0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/dma-mapping.h>
0009 #include <linux/interrupt.h>
0010 #include <linux/io.h>
0011 #include <linux/kernel.h>
0012 #include <linux/kthread.h>
0013 #include <linux/module.h>
0014 #include <linux/of.h>
0015 #include <linux/platform_device.h>
0016 #include <linux/stmp_device.h>
0017 #include <linux/clk.h>
0018
0019 #include <crypto/aes.h>
0020 #include <crypto/sha1.h>
0021 #include <crypto/sha2.h>
0022 #include <crypto/internal/hash.h>
0023 #include <crypto/internal/skcipher.h>
0024 #include <crypto/scatterwalk.h>
0025
0026 #define DCP_MAX_CHANS 4
0027 #define DCP_BUF_SZ PAGE_SIZE
0028 #define DCP_SHA_PAY_SZ 64
0029
0030 #define DCP_ALIGNMENT 64
0031
0032
0033
0034
0035
0036 static const uint8_t sha1_null_hash[] =
0037 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
0038 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
0039
0040 static const uint8_t sha256_null_hash[] =
0041 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
0042 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
0043 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
0044 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
0045
0046
0047 struct dcp_dma_desc {
0048 uint32_t next_cmd_addr;
0049 uint32_t control0;
0050 uint32_t control1;
0051 uint32_t source;
0052 uint32_t destination;
0053 uint32_t size;
0054 uint32_t payload;
0055 uint32_t status;
0056 };
0057
0058
0059 struct dcp_coherent_block {
0060 uint8_t aes_in_buf[DCP_BUF_SZ];
0061 uint8_t aes_out_buf[DCP_BUF_SZ];
0062 uint8_t sha_in_buf[DCP_BUF_SZ];
0063 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
0064
0065 uint8_t aes_key[2 * AES_KEYSIZE_128];
0066
0067 struct dcp_dma_desc desc[DCP_MAX_CHANS];
0068 };
0069
0070 struct dcp {
0071 struct device *dev;
0072 void __iomem *base;
0073
0074 uint32_t caps;
0075
0076 struct dcp_coherent_block *coh;
0077
0078 struct completion completion[DCP_MAX_CHANS];
0079 spinlock_t lock[DCP_MAX_CHANS];
0080 struct task_struct *thread[DCP_MAX_CHANS];
0081 struct crypto_queue queue[DCP_MAX_CHANS];
0082 struct clk *dcp_clk;
0083 };
0084
0085 enum dcp_chan {
0086 DCP_CHAN_HASH_SHA = 0,
0087 DCP_CHAN_CRYPTO = 2,
0088 };
0089
0090 struct dcp_async_ctx {
0091
0092 enum dcp_chan chan;
0093 uint32_t fill;
0094
0095
0096 struct mutex mutex;
0097 uint32_t alg;
0098 unsigned int hot:1;
0099
0100
0101 struct crypto_skcipher *fallback;
0102 unsigned int key_len;
0103 uint8_t key[AES_KEYSIZE_128];
0104 };
0105
0106 struct dcp_aes_req_ctx {
0107 unsigned int enc:1;
0108 unsigned int ecb:1;
0109 struct skcipher_request fallback_req;
0110 };
0111
0112 struct dcp_sha_req_ctx {
0113 unsigned int init:1;
0114 unsigned int fini:1;
0115 };
0116
0117 struct dcp_export_state {
0118 struct dcp_sha_req_ctx req_ctx;
0119 struct dcp_async_ctx async_ctx;
0120 };
0121
0122
0123
0124
0125
0126 static struct dcp *global_sdcp;
0127
0128
0129 #define MXS_DCP_CTRL 0x00
0130 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
0131 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
0132
0133 #define MXS_DCP_STAT 0x10
0134 #define MXS_DCP_STAT_CLR 0x18
0135 #define MXS_DCP_STAT_IRQ_MASK 0xf
0136
0137 #define MXS_DCP_CHANNELCTRL 0x20
0138 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
0139
0140 #define MXS_DCP_CAPABILITY1 0x40
0141 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
0142 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
0143 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
0144
0145 #define MXS_DCP_CONTEXT 0x50
0146
0147 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
0148
0149 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
0150
0151 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
0152 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
0153
0154
0155 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
0156 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
0157 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
0158 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
0159 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
0160 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
0161 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
0162 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
0163 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
0164
0165 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
0166 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
0167 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
0168 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
0169 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
0170
0171 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
0172 {
0173 int dma_err;
0174 struct dcp *sdcp = global_sdcp;
0175 const int chan = actx->chan;
0176 uint32_t stat;
0177 unsigned long ret;
0178 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
0179 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
0180 DMA_TO_DEVICE);
0181
0182 dma_err = dma_mapping_error(sdcp->dev, desc_phys);
0183 if (dma_err)
0184 return dma_err;
0185
0186 reinit_completion(&sdcp->completion[chan]);
0187
0188
0189 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
0190
0191
0192 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
0193
0194
0195 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
0196
0197 ret = wait_for_completion_timeout(&sdcp->completion[chan],
0198 msecs_to_jiffies(1000));
0199 if (!ret) {
0200 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
0201 chan, readl(sdcp->base + MXS_DCP_STAT));
0202 return -ETIMEDOUT;
0203 }
0204
0205 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
0206 if (stat & 0xff) {
0207 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
0208 chan, stat);
0209 return -EINVAL;
0210 }
0211
0212 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
0213
0214 return 0;
0215 }
0216
0217
0218
0219
0220 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
0221 struct skcipher_request *req, int init)
0222 {
0223 dma_addr_t key_phys, src_phys, dst_phys;
0224 struct dcp *sdcp = global_sdcp;
0225 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
0226 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
0227 int ret;
0228
0229 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
0230 2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
0231 ret = dma_mapping_error(sdcp->dev, key_phys);
0232 if (ret)
0233 return ret;
0234
0235 src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
0236 DCP_BUF_SZ, DMA_TO_DEVICE);
0237 ret = dma_mapping_error(sdcp->dev, src_phys);
0238 if (ret)
0239 goto err_src;
0240
0241 dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
0242 DCP_BUF_SZ, DMA_FROM_DEVICE);
0243 ret = dma_mapping_error(sdcp->dev, dst_phys);
0244 if (ret)
0245 goto err_dst;
0246
0247 if (actx->fill % AES_BLOCK_SIZE) {
0248 dev_err(sdcp->dev, "Invalid block size!\n");
0249 ret = -EINVAL;
0250 goto aes_done_run;
0251 }
0252
0253
0254 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
0255 MXS_DCP_CONTROL0_INTERRUPT |
0256 MXS_DCP_CONTROL0_ENABLE_CIPHER;
0257
0258
0259 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
0260
0261 if (rctx->enc)
0262 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
0263 if (init)
0264 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
0265
0266 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
0267
0268 if (rctx->ecb)
0269 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
0270 else
0271 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
0272
0273 desc->next_cmd_addr = 0;
0274 desc->source = src_phys;
0275 desc->destination = dst_phys;
0276 desc->size = actx->fill;
0277 desc->payload = key_phys;
0278 desc->status = 0;
0279
0280 ret = mxs_dcp_start_dma(actx);
0281
0282 aes_done_run:
0283 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
0284 err_dst:
0285 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
0286 err_src:
0287 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
0288 DMA_TO_DEVICE);
0289
0290 return ret;
0291 }
0292
0293 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
0294 {
0295 struct dcp *sdcp = global_sdcp;
0296
0297 struct skcipher_request *req = skcipher_request_cast(arq);
0298 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
0299 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
0300
0301 struct scatterlist *dst = req->dst;
0302 struct scatterlist *src = req->src;
0303 int dst_nents = sg_nents(dst);
0304
0305 const int out_off = DCP_BUF_SZ;
0306 uint8_t *in_buf = sdcp->coh->aes_in_buf;
0307 uint8_t *out_buf = sdcp->coh->aes_out_buf;
0308
0309 uint32_t dst_off = 0;
0310 uint8_t *src_buf = NULL;
0311 uint32_t last_out_len = 0;
0312
0313 uint8_t *key = sdcp->coh->aes_key;
0314
0315 int ret = 0;
0316 unsigned int i, len, clen, tlen = 0;
0317 int init = 0;
0318 bool limit_hit = false;
0319
0320 actx->fill = 0;
0321
0322
0323 memcpy(key, actx->key, actx->key_len);
0324
0325 if (!rctx->ecb) {
0326
0327 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
0328
0329 init = 1;
0330 } else {
0331 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
0332 }
0333
0334 for_each_sg(req->src, src, sg_nents(req->src), i) {
0335 src_buf = sg_virt(src);
0336 len = sg_dma_len(src);
0337 tlen += len;
0338 limit_hit = tlen > req->cryptlen;
0339
0340 if (limit_hit)
0341 len = req->cryptlen - (tlen - len);
0342
0343 do {
0344 if (actx->fill + len > out_off)
0345 clen = out_off - actx->fill;
0346 else
0347 clen = len;
0348
0349 memcpy(in_buf + actx->fill, src_buf, clen);
0350 len -= clen;
0351 src_buf += clen;
0352 actx->fill += clen;
0353
0354
0355
0356
0357
0358 if (actx->fill == out_off || sg_is_last(src) ||
0359 limit_hit) {
0360 ret = mxs_dcp_run_aes(actx, req, init);
0361 if (ret)
0362 return ret;
0363 init = 0;
0364
0365 sg_pcopy_from_buffer(dst, dst_nents, out_buf,
0366 actx->fill, dst_off);
0367 dst_off += actx->fill;
0368 last_out_len = actx->fill;
0369 actx->fill = 0;
0370 }
0371 } while (len);
0372
0373 if (limit_hit)
0374 break;
0375 }
0376
0377
0378 if (!rctx->ecb) {
0379 if (rctx->enc)
0380 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
0381 AES_BLOCK_SIZE);
0382 else
0383 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
0384 AES_BLOCK_SIZE);
0385 }
0386
0387 return ret;
0388 }
0389
0390 static int dcp_chan_thread_aes(void *data)
0391 {
0392 struct dcp *sdcp = global_sdcp;
0393 const int chan = DCP_CHAN_CRYPTO;
0394
0395 struct crypto_async_request *backlog;
0396 struct crypto_async_request *arq;
0397
0398 int ret;
0399
0400 while (!kthread_should_stop()) {
0401 set_current_state(TASK_INTERRUPTIBLE);
0402
0403 spin_lock(&sdcp->lock[chan]);
0404 backlog = crypto_get_backlog(&sdcp->queue[chan]);
0405 arq = crypto_dequeue_request(&sdcp->queue[chan]);
0406 spin_unlock(&sdcp->lock[chan]);
0407
0408 if (!backlog && !arq) {
0409 schedule();
0410 continue;
0411 }
0412
0413 set_current_state(TASK_RUNNING);
0414
0415 if (backlog)
0416 backlog->complete(backlog, -EINPROGRESS);
0417
0418 if (arq) {
0419 ret = mxs_dcp_aes_block_crypt(arq);
0420 arq->complete(arq, ret);
0421 }
0422 }
0423
0424 return 0;
0425 }
0426
0427 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
0428 {
0429 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
0430 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
0431 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
0432 int ret;
0433
0434 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
0435 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
0436 req->base.complete, req->base.data);
0437 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
0438 req->cryptlen, req->iv);
0439
0440 if (enc)
0441 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
0442 else
0443 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
0444
0445 return ret;
0446 }
0447
0448 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
0449 {
0450 struct dcp *sdcp = global_sdcp;
0451 struct crypto_async_request *arq = &req->base;
0452 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
0453 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
0454 int ret;
0455
0456 if (unlikely(actx->key_len != AES_KEYSIZE_128))
0457 return mxs_dcp_block_fallback(req, enc);
0458
0459 rctx->enc = enc;
0460 rctx->ecb = ecb;
0461 actx->chan = DCP_CHAN_CRYPTO;
0462
0463 spin_lock(&sdcp->lock[actx->chan]);
0464 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
0465 spin_unlock(&sdcp->lock[actx->chan]);
0466
0467 wake_up_process(sdcp->thread[actx->chan]);
0468
0469 return ret;
0470 }
0471
0472 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
0473 {
0474 return mxs_dcp_aes_enqueue(req, 0, 1);
0475 }
0476
0477 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
0478 {
0479 return mxs_dcp_aes_enqueue(req, 1, 1);
0480 }
0481
0482 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
0483 {
0484 return mxs_dcp_aes_enqueue(req, 0, 0);
0485 }
0486
0487 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
0488 {
0489 return mxs_dcp_aes_enqueue(req, 1, 0);
0490 }
0491
0492 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
0493 unsigned int len)
0494 {
0495 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
0496
0497
0498
0499
0500
0501
0502 actx->key_len = len;
0503 if (len == AES_KEYSIZE_128) {
0504 memcpy(actx->key, key, len);
0505 return 0;
0506 }
0507
0508
0509
0510
0511
0512
0513 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
0514 crypto_skcipher_set_flags(actx->fallback,
0515 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
0516 return crypto_skcipher_setkey(actx->fallback, key, len);
0517 }
0518
0519 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
0520 {
0521 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
0522 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
0523 struct crypto_skcipher *blk;
0524
0525 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
0526 if (IS_ERR(blk))
0527 return PTR_ERR(blk);
0528
0529 actx->fallback = blk;
0530 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
0531 crypto_skcipher_reqsize(blk));
0532 return 0;
0533 }
0534
0535 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
0536 {
0537 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
0538
0539 crypto_free_skcipher(actx->fallback);
0540 }
0541
0542
0543
0544
0545 static int mxs_dcp_run_sha(struct ahash_request *req)
0546 {
0547 struct dcp *sdcp = global_sdcp;
0548 int ret;
0549
0550 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0551 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
0552 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
0553 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
0554
0555 dma_addr_t digest_phys = 0;
0556 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
0557 DCP_BUF_SZ, DMA_TO_DEVICE);
0558
0559 ret = dma_mapping_error(sdcp->dev, buf_phys);
0560 if (ret)
0561 return ret;
0562
0563
0564 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
0565 MXS_DCP_CONTROL0_INTERRUPT |
0566 MXS_DCP_CONTROL0_ENABLE_HASH;
0567 if (rctx->init)
0568 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
0569
0570 desc->control1 = actx->alg;
0571 desc->next_cmd_addr = 0;
0572 desc->source = buf_phys;
0573 desc->destination = 0;
0574 desc->size = actx->fill;
0575 desc->payload = 0;
0576 desc->status = 0;
0577
0578
0579
0580
0581 if (rctx->init && rctx->fini && desc->size == 0) {
0582 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
0583 const uint8_t *sha_buf =
0584 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
0585 sha1_null_hash : sha256_null_hash;
0586 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
0587 ret = 0;
0588 goto done_run;
0589 }
0590
0591
0592 if (rctx->fini) {
0593 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
0594 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
0595 ret = dma_mapping_error(sdcp->dev, digest_phys);
0596 if (ret)
0597 goto done_run;
0598
0599 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
0600 desc->payload = digest_phys;
0601 }
0602
0603 ret = mxs_dcp_start_dma(actx);
0604
0605 if (rctx->fini)
0606 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
0607 DMA_FROM_DEVICE);
0608
0609 done_run:
0610 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
0611
0612 return ret;
0613 }
0614
0615 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
0616 {
0617 struct dcp *sdcp = global_sdcp;
0618
0619 struct ahash_request *req = ahash_request_cast(arq);
0620 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0621 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
0622 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
0623 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
0624
0625 uint8_t *in_buf = sdcp->coh->sha_in_buf;
0626 uint8_t *out_buf = sdcp->coh->sha_out_buf;
0627
0628 struct scatterlist *src;
0629
0630 unsigned int i, len, clen, oft = 0;
0631 int ret;
0632
0633 int fin = rctx->fini;
0634 if (fin)
0635 rctx->fini = 0;
0636
0637 src = req->src;
0638 len = req->nbytes;
0639
0640 while (len) {
0641 if (actx->fill + len > DCP_BUF_SZ)
0642 clen = DCP_BUF_SZ - actx->fill;
0643 else
0644 clen = len;
0645
0646 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
0647 0);
0648
0649 len -= clen;
0650 oft += clen;
0651 actx->fill += clen;
0652
0653
0654
0655
0656
0657 if (len && actx->fill == DCP_BUF_SZ) {
0658 ret = mxs_dcp_run_sha(req);
0659 if (ret)
0660 return ret;
0661 actx->fill = 0;
0662 rctx->init = 0;
0663 }
0664 }
0665
0666 if (fin) {
0667 rctx->fini = 1;
0668
0669
0670 if (!req->result)
0671 return -EINVAL;
0672
0673 ret = mxs_dcp_run_sha(req);
0674 if (ret)
0675 return ret;
0676
0677 actx->fill = 0;
0678
0679
0680 for (i = 0; i < halg->digestsize; i++)
0681 req->result[i] = out_buf[halg->digestsize - i - 1];
0682 }
0683
0684 return 0;
0685 }
0686
0687 static int dcp_chan_thread_sha(void *data)
0688 {
0689 struct dcp *sdcp = global_sdcp;
0690 const int chan = DCP_CHAN_HASH_SHA;
0691
0692 struct crypto_async_request *backlog;
0693 struct crypto_async_request *arq;
0694 int ret;
0695
0696 while (!kthread_should_stop()) {
0697 set_current_state(TASK_INTERRUPTIBLE);
0698
0699 spin_lock(&sdcp->lock[chan]);
0700 backlog = crypto_get_backlog(&sdcp->queue[chan]);
0701 arq = crypto_dequeue_request(&sdcp->queue[chan]);
0702 spin_unlock(&sdcp->lock[chan]);
0703
0704 if (!backlog && !arq) {
0705 schedule();
0706 continue;
0707 }
0708
0709 set_current_state(TASK_RUNNING);
0710
0711 if (backlog)
0712 backlog->complete(backlog, -EINPROGRESS);
0713
0714 if (arq) {
0715 ret = dcp_sha_req_to_buf(arq);
0716 arq->complete(arq, ret);
0717 }
0718 }
0719
0720 return 0;
0721 }
0722
0723 static int dcp_sha_init(struct ahash_request *req)
0724 {
0725 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0726 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
0727
0728 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
0729
0730
0731
0732
0733
0734 memset(actx, 0, sizeof(*actx));
0735
0736 if (strcmp(halg->base.cra_name, "sha1") == 0)
0737 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
0738 else
0739 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
0740
0741 actx->fill = 0;
0742 actx->hot = 0;
0743 actx->chan = DCP_CHAN_HASH_SHA;
0744
0745 mutex_init(&actx->mutex);
0746
0747 return 0;
0748 }
0749
0750 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
0751 {
0752 struct dcp *sdcp = global_sdcp;
0753
0754 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
0755 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0756 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
0757
0758 int ret;
0759
0760
0761
0762
0763
0764 if (!req->nbytes && !fini)
0765 return 0;
0766
0767 mutex_lock(&actx->mutex);
0768
0769 rctx->fini = fini;
0770
0771 if (!actx->hot) {
0772 actx->hot = 1;
0773 rctx->init = 1;
0774 }
0775
0776 spin_lock(&sdcp->lock[actx->chan]);
0777 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
0778 spin_unlock(&sdcp->lock[actx->chan]);
0779
0780 wake_up_process(sdcp->thread[actx->chan]);
0781 mutex_unlock(&actx->mutex);
0782
0783 return ret;
0784 }
0785
0786 static int dcp_sha_update(struct ahash_request *req)
0787 {
0788 return dcp_sha_update_fx(req, 0);
0789 }
0790
0791 static int dcp_sha_final(struct ahash_request *req)
0792 {
0793 ahash_request_set_crypt(req, NULL, req->result, 0);
0794 req->nbytes = 0;
0795 return dcp_sha_update_fx(req, 1);
0796 }
0797
0798 static int dcp_sha_finup(struct ahash_request *req)
0799 {
0800 return dcp_sha_update_fx(req, 1);
0801 }
0802
0803 static int dcp_sha_digest(struct ahash_request *req)
0804 {
0805 int ret;
0806
0807 ret = dcp_sha_init(req);
0808 if (ret)
0809 return ret;
0810
0811 return dcp_sha_finup(req);
0812 }
0813
0814 static int dcp_sha_import(struct ahash_request *req, const void *in)
0815 {
0816 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
0817 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0818 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
0819 const struct dcp_export_state *export = in;
0820
0821 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
0822 memset(actx, 0, sizeof(struct dcp_async_ctx));
0823 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
0824 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
0825
0826 return 0;
0827 }
0828
0829 static int dcp_sha_export(struct ahash_request *req, void *out)
0830 {
0831 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
0832 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0833 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
0834 struct dcp_export_state *export = out;
0835
0836 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
0837 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
0838
0839 return 0;
0840 }
0841
0842 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
0843 {
0844 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
0845 sizeof(struct dcp_sha_req_ctx));
0846 return 0;
0847 }
0848
0849 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
0850 {
0851 }
0852
0853
0854 static struct skcipher_alg dcp_aes_algs[] = {
0855 {
0856 .base.cra_name = "ecb(aes)",
0857 .base.cra_driver_name = "ecb-aes-dcp",
0858 .base.cra_priority = 400,
0859 .base.cra_alignmask = 15,
0860 .base.cra_flags = CRYPTO_ALG_ASYNC |
0861 CRYPTO_ALG_NEED_FALLBACK,
0862 .base.cra_blocksize = AES_BLOCK_SIZE,
0863 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
0864 .base.cra_module = THIS_MODULE,
0865
0866 .min_keysize = AES_MIN_KEY_SIZE,
0867 .max_keysize = AES_MAX_KEY_SIZE,
0868 .setkey = mxs_dcp_aes_setkey,
0869 .encrypt = mxs_dcp_aes_ecb_encrypt,
0870 .decrypt = mxs_dcp_aes_ecb_decrypt,
0871 .init = mxs_dcp_aes_fallback_init_tfm,
0872 .exit = mxs_dcp_aes_fallback_exit_tfm,
0873 }, {
0874 .base.cra_name = "cbc(aes)",
0875 .base.cra_driver_name = "cbc-aes-dcp",
0876 .base.cra_priority = 400,
0877 .base.cra_alignmask = 15,
0878 .base.cra_flags = CRYPTO_ALG_ASYNC |
0879 CRYPTO_ALG_NEED_FALLBACK,
0880 .base.cra_blocksize = AES_BLOCK_SIZE,
0881 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
0882 .base.cra_module = THIS_MODULE,
0883
0884 .min_keysize = AES_MIN_KEY_SIZE,
0885 .max_keysize = AES_MAX_KEY_SIZE,
0886 .setkey = mxs_dcp_aes_setkey,
0887 .encrypt = mxs_dcp_aes_cbc_encrypt,
0888 .decrypt = mxs_dcp_aes_cbc_decrypt,
0889 .ivsize = AES_BLOCK_SIZE,
0890 .init = mxs_dcp_aes_fallback_init_tfm,
0891 .exit = mxs_dcp_aes_fallback_exit_tfm,
0892 },
0893 };
0894
0895
0896 static struct ahash_alg dcp_sha1_alg = {
0897 .init = dcp_sha_init,
0898 .update = dcp_sha_update,
0899 .final = dcp_sha_final,
0900 .finup = dcp_sha_finup,
0901 .digest = dcp_sha_digest,
0902 .import = dcp_sha_import,
0903 .export = dcp_sha_export,
0904 .halg = {
0905 .digestsize = SHA1_DIGEST_SIZE,
0906 .statesize = sizeof(struct dcp_export_state),
0907 .base = {
0908 .cra_name = "sha1",
0909 .cra_driver_name = "sha1-dcp",
0910 .cra_priority = 400,
0911 .cra_alignmask = 63,
0912 .cra_flags = CRYPTO_ALG_ASYNC,
0913 .cra_blocksize = SHA1_BLOCK_SIZE,
0914 .cra_ctxsize = sizeof(struct dcp_async_ctx),
0915 .cra_module = THIS_MODULE,
0916 .cra_init = dcp_sha_cra_init,
0917 .cra_exit = dcp_sha_cra_exit,
0918 },
0919 },
0920 };
0921
0922
0923 static struct ahash_alg dcp_sha256_alg = {
0924 .init = dcp_sha_init,
0925 .update = dcp_sha_update,
0926 .final = dcp_sha_final,
0927 .finup = dcp_sha_finup,
0928 .digest = dcp_sha_digest,
0929 .import = dcp_sha_import,
0930 .export = dcp_sha_export,
0931 .halg = {
0932 .digestsize = SHA256_DIGEST_SIZE,
0933 .statesize = sizeof(struct dcp_export_state),
0934 .base = {
0935 .cra_name = "sha256",
0936 .cra_driver_name = "sha256-dcp",
0937 .cra_priority = 400,
0938 .cra_alignmask = 63,
0939 .cra_flags = CRYPTO_ALG_ASYNC,
0940 .cra_blocksize = SHA256_BLOCK_SIZE,
0941 .cra_ctxsize = sizeof(struct dcp_async_ctx),
0942 .cra_module = THIS_MODULE,
0943 .cra_init = dcp_sha_cra_init,
0944 .cra_exit = dcp_sha_cra_exit,
0945 },
0946 },
0947 };
0948
0949 static irqreturn_t mxs_dcp_irq(int irq, void *context)
0950 {
0951 struct dcp *sdcp = context;
0952 uint32_t stat;
0953 int i;
0954
0955 stat = readl(sdcp->base + MXS_DCP_STAT);
0956 stat &= MXS_DCP_STAT_IRQ_MASK;
0957 if (!stat)
0958 return IRQ_NONE;
0959
0960
0961 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
0962
0963
0964 for (i = 0; i < DCP_MAX_CHANS; i++)
0965 if (stat & (1 << i))
0966 complete(&sdcp->completion[i]);
0967
0968 return IRQ_HANDLED;
0969 }
0970
0971 static int mxs_dcp_probe(struct platform_device *pdev)
0972 {
0973 struct device *dev = &pdev->dev;
0974 struct dcp *sdcp = NULL;
0975 int i, ret;
0976 int dcp_vmi_irq, dcp_irq;
0977
0978 if (global_sdcp) {
0979 dev_err(dev, "Only one DCP instance allowed!\n");
0980 return -ENODEV;
0981 }
0982
0983 dcp_vmi_irq = platform_get_irq(pdev, 0);
0984 if (dcp_vmi_irq < 0)
0985 return dcp_vmi_irq;
0986
0987 dcp_irq = platform_get_irq(pdev, 1);
0988 if (dcp_irq < 0)
0989 return dcp_irq;
0990
0991 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
0992 if (!sdcp)
0993 return -ENOMEM;
0994
0995 sdcp->dev = dev;
0996 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
0997 if (IS_ERR(sdcp->base))
0998 return PTR_ERR(sdcp->base);
0999
1000
1001 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1002 "dcp-vmi-irq", sdcp);
1003 if (ret) {
1004 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1005 return ret;
1006 }
1007
1008 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1009 "dcp-irq", sdcp);
1010 if (ret) {
1011 dev_err(dev, "Failed to claim DCP IRQ!\n");
1012 return ret;
1013 }
1014
1015
1016 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1017 GFP_KERNEL);
1018 if (!sdcp->coh)
1019 return -ENOMEM;
1020
1021
1022 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1023
1024
1025 sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1026 if (IS_ERR(sdcp->dcp_clk)) {
1027 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1028 return PTR_ERR(sdcp->dcp_clk);
1029 sdcp->dcp_clk = NULL;
1030 }
1031 ret = clk_prepare_enable(sdcp->dcp_clk);
1032 if (ret)
1033 return ret;
1034
1035
1036 ret = stmp_reset_block(sdcp->base);
1037 if (ret) {
1038 dev_err(dev, "Failed reset\n");
1039 goto err_disable_unprepare_clk;
1040 }
1041
1042
1043 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1044 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1045 sdcp->base + MXS_DCP_CTRL);
1046
1047
1048 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1049 sdcp->base + MXS_DCP_CHANNELCTRL);
1050
1051
1052
1053
1054
1055
1056
1057
1058 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1059 for (i = 0; i < DCP_MAX_CHANS; i++)
1060 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1061 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1062
1063 global_sdcp = sdcp;
1064
1065 platform_set_drvdata(pdev, sdcp);
1066
1067 for (i = 0; i < DCP_MAX_CHANS; i++) {
1068 spin_lock_init(&sdcp->lock[i]);
1069 init_completion(&sdcp->completion[i]);
1070 crypto_init_queue(&sdcp->queue[i], 50);
1071 }
1072
1073
1074 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1075 NULL, "mxs_dcp_chan/sha");
1076 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1077 dev_err(dev, "Error starting SHA thread!\n");
1078 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1079 goto err_disable_unprepare_clk;
1080 }
1081
1082 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1083 NULL, "mxs_dcp_chan/aes");
1084 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1085 dev_err(dev, "Error starting SHA thread!\n");
1086 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1087 goto err_destroy_sha_thread;
1088 }
1089
1090
1091 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1092
1093 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1094 ret = crypto_register_skciphers(dcp_aes_algs,
1095 ARRAY_SIZE(dcp_aes_algs));
1096 if (ret) {
1097
1098 dev_err(dev, "Failed to register AES crypto!\n");
1099 goto err_destroy_aes_thread;
1100 }
1101 }
1102
1103 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1104 ret = crypto_register_ahash(&dcp_sha1_alg);
1105 if (ret) {
1106 dev_err(dev, "Failed to register %s hash!\n",
1107 dcp_sha1_alg.halg.base.cra_name);
1108 goto err_unregister_aes;
1109 }
1110 }
1111
1112 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1113 ret = crypto_register_ahash(&dcp_sha256_alg);
1114 if (ret) {
1115 dev_err(dev, "Failed to register %s hash!\n",
1116 dcp_sha256_alg.halg.base.cra_name);
1117 goto err_unregister_sha1;
1118 }
1119 }
1120
1121 return 0;
1122
1123 err_unregister_sha1:
1124 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1125 crypto_unregister_ahash(&dcp_sha1_alg);
1126
1127 err_unregister_aes:
1128 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1129 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1130
1131 err_destroy_aes_thread:
1132 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1133
1134 err_destroy_sha_thread:
1135 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1136
1137 err_disable_unprepare_clk:
1138 clk_disable_unprepare(sdcp->dcp_clk);
1139
1140 return ret;
1141 }
1142
1143 static int mxs_dcp_remove(struct platform_device *pdev)
1144 {
1145 struct dcp *sdcp = platform_get_drvdata(pdev);
1146
1147 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1148 crypto_unregister_ahash(&dcp_sha256_alg);
1149
1150 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1151 crypto_unregister_ahash(&dcp_sha1_alg);
1152
1153 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1154 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1155
1156 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1157 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1158
1159 clk_disable_unprepare(sdcp->dcp_clk);
1160
1161 platform_set_drvdata(pdev, NULL);
1162
1163 global_sdcp = NULL;
1164
1165 return 0;
1166 }
1167
1168 static const struct of_device_id mxs_dcp_dt_ids[] = {
1169 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1170 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1171 { }
1172 };
1173
1174 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1175
1176 static struct platform_driver mxs_dcp_driver = {
1177 .probe = mxs_dcp_probe,
1178 .remove = mxs_dcp_remove,
1179 .driver = {
1180 .name = "mxs-dcp",
1181 .of_match_table = mxs_dcp_dt_ids,
1182 },
1183 };
1184
1185 module_platform_driver(mxs_dcp_driver);
1186
1187 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1188 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1189 MODULE_LICENSE("GPL");
1190 MODULE_ALIAS("platform:mxs-dcp");