 }
1317 }
1318
1319 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1320 {
1321 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1322 return 0;
1323 }
1324
1325 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1326 {
1327 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1328 struct skcipher_alg *alg;
1329 int err;
1330
1331 if (!p)
1332 return -ENOMEM;
1333
1334 alg = &p->skcipher;
1335 *alg = tmpl->skcipher;
1336
1337 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1338 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1339 alg->base.cra_priority = N2_CRA_PRIORITY;
1340 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1341 CRYPTO_ALG_ALLOCATES_MEMORY;
1342 alg->base.cra_blocksize = tmpl->block_size;
1343 p->enc_type = tmpl->enc_type;
1344 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1345 alg->base.cra_module = THIS_MODULE;
1346 alg->init = n2_skcipher_init_tfm;
1347
1348 list_add(&p->entry, &skcipher_algs);
1349 err = crypto_register_skcipher(alg);
1350 if (err) {
1351 pr_err("%s alg registration failed\n", alg->base.cra_name);
1352 list_del(&p->entry);
1353 kfree(p);
1354 } else {
1355 pr_info("%s alg registered\n", alg->base.cra_name);
1356 }
1357 return err;
1358 }
1359
1360 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1361 {
1362 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1363 struct ahash_alg *ahash;
1364 struct crypto_alg *base;
1365 int err;
1366
1367 if (!p)
1368 return -ENOMEM;
1369
1370 p->child_alg = n2ahash->alg.halg.base.cra_name;
1371 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1372 INIT_LIST_HEAD(&p->derived.entry);
1373
1374 ahash = &p->derived.alg;
1375 ahash->digest = n2_hmac_async_digest;
1376 ahash->setkey = n2_hmac_async_setkey;
1377
1378 base = &ahash->halg.base;
1379 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1380 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1381
1382 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1383 base->cra_init = n2_hmac_cra_init;
1384 base->cra_exit = n2_hmac_cra_exit;
1385
1386 list_add(&p->derived.entry, &hmac_algs);
1387 err = crypto_register_ahash(ahash);
1388 if (err) {
1389 pr_err("%s alg registration failed\n", base->cra_name);
1390 list_del(&p->derived.entry);
1391 kfree(p);
1392 } else {
1393 pr_info("%s alg registered\n", base->cra_name);
1394 }
1395 return err;
1396 }
1397
1398 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1399 {
1400 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1401 struct hash_alg_common *halg;
1402 struct crypto_alg *base;
1403 struct ahash_alg *ahash;
1404 int err;
1405
1406 if (!p)
1407 return -ENOMEM;
1408
1409 p->hash_zero = tmpl->hash_zero;
1410 p->hash_init = tmpl->hash_init;
1411 p->auth_type = tmpl->auth_type;
1412 p->hmac_type = tmpl->hmac_type;
1413 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1414 p->digest_size = tmpl->digest_size;
1415
1416 ahash = &p->alg;
1417 ahash->init = n2_hash_async_init;
1418 ahash->update = n2_hash_async_update;
1419 ahash->final = n2_hash_async_final;
1420 ahash->finup = n2_hash_async_finup;
1421 ahash->digest = n2_hash_async_digest;
1422 ahash->export = n2_hash_async_noexport;
1423 ahash->import = n2_hash_async_noimport;
1424
1425 halg = &ahash->halg;
1426 halg->digestsize = tmpl->digest_size;
1427
1428 base = &halg->base;
1429 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1430 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1431 base->cra_priority = N2_CRA_PRIORITY;
1432 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1433 CRYPTO_ALG_NEED_FALLBACK;
1434 base->cra_blocksize = tmpl->block_size;
1435 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1436 base->cra_module = THIS_MODULE;
1437 base->cra_init = n2_hash_cra_init;
1438 base->cra_exit = n2_hash_cra_exit;
1439
1440 list_add(&p->entry, &ahash_algs);
1441 err = crypto_register_ahash(ahash);
1442 if (err) {
1443 pr_err("%s alg registration failed\n", base->cra_name);
1444 list_del(&p->entry);
1445 kfree(p);
1446 } else {
1447 pr_info("%s alg registered\n", base->cra_name);
1448 }
1449 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1450 err = __n2_register_one_hmac(p);
1451 return err;
1452 }
1453
1454 static int n2_register_algs(void)
1455 {
1456 int i, err = 0;
1457
1458 mutex_lock(&spu_lock);
1459 if (algs_registered++)
1460 goto out;
1461
1462 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1463 err = __n2_register_one_ahash(&hash_tmpls[i]);
1464 if (err) {
1465 __n2_unregister_algs();
1466 goto out;
1467 }
1468 }
1469 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1470 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1471 if (err) {
1472 __n2_unregister_algs();
1473 goto out;
1474 }
1475 }
1476
1477 out:
1478 mutex_unlock(&spu_lock);
1479 return err;
1480 }
1481
1482 static void n2_unregister_algs(void)
1483 {
1484 mutex_lock(&spu_lock);
1485 if (!--algs_registered)
1486 __n2_unregister_algs();
1487 mutex_unlock(&spu_lock);
1488 }
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1501 unsigned long dev_ino)
1502 {
1503 const unsigned int *dev_intrs;
1504 unsigned int intr;
1505 int i;
1506
1507 for (i = 0; i < ip->num_intrs; i++) {
1508 if (ip->ino_table[i].ino == dev_ino)
1509 break;
1510 }
1511 if (i == ip->num_intrs)
1512 return -ENODEV;
1513
1514 intr = ip->ino_table[i].intr;
1515
1516 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1517 if (!dev_intrs)
1518 return -ENODEV;
1519
1520 for (i = 0; i < dev->archdata.num_irqs; i++) {
1521 if (dev_intrs[i] == intr)
1522 return i;
1523 }
1524
1525 return -ENODEV;
1526 }
1527
1528 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1529 const char *irq_name, struct spu_queue *p,
1530 irq_handler_t handler)
1531 {
1532 unsigned long herr;
1533 int index;
1534
1535 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1536 if (herr)
1537 return -EINVAL;
1538
1539 index = find_devino_index(dev, ip, p->devino);
1540 if (index < 0)
1541 return index;
1542
1543 p->irq = dev->archdata.irqs[index];
1544
1545 sprintf(p->irq_name, "%s-%d", irq_name, index);
1546
1547 return request_irq(p->irq, handler, 0, p->irq_name, p);
1548 }
1549
1550 static struct kmem_cache *queue_cache[2];
1551
1552 static void *new_queue(unsigned long q_type)
1553 {
1554 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1555 }
1556
1557 static void free_queue(void *p, unsigned long q_type)
1558 {
1559 kmem_cache_free(queue_cache[q_type - 1], p);
1560 }
1561
1562 static int queue_cache_init(void)
1563 {
1564 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1565 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1566 kmem_cache_create("mau_queue",
1567 (MAU_NUM_ENTRIES *
1568 MAU_ENTRY_SIZE),
1569 MAU_ENTRY_SIZE, 0, NULL);
1570 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1571 return -ENOMEM;
1572
1573 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1574 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1575 kmem_cache_create("cwq_queue",
1576 (CWQ_NUM_ENTRIES *
1577 CWQ_ENTRY_SIZE),
1578 CWQ_ENTRY_SIZE, 0, NULL);
1579 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1580 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1581 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1582 return -ENOMEM;
1583 }
1584 return 0;
1585 }
1586
1587 static void queue_cache_destroy(void)
1588 {
1589 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1590 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1591 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1592 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1593 }
1594
1595 static long spu_queue_register_workfn(void *arg)
1596 {
1597 struct spu_qreg *qr = arg;
1598 struct spu_queue *p = qr->queue;
1599 unsigned long q_type = qr->type;
1600 unsigned long hv_ret;
1601
1602 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1603 CWQ_NUM_ENTRIES, &p->qhandle);
1604 if (!hv_ret)
1605 sun4v_ncs_sethead_marker(p->qhandle, 0);
1606
1607 return hv_ret ? -EINVAL : 0;
1608 }
1609
1610 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1611 {
1612 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1613 struct spu_qreg qr = { .queue = p, .type = q_type };
1614
1615 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1616 }
1617
1618 static int spu_queue_setup(struct spu_queue *p)
1619 {
1620 int err;
1621
1622 p->q = new_queue(p->q_type);
1623 if (!p->q)
1624 return -ENOMEM;
1625
1626 err = spu_queue_register(p, p->q_type);
1627 if (err) {
1628 free_queue(p->q, p->q_type);
1629 p->q = NULL;
1630 }
1631
1632 return err;
1633 }
1634
1635 static void spu_queue_destroy(struct spu_queue *p)
1636 {
1637 unsigned long hv_ret;
1638
1639 if (!p->q)
1640 return;
1641
1642 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1643
1644 if (!hv_ret)
1645 free_queue(p->q, p->q_type);
1646 }
1647
1648 static void spu_list_destroy(struct list_head *list)
1649 {
1650 struct spu_queue *p, *n;
1651
1652 list_for_each_entry_safe(p, n, list, list) {
1653 int i;
1654
1655 for (i = 0; i < NR_CPUS; i++) {
1656 if (cpu_to_cwq[i] == p)
1657 cpu_to_cwq[i] = NULL;
1658 }
1659
1660 if (p->irq) {
1661 free_irq(p->irq, p);
1662 p->irq = 0;
1663 }
1664 spu_queue_destroy(p);
1665 list_del(&p->list);
1666 kfree(p);
1667 }
1668 }
1669
1670
1671
1672
1673 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1674 struct platform_device *dev,
1675 u64 node, struct spu_queue *p,
1676 struct spu_queue **table)
1677 {
1678 u64 arc;
1679
1680 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1681 u64 tgt = mdesc_arc_target(mdesc, arc);
1682 const char *name = mdesc_node_name(mdesc, tgt);
1683 const u64 *id;
1684
1685 if (strcmp(name, "cpu"))
1686 continue;
1687 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1688 if (table[*id] != NULL) {
1689 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1690 dev->dev.of_node);
1691 return -EINVAL;
1692 }
1693 cpumask_set_cpu(*id, &p->sharing);
1694 table[*id] = p;
1695 }
1696 return 0;
1697 }
1698
1699
1700 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1701 struct platform_device *dev, struct mdesc_handle *mdesc,
1702 u64 node, const char *iname, unsigned long q_type,
1703 irq_handler_t handler, struct spu_queue **table)
1704 {
1705 struct spu_queue *p;
1706 int err;
1707
1708 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1709 if (!p) {
1710 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1711 dev->dev.of_node);
1712 return -ENOMEM;
1713 }
1714
1715 cpumask_clear(&p->sharing);
1716 spin_lock_init(&p->lock);
1717 p->q_type = q_type;
1718 INIT_LIST_HEAD(&p->jobs);
1719 list_add(&p->list, list);
1720
1721 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1722 if (err)
1723 return err;
1724
1725 err = spu_queue_setup(p);
1726 if (err)
1727 return err;
1728
1729 return spu_map_ino(dev, ip, iname, p, handler);
1730 }
1731
1732 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1733 struct spu_mdesc_info *ip, struct list_head *list,
1734 const char *exec_name, unsigned long q_type,
1735 irq_handler_t handler, struct spu_queue **table)
1736 {
1737 int err = 0;
1738 u64 node;
1739
1740 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1741 const char *type;
1742
1743 type = mdesc_get_property(mdesc, node, "type", NULL);
1744 if (!type || strcmp(type, exec_name))
1745 continue;
1746
1747 err = handle_exec_unit(ip, list, dev, mdesc, node,
1748 exec_name, q_type, handler, table);
1749 if (err) {
1750 spu_list_destroy(list);
1751 break;
1752 }
1753 }
1754
1755 return err;
1756 }
1757
1758 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1759 struct spu_mdesc_info *ip)
1760 {
1761 const u64 *ino;
1762 int ino_len;
1763 int i;
1764
1765 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1766 if (!ino) {
1767 printk("NO 'ino'\n");
1768 return -ENODEV;
1769 }
1770
1771 ip->num_intrs = ino_len / sizeof(u64);
1772 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1773 ip->num_intrs),
1774 GFP_KERNEL);
1775 if (!ip->ino_table)
1776 return -ENOMEM;
1777
1778 for (i = 0; i < ip->num_intrs; i++) {
1779 struct ino_blob *b = &ip->ino_table[i];
1780 b->intr = i + 1;
1781 b->ino = ino[i];
1782 }
1783
1784 return 0;
1785 }
1786
1787 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1788 struct platform_device *dev,
1789 struct spu_mdesc_info *ip,
1790 const char *node_name)
1791 {
1792 const unsigned int *reg;
1793 u64 node;
1794
1795 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1796 if (!reg)
1797 return -ENODEV;
1798
1799 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1800 const char *name;
1801 const u64 *chdl;
1802
1803 name = mdesc_get_property(mdesc, node, "name", NULL);
1804 if (!name || strcmp(name, node_name))
1805 continue;
1806 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1807 if (!chdl || (*chdl != *reg))
1808 continue;
1809 ip->cfg_handle = *chdl;
1810 return get_irq_props(mdesc, node, ip);
1811 }
1812
1813 return -ENODEV;
1814 }
1815
1816 static unsigned long n2_spu_hvapi_major;
1817 static unsigned long n2_spu_hvapi_minor;
1818
1819 static int n2_spu_hvapi_register(void)
1820 {
1821 int err;
1822
1823 n2_spu_hvapi_major = 2;
1824 n2_spu_hvapi_minor = 0;
1825
1826 err = sun4v_hvapi_register(HV_GRP_NCS,
1827 n2_spu_hvapi_major,
1828 &n2_spu_hvapi_minor);
1829
1830 if (!err)
1831 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1832 n2_spu_hvapi_major,
1833 n2_spu_hvapi_minor);
1834
1835 return err;
1836 }
1837
1838 static void n2_spu_hvapi_unregister(void)
1839 {
1840 sun4v_hvapi_unregister(HV_GRP_NCS);
1841 }
1842
1843 static int global_ref;
1844
1845 static int grab_global_resources(void)
1846 {
1847 int err = 0;
1848
1849 mutex_lock(&spu_lock);
1850
1851 if (global_ref++)
1852 goto out;
1853
1854 err = n2_spu_hvapi_register();
1855 if (err)
1856 goto out;
1857
1858 err = queue_cache_init();
1859 if (err)
1860 goto out_hvapi_release;
1861
1862 err = -ENOMEM;
1863 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1864 GFP_KERNEL);
1865 if (!cpu_to_cwq)
1866 goto out_queue_cache_destroy;
1867
1868 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1869 GFP_KERNEL);
1870 if (!cpu_to_mau)
1871 goto out_free_cwq_table;
1872
1873 err = 0;
1874
1875 out:
1876 if (err)
1877 global_ref--;
1878 mutex_unlock(&spu_lock);
1879 return err;
1880
1881 out_free_cwq_table:
1882 kfree(cpu_to_cwq);
1883 cpu_to_cwq = NULL;
1884
1885 out_queue_cache_destroy:
1886 queue_cache_destroy();
1887
1888 out_hvapi_release:
1889 n2_spu_hvapi_unregister();
1890 goto out;
1891 }
1892
1893 static void release_global_resources(void)
1894 {
1895 mutex_lock(&spu_lock);
1896 if (!--global_ref) {
1897 kfree(cpu_to_cwq);
1898 cpu_to_cwq = NULL;
1899
1900 kfree(cpu_to_mau);
1901 cpu_to_mau = NULL;
1902
1903 queue_cache_destroy();
1904 n2_spu_hvapi_unregister();
1905 }
1906 mutex_unlock(&spu_lock);
1907 }
1908
1909 static struct n2_crypto *alloc_n2cp(void)
1910 {
1911 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1912
1913 if (np)
1914 INIT_LIST_HEAD(&np->cwq_list);
1915
1916 return np;
1917 }
1918
1919 static void free_n2cp(struct n2_crypto *np)
1920 {
1921 kfree(np->cwq_info.ino_table);
1922 np->cwq_info.ino_table = NULL;
1923
1924 kfree(np);
1925 }
1926
1927 static void n2_spu_driver_version(void)
1928 {
1929 static int n2_spu_version_printed;
1930
1931 if (n2_spu_version_printed++ == 0)
1932 pr_info("%s", version);
1933 }
1934
1935 static int n2_crypto_probe(struct platform_device *dev)
1936 {
1937 struct mdesc_handle *mdesc;
1938 struct n2_crypto *np;
1939 int err;
1940
1941 n2_spu_driver_version();
1942
1943 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1944
1945 np = alloc_n2cp();
1946 if (!np) {
1947 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1948 dev->dev.of_node);
1949 return -ENOMEM;
1950 }
1951
1952 err = grab_global_resources();
1953 if (err) {
1954 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1955 dev->dev.of_node);
1956 goto out_free_n2cp;
1957 }
1958
1959 mdesc = mdesc_grab();
1960
1961 if (!mdesc) {
1962 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1963 dev->dev.of_node);
1964 err = -ENODEV;
1965 goto out_free_global;
1966 }
1967 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1968 if (err) {
1969 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1970 dev->dev.of_node);
1971 mdesc_release(mdesc);
1972 goto out_free_global;
1973 }
1974
1975 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1976 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1977 cpu_to_cwq);
1978 mdesc_release(mdesc);
1979
1980 if (err) {
1981 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1982 dev->dev.of_node);
1983 goto out_free_global;
1984 }
1985
1986 err = n2_register_algs();
1987 if (err) {
1988 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1989 dev->dev.of_node);
1990 goto out_free_spu_list;
1991 }
1992
1993 dev_set_drvdata(&dev->dev, np);
1994
1995 return 0;
1996
1997 out_free_spu_list:
1998 spu_list_destroy(&np->cwq_list);
1999
2000 out_free_global:
2001 release_global_resources();
2002
2003 out_free_n2cp:
2004 free_n2cp(np);
2005
2006 return err;
2007 }
2008
2009 static int n2_crypto_remove(struct platform_device *dev)
2010 {
2011 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2012
2013 n2_unregister_algs();
2014
2015 spu_list_destroy(&np->cwq_list);
2016
2017 release_global_resources();
2018
2019 free_n2cp(np);
2020
2021 return 0;
2022 }
2023
2024 static struct n2_mau *alloc_ncp(void)
2025 {
2026 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2027
2028 if (mp)
2029 INIT_LIST_HEAD(&mp->mau_list);
2030
2031 return mp;
2032 }
2033
2034 static void free_ncp(struct n2_mau *mp)
2035 {
2036 kfree(mp->mau_info.ino_table);
2037 mp->mau_info.ino_table = NULL;
2038
2039 kfree(mp);
2040 }
2041
2042 static int n2_mau_probe(struct platform_device *dev)
2043 {
2044 struct mdesc_handle *mdesc;
2045 struct n2_mau *mp;
2046 int err;
2047
2048 n2_spu_driver_version();
2049
2050 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2051
2052 mp = alloc_ncp();
2053 if (!mp) {
2054 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2055 dev->dev.of_node);
2056 return -ENOMEM;
2057 }
2058
2059 err = grab_global_resources();
2060 if (err) {
2061 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2062 dev->dev.of_node);
2063 goto out_free_ncp;
2064 }
2065
2066 mdesc = mdesc_grab();
2067
2068 if (!mdesc) {
2069 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2070 dev->dev.of_node);
2071 err = -ENODEV;
2072 goto out_free_global;
2073 }
2074
2075 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2076 if (err) {
2077 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2078 dev->dev.of_node);
2079 mdesc_release(mdesc);
2080 goto out_free_global;
2081 }
2082
2083 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2084 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2085 cpu_to_mau);
2086 mdesc_release(mdesc);
2087
2088 if (err) {
2089 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2090 dev->dev.of_node);
2091 goto out_free_global;
2092 }
2093
2094 dev_set_drvdata(&dev->dev, mp);
2095
2096 return 0;
2097
2098 out_free_global:
2099 release_global_resources();
2100
2101 out_free_ncp:
2102 free_ncp(mp);
2103
2104 return err;
2105 }
2106
2107 static int n2_mau_remove(struct platform_device *dev)
2108 {
2109 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2110
2111 spu_list_destroy(&mp->mau_list);
2112
2113 release_global_resources();
2114
2115 free_ncp(mp);
2116
2117 return 0;
2118 }
2119
2120 static const struct of_device_id n2_crypto_match[] = {
2121 {
2122 .name = "n2cp",
2123 .compatible = "SUNW,n2-cwq",
2124 },
2125 {
2126 .name = "n2cp",
2127 .compatible = "SUNW,vf-cwq",
2128 },
2129 {
2130 .name = "n2cp",
2131 .compatible = "SUNW,kt-cwq",
2132 },
2133 {},
2134 };
2135
2136 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2137
2138 static struct platform_driver n2_crypto_driver = {
2139 .driver = {
2140 .name = "n2cp",
2141 .of_match_table = n2_crypto_match,
2142 },
2143 .probe = n2_crypto_probe,
2144 .remove = n2_crypto_remove,
2145 };
2146
2147 static const struct of_device_id n2_mau_match[] = {
2148 {
2149 .name = "ncp",
2150 .compatible = "SUNW,n2-mau",
2151 },
2152 {
2153 .name = "ncp",
2154 .compatible = "SUNW,vf-mau",
2155 },
2156 {
2157 .name = "ncp",
2158 .compatible = "SUNW,kt-mau",
2159 },
2160 {},
2161 };
2162
2163 MODULE_DEVICE_TABLE(of, n2_mau_match);
2164
2165 static struct platform_driver n2_mau_driver = {
2166 .driver = {
2167 .name = "ncp",
2168 .of_match_table = n2_mau_match,
2169 },
2170 .probe = n2_mau_probe,
2171 .remove = n2_mau_remove,
2172 };
2173
2174 static struct platform_driver * const drivers[] = {
2175 &n2_crypto_driver,
2176 &n2_mau_driver,
2177 };
2178
2179 static int __init n2_init(void)
2180 {
2181 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2182 }
2183
2184 static void __exit n2_exit(void)
2185 {
2186 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2187 }
2188
2189 module_init(n2_init);
2190 module_exit(n2_exit);