Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
0003  *
0004  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
0005  */
0006 
0007 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0008 
0009 #include <linux/kernel.h>
0010 #include <linux/module.h>
0011 #include <linux/of.h>
0012 #include <linux/of_device.h>
0013 #include <linux/cpumask.h>
0014 #include <linux/slab.h>
0015 #include <linux/interrupt.h>
0016 #include <linux/crypto.h>
0017 #include <crypto/md5.h>
0018 #include <crypto/sha1.h>
0019 #include <crypto/sha2.h>
0020 #include <crypto/aes.h>
0021 #include <crypto/internal/des.h>
0022 #include <linux/mutex.h>
0023 #include <linux/delay.h>
0024 #include <linux/sched.h>
0025 
0026 #include <crypto/internal/hash.h>
0027 #include <crypto/internal/skcipher.h>
0028 #include <crypto/scatterwalk.h>
0029 #include <crypto/algapi.h>
0030 
0031 #include <asm/hypervisor.h>
0032 #include <asm/mdesc.h>
0033 
0034 #include "n2_core.h"
0035 
0036 #define DRV_MODULE_NAME     "n2_crypto"
0037 #define DRV_MODULE_VERSION  "0.2"
0038 #define DRV_MODULE_RELDATE  "July 28, 2011"
0039 
0040 static const char version[] =
0041     DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
0042 
0043 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
0044 MODULE_DESCRIPTION("Niagara2 Crypto driver");
0045 MODULE_LICENSE("GPL");
0046 MODULE_VERSION(DRV_MODULE_VERSION);
0047 
0048 #define N2_CRA_PRIORITY     200
0049 
0050 static DEFINE_MUTEX(spu_lock);
0051 
0052 struct spu_queue {
0053     cpumask_t       sharing;
0054     unsigned long       qhandle;
0055 
0056     spinlock_t      lock;
0057     u8          q_type;
0058     void            *q;
0059     unsigned long       head;
0060     unsigned long       tail;
0061     struct list_head    jobs;
0062 
0063     unsigned long       devino;
0064 
0065     char            irq_name[32];
0066     unsigned int        irq;
0067 
0068     struct list_head    list;
0069 };
0070 
0071 struct spu_qreg {
0072     struct spu_queue    *queue;
0073     unsigned long       type;
0074 };
0075 
0076 static struct spu_queue **cpu_to_cwq;
0077 static struct spu_queue **cpu_to_mau;
0078 
0079 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
0080 {
0081     if (q->q_type == HV_NCS_QTYPE_MAU) {
0082         off += MAU_ENTRY_SIZE;
0083         if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
0084             off = 0;
0085     } else {
0086         off += CWQ_ENTRY_SIZE;
0087         if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
0088             off = 0;
0089     }
0090     return off;
0091 }
0092 
0093 struct n2_request_common {
0094     struct list_head    entry;
0095     unsigned int        offset;
0096 };
0097 #define OFFSET_NOT_RUNNING  (~(unsigned int)0)
0098 
0099 /* An async job request records the final tail value it used in
0100  * n2_request_common->offset, test to see if that offset is in
0101  * the range old_head, new_head, inclusive.
0102  */
0103 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
0104                 unsigned long old_head, unsigned long new_head)
0105 {
0106     if (old_head <= new_head) {
0107         if (offset > old_head && offset <= new_head)
0108             return true;
0109     } else {
0110         if (offset > old_head || offset <= new_head)
0111             return true;
0112     }
0113     return false;
0114 }
0115 
0116 /* When the HEAD marker is unequal to the actual HEAD, we get
0117  * a virtual device INO interrupt.  We should process the
0118  * completed CWQ entries and adjust the HEAD marker to clear
0119  * the IRQ.
0120  */
0121 static irqreturn_t cwq_intr(int irq, void *dev_id)
0122 {
0123     unsigned long off, new_head, hv_ret;
0124     struct spu_queue *q = dev_id;
0125 
0126     pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
0127            smp_processor_id(), q->qhandle);
0128 
0129     spin_lock(&q->lock);
0130 
0131     hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
0132 
0133     pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
0134            smp_processor_id(), new_head, hv_ret);
0135 
0136     for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
0137         /* XXX ... XXX */
0138     }
0139 
0140     hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
0141     if (hv_ret == HV_EOK)
0142         q->head = new_head;
0143 
0144     spin_unlock(&q->lock);
0145 
0146     return IRQ_HANDLED;
0147 }
0148 
0149 static irqreturn_t mau_intr(int irq, void *dev_id)
0150 {
0151     struct spu_queue *q = dev_id;
0152     unsigned long head, hv_ret;
0153 
0154     spin_lock(&q->lock);
0155 
0156     pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
0157            smp_processor_id(), q->qhandle);
0158 
0159     hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
0160 
0161     pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
0162            smp_processor_id(), head, hv_ret);
0163 
0164     sun4v_ncs_sethead_marker(q->qhandle, head);
0165 
0166     spin_unlock(&q->lock);
0167 
0168     return IRQ_HANDLED;
0169 }
0170 
0171 static void *spu_queue_next(struct spu_queue *q, void *cur)
0172 {
0173     return q->q + spu_next_offset(q, cur - q->q);
0174 }
0175 
0176 static int spu_queue_num_free(struct spu_queue *q)
0177 {
0178     unsigned long head = q->head;
0179     unsigned long tail = q->tail;
0180     unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
0181     unsigned long diff;
0182 
0183     if (head > tail)
0184         diff = head - tail;
0185     else
0186         diff = (end - tail) + head;
0187 
0188     return (diff / CWQ_ENTRY_SIZE) - 1;
0189 }
0190 
0191 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
0192 {
0193     int avail = spu_queue_num_free(q);
0194 
0195     if (avail >= num_entries)
0196         return q->q + q->tail;
0197 
0198     return NULL;
0199 }
0200 
0201 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
0202 {
0203     unsigned long hv_ret, new_tail;
0204 
0205     new_tail = spu_next_offset(q, last - q->q);
0206 
0207     hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
0208     if (hv_ret == HV_EOK)
0209         q->tail = new_tail;
0210     return hv_ret;
0211 }
0212 
0213 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
0214                  int enc_type, int auth_type,
0215                  unsigned int hash_len,
0216                  bool sfas, bool sob, bool eob, bool encrypt,
0217                  int opcode)
0218 {
0219     u64 word = (len - 1) & CONTROL_LEN;
0220 
0221     word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
0222     word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
0223     word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
0224     if (sfas)
0225         word |= CONTROL_STORE_FINAL_AUTH_STATE;
0226     if (sob)
0227         word |= CONTROL_START_OF_BLOCK;
0228     if (eob)
0229         word |= CONTROL_END_OF_BLOCK;
0230     if (encrypt)
0231         word |= CONTROL_ENCRYPT;
0232     if (hmac_key_len)
0233         word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
0234     if (hash_len)
0235         word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
0236 
0237     return word;
0238 }
0239 
0240 #if 0
0241 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
0242 {
0243     if (this_len >= 64 ||
0244         qp->head != qp->tail)
0245         return true;
0246     return false;
0247 }
0248 #endif
0249 
0250 struct n2_ahash_alg {
0251     struct list_head    entry;
0252     const u8        *hash_zero;
0253     const u8        *hash_init;
0254     u8          hw_op_hashsz;
0255     u8          digest_size;
0256     u8          auth_type;
0257     u8          hmac_type;
0258     struct ahash_alg    alg;
0259 };
0260 
0261 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
0262 {
0263     struct crypto_alg *alg = tfm->__crt_alg;
0264     struct ahash_alg *ahash_alg;
0265 
0266     ahash_alg = container_of(alg, struct ahash_alg, halg.base);
0267 
0268     return container_of(ahash_alg, struct n2_ahash_alg, alg);
0269 }
0270 
0271 struct n2_hmac_alg {
0272     const char      *child_alg;
0273     struct n2_ahash_alg derived;
0274 };
0275 
0276 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
0277 {
0278     struct crypto_alg *alg = tfm->__crt_alg;
0279     struct ahash_alg *ahash_alg;
0280 
0281     ahash_alg = container_of(alg, struct ahash_alg, halg.base);
0282 
0283     return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
0284 }
0285 
0286 struct n2_hash_ctx {
0287     struct crypto_ahash     *fallback_tfm;
0288 };
0289 
0290 #define N2_HASH_KEY_MAX         32 /* HW limit for all HMAC requests */
0291 
0292 struct n2_hmac_ctx {
0293     struct n2_hash_ctx      base;
0294 
0295     struct crypto_shash     *child_shash;
0296 
0297     int             hash_key_len;
0298     unsigned char           hash_key[N2_HASH_KEY_MAX];
0299 };
0300 
0301 struct n2_hash_req_ctx {
0302     union {
0303         struct md5_state    md5;
0304         struct sha1_state   sha1;
0305         struct sha256_state sha256;
0306     } u;
0307 
0308     struct ahash_request        fallback_req;
0309 };
0310 
0311 static int n2_hash_async_init(struct ahash_request *req)
0312 {
0313     struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0314     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0315     struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0316 
0317     ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0318     rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0319 
0320     return crypto_ahash_init(&rctx->fallback_req);
0321 }
0322 
0323 static int n2_hash_async_update(struct ahash_request *req)
0324 {
0325     struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0326     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0327     struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0328 
0329     ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0330     rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0331     rctx->fallback_req.nbytes = req->nbytes;
0332     rctx->fallback_req.src = req->src;
0333 
0334     return crypto_ahash_update(&rctx->fallback_req);
0335 }
0336 
0337 static int n2_hash_async_final(struct ahash_request *req)
0338 {
0339     struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0340     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0341     struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0342 
0343     ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0344     rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0345     rctx->fallback_req.result = req->result;
0346 
0347     return crypto_ahash_final(&rctx->fallback_req);
0348 }
0349 
0350 static int n2_hash_async_finup(struct ahash_request *req)
0351 {
0352     struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0353     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0354     struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0355 
0356     ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0357     rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0358     rctx->fallback_req.nbytes = req->nbytes;
0359     rctx->fallback_req.src = req->src;
0360     rctx->fallback_req.result = req->result;
0361 
0362     return crypto_ahash_finup(&rctx->fallback_req);
0363 }
0364 
0365 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
0366 {
0367     return -ENOSYS;
0368 }
0369 
0370 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
0371 {
0372     return -ENOSYS;
0373 }
0374 
0375 static int n2_hash_cra_init(struct crypto_tfm *tfm)
0376 {
0377     const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
0378     struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0379     struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
0380     struct crypto_ahash *fallback_tfm;
0381     int err;
0382 
0383     fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
0384                       CRYPTO_ALG_NEED_FALLBACK);
0385     if (IS_ERR(fallback_tfm)) {
0386         pr_warn("Fallback driver '%s' could not be loaded!\n",
0387             fallback_driver_name);
0388         err = PTR_ERR(fallback_tfm);
0389         goto out;
0390     }
0391 
0392     crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
0393                      crypto_ahash_reqsize(fallback_tfm)));
0394 
0395     ctx->fallback_tfm = fallback_tfm;
0396     return 0;
0397 
0398 out:
0399     return err;
0400 }
0401 
0402 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
0403 {
0404     struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0405     struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
0406 
0407     crypto_free_ahash(ctx->fallback_tfm);
0408 }
0409 
0410 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
0411 {
0412     const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
0413     struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0414     struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
0415     struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
0416     struct crypto_ahash *fallback_tfm;
0417     struct crypto_shash *child_shash;
0418     int err;
0419 
0420     fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
0421                       CRYPTO_ALG_NEED_FALLBACK);
0422     if (IS_ERR(fallback_tfm)) {
0423         pr_warn("Fallback driver '%s' could not be loaded!\n",
0424             fallback_driver_name);
0425         err = PTR_ERR(fallback_tfm);
0426         goto out;
0427     }
0428 
0429     child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
0430     if (IS_ERR(child_shash)) {
0431         pr_warn("Child shash '%s' could not be loaded!\n",
0432             n2alg->child_alg);
0433         err = PTR_ERR(child_shash);
0434         goto out_free_fallback;
0435     }
0436 
0437     crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
0438                      crypto_ahash_reqsize(fallback_tfm)));
0439 
0440     ctx->child_shash = child_shash;
0441     ctx->base.fallback_tfm = fallback_tfm;
0442     return 0;
0443 
0444 out_free_fallback:
0445     crypto_free_ahash(fallback_tfm);
0446 
0447 out:
0448     return err;
0449 }
0450 
0451 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
0452 {
0453     struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0454     struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
0455 
0456     crypto_free_ahash(ctx->base.fallback_tfm);
0457     crypto_free_shash(ctx->child_shash);
0458 }
0459 
0460 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
0461                 unsigned int keylen)
0462 {
0463     struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
0464     struct crypto_shash *child_shash = ctx->child_shash;
0465     struct crypto_ahash *fallback_tfm;
0466     int err, bs, ds;
0467 
0468     fallback_tfm = ctx->base.fallback_tfm;
0469     err = crypto_ahash_setkey(fallback_tfm, key, keylen);
0470     if (err)
0471         return err;
0472 
0473     bs = crypto_shash_blocksize(child_shash);
0474     ds = crypto_shash_digestsize(child_shash);
0475     BUG_ON(ds > N2_HASH_KEY_MAX);
0476     if (keylen > bs) {
0477         err = crypto_shash_tfm_digest(child_shash, key, keylen,
0478                           ctx->hash_key);
0479         if (err)
0480             return err;
0481         keylen = ds;
0482     } else if (keylen <= N2_HASH_KEY_MAX)
0483         memcpy(ctx->hash_key, key, keylen);
0484 
0485     ctx->hash_key_len = keylen;
0486 
0487     return err;
0488 }
0489 
0490 static unsigned long wait_for_tail(struct spu_queue *qp)
0491 {
0492     unsigned long head, hv_ret;
0493 
0494     do {
0495         hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
0496         if (hv_ret != HV_EOK) {
0497             pr_err("Hypervisor error on gethead\n");
0498             break;
0499         }
0500         if (head == qp->tail) {
0501             qp->head = head;
0502             break;
0503         }
0504     } while (1);
0505     return hv_ret;
0506 }
0507 
0508 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
0509                           struct cwq_initial_entry *ent)
0510 {
0511     unsigned long hv_ret = spu_queue_submit(qp, ent);
0512 
0513     if (hv_ret == HV_EOK)
0514         hv_ret = wait_for_tail(qp);
0515 
0516     return hv_ret;
0517 }
0518 
0519 static int n2_do_async_digest(struct ahash_request *req,
0520                   unsigned int auth_type, unsigned int digest_size,
0521                   unsigned int result_size, void *hash_loc,
0522                   unsigned long auth_key, unsigned int auth_key_len)
0523 {
0524     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0525     struct cwq_initial_entry *ent;
0526     struct crypto_hash_walk walk;
0527     struct spu_queue *qp;
0528     unsigned long flags;
0529     int err = -ENODEV;
0530     int nbytes, cpu;
0531 
0532     /* The total effective length of the operation may not
0533      * exceed 2^16.
0534      */
0535     if (unlikely(req->nbytes > (1 << 16))) {
0536         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0537         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0538 
0539         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0540         rctx->fallback_req.base.flags =
0541             req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0542         rctx->fallback_req.nbytes = req->nbytes;
0543         rctx->fallback_req.src = req->src;
0544         rctx->fallback_req.result = req->result;
0545 
0546         return crypto_ahash_digest(&rctx->fallback_req);
0547     }
0548 
0549     nbytes = crypto_hash_walk_first(req, &walk);
0550 
0551     cpu = get_cpu();
0552     qp = cpu_to_cwq[cpu];
0553     if (!qp)
0554         goto out;
0555 
0556     spin_lock_irqsave(&qp->lock, flags);
0557 
0558     /* XXX can do better, improve this later by doing a by-hand scatterlist
0559      * XXX walk, etc.
0560      */
0561     ent = qp->q + qp->tail;
0562 
0563     ent->control = control_word_base(nbytes, auth_key_len, 0,
0564                      auth_type, digest_size,
0565                      false, true, false, false,
0566                      OPCODE_INPLACE_BIT |
0567                      OPCODE_AUTH_MAC);
0568     ent->src_addr = __pa(walk.data);
0569     ent->auth_key_addr = auth_key;
0570     ent->auth_iv_addr = __pa(hash_loc);
0571     ent->final_auth_state_addr = 0UL;
0572     ent->enc_key_addr = 0UL;
0573     ent->enc_iv_addr = 0UL;
0574     ent->dest_addr = __pa(hash_loc);
0575 
0576     nbytes = crypto_hash_walk_done(&walk, 0);
0577     while (nbytes > 0) {
0578         ent = spu_queue_next(qp, ent);
0579 
0580         ent->control = (nbytes - 1);
0581         ent->src_addr = __pa(walk.data);
0582         ent->auth_key_addr = 0UL;
0583         ent->auth_iv_addr = 0UL;
0584         ent->final_auth_state_addr = 0UL;
0585         ent->enc_key_addr = 0UL;
0586         ent->enc_iv_addr = 0UL;
0587         ent->dest_addr = 0UL;
0588 
0589         nbytes = crypto_hash_walk_done(&walk, 0);
0590     }
0591     ent->control |= CONTROL_END_OF_BLOCK;
0592 
0593     if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
0594         err = -EINVAL;
0595     else
0596         err = 0;
0597 
0598     spin_unlock_irqrestore(&qp->lock, flags);
0599 
0600     if (!err)
0601         memcpy(req->result, hash_loc, result_size);
0602 out:
0603     put_cpu();
0604 
0605     return err;
0606 }
0607 
0608 static int n2_hash_async_digest(struct ahash_request *req)
0609 {
0610     struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
0611     struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0612     int ds;
0613 
0614     ds = n2alg->digest_size;
0615     if (unlikely(req->nbytes == 0)) {
0616         memcpy(req->result, n2alg->hash_zero, ds);
0617         return 0;
0618     }
0619     memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
0620 
0621     return n2_do_async_digest(req, n2alg->auth_type,
0622                   n2alg->hw_op_hashsz, ds,
0623                   &rctx->u, 0UL, 0);
0624 }
0625 
0626 static int n2_hmac_async_digest(struct ahash_request *req)
0627 {
0628     struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
0629     struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0630     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0631     struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
0632     int ds;
0633 
0634     ds = n2alg->derived.digest_size;
0635     if (unlikely(req->nbytes == 0) ||
0636         unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
0637         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
0638         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
0639 
0640         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
0641         rctx->fallback_req.base.flags =
0642             req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
0643         rctx->fallback_req.nbytes = req->nbytes;
0644         rctx->fallback_req.src = req->src;
0645         rctx->fallback_req.result = req->result;
0646 
0647         return crypto_ahash_digest(&rctx->fallback_req);
0648     }
0649     memcpy(&rctx->u, n2alg->derived.hash_init,
0650            n2alg->derived.hw_op_hashsz);
0651 
0652     return n2_do_async_digest(req, n2alg->derived.hmac_type,
0653                   n2alg->derived.hw_op_hashsz, ds,
0654                   &rctx->u,
0655                   __pa(&ctx->hash_key),
0656                   ctx->hash_key_len);
0657 }
0658 
0659 struct n2_skcipher_context {
0660     int         key_len;
0661     int         enc_type;
0662     union {
0663         u8      aes[AES_MAX_KEY_SIZE];
0664         u8      des[DES_KEY_SIZE];
0665         u8      des3[3 * DES_KEY_SIZE];
0666     } key;
0667 };
0668 
0669 #define N2_CHUNK_ARR_LEN    16
0670 
0671 struct n2_crypto_chunk {
0672     struct list_head    entry;
0673     unsigned long       iv_paddr : 44;
0674     unsigned long       arr_len : 20;
0675     unsigned long       dest_paddr;
0676     unsigned long       dest_final;
0677     struct {
0678         unsigned long   src_paddr : 44;
0679         unsigned long   src_len : 20;
0680     } arr[N2_CHUNK_ARR_LEN];
0681 };
0682 
0683 struct n2_request_context {
0684     struct skcipher_walk    walk;
0685     struct list_head    chunk_list;
0686     struct n2_crypto_chunk  chunk;
0687     u8          temp_iv[16];
0688 };
0689 
0690 /* The SPU allows some level of flexibility for partial cipher blocks
0691  * being specified in a descriptor.
0692  *
0693  * It merely requires that every descriptor's length field is at least
0694  * as large as the cipher block size.  This means that a cipher block
0695  * can span at most 2 descriptors.  However, this does not allow a
0696  * partial block to span into the final descriptor as that would
0697  * violate the rule (since every descriptor's length must be at lest
0698  * the block size).  So, for example, assuming an 8 byte block size:
0699  *
0700  *  0xe --> 0xa --> 0x8
0701  *
0702  * is a valid length sequence, whereas:
0703  *
0704  *  0xe --> 0xb --> 0x7
0705  *
0706  * is not a valid sequence.
0707  */
0708 
0709 struct n2_skcipher_alg {
0710     struct list_head    entry;
0711     u8          enc_type;
0712     struct skcipher_alg skcipher;
0713 };
0714 
0715 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
0716 {
0717     struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
0718 
0719     return container_of(alg, struct n2_skcipher_alg, skcipher);
0720 }
0721 
0722 struct n2_skcipher_request_context {
0723     struct skcipher_walk    walk;
0724 };
0725 
0726 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
0727              unsigned int keylen)
0728 {
0729     struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
0730     struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
0731     struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
0732 
0733     ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
0734 
0735     switch (keylen) {
0736     case AES_KEYSIZE_128:
0737         ctx->enc_type |= ENC_TYPE_ALG_AES128;
0738         break;
0739     case AES_KEYSIZE_192:
0740         ctx->enc_type |= ENC_TYPE_ALG_AES192;
0741         break;
0742     case AES_KEYSIZE_256:
0743         ctx->enc_type |= ENC_TYPE_ALG_AES256;
0744         break;
0745     default:
0746         return -EINVAL;
0747     }
0748 
0749     ctx->key_len = keylen;
0750     memcpy(ctx->key.aes, key, keylen);
0751     return 0;
0752 }
0753 
0754 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
0755              unsigned int keylen)
0756 {
0757     struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
0758     struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
0759     struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
0760     int err;
0761 
0762     err = verify_skcipher_des_key(skcipher, key);
0763     if (err)
0764         return err;
0765 
0766     ctx->enc_type = n2alg->enc_type;
0767 
0768     ctx->key_len = keylen;
0769     memcpy(ctx->key.des, key, keylen);
0770     return 0;
0771 }
0772 
0773 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
0774               unsigned int keylen)
0775 {
0776     struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
0777     struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
0778     struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
0779     int err;
0780 
0781     err = verify_skcipher_des3_key(skcipher, key);
0782     if (err)
0783         return err;
0784 
0785     ctx->enc_type = n2alg->enc_type;
0786 
0787     ctx->key_len = keylen;
0788     memcpy(ctx->key.des3, key, keylen);
0789     return 0;
0790 }
0791 
0792 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
0793 {
0794     int this_len = nbytes;
0795 
0796     this_len -= (nbytes & (block_size - 1));
0797     return this_len > (1 << 16) ? (1 << 16) : this_len;
0798 }
0799 
0800 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
0801                 struct n2_crypto_chunk *cp,
0802                 struct spu_queue *qp, bool encrypt)
0803 {
0804     struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
0805     struct cwq_initial_entry *ent;
0806     bool in_place;
0807     int i;
0808 
0809     ent = spu_queue_alloc(qp, cp->arr_len);
0810     if (!ent) {
0811         pr_info("queue_alloc() of %d fails\n",
0812             cp->arr_len);
0813         return -EBUSY;
0814     }
0815 
0816     in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
0817 
0818     ent->control = control_word_base(cp->arr[0].src_len,
0819                      0, ctx->enc_type, 0, 0,
0820                      false, true, false, encrypt,
0821                      OPCODE_ENCRYPT |
0822                      (in_place ? OPCODE_INPLACE_BIT : 0));
0823     ent->src_addr = cp->arr[0].src_paddr;
0824     ent->auth_key_addr = 0UL;
0825     ent->auth_iv_addr = 0UL;
0826     ent->final_auth_state_addr = 0UL;
0827     ent->enc_key_addr = __pa(&ctx->key);
0828     ent->enc_iv_addr = cp->iv_paddr;
0829     ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
0830 
0831     for (i = 1; i < cp->arr_len; i++) {
0832         ent = spu_queue_next(qp, ent);
0833 
0834         ent->control = cp->arr[i].src_len - 1;
0835         ent->src_addr = cp->arr[i].src_paddr;
0836         ent->auth_key_addr = 0UL;
0837         ent->auth_iv_addr = 0UL;
0838         ent->final_auth_state_addr = 0UL;
0839         ent->enc_key_addr = 0UL;
0840         ent->enc_iv_addr = 0UL;
0841         ent->dest_addr = 0UL;
0842     }
0843     ent->control |= CONTROL_END_OF_BLOCK;
0844 
0845     return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
0846 }
0847 
0848 static int n2_compute_chunks(struct skcipher_request *req)
0849 {
0850     struct n2_request_context *rctx = skcipher_request_ctx(req);
0851     struct skcipher_walk *walk = &rctx->walk;
0852     struct n2_crypto_chunk *chunk;
0853     unsigned long dest_prev;
0854     unsigned int tot_len;
0855     bool prev_in_place;
0856     int err, nbytes;
0857 
0858     err = skcipher_walk_async(walk, req);
0859     if (err)
0860         return err;
0861 
0862     INIT_LIST_HEAD(&rctx->chunk_list);
0863 
0864     chunk = &rctx->chunk;
0865     INIT_LIST_HEAD(&chunk->entry);
0866 
0867     chunk->iv_paddr = 0UL;
0868     chunk->arr_len = 0;
0869     chunk->dest_paddr = 0UL;
0870 
0871     prev_in_place = false;
0872     dest_prev = ~0UL;
0873     tot_len = 0;
0874 
0875     while ((nbytes = walk->nbytes) != 0) {
0876         unsigned long dest_paddr, src_paddr;
0877         bool in_place;
0878         int this_len;
0879 
0880         src_paddr = (page_to_phys(walk->src.phys.page) +
0881                  walk->src.phys.offset);
0882         dest_paddr = (page_to_phys(walk->dst.phys.page) +
0883                   walk->dst.phys.offset);
0884         in_place = (src_paddr == dest_paddr);
0885         this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
0886 
0887         if (chunk->arr_len != 0) {
0888             if (in_place != prev_in_place ||
0889                 (!prev_in_place &&
0890                  dest_paddr != dest_prev) ||
0891                 chunk->arr_len == N2_CHUNK_ARR_LEN ||
0892                 tot_len + this_len > (1 << 16)) {
0893                 chunk->dest_final = dest_prev;
0894                 list_add_tail(&chunk->entry,
0895                           &rctx->chunk_list);
0896                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
0897                 if (!chunk) {
0898                     err = -ENOMEM;
0899                     break;
0900                 }
0901                 INIT_LIST_HEAD(&chunk->entry);
0902             }
0903         }
0904         if (chunk->arr_len == 0) {
0905             chunk->dest_paddr = dest_paddr;
0906             tot_len = 0;
0907         }
0908         chunk->arr[chunk->arr_len].src_paddr = src_paddr;
0909         chunk->arr[chunk->arr_len].src_len = this_len;
0910         chunk->arr_len++;
0911 
0912         dest_prev = dest_paddr + this_len;
0913         prev_in_place = in_place;
0914         tot_len += this_len;
0915 
0916         err = skcipher_walk_done(walk, nbytes - this_len);
0917         if (err)
0918             break;
0919     }
0920     if (!err && chunk->arr_len != 0) {
0921         chunk->dest_final = dest_prev;
0922         list_add_tail(&chunk->entry, &rctx->chunk_list);
0923     }
0924 
0925     return err;
0926 }
0927 
0928 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
0929 {
0930     struct n2_request_context *rctx = skcipher_request_ctx(req);
0931     struct n2_crypto_chunk *c, *tmp;
0932 
0933     if (final_iv)
0934         memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
0935 
0936     list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
0937         list_del(&c->entry);
0938         if (unlikely(c != &rctx->chunk))
0939             kfree(c);
0940     }
0941 
0942 }
0943 
0944 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
0945 {
0946     struct n2_request_context *rctx = skcipher_request_ctx(req);
0947     struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
0948     int err = n2_compute_chunks(req);
0949     struct n2_crypto_chunk *c, *tmp;
0950     unsigned long flags, hv_ret;
0951     struct spu_queue *qp;
0952 
0953     if (err)
0954         return err;
0955 
0956     qp = cpu_to_cwq[get_cpu()];
0957     err = -ENODEV;
0958     if (!qp)
0959         goto out;
0960 
0961     spin_lock_irqsave(&qp->lock, flags);
0962 
0963     list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
0964         err = __n2_crypt_chunk(tfm, c, qp, encrypt);
0965         if (err)
0966             break;
0967         list_del(&c->entry);
0968         if (unlikely(c != &rctx->chunk))
0969             kfree(c);
0970     }
0971     if (!err) {
0972         hv_ret = wait_for_tail(qp);
0973         if (hv_ret != HV_EOK)
0974             err = -EINVAL;
0975     }
0976 
0977     spin_unlock_irqrestore(&qp->lock, flags);
0978 
0979 out:
0980     put_cpu();
0981 
0982     n2_chunk_complete(req, NULL);
0983     return err;
0984 }
0985 
0986 static int n2_encrypt_ecb(struct skcipher_request *req)
0987 {
0988     return n2_do_ecb(req, true);
0989 }
0990 
0991 static int n2_decrypt_ecb(struct skcipher_request *req)
0992 {
0993     return n2_do_ecb(req, false);
0994 }
0995 
0996 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
0997 {
0998     struct n2_request_context *rctx = skcipher_request_ctx(req);
0999     struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1000     unsigned long flags, hv_ret, iv_paddr;
1001     int err = n2_compute_chunks(req);
1002     struct n2_crypto_chunk *c, *tmp;
1003     struct spu_queue *qp;
1004     void *final_iv_addr;
1005 
1006     final_iv_addr = NULL;
1007 
1008     if (err)
1009         return err;
1010 
1011     qp = cpu_to_cwq[get_cpu()];
1012     err = -ENODEV;
1013     if (!qp)
1014         goto out;
1015 
1016     spin_lock_irqsave(&qp->lock, flags);
1017 
1018     if (encrypt) {
1019         iv_paddr = __pa(rctx->walk.iv);
1020         list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1021                      entry) {
1022             c->iv_paddr = iv_paddr;
1023             err = __n2_crypt_chunk(tfm, c, qp, true);
1024             if (err)
1025                 break;
1026             iv_paddr = c->dest_final - rctx->walk.blocksize;
1027             list_del(&c->entry);
1028             if (unlikely(c != &rctx->chunk))
1029                 kfree(c);
1030         }
1031         final_iv_addr = __va(iv_paddr);
1032     } else {
1033         list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1034                          entry) {
1035             if (c == &rctx->chunk) {
1036                 iv_paddr = __pa(rctx->walk.iv);
1037             } else {
1038                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1039                         tmp->arr[tmp->arr_len-1].src_len -
1040                         rctx->walk.blocksize);
1041             }
1042             if (!final_iv_addr) {
1043                 unsigned long pa;
1044 
1045                 pa = (c->arr[c->arr_len-1].src_paddr +
1046                       c->arr[c->arr_len-1].src_len -
1047                       rctx->walk.blocksize);
1048                 final_iv_addr = rctx->temp_iv;
1049                 memcpy(rctx->temp_iv, __va(pa),
1050                        rctx->walk.blocksize);
1051             }
1052             c->iv_paddr = iv_paddr;
1053             err = __n2_crypt_chunk(tfm, c, qp, false);
1054             if (err)
1055                 break;
1056             list_del(&c->entry);
1057             if (unlikely(c != &rctx->chunk))
1058                 kfree(c);
1059         }
1060     }
1061     if (!err) {
1062         hv_ret = wait_for_tail(qp);
1063         if (hv_ret != HV_EOK)
1064             err = -EINVAL;
1065     }
1066 
1067     spin_unlock_irqrestore(&qp->lock, flags);
1068 
1069 out:
1070     put_cpu();
1071 
1072     n2_chunk_complete(req, err ? NULL : final_iv_addr);
1073     return err;
1074 }
1075 
1076 static int n2_encrypt_chaining(struct skcipher_request *req)
1077 {
1078     return n2_do_chaining(req, true);
1079 }
1080 
1081 static int n2_decrypt_chaining(struct skcipher_request *req)
1082 {
1083     return n2_do_chaining(req, false);
1084 }
1085 
1086 struct n2_skcipher_tmpl {
1087     const char      *name;
1088     const char      *drv_name;
1089     u8          block_size;
1090     u8          enc_type;
1091     struct skcipher_alg skcipher;
1092 };
1093 
1094 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1095     /* DES: ECB CBC and CFB are supported */
1096     {   .name       = "ecb(des)",
1097         .drv_name   = "ecb-des",
1098         .block_size = DES_BLOCK_SIZE,
1099         .enc_type   = (ENC_TYPE_ALG_DES |
1100                    ENC_TYPE_CHAINING_ECB),
1101         .skcipher   = {
1102             .min_keysize    = DES_KEY_SIZE,
1103             .max_keysize    = DES_KEY_SIZE,
1104             .setkey     = n2_des_setkey,
1105             .encrypt    = n2_encrypt_ecb,
1106             .decrypt    = n2_decrypt_ecb,
1107         },
1108     },
1109     {   .name       = "cbc(des)",
1110         .drv_name   = "cbc-des",
1111         .block_size = DES_BLOCK_SIZE,
1112         .enc_type   = (ENC_TYPE_ALG_DES |
1113                    ENC_TYPE_CHAINING_CBC),
1114         .skcipher   = {
1115             .ivsize     = DES_BLOCK_SIZE,
1116             .min_keysize    = DES_KEY_SIZE,
1117             .max_keysize    = DES_KEY_SIZE,
1118             .setkey     = n2_des_setkey,
1119             .encrypt    = n2_encrypt_chaining,
1120             .decrypt    = n2_decrypt_chaining,
1121         },
1122     },
1123     {   .name       = "cfb(des)",
1124         .drv_name   = "cfb-des",
1125         .block_size = DES_BLOCK_SIZE,
1126         .enc_type   = (ENC_TYPE_ALG_DES |
1127                    ENC_TYPE_CHAINING_CFB),
1128         .skcipher   = {
1129             .min_keysize    = DES_KEY_SIZE,
1130             .max_keysize    = DES_KEY_SIZE,
1131             .setkey     = n2_des_setkey,
1132             .encrypt    = n2_encrypt_chaining,
1133             .decrypt    = n2_decrypt_chaining,
1134         },
1135     },
1136 
1137     /* 3DES: ECB CBC and CFB are supported */
1138     {   .name       = "ecb(des3_ede)",
1139         .drv_name   = "ecb-3des",
1140         .block_size = DES_BLOCK_SIZE,
1141         .enc_type   = (ENC_TYPE_ALG_3DES |
1142                    ENC_TYPE_CHAINING_ECB),
1143         .skcipher   = {
1144             .min_keysize    = 3 * DES_KEY_SIZE,
1145             .max_keysize    = 3 * DES_KEY_SIZE,
1146             .setkey     = n2_3des_setkey,
1147             .encrypt    = n2_encrypt_ecb,
1148             .decrypt    = n2_decrypt_ecb,
1149         },
1150     },
1151     {   .name       = "cbc(des3_ede)",
1152         .drv_name   = "cbc-3des",
1153         .block_size = DES_BLOCK_SIZE,
1154         .enc_type   = (ENC_TYPE_ALG_3DES |
1155                    ENC_TYPE_CHAINING_CBC),
1156         .skcipher   = {
1157             .ivsize     = DES_BLOCK_SIZE,
1158             .min_keysize    = 3 * DES_KEY_SIZE,
1159             .max_keysize    = 3 * DES_KEY_SIZE,
1160             .setkey     = n2_3des_setkey,
1161             .encrypt    = n2_encrypt_chaining,
1162             .decrypt    = n2_decrypt_chaining,
1163         },
1164     },
1165     {   .name       = "cfb(des3_ede)",
1166         .drv_name   = "cfb-3des",
1167         .block_size = DES_BLOCK_SIZE,
1168         .enc_type   = (ENC_TYPE_ALG_3DES |
1169                    ENC_TYPE_CHAINING_CFB),
1170         .skcipher   = {
1171             .min_keysize    = 3 * DES_KEY_SIZE,
1172             .max_keysize    = 3 * DES_KEY_SIZE,
1173             .setkey     = n2_3des_setkey,
1174             .encrypt    = n2_encrypt_chaining,
1175             .decrypt    = n2_decrypt_chaining,
1176         },
1177     },
1178     /* AES: ECB CBC and CTR are supported */
1179     {   .name       = "ecb(aes)",
1180         .drv_name   = "ecb-aes",
1181         .block_size = AES_BLOCK_SIZE,
1182         .enc_type   = (ENC_TYPE_ALG_AES128 |
1183                    ENC_TYPE_CHAINING_ECB),
1184         .skcipher   = {
1185             .min_keysize    = AES_MIN_KEY_SIZE,
1186             .max_keysize    = AES_MAX_KEY_SIZE,
1187             .setkey     = n2_aes_setkey,
1188             .encrypt    = n2_encrypt_ecb,
1189             .decrypt    = n2_decrypt_ecb,
1190         },
1191     },
1192     {   .name       = "cbc(aes)",
1193         .drv_name   = "cbc-aes",
1194         .block_size = AES_BLOCK_SIZE,
1195         .enc_type   = (ENC_TYPE_ALG_AES128 |
1196                    ENC_TYPE_CHAINING_CBC),
1197         .skcipher   = {
1198             .ivsize     = AES_BLOCK_SIZE,
1199             .min_keysize    = AES_MIN_KEY_SIZE,
1200             .max_keysize    = AES_MAX_KEY_SIZE,
1201             .setkey     = n2_aes_setkey,
1202             .encrypt    = n2_encrypt_chaining,
1203             .decrypt    = n2_decrypt_chaining,
1204         },
1205     },
1206     {   .name       = "ctr(aes)",
1207         .drv_name   = "ctr-aes",
1208         .block_size = AES_BLOCK_SIZE,
1209         .enc_type   = (ENC_TYPE_ALG_AES128 |
1210                    ENC_TYPE_CHAINING_COUNTER),
1211         .skcipher   = {
1212             .ivsize     = AES_BLOCK_SIZE,
1213             .min_keysize    = AES_MIN_KEY_SIZE,
1214             .max_keysize    = AES_MAX_KEY_SIZE,
1215             .setkey     = n2_aes_setkey,
1216             .encrypt    = n2_encrypt_chaining,
1217             .decrypt    = n2_encrypt_chaining,
1218         },
1219     },
1220 
1221 };
1222 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1223 
1224 static LIST_HEAD(skcipher_algs);
1225 
1226 struct n2_hash_tmpl {
1227     const char  *name;
1228     const u8    *hash_zero;
1229     const u8    *hash_init;
1230     u8      hw_op_hashsz;
1231     u8      digest_size;
1232     u8      block_size;
1233     u8      auth_type;
1234     u8      hmac_type;
1235 };
1236 
1237 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1238     cpu_to_le32(MD5_H0),
1239     cpu_to_le32(MD5_H1),
1240     cpu_to_le32(MD5_H2),
1241     cpu_to_le32(MD5_H3),
1242 };
1243 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1244     SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1245 };
1246 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1247     SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1248     SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1249 };
1250 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1251     SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1252     SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1253 };
1254 
1255 static const struct n2_hash_tmpl hash_tmpls[] = {
1256     { .name     = "md5",
1257       .hash_zero    = md5_zero_message_hash,
1258       .hash_init    = (u8 *)n2_md5_init,
1259       .auth_type    = AUTH_TYPE_MD5,
1260       .hmac_type    = AUTH_TYPE_HMAC_MD5,
1261       .hw_op_hashsz = MD5_DIGEST_SIZE,
1262       .digest_size  = MD5_DIGEST_SIZE,
1263       .block_size   = MD5_HMAC_BLOCK_SIZE },
1264     { .name     = "sha1",
1265       .hash_zero    = sha1_zero_message_hash,
1266       .hash_init    = (u8 *)n2_sha1_init,
1267       .auth_type    = AUTH_TYPE_SHA1,
1268       .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1269       .hw_op_hashsz = SHA1_DIGEST_SIZE,
1270       .digest_size  = SHA1_DIGEST_SIZE,
1271       .block_size   = SHA1_BLOCK_SIZE },
1272     { .name     = "sha256",
1273       .hash_zero    = sha256_zero_message_hash,
1274       .hash_init    = (u8 *)n2_sha256_init,
1275       .auth_type    = AUTH_TYPE_SHA256,
1276       .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1277       .hw_op_hashsz = SHA256_DIGEST_SIZE,
1278       .digest_size  = SHA256_DIGEST_SIZE,
1279       .block_size   = SHA256_BLOCK_SIZE },
1280     { .name     = "sha224",
1281       .hash_zero    = sha224_zero_message_hash,
1282       .hash_init    = (u8 *)n2_sha224_init,
1283       .auth_type    = AUTH_TYPE_SHA256,
1284       .hmac_type    = AUTH_TYPE_RESERVED,
1285       .hw_op_hashsz = SHA256_DIGEST_SIZE,
1286       .digest_size  = SHA224_DIGEST_SIZE,
1287       .block_size   = SHA224_BLOCK_SIZE },
1288 };
1289 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1290 
1291 static LIST_HEAD(ahash_algs);
1292 static LIST_HEAD(hmac_algs);
1293 
1294 static int algs_registered;
1295 
1296 static void __n2_unregister_algs(void)
1297 {
1298     struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1299     struct n2_ahash_alg *alg, *alg_tmp;
1300     struct n2_hmac_alg *hmac, *hmac_tmp;
1301 
1302     list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1303         crypto_unregister_skcipher(&skcipher->skcipher);
1304         list_del(&skcipher->entry);
1305         kfree(skcipher);
1306     }
1307     list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1308         crypto_unregister_ahash(&hmac->derived.alg);
1309         list_del(&hmac->derived.entry);
1310         kfree(hmac);
1311     }
1312     list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1313         crypto_unregister_ahash(&alg->alg);
1314         list_del(&alg->entry);
1315         kfree(alg);
1316     }
1317 }
1318 
1319 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1320 {
1321     crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1322     return 0;
1323 }
1324 
1325 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1326 {
1327     struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1328     struct skcipher_alg *alg;
1329     int err;
1330 
1331     if (!p)
1332         return -ENOMEM;
1333 
1334     alg = &p->skcipher;
1335     *alg = tmpl->skcipher;
1336 
1337     snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1338     snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1339     alg->base.cra_priority = N2_CRA_PRIORITY;
1340     alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1341                   CRYPTO_ALG_ALLOCATES_MEMORY;
1342     alg->base.cra_blocksize = tmpl->block_size;
1343     p->enc_type = tmpl->enc_type;
1344     alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1345     alg->base.cra_module = THIS_MODULE;
1346     alg->init = n2_skcipher_init_tfm;
1347 
1348     list_add(&p->entry, &skcipher_algs);
1349     err = crypto_register_skcipher(alg);
1350     if (err) {
1351         pr_err("%s alg registration failed\n", alg->base.cra_name);
1352         list_del(&p->entry);
1353         kfree(p);
1354     } else {
1355         pr_info("%s alg registered\n", alg->base.cra_name);
1356     }
1357     return err;
1358 }
1359 
1360 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1361 {
1362     struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1363     struct ahash_alg *ahash;
1364     struct crypto_alg *base;
1365     int err;
1366 
1367     if (!p)
1368         return -ENOMEM;
1369 
1370     p->child_alg = n2ahash->alg.halg.base.cra_name;
1371     memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1372     INIT_LIST_HEAD(&p->derived.entry);
1373 
1374     ahash = &p->derived.alg;
1375     ahash->digest = n2_hmac_async_digest;
1376     ahash->setkey = n2_hmac_async_setkey;
1377 
1378     base = &ahash->halg.base;
1379     snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1380     snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1381 
1382     base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1383     base->cra_init = n2_hmac_cra_init;
1384     base->cra_exit = n2_hmac_cra_exit;
1385 
1386     list_add(&p->derived.entry, &hmac_algs);
1387     err = crypto_register_ahash(ahash);
1388     if (err) {
1389         pr_err("%s alg registration failed\n", base->cra_name);
1390         list_del(&p->derived.entry);
1391         kfree(p);
1392     } else {
1393         pr_info("%s alg registered\n", base->cra_name);
1394     }
1395     return err;
1396 }
1397 
1398 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1399 {
1400     struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1401     struct hash_alg_common *halg;
1402     struct crypto_alg *base;
1403     struct ahash_alg *ahash;
1404     int err;
1405 
1406     if (!p)
1407         return -ENOMEM;
1408 
1409     p->hash_zero = tmpl->hash_zero;
1410     p->hash_init = tmpl->hash_init;
1411     p->auth_type = tmpl->auth_type;
1412     p->hmac_type = tmpl->hmac_type;
1413     p->hw_op_hashsz = tmpl->hw_op_hashsz;
1414     p->digest_size = tmpl->digest_size;
1415 
1416     ahash = &p->alg;
1417     ahash->init = n2_hash_async_init;
1418     ahash->update = n2_hash_async_update;
1419     ahash->final = n2_hash_async_final;
1420     ahash->finup = n2_hash_async_finup;
1421     ahash->digest = n2_hash_async_digest;
1422     ahash->export = n2_hash_async_noexport;
1423     ahash->import = n2_hash_async_noimport;
1424 
1425     halg = &ahash->halg;
1426     halg->digestsize = tmpl->digest_size;
1427 
1428     base = &halg->base;
1429     snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1430     snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1431     base->cra_priority = N2_CRA_PRIORITY;
1432     base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1433               CRYPTO_ALG_NEED_FALLBACK;
1434     base->cra_blocksize = tmpl->block_size;
1435     base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1436     base->cra_module = THIS_MODULE;
1437     base->cra_init = n2_hash_cra_init;
1438     base->cra_exit = n2_hash_cra_exit;
1439 
1440     list_add(&p->entry, &ahash_algs);
1441     err = crypto_register_ahash(ahash);
1442     if (err) {
1443         pr_err("%s alg registration failed\n", base->cra_name);
1444         list_del(&p->entry);
1445         kfree(p);
1446     } else {
1447         pr_info("%s alg registered\n", base->cra_name);
1448     }
1449     if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1450         err = __n2_register_one_hmac(p);
1451     return err;
1452 }
1453 
1454 static int n2_register_algs(void)
1455 {
1456     int i, err = 0;
1457 
1458     mutex_lock(&spu_lock);
1459     if (algs_registered++)
1460         goto out;
1461 
1462     for (i = 0; i < NUM_HASH_TMPLS; i++) {
1463         err = __n2_register_one_ahash(&hash_tmpls[i]);
1464         if (err) {
1465             __n2_unregister_algs();
1466             goto out;
1467         }
1468     }
1469     for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1470         err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1471         if (err) {
1472             __n2_unregister_algs();
1473             goto out;
1474         }
1475     }
1476 
1477 out:
1478     mutex_unlock(&spu_lock);
1479     return err;
1480 }
1481 
1482 static void n2_unregister_algs(void)
1483 {
1484     mutex_lock(&spu_lock);
1485     if (!--algs_registered)
1486         __n2_unregister_algs();
1487     mutex_unlock(&spu_lock);
1488 }
1489 
1490 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1491  * a devino.  This isn't very useful to us because all of the
1492  * interrupts listed in the device_node have been translated to
1493  * Linux virtual IRQ cookie numbers.
1494  *
1495  * So we have to back-translate, going through the 'intr' and 'ino'
1496  * property tables of the n2cp MDESC node, matching it with the OF
1497  * 'interrupts' property entries, in order to to figure out which
1498  * devino goes to which already-translated IRQ.
1499  */
1500 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1501                  unsigned long dev_ino)
1502 {
1503     const unsigned int *dev_intrs;
1504     unsigned int intr;
1505     int i;
1506 
1507     for (i = 0; i < ip->num_intrs; i++) {
1508         if (ip->ino_table[i].ino == dev_ino)
1509             break;
1510     }
1511     if (i == ip->num_intrs)
1512         return -ENODEV;
1513 
1514     intr = ip->ino_table[i].intr;
1515 
1516     dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1517     if (!dev_intrs)
1518         return -ENODEV;
1519 
1520     for (i = 0; i < dev->archdata.num_irqs; i++) {
1521         if (dev_intrs[i] == intr)
1522             return i;
1523     }
1524 
1525     return -ENODEV;
1526 }
1527 
1528 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1529                const char *irq_name, struct spu_queue *p,
1530                irq_handler_t handler)
1531 {
1532     unsigned long herr;
1533     int index;
1534 
1535     herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1536     if (herr)
1537         return -EINVAL;
1538 
1539     index = find_devino_index(dev, ip, p->devino);
1540     if (index < 0)
1541         return index;
1542 
1543     p->irq = dev->archdata.irqs[index];
1544 
1545     sprintf(p->irq_name, "%s-%d", irq_name, index);
1546 
1547     return request_irq(p->irq, handler, 0, p->irq_name, p);
1548 }
1549 
1550 static struct kmem_cache *queue_cache[2];
1551 
1552 static void *new_queue(unsigned long q_type)
1553 {
1554     return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1555 }
1556 
1557 static void free_queue(void *p, unsigned long q_type)
1558 {
1559     kmem_cache_free(queue_cache[q_type - 1], p);
1560 }
1561 
1562 static int queue_cache_init(void)
1563 {
1564     if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1565         queue_cache[HV_NCS_QTYPE_MAU - 1] =
1566             kmem_cache_create("mau_queue",
1567                       (MAU_NUM_ENTRIES *
1568                        MAU_ENTRY_SIZE),
1569                       MAU_ENTRY_SIZE, 0, NULL);
1570     if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1571         return -ENOMEM;
1572 
1573     if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1574         queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1575             kmem_cache_create("cwq_queue",
1576                       (CWQ_NUM_ENTRIES *
1577                        CWQ_ENTRY_SIZE),
1578                       CWQ_ENTRY_SIZE, 0, NULL);
1579     if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1580         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1581         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1582         return -ENOMEM;
1583     }
1584     return 0;
1585 }
1586 
1587 static void queue_cache_destroy(void)
1588 {
1589     kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1590     kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1591     queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1592     queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1593 }
1594 
1595 static long spu_queue_register_workfn(void *arg)
1596 {
1597     struct spu_qreg *qr = arg;
1598     struct spu_queue *p = qr->queue;
1599     unsigned long q_type = qr->type;
1600     unsigned long hv_ret;
1601 
1602     hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1603                  CWQ_NUM_ENTRIES, &p->qhandle);
1604     if (!hv_ret)
1605         sun4v_ncs_sethead_marker(p->qhandle, 0);
1606 
1607     return hv_ret ? -EINVAL : 0;
1608 }
1609 
1610 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1611 {
1612     int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1613     struct spu_qreg qr = { .queue = p, .type = q_type };
1614 
1615     return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1616 }
1617 
1618 static int spu_queue_setup(struct spu_queue *p)
1619 {
1620     int err;
1621 
1622     p->q = new_queue(p->q_type);
1623     if (!p->q)
1624         return -ENOMEM;
1625 
1626     err = spu_queue_register(p, p->q_type);
1627     if (err) {
1628         free_queue(p->q, p->q_type);
1629         p->q = NULL;
1630     }
1631 
1632     return err;
1633 }
1634 
1635 static void spu_queue_destroy(struct spu_queue *p)
1636 {
1637     unsigned long hv_ret;
1638 
1639     if (!p->q)
1640         return;
1641 
1642     hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1643 
1644     if (!hv_ret)
1645         free_queue(p->q, p->q_type);
1646 }
1647 
1648 static void spu_list_destroy(struct list_head *list)
1649 {
1650     struct spu_queue *p, *n;
1651 
1652     list_for_each_entry_safe(p, n, list, list) {
1653         int i;
1654 
1655         for (i = 0; i < NR_CPUS; i++) {
1656             if (cpu_to_cwq[i] == p)
1657                 cpu_to_cwq[i] = NULL;
1658         }
1659 
1660         if (p->irq) {
1661             free_irq(p->irq, p);
1662             p->irq = 0;
1663         }
1664         spu_queue_destroy(p);
1665         list_del(&p->list);
1666         kfree(p);
1667     }
1668 }
1669 
1670 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1671  * gathering cpu membership information.
1672  */
1673 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1674                    struct platform_device *dev,
1675                    u64 node, struct spu_queue *p,
1676                    struct spu_queue **table)
1677 {
1678     u64 arc;
1679 
1680     mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1681         u64 tgt = mdesc_arc_target(mdesc, arc);
1682         const char *name = mdesc_node_name(mdesc, tgt);
1683         const u64 *id;
1684 
1685         if (strcmp(name, "cpu"))
1686             continue;
1687         id = mdesc_get_property(mdesc, tgt, "id", NULL);
1688         if (table[*id] != NULL) {
1689             dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1690                 dev->dev.of_node);
1691             return -EINVAL;
1692         }
1693         cpumask_set_cpu(*id, &p->sharing);
1694         table[*id] = p;
1695     }
1696     return 0;
1697 }
1698 
1699 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1700 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1701                 struct platform_device *dev, struct mdesc_handle *mdesc,
1702                 u64 node, const char *iname, unsigned long q_type,
1703                 irq_handler_t handler, struct spu_queue **table)
1704 {
1705     struct spu_queue *p;
1706     int err;
1707 
1708     p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1709     if (!p) {
1710         dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1711             dev->dev.of_node);
1712         return -ENOMEM;
1713     }
1714 
1715     cpumask_clear(&p->sharing);
1716     spin_lock_init(&p->lock);
1717     p->q_type = q_type;
1718     INIT_LIST_HEAD(&p->jobs);
1719     list_add(&p->list, list);
1720 
1721     err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1722     if (err)
1723         return err;
1724 
1725     err = spu_queue_setup(p);
1726     if (err)
1727         return err;
1728 
1729     return spu_map_ino(dev, ip, iname, p, handler);
1730 }
1731 
1732 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1733               struct spu_mdesc_info *ip, struct list_head *list,
1734               const char *exec_name, unsigned long q_type,
1735               irq_handler_t handler, struct spu_queue **table)
1736 {
1737     int err = 0;
1738     u64 node;
1739 
1740     mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1741         const char *type;
1742 
1743         type = mdesc_get_property(mdesc, node, "type", NULL);
1744         if (!type || strcmp(type, exec_name))
1745             continue;
1746 
1747         err = handle_exec_unit(ip, list, dev, mdesc, node,
1748                        exec_name, q_type, handler, table);
1749         if (err) {
1750             spu_list_destroy(list);
1751             break;
1752         }
1753     }
1754 
1755     return err;
1756 }
1757 
1758 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1759              struct spu_mdesc_info *ip)
1760 {
1761     const u64 *ino;
1762     int ino_len;
1763     int i;
1764 
1765     ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1766     if (!ino) {
1767         printk("NO 'ino'\n");
1768         return -ENODEV;
1769     }
1770 
1771     ip->num_intrs = ino_len / sizeof(u64);
1772     ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1773                  ip->num_intrs),
1774                 GFP_KERNEL);
1775     if (!ip->ino_table)
1776         return -ENOMEM;
1777 
1778     for (i = 0; i < ip->num_intrs; i++) {
1779         struct ino_blob *b = &ip->ino_table[i];
1780         b->intr = i + 1;
1781         b->ino = ino[i];
1782     }
1783 
1784     return 0;
1785 }
1786 
1787 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1788                 struct platform_device *dev,
1789                 struct spu_mdesc_info *ip,
1790                 const char *node_name)
1791 {
1792     const unsigned int *reg;
1793     u64 node;
1794 
1795     reg = of_get_property(dev->dev.of_node, "reg", NULL);
1796     if (!reg)
1797         return -ENODEV;
1798 
1799     mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1800         const char *name;
1801         const u64 *chdl;
1802 
1803         name = mdesc_get_property(mdesc, node, "name", NULL);
1804         if (!name || strcmp(name, node_name))
1805             continue;
1806         chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1807         if (!chdl || (*chdl != *reg))
1808             continue;
1809         ip->cfg_handle = *chdl;
1810         return get_irq_props(mdesc, node, ip);
1811     }
1812 
1813     return -ENODEV;
1814 }
1815 
1816 static unsigned long n2_spu_hvapi_major;
1817 static unsigned long n2_spu_hvapi_minor;
1818 
1819 static int n2_spu_hvapi_register(void)
1820 {
1821     int err;
1822 
1823     n2_spu_hvapi_major = 2;
1824     n2_spu_hvapi_minor = 0;
1825 
1826     err = sun4v_hvapi_register(HV_GRP_NCS,
1827                    n2_spu_hvapi_major,
1828                    &n2_spu_hvapi_minor);
1829 
1830     if (!err)
1831         pr_info("Registered NCS HVAPI version %lu.%lu\n",
1832             n2_spu_hvapi_major,
1833             n2_spu_hvapi_minor);
1834 
1835     return err;
1836 }
1837 
1838 static void n2_spu_hvapi_unregister(void)
1839 {
1840     sun4v_hvapi_unregister(HV_GRP_NCS);
1841 }
1842 
1843 static int global_ref;
1844 
1845 static int grab_global_resources(void)
1846 {
1847     int err = 0;
1848 
1849     mutex_lock(&spu_lock);
1850 
1851     if (global_ref++)
1852         goto out;
1853 
1854     err = n2_spu_hvapi_register();
1855     if (err)
1856         goto out;
1857 
1858     err = queue_cache_init();
1859     if (err)
1860         goto out_hvapi_release;
1861 
1862     err = -ENOMEM;
1863     cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1864                  GFP_KERNEL);
1865     if (!cpu_to_cwq)
1866         goto out_queue_cache_destroy;
1867 
1868     cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1869                  GFP_KERNEL);
1870     if (!cpu_to_mau)
1871         goto out_free_cwq_table;
1872 
1873     err = 0;
1874 
1875 out:
1876     if (err)
1877         global_ref--;
1878     mutex_unlock(&spu_lock);
1879     return err;
1880 
1881 out_free_cwq_table:
1882     kfree(cpu_to_cwq);
1883     cpu_to_cwq = NULL;
1884 
1885 out_queue_cache_destroy:
1886     queue_cache_destroy();
1887 
1888 out_hvapi_release:
1889     n2_spu_hvapi_unregister();
1890     goto out;
1891 }
1892 
1893 static void release_global_resources(void)
1894 {
1895     mutex_lock(&spu_lock);
1896     if (!--global_ref) {
1897         kfree(cpu_to_cwq);
1898         cpu_to_cwq = NULL;
1899 
1900         kfree(cpu_to_mau);
1901         cpu_to_mau = NULL;
1902 
1903         queue_cache_destroy();
1904         n2_spu_hvapi_unregister();
1905     }
1906     mutex_unlock(&spu_lock);
1907 }
1908 
1909 static struct n2_crypto *alloc_n2cp(void)
1910 {
1911     struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1912 
1913     if (np)
1914         INIT_LIST_HEAD(&np->cwq_list);
1915 
1916     return np;
1917 }
1918 
1919 static void free_n2cp(struct n2_crypto *np)
1920 {
1921     kfree(np->cwq_info.ino_table);
1922     np->cwq_info.ino_table = NULL;
1923 
1924     kfree(np);
1925 }
1926 
1927 static void n2_spu_driver_version(void)
1928 {
1929     static int n2_spu_version_printed;
1930 
1931     if (n2_spu_version_printed++ == 0)
1932         pr_info("%s", version);
1933 }
1934 
1935 static int n2_crypto_probe(struct platform_device *dev)
1936 {
1937     struct mdesc_handle *mdesc;
1938     struct n2_crypto *np;
1939     int err;
1940 
1941     n2_spu_driver_version();
1942 
1943     pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1944 
1945     np = alloc_n2cp();
1946     if (!np) {
1947         dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1948             dev->dev.of_node);
1949         return -ENOMEM;
1950     }
1951 
1952     err = grab_global_resources();
1953     if (err) {
1954         dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1955             dev->dev.of_node);
1956         goto out_free_n2cp;
1957     }
1958 
1959     mdesc = mdesc_grab();
1960 
1961     if (!mdesc) {
1962         dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1963             dev->dev.of_node);
1964         err = -ENODEV;
1965         goto out_free_global;
1966     }
1967     err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1968     if (err) {
1969         dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1970             dev->dev.of_node);
1971         mdesc_release(mdesc);
1972         goto out_free_global;
1973     }
1974 
1975     err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1976                  "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1977                  cpu_to_cwq);
1978     mdesc_release(mdesc);
1979 
1980     if (err) {
1981         dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1982             dev->dev.of_node);
1983         goto out_free_global;
1984     }
1985 
1986     err = n2_register_algs();
1987     if (err) {
1988         dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1989             dev->dev.of_node);
1990         goto out_free_spu_list;
1991     }
1992 
1993     dev_set_drvdata(&dev->dev, np);
1994 
1995     return 0;
1996 
1997 out_free_spu_list:
1998     spu_list_destroy(&np->cwq_list);
1999 
2000 out_free_global:
2001     release_global_resources();
2002 
2003 out_free_n2cp:
2004     free_n2cp(np);
2005 
2006     return err;
2007 }
2008 
2009 static int n2_crypto_remove(struct platform_device *dev)
2010 {
2011     struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2012 
2013     n2_unregister_algs();
2014 
2015     spu_list_destroy(&np->cwq_list);
2016 
2017     release_global_resources();
2018 
2019     free_n2cp(np);
2020 
2021     return 0;
2022 }
2023 
2024 static struct n2_mau *alloc_ncp(void)
2025 {
2026     struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2027 
2028     if (mp)
2029         INIT_LIST_HEAD(&mp->mau_list);
2030 
2031     return mp;
2032 }
2033 
2034 static void free_ncp(struct n2_mau *mp)
2035 {
2036     kfree(mp->mau_info.ino_table);
2037     mp->mau_info.ino_table = NULL;
2038 
2039     kfree(mp);
2040 }
2041 
2042 static int n2_mau_probe(struct platform_device *dev)
2043 {
2044     struct mdesc_handle *mdesc;
2045     struct n2_mau *mp;
2046     int err;
2047 
2048     n2_spu_driver_version();
2049 
2050     pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2051 
2052     mp = alloc_ncp();
2053     if (!mp) {
2054         dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2055             dev->dev.of_node);
2056         return -ENOMEM;
2057     }
2058 
2059     err = grab_global_resources();
2060     if (err) {
2061         dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2062             dev->dev.of_node);
2063         goto out_free_ncp;
2064     }
2065 
2066     mdesc = mdesc_grab();
2067 
2068     if (!mdesc) {
2069         dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2070             dev->dev.of_node);
2071         err = -ENODEV;
2072         goto out_free_global;
2073     }
2074 
2075     err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2076     if (err) {
2077         dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2078             dev->dev.of_node);
2079         mdesc_release(mdesc);
2080         goto out_free_global;
2081     }
2082 
2083     err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2084                  "mau", HV_NCS_QTYPE_MAU, mau_intr,
2085                  cpu_to_mau);
2086     mdesc_release(mdesc);
2087 
2088     if (err) {
2089         dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2090             dev->dev.of_node);
2091         goto out_free_global;
2092     }
2093 
2094     dev_set_drvdata(&dev->dev, mp);
2095 
2096     return 0;
2097 
2098 out_free_global:
2099     release_global_resources();
2100 
2101 out_free_ncp:
2102     free_ncp(mp);
2103 
2104     return err;
2105 }
2106 
2107 static int n2_mau_remove(struct platform_device *dev)
2108 {
2109     struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2110 
2111     spu_list_destroy(&mp->mau_list);
2112 
2113     release_global_resources();
2114 
2115     free_ncp(mp);
2116 
2117     return 0;
2118 }
2119 
2120 static const struct of_device_id n2_crypto_match[] = {
2121     {
2122         .name = "n2cp",
2123         .compatible = "SUNW,n2-cwq",
2124     },
2125     {
2126         .name = "n2cp",
2127         .compatible = "SUNW,vf-cwq",
2128     },
2129     {
2130         .name = "n2cp",
2131         .compatible = "SUNW,kt-cwq",
2132     },
2133     {},
2134 };
2135 
2136 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2137 
2138 static struct platform_driver n2_crypto_driver = {
2139     .driver = {
2140         .name       =   "n2cp",
2141         .of_match_table =   n2_crypto_match,
2142     },
2143     .probe      =   n2_crypto_probe,
2144     .remove     =   n2_crypto_remove,
2145 };
2146 
2147 static const struct of_device_id n2_mau_match[] = {
2148     {
2149         .name = "ncp",
2150         .compatible = "SUNW,n2-mau",
2151     },
2152     {
2153         .name = "ncp",
2154         .compatible = "SUNW,vf-mau",
2155     },
2156     {
2157         .name = "ncp",
2158         .compatible = "SUNW,kt-mau",
2159     },
2160     {},
2161 };
2162 
2163 MODULE_DEVICE_TABLE(of, n2_mau_match);
2164 
2165 static struct platform_driver n2_mau_driver = {
2166     .driver = {
2167         .name       =   "ncp",
2168         .of_match_table =   n2_mau_match,
2169     },
2170     .probe      =   n2_mau_probe,
2171     .remove     =   n2_mau_remove,
2172 };
2173 
2174 static struct platform_driver * const drivers[] = {
2175     &n2_crypto_driver,
2176     &n2_mau_driver,
2177 };
2178 
2179 static int __init n2_init(void)
2180 {
2181     return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2182 }
2183 
2184 static void __exit n2_exit(void)
2185 {
2186     platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2187 }
2188 
2189 module_init(n2_init);
2190 module_exit(n2_exit);