Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright (c) 2019 HiSilicon Limited. */
0003 
0004 #include <crypto/aes.h>
0005 #include <crypto/aead.h>
0006 #include <crypto/algapi.h>
0007 #include <crypto/authenc.h>
0008 #include <crypto/des.h>
0009 #include <crypto/hash.h>
0010 #include <crypto/internal/aead.h>
0011 #include <crypto/internal/des.h>
0012 #include <crypto/sha1.h>
0013 #include <crypto/sha2.h>
0014 #include <crypto/skcipher.h>
0015 #include <crypto/xts.h>
0016 #include <linux/crypto.h>
0017 #include <linux/dma-mapping.h>
0018 #include <linux/idr.h>
0019 
0020 #include "sec.h"
0021 #include "sec_crypto.h"
0022 
0023 #define SEC_PRIORITY        4001
0024 #define SEC_XTS_MIN_KEY_SIZE    (2 * AES_MIN_KEY_SIZE)
0025 #define SEC_XTS_MID_KEY_SIZE    (3 * AES_MIN_KEY_SIZE)
0026 #define SEC_XTS_MAX_KEY_SIZE    (2 * AES_MAX_KEY_SIZE)
0027 #define SEC_DES3_2KEY_SIZE  (2 * DES_KEY_SIZE)
0028 #define SEC_DES3_3KEY_SIZE  (3 * DES_KEY_SIZE)
0029 
0030 /* SEC sqe(bd) bit operational relative MACRO */
0031 #define SEC_DE_OFFSET       1
0032 #define SEC_CIPHER_OFFSET   4
0033 #define SEC_SCENE_OFFSET    3
0034 #define SEC_DST_SGL_OFFSET  2
0035 #define SEC_SRC_SGL_OFFSET  7
0036 #define SEC_CKEY_OFFSET     9
0037 #define SEC_CMODE_OFFSET    12
0038 #define SEC_AKEY_OFFSET         5
0039 #define SEC_AEAD_ALG_OFFSET     11
0040 #define SEC_AUTH_OFFSET     6
0041 
0042 #define SEC_DE_OFFSET_V3        9
0043 #define SEC_SCENE_OFFSET_V3 5
0044 #define SEC_CKEY_OFFSET_V3  13
0045 #define SEC_CTR_CNT_OFFSET  25
0046 #define SEC_CTR_CNT_ROLLOVER    2
0047 #define SEC_SRC_SGL_OFFSET_V3   11
0048 #define SEC_DST_SGL_OFFSET_V3   14
0049 #define SEC_CALG_OFFSET_V3  4
0050 #define SEC_AKEY_OFFSET_V3  9
0051 #define SEC_MAC_OFFSET_V3   4
0052 #define SEC_AUTH_ALG_OFFSET_V3  15
0053 #define SEC_CIPHER_AUTH_V3  0xbf
0054 #define SEC_AUTH_CIPHER_V3  0x40
0055 #define SEC_FLAG_OFFSET     7
0056 #define SEC_FLAG_MASK       0x0780
0057 #define SEC_TYPE_MASK       0x0F
0058 #define SEC_DONE_MASK       0x0001
0059 #define SEC_ICV_MASK        0x000E
0060 #define SEC_SQE_LEN_RATE_MASK   0x3
0061 
0062 #define SEC_TOTAL_IV_SZ     (SEC_IV_SIZE * QM_Q_DEPTH)
0063 #define SEC_SGL_SGE_NR      128
0064 #define SEC_CIPHER_AUTH     0xfe
0065 #define SEC_AUTH_CIPHER     0x1
0066 #define SEC_MAX_MAC_LEN     64
0067 #define SEC_MAX_AAD_LEN     65535
0068 #define SEC_MAX_CCM_AAD_LEN 65279
0069 #define SEC_TOTAL_MAC_SZ    (SEC_MAX_MAC_LEN * QM_Q_DEPTH)
0070 
0071 #define SEC_PBUF_SZ         512
0072 #define SEC_PBUF_IV_OFFSET      SEC_PBUF_SZ
0073 #define SEC_PBUF_MAC_OFFSET     (SEC_PBUF_SZ + SEC_IV_SIZE)
0074 #define SEC_PBUF_PKG        (SEC_PBUF_SZ + SEC_IV_SIZE +    \
0075             SEC_MAX_MAC_LEN * 2)
0076 #define SEC_PBUF_NUM        (PAGE_SIZE / SEC_PBUF_PKG)
0077 #define SEC_PBUF_PAGE_NUM   (QM_Q_DEPTH / SEC_PBUF_NUM)
0078 #define SEC_PBUF_LEFT_SZ    (SEC_PBUF_PKG * (QM_Q_DEPTH -   \
0079             SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
0080 #define SEC_TOTAL_PBUF_SZ   (PAGE_SIZE * SEC_PBUF_PAGE_NUM +    \
0081             SEC_PBUF_LEFT_SZ)
0082 
0083 #define SEC_SQE_LEN_RATE    4
0084 #define SEC_SQE_CFLAG       2
0085 #define SEC_SQE_AEAD_FLAG   3
0086 #define SEC_SQE_DONE        0x1
0087 #define SEC_ICV_ERR     0x2
0088 #define MIN_MAC_LEN     4
0089 #define MAC_LEN_MASK        0x1U
0090 #define MAX_INPUT_DATA_LEN  0xFFFE00
0091 #define BITS_MASK       0xFF
0092 #define BYTE_BITS       0x8
0093 #define SEC_XTS_NAME_SZ     0x3
0094 #define IV_CM_CAL_NUM       2
0095 #define IV_CL_MASK      0x7
0096 #define IV_CL_MIN       2
0097 #define IV_CL_MID       4
0098 #define IV_CL_MAX       8
0099 #define IV_FLAGS_OFFSET 0x6
0100 #define IV_CM_OFFSET        0x3
0101 #define IV_LAST_BYTE1       1
0102 #define IV_LAST_BYTE2       2
0103 #define IV_LAST_BYTE_MASK   0xFF
0104 #define IV_CTR_INIT     0x1
0105 #define IV_BYTE_OFFSET      0x8
0106 
0107 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
0108 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
0109 {
0110     if (req->c_req.encrypt)
0111         return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
0112                  ctx->hlf_q_num;
0113 
0114     return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
0115                  ctx->hlf_q_num;
0116 }
0117 
0118 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
0119 {
0120     if (req->c_req.encrypt)
0121         atomic_dec(&ctx->enc_qcyclic);
0122     else
0123         atomic_dec(&ctx->dec_qcyclic);
0124 }
0125 
0126 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
0127 {
0128     int req_id;
0129 
0130     spin_lock_bh(&qp_ctx->req_lock);
0131 
0132     req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
0133                   0, QM_Q_DEPTH, GFP_ATOMIC);
0134     spin_unlock_bh(&qp_ctx->req_lock);
0135     if (unlikely(req_id < 0)) {
0136         dev_err(req->ctx->dev, "alloc req id fail!\n");
0137         return req_id;
0138     }
0139 
0140     req->qp_ctx = qp_ctx;
0141     qp_ctx->req_list[req_id] = req;
0142 
0143     return req_id;
0144 }
0145 
0146 static void sec_free_req_id(struct sec_req *req)
0147 {
0148     struct sec_qp_ctx *qp_ctx = req->qp_ctx;
0149     int req_id = req->req_id;
0150 
0151     if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
0152         dev_err(req->ctx->dev, "free request id invalid!\n");
0153         return;
0154     }
0155 
0156     qp_ctx->req_list[req_id] = NULL;
0157     req->qp_ctx = NULL;
0158 
0159     spin_lock_bh(&qp_ctx->req_lock);
0160     idr_remove(&qp_ctx->req_idr, req_id);
0161     spin_unlock_bh(&qp_ctx->req_lock);
0162 }
0163 
0164 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
0165 {
0166     struct sec_sqe *bd = resp;
0167 
0168     status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
0169     status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
0170     status->flag = (le16_to_cpu(bd->type2.done_flag) &
0171                     SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
0172     status->tag = le16_to_cpu(bd->type2.tag);
0173     status->err_type = bd->type2.error_type;
0174 
0175     return bd->type_cipher_auth & SEC_TYPE_MASK;
0176 }
0177 
0178 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
0179 {
0180     struct sec_sqe3 *bd3 = resp;
0181 
0182     status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
0183     status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
0184     status->flag = (le16_to_cpu(bd3->done_flag) &
0185                     SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
0186     status->tag = le64_to_cpu(bd3->tag);
0187     status->err_type = bd3->error_type;
0188 
0189     return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
0190 }
0191 
0192 static int sec_cb_status_check(struct sec_req *req,
0193                    struct bd_status *status)
0194 {
0195     struct sec_ctx *ctx = req->ctx;
0196 
0197     if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
0198         dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
0199                     req->err_type, status->done);
0200         return -EIO;
0201     }
0202 
0203     if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
0204         if (unlikely(status->flag != SEC_SQE_CFLAG)) {
0205             dev_err_ratelimited(ctx->dev, "flag[%u]\n",
0206                         status->flag);
0207             return -EIO;
0208         }
0209     } else if (unlikely(ctx->alg_type == SEC_AEAD)) {
0210         if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
0211                  status->icv == SEC_ICV_ERR)) {
0212             dev_err_ratelimited(ctx->dev,
0213                         "flag[%u], icv[%u]\n",
0214                         status->flag, status->icv);
0215             return -EBADMSG;
0216         }
0217     }
0218 
0219     return 0;
0220 }
0221 
0222 static void sec_req_cb(struct hisi_qp *qp, void *resp)
0223 {
0224     struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
0225     struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
0226     u8 type_supported = qp_ctx->ctx->type_supported;
0227     struct bd_status status;
0228     struct sec_ctx *ctx;
0229     struct sec_req *req;
0230     int err;
0231     u8 type;
0232 
0233     if (type_supported == SEC_BD_TYPE2) {
0234         type = pre_parse_finished_bd(&status, resp);
0235         req = qp_ctx->req_list[status.tag];
0236     } else {
0237         type = pre_parse_finished_bd3(&status, resp);
0238         req = (void *)(uintptr_t)status.tag;
0239     }
0240 
0241     if (unlikely(type != type_supported)) {
0242         atomic64_inc(&dfx->err_bd_cnt);
0243         pr_err("err bd type [%u]\n", type);
0244         return;
0245     }
0246 
0247     if (unlikely(!req)) {
0248         atomic64_inc(&dfx->invalid_req_cnt);
0249         atomic_inc(&qp->qp_status.used);
0250         return;
0251     }
0252 
0253     req->err_type = status.err_type;
0254     ctx = req->ctx;
0255     err = sec_cb_status_check(req, &status);
0256     if (err)
0257         atomic64_inc(&dfx->done_flag_cnt);
0258 
0259     atomic64_inc(&dfx->recv_cnt);
0260 
0261     ctx->req_op->buf_unmap(ctx, req);
0262 
0263     ctx->req_op->callback(ctx, req, err);
0264 }
0265 
0266 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
0267 {
0268     struct sec_qp_ctx *qp_ctx = req->qp_ctx;
0269     int ret;
0270 
0271     if (ctx->fake_req_limit <=
0272         atomic_read(&qp_ctx->qp->qp_status.used) &&
0273         !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
0274         return -EBUSY;
0275 
0276     spin_lock_bh(&qp_ctx->req_lock);
0277     ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
0278 
0279     if (ctx->fake_req_limit <=
0280         atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
0281         list_add_tail(&req->backlog_head, &qp_ctx->backlog);
0282         atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
0283         atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
0284         spin_unlock_bh(&qp_ctx->req_lock);
0285         return -EBUSY;
0286     }
0287     spin_unlock_bh(&qp_ctx->req_lock);
0288 
0289     if (unlikely(ret == -EBUSY))
0290         return -ENOBUFS;
0291 
0292     if (likely(!ret)) {
0293         ret = -EINPROGRESS;
0294         atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
0295     }
0296 
0297     return ret;
0298 }
0299 
0300 /* Get DMA memory resources */
0301 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
0302 {
0303     int i;
0304 
0305     res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
0306                      &res->c_ivin_dma, GFP_KERNEL);
0307     if (!res->c_ivin)
0308         return -ENOMEM;
0309 
0310     for (i = 1; i < QM_Q_DEPTH; i++) {
0311         res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
0312         res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
0313     }
0314 
0315     return 0;
0316 }
0317 
0318 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
0319 {
0320     if (res->c_ivin)
0321         dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
0322                   res->c_ivin, res->c_ivin_dma);
0323 }
0324 
0325 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
0326 {
0327     int i;
0328 
0329     res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
0330                      &res->a_ivin_dma, GFP_KERNEL);
0331     if (!res->a_ivin)
0332         return -ENOMEM;
0333 
0334     for (i = 1; i < QM_Q_DEPTH; i++) {
0335         res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
0336         res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
0337     }
0338 
0339     return 0;
0340 }
0341 
0342 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
0343 {
0344     if (res->a_ivin)
0345         dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
0346                   res->a_ivin, res->a_ivin_dma);
0347 }
0348 
0349 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
0350 {
0351     int i;
0352 
0353     res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
0354                       &res->out_mac_dma, GFP_KERNEL);
0355     if (!res->out_mac)
0356         return -ENOMEM;
0357 
0358     for (i = 1; i < QM_Q_DEPTH; i++) {
0359         res[i].out_mac_dma = res->out_mac_dma +
0360                      i * (SEC_MAX_MAC_LEN << 1);
0361         res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
0362     }
0363 
0364     return 0;
0365 }
0366 
0367 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
0368 {
0369     if (res->out_mac)
0370         dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
0371                   res->out_mac, res->out_mac_dma);
0372 }
0373 
0374 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
0375 {
0376     if (res->pbuf)
0377         dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
0378                   res->pbuf, res->pbuf_dma);
0379 }
0380 
0381 /*
0382  * To improve performance, pbuffer is used for
0383  * small packets (< 512Bytes) as IOMMU translation using.
0384  */
0385 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
0386 {
0387     int pbuf_page_offset;
0388     int i, j, k;
0389 
0390     res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
0391                 &res->pbuf_dma, GFP_KERNEL);
0392     if (!res->pbuf)
0393         return -ENOMEM;
0394 
0395     /*
0396      * SEC_PBUF_PKG contains data pbuf, iv and
0397      * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
0398      * Every PAGE contains six SEC_PBUF_PKG
0399      * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
0400      * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
0401      * for the SEC_TOTAL_PBUF_SZ
0402      */
0403     for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
0404         pbuf_page_offset = PAGE_SIZE * i;
0405         for (j = 0; j < SEC_PBUF_NUM; j++) {
0406             k = i * SEC_PBUF_NUM + j;
0407             if (k == QM_Q_DEPTH)
0408                 break;
0409             res[k].pbuf = res->pbuf +
0410                 j * SEC_PBUF_PKG + pbuf_page_offset;
0411             res[k].pbuf_dma = res->pbuf_dma +
0412                 j * SEC_PBUF_PKG + pbuf_page_offset;
0413         }
0414     }
0415 
0416     return 0;
0417 }
0418 
0419 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
0420                   struct sec_qp_ctx *qp_ctx)
0421 {
0422     struct sec_alg_res *res = qp_ctx->res;
0423     struct device *dev = ctx->dev;
0424     int ret;
0425 
0426     ret = sec_alloc_civ_resource(dev, res);
0427     if (ret)
0428         return ret;
0429 
0430     if (ctx->alg_type == SEC_AEAD) {
0431         ret = sec_alloc_aiv_resource(dev, res);
0432         if (ret)
0433             goto alloc_aiv_fail;
0434 
0435         ret = sec_alloc_mac_resource(dev, res);
0436         if (ret)
0437             goto alloc_mac_fail;
0438     }
0439     if (ctx->pbuf_supported) {
0440         ret = sec_alloc_pbuf_resource(dev, res);
0441         if (ret) {
0442             dev_err(dev, "fail to alloc pbuf dma resource!\n");
0443             goto alloc_pbuf_fail;
0444         }
0445     }
0446 
0447     return 0;
0448 
0449 alloc_pbuf_fail:
0450     if (ctx->alg_type == SEC_AEAD)
0451         sec_free_mac_resource(dev, qp_ctx->res);
0452 alloc_mac_fail:
0453     if (ctx->alg_type == SEC_AEAD)
0454         sec_free_aiv_resource(dev, res);
0455 alloc_aiv_fail:
0456     sec_free_civ_resource(dev, res);
0457     return ret;
0458 }
0459 
0460 static void sec_alg_resource_free(struct sec_ctx *ctx,
0461                   struct sec_qp_ctx *qp_ctx)
0462 {
0463     struct device *dev = ctx->dev;
0464 
0465     sec_free_civ_resource(dev, qp_ctx->res);
0466 
0467     if (ctx->pbuf_supported)
0468         sec_free_pbuf_resource(dev, qp_ctx->res);
0469     if (ctx->alg_type == SEC_AEAD)
0470         sec_free_mac_resource(dev, qp_ctx->res);
0471 }
0472 
0473 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
0474                  int qp_ctx_id, int alg_type)
0475 {
0476     struct device *dev = ctx->dev;
0477     struct sec_qp_ctx *qp_ctx;
0478     struct hisi_qp *qp;
0479     int ret = -ENOMEM;
0480 
0481     qp_ctx = &ctx->qp_ctx[qp_ctx_id];
0482     qp = ctx->qps[qp_ctx_id];
0483     qp->req_type = 0;
0484     qp->qp_ctx = qp_ctx;
0485     qp_ctx->qp = qp;
0486     qp_ctx->ctx = ctx;
0487 
0488     qp->req_cb = sec_req_cb;
0489 
0490     spin_lock_init(&qp_ctx->req_lock);
0491     idr_init(&qp_ctx->req_idr);
0492     INIT_LIST_HEAD(&qp_ctx->backlog);
0493 
0494     qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
0495                              SEC_SGL_SGE_NR);
0496     if (IS_ERR(qp_ctx->c_in_pool)) {
0497         dev_err(dev, "fail to create sgl pool for input!\n");
0498         goto err_destroy_idr;
0499     }
0500 
0501     qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
0502                               SEC_SGL_SGE_NR);
0503     if (IS_ERR(qp_ctx->c_out_pool)) {
0504         dev_err(dev, "fail to create sgl pool for output!\n");
0505         goto err_free_c_in_pool;
0506     }
0507 
0508     ret = sec_alg_resource_alloc(ctx, qp_ctx);
0509     if (ret)
0510         goto err_free_c_out_pool;
0511 
0512     ret = hisi_qm_start_qp(qp, 0);
0513     if (ret < 0)
0514         goto err_queue_free;
0515 
0516     return 0;
0517 
0518 err_queue_free:
0519     sec_alg_resource_free(ctx, qp_ctx);
0520 err_free_c_out_pool:
0521     hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
0522 err_free_c_in_pool:
0523     hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
0524 err_destroy_idr:
0525     idr_destroy(&qp_ctx->req_idr);
0526     return ret;
0527 }
0528 
0529 static void sec_release_qp_ctx(struct sec_ctx *ctx,
0530                    struct sec_qp_ctx *qp_ctx)
0531 {
0532     struct device *dev = ctx->dev;
0533 
0534     hisi_qm_stop_qp(qp_ctx->qp);
0535     sec_alg_resource_free(ctx, qp_ctx);
0536 
0537     hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
0538     hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
0539 
0540     idr_destroy(&qp_ctx->req_idr);
0541 }
0542 
0543 static int sec_ctx_base_init(struct sec_ctx *ctx)
0544 {
0545     struct sec_dev *sec;
0546     int i, ret;
0547 
0548     ctx->qps = sec_create_qps();
0549     if (!ctx->qps) {
0550         pr_err("Can not create sec qps!\n");
0551         return -ENODEV;
0552     }
0553 
0554     sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
0555     ctx->sec = sec;
0556     ctx->dev = &sec->qm.pdev->dev;
0557     ctx->hlf_q_num = sec->ctx_q_num >> 1;
0558 
0559     ctx->pbuf_supported = ctx->sec->iommu_used;
0560 
0561     /* Half of queue depth is taken as fake requests limit in the queue. */
0562     ctx->fake_req_limit = QM_Q_DEPTH >> 1;
0563     ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
0564                   GFP_KERNEL);
0565     if (!ctx->qp_ctx) {
0566         ret = -ENOMEM;
0567         goto err_destroy_qps;
0568     }
0569 
0570     for (i = 0; i < sec->ctx_q_num; i++) {
0571         ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
0572         if (ret)
0573             goto err_sec_release_qp_ctx;
0574     }
0575 
0576     return 0;
0577 
0578 err_sec_release_qp_ctx:
0579     for (i = i - 1; i >= 0; i--)
0580         sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
0581     kfree(ctx->qp_ctx);
0582 err_destroy_qps:
0583     sec_destroy_qps(ctx->qps, sec->ctx_q_num);
0584     return ret;
0585 }
0586 
0587 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
0588 {
0589     int i;
0590 
0591     for (i = 0; i < ctx->sec->ctx_q_num; i++)
0592         sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
0593 
0594     sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
0595     kfree(ctx->qp_ctx);
0596 }
0597 
0598 static int sec_cipher_init(struct sec_ctx *ctx)
0599 {
0600     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
0601 
0602     c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
0603                       &c_ctx->c_key_dma, GFP_KERNEL);
0604     if (!c_ctx->c_key)
0605         return -ENOMEM;
0606 
0607     return 0;
0608 }
0609 
0610 static void sec_cipher_uninit(struct sec_ctx *ctx)
0611 {
0612     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
0613 
0614     memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
0615     dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
0616               c_ctx->c_key, c_ctx->c_key_dma);
0617 }
0618 
0619 static int sec_auth_init(struct sec_ctx *ctx)
0620 {
0621     struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
0622 
0623     a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
0624                       &a_ctx->a_key_dma, GFP_KERNEL);
0625     if (!a_ctx->a_key)
0626         return -ENOMEM;
0627 
0628     return 0;
0629 }
0630 
0631 static void sec_auth_uninit(struct sec_ctx *ctx)
0632 {
0633     struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
0634 
0635     memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
0636     dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
0637               a_ctx->a_key, a_ctx->a_key_dma);
0638 }
0639 
0640 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
0641 {
0642     const char *alg = crypto_tfm_alg_name(&tfm->base);
0643     struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
0644     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
0645 
0646     c_ctx->fallback = false;
0647 
0648     /* Currently, only XTS mode need fallback tfm when using 192bit key */
0649     if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
0650         return 0;
0651 
0652     c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
0653                           CRYPTO_ALG_NEED_FALLBACK);
0654     if (IS_ERR(c_ctx->fbtfm)) {
0655         pr_err("failed to alloc xts mode fallback tfm!\n");
0656         return PTR_ERR(c_ctx->fbtfm);
0657     }
0658 
0659     return 0;
0660 }
0661 
0662 static int sec_skcipher_init(struct crypto_skcipher *tfm)
0663 {
0664     struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
0665     int ret;
0666 
0667     ctx->alg_type = SEC_SKCIPHER;
0668     crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
0669     ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
0670     if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
0671         pr_err("get error skcipher iv size!\n");
0672         return -EINVAL;
0673     }
0674 
0675     ret = sec_ctx_base_init(ctx);
0676     if (ret)
0677         return ret;
0678 
0679     ret = sec_cipher_init(ctx);
0680     if (ret)
0681         goto err_cipher_init;
0682 
0683     ret = sec_skcipher_fbtfm_init(tfm);
0684     if (ret)
0685         goto err_fbtfm_init;
0686 
0687     return 0;
0688 
0689 err_fbtfm_init:
0690     sec_cipher_uninit(ctx);
0691 err_cipher_init:
0692     sec_ctx_base_uninit(ctx);
0693     return ret;
0694 }
0695 
0696 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
0697 {
0698     struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
0699 
0700     if (ctx->c_ctx.fbtfm)
0701         crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
0702 
0703     sec_cipher_uninit(ctx);
0704     sec_ctx_base_uninit(ctx);
0705 }
0706 
0707 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
0708                     const u32 keylen,
0709                     const enum sec_cmode c_mode)
0710 {
0711     struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
0712     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
0713     int ret;
0714 
0715     ret = verify_skcipher_des3_key(tfm, key);
0716     if (ret)
0717         return ret;
0718 
0719     switch (keylen) {
0720     case SEC_DES3_2KEY_SIZE:
0721         c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
0722         break;
0723     case SEC_DES3_3KEY_SIZE:
0724         c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
0725         break;
0726     default:
0727         return -EINVAL;
0728     }
0729 
0730     return 0;
0731 }
0732 
0733 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
0734                        const u32 keylen,
0735                        const enum sec_cmode c_mode)
0736 {
0737     if (c_mode == SEC_CMODE_XTS) {
0738         switch (keylen) {
0739         case SEC_XTS_MIN_KEY_SIZE:
0740             c_ctx->c_key_len = SEC_CKEY_128BIT;
0741             break;
0742         case SEC_XTS_MID_KEY_SIZE:
0743             c_ctx->fallback = true;
0744             break;
0745         case SEC_XTS_MAX_KEY_SIZE:
0746             c_ctx->c_key_len = SEC_CKEY_256BIT;
0747             break;
0748         default:
0749             pr_err("hisi_sec2: xts mode key error!\n");
0750             return -EINVAL;
0751         }
0752     } else {
0753         if (c_ctx->c_alg == SEC_CALG_SM4 &&
0754             keylen != AES_KEYSIZE_128) {
0755             pr_err("hisi_sec2: sm4 key error!\n");
0756             return -EINVAL;
0757         } else {
0758             switch (keylen) {
0759             case AES_KEYSIZE_128:
0760                 c_ctx->c_key_len = SEC_CKEY_128BIT;
0761                 break;
0762             case AES_KEYSIZE_192:
0763                 c_ctx->c_key_len = SEC_CKEY_192BIT;
0764                 break;
0765             case AES_KEYSIZE_256:
0766                 c_ctx->c_key_len = SEC_CKEY_256BIT;
0767                 break;
0768             default:
0769                 pr_err("hisi_sec2: aes key error!\n");
0770                 return -EINVAL;
0771             }
0772         }
0773     }
0774 
0775     return 0;
0776 }
0777 
0778 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
0779                    const u32 keylen, const enum sec_calg c_alg,
0780                    const enum sec_cmode c_mode)
0781 {
0782     struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
0783     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
0784     struct device *dev = ctx->dev;
0785     int ret;
0786 
0787     if (c_mode == SEC_CMODE_XTS) {
0788         ret = xts_verify_key(tfm, key, keylen);
0789         if (ret) {
0790             dev_err(dev, "xts mode key err!\n");
0791             return ret;
0792         }
0793     }
0794 
0795     c_ctx->c_alg  = c_alg;
0796     c_ctx->c_mode = c_mode;
0797 
0798     switch (c_alg) {
0799     case SEC_CALG_3DES:
0800         ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
0801         break;
0802     case SEC_CALG_AES:
0803     case SEC_CALG_SM4:
0804         ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
0805         break;
0806     default:
0807         return -EINVAL;
0808     }
0809 
0810     if (ret) {
0811         dev_err(dev, "set sec key err!\n");
0812         return ret;
0813     }
0814 
0815     memcpy(c_ctx->c_key, key, keylen);
0816     if (c_ctx->fallback && c_ctx->fbtfm) {
0817         ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
0818         if (ret) {
0819             dev_err(dev, "failed to set fallback skcipher key!\n");
0820             return ret;
0821         }
0822     }
0823     return 0;
0824 }
0825 
0826 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)            \
0827 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
0828     u32 keylen)                         \
0829 {                                   \
0830     return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);    \
0831 }
0832 
0833 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
0834 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
0835 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
0836 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
0837 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
0838 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
0839 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
0840 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
0841 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
0842 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
0843 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
0844 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
0845 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
0846 
0847 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
0848             struct scatterlist *src)
0849 {
0850     struct sec_aead_req *a_req = &req->aead_req;
0851     struct aead_request *aead_req = a_req->aead_req;
0852     struct sec_cipher_req *c_req = &req->c_req;
0853     struct sec_qp_ctx *qp_ctx = req->qp_ctx;
0854     struct device *dev = ctx->dev;
0855     int copy_size, pbuf_length;
0856     int req_id = req->req_id;
0857     struct crypto_aead *tfm;
0858     size_t authsize;
0859     u8 *mac_offset;
0860 
0861     if (ctx->alg_type == SEC_AEAD)
0862         copy_size = aead_req->cryptlen + aead_req->assoclen;
0863     else
0864         copy_size = c_req->c_len;
0865 
0866     pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
0867             qp_ctx->res[req_id].pbuf, copy_size);
0868     if (unlikely(pbuf_length != copy_size)) {
0869         dev_err(dev, "copy src data to pbuf error!\n");
0870         return -EINVAL;
0871     }
0872     if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
0873         tfm = crypto_aead_reqtfm(aead_req);
0874         authsize = crypto_aead_authsize(tfm);
0875         mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
0876         memcpy(a_req->out_mac, mac_offset, authsize);
0877     }
0878 
0879     req->in_dma = qp_ctx->res[req_id].pbuf_dma;
0880     c_req->c_out_dma = req->in_dma;
0881 
0882     return 0;
0883 }
0884 
0885 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
0886             struct scatterlist *dst)
0887 {
0888     struct aead_request *aead_req = req->aead_req.aead_req;
0889     struct sec_cipher_req *c_req = &req->c_req;
0890     struct sec_qp_ctx *qp_ctx = req->qp_ctx;
0891     int copy_size, pbuf_length;
0892     int req_id = req->req_id;
0893 
0894     if (ctx->alg_type == SEC_AEAD)
0895         copy_size = c_req->c_len + aead_req->assoclen;
0896     else
0897         copy_size = c_req->c_len;
0898 
0899     pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
0900             qp_ctx->res[req_id].pbuf, copy_size);
0901     if (unlikely(pbuf_length != copy_size))
0902         dev_err(ctx->dev, "copy pbuf data to dst error!\n");
0903 }
0904 
0905 static int sec_aead_mac_init(struct sec_aead_req *req)
0906 {
0907     struct aead_request *aead_req = req->aead_req;
0908     struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
0909     size_t authsize = crypto_aead_authsize(tfm);
0910     u8 *mac_out = req->out_mac;
0911     struct scatterlist *sgl = aead_req->src;
0912     size_t copy_size;
0913     off_t skip_size;
0914 
0915     /* Copy input mac */
0916     skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
0917     copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
0918                        authsize, skip_size);
0919     if (unlikely(copy_size != authsize))
0920         return -EINVAL;
0921 
0922     return 0;
0923 }
0924 
0925 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
0926               struct scatterlist *src, struct scatterlist *dst)
0927 {
0928     struct sec_cipher_req *c_req = &req->c_req;
0929     struct sec_aead_req *a_req = &req->aead_req;
0930     struct sec_qp_ctx *qp_ctx = req->qp_ctx;
0931     struct sec_alg_res *res = &qp_ctx->res[req->req_id];
0932     struct device *dev = ctx->dev;
0933     int ret;
0934 
0935     if (req->use_pbuf) {
0936         c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
0937         c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
0938         if (ctx->alg_type == SEC_AEAD) {
0939             a_req->a_ivin = res->a_ivin;
0940             a_req->a_ivin_dma = res->a_ivin_dma;
0941             a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
0942             a_req->out_mac_dma = res->pbuf_dma +
0943                     SEC_PBUF_MAC_OFFSET;
0944         }
0945         ret = sec_cipher_pbuf_map(ctx, req, src);
0946 
0947         return ret;
0948     }
0949     c_req->c_ivin = res->c_ivin;
0950     c_req->c_ivin_dma = res->c_ivin_dma;
0951     if (ctx->alg_type == SEC_AEAD) {
0952         a_req->a_ivin = res->a_ivin;
0953         a_req->a_ivin_dma = res->a_ivin_dma;
0954         a_req->out_mac = res->out_mac;
0955         a_req->out_mac_dma = res->out_mac_dma;
0956     }
0957 
0958     req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
0959                         qp_ctx->c_in_pool,
0960                         req->req_id,
0961                         &req->in_dma);
0962     if (IS_ERR(req->in)) {
0963         dev_err(dev, "fail to dma map input sgl buffers!\n");
0964         return PTR_ERR(req->in);
0965     }
0966 
0967     if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
0968         ret = sec_aead_mac_init(a_req);
0969         if (unlikely(ret)) {
0970             dev_err(dev, "fail to init mac data for ICV!\n");
0971             return ret;
0972         }
0973     }
0974 
0975     if (dst == src) {
0976         c_req->c_out = req->in;
0977         c_req->c_out_dma = req->in_dma;
0978     } else {
0979         c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
0980                                  qp_ctx->c_out_pool,
0981                                  req->req_id,
0982                                  &c_req->c_out_dma);
0983 
0984         if (IS_ERR(c_req->c_out)) {
0985             dev_err(dev, "fail to dma map output sgl buffers!\n");
0986             hisi_acc_sg_buf_unmap(dev, src, req->in);
0987             return PTR_ERR(c_req->c_out);
0988         }
0989     }
0990 
0991     return 0;
0992 }
0993 
0994 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
0995                  struct scatterlist *src, struct scatterlist *dst)
0996 {
0997     struct sec_cipher_req *c_req = &req->c_req;
0998     struct device *dev = ctx->dev;
0999 
1000     if (req->use_pbuf) {
1001         sec_cipher_pbuf_unmap(ctx, req, dst);
1002     } else {
1003         if (dst != src)
1004             hisi_acc_sg_buf_unmap(dev, src, req->in);
1005 
1006         hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1007     }
1008 }
1009 
1010 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1011 {
1012     struct skcipher_request *sq = req->c_req.sk_req;
1013 
1014     return sec_cipher_map(ctx, req, sq->src, sq->dst);
1015 }
1016 
1017 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1018 {
1019     struct skcipher_request *sq = req->c_req.sk_req;
1020 
1021     sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1022 }
1023 
1024 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1025                 struct crypto_authenc_keys *keys)
1026 {
1027     switch (keys->enckeylen) {
1028     case AES_KEYSIZE_128:
1029         c_ctx->c_key_len = SEC_CKEY_128BIT;
1030         break;
1031     case AES_KEYSIZE_192:
1032         c_ctx->c_key_len = SEC_CKEY_192BIT;
1033         break;
1034     case AES_KEYSIZE_256:
1035         c_ctx->c_key_len = SEC_CKEY_256BIT;
1036         break;
1037     default:
1038         pr_err("hisi_sec2: aead aes key error!\n");
1039         return -EINVAL;
1040     }
1041     memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1042 
1043     return 0;
1044 }
1045 
1046 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1047                  struct crypto_authenc_keys *keys)
1048 {
1049     struct crypto_shash *hash_tfm = ctx->hash_tfm;
1050     int blocksize, digestsize, ret;
1051 
1052     if (!keys->authkeylen) {
1053         pr_err("hisi_sec2: aead auth key error!\n");
1054         return -EINVAL;
1055     }
1056 
1057     blocksize = crypto_shash_blocksize(hash_tfm);
1058     digestsize = crypto_shash_digestsize(hash_tfm);
1059     if (keys->authkeylen > blocksize) {
1060         ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1061                           keys->authkeylen, ctx->a_key);
1062         if (ret) {
1063             pr_err("hisi_sec2: aead auth digest error!\n");
1064             return -EINVAL;
1065         }
1066         ctx->a_key_len = digestsize;
1067     } else {
1068         memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1069         ctx->a_key_len = keys->authkeylen;
1070     }
1071 
1072     return 0;
1073 }
1074 
1075 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1076 {
1077     struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1078     struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1079     struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1080 
1081     if (unlikely(a_ctx->fallback_aead_tfm))
1082         return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1083 
1084     return 0;
1085 }
1086 
1087 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1088                     struct crypto_aead *tfm, const u8 *key,
1089                     unsigned int keylen)
1090 {
1091     crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1092     crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1093                   crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1094     return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1095 }
1096 
1097 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1098                const u32 keylen, const enum sec_hash_alg a_alg,
1099                const enum sec_calg c_alg,
1100                const enum sec_mac_len mac_len,
1101                const enum sec_cmode c_mode)
1102 {
1103     struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1104     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1105     struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1106     struct device *dev = ctx->dev;
1107     struct crypto_authenc_keys keys;
1108     int ret;
1109 
1110     ctx->a_ctx.a_alg = a_alg;
1111     ctx->c_ctx.c_alg = c_alg;
1112     ctx->a_ctx.mac_len = mac_len;
1113     c_ctx->c_mode = c_mode;
1114 
1115     if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1116         ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1117         if (ret) {
1118             dev_err(dev, "set sec aes ccm cipher key err!\n");
1119             return ret;
1120         }
1121         memcpy(c_ctx->c_key, key, keylen);
1122 
1123         if (unlikely(a_ctx->fallback_aead_tfm)) {
1124             ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1125             if (ret)
1126                 return ret;
1127         }
1128 
1129         return 0;
1130     }
1131 
1132     if (crypto_authenc_extractkeys(&keys, key, keylen))
1133         goto bad_key;
1134 
1135     ret = sec_aead_aes_set_key(c_ctx, &keys);
1136     if (ret) {
1137         dev_err(dev, "set sec cipher key err!\n");
1138         goto bad_key;
1139     }
1140 
1141     ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1142     if (ret) {
1143         dev_err(dev, "set sec auth key err!\n");
1144         goto bad_key;
1145     }
1146 
1147     if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
1148         (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1149         dev_err(dev, "MAC or AUTH key length error!\n");
1150         goto bad_key;
1151     }
1152 
1153     return 0;
1154 
1155 bad_key:
1156     memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1157     return -EINVAL;
1158 }
1159 
1160 
1161 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)   \
1162 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,    \
1163     u32 keylen)                         \
1164 {                                   \
1165     return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1166 }
1167 
1168 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1169              SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1170 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1171              SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1172 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1173              SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1174 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1175              SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1176 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1177              SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1178 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1179              SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1180 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1181              SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1182 
1183 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1184 {
1185     struct aead_request *aq = req->aead_req.aead_req;
1186 
1187     return sec_cipher_map(ctx, req, aq->src, aq->dst);
1188 }
1189 
1190 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1191 {
1192     struct aead_request *aq = req->aead_req.aead_req;
1193 
1194     sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1195 }
1196 
1197 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1198 {
1199     int ret;
1200 
1201     ret = ctx->req_op->buf_map(ctx, req);
1202     if (unlikely(ret))
1203         return ret;
1204 
1205     ctx->req_op->do_transfer(ctx, req);
1206 
1207     ret = ctx->req_op->bd_fill(ctx, req);
1208     if (unlikely(ret))
1209         goto unmap_req_buf;
1210 
1211     return ret;
1212 
1213 unmap_req_buf:
1214     ctx->req_op->buf_unmap(ctx, req);
1215     return ret;
1216 }
1217 
1218 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1219 {
1220     ctx->req_op->buf_unmap(ctx, req);
1221 }
1222 
1223 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1224 {
1225     struct skcipher_request *sk_req = req->c_req.sk_req;
1226     struct sec_cipher_req *c_req = &req->c_req;
1227 
1228     memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1229 }
1230 
1231 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1232 {
1233     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1234     struct sec_cipher_req *c_req = &req->c_req;
1235     struct sec_sqe *sec_sqe = &req->sec_sqe;
1236     u8 scene, sa_type, da_type;
1237     u8 bd_type, cipher;
1238     u8 de = 0;
1239 
1240     memset(sec_sqe, 0, sizeof(struct sec_sqe));
1241 
1242     sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1243     sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1244     sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1245     sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1246 
1247     sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1248                         SEC_CMODE_OFFSET);
1249     sec_sqe->type2.c_alg = c_ctx->c_alg;
1250     sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1251                         SEC_CKEY_OFFSET);
1252 
1253     bd_type = SEC_BD_TYPE2;
1254     if (c_req->encrypt)
1255         cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1256     else
1257         cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1258     sec_sqe->type_cipher_auth = bd_type | cipher;
1259 
1260     /* Set destination and source address type */
1261     if (req->use_pbuf) {
1262         sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1263         da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1264     } else {
1265         sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1266         da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1267     }
1268 
1269     sec_sqe->sdm_addr_type |= da_type;
1270     scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1271     if (req->in_dma != c_req->c_out_dma)
1272         de = 0x1 << SEC_DE_OFFSET;
1273 
1274     sec_sqe->sds_sa_type = (de | scene | sa_type);
1275 
1276     sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1277     sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1278 
1279     return 0;
1280 }
1281 
1282 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1283 {
1284     struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1285     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1286     struct sec_cipher_req *c_req = &req->c_req;
1287     u32 bd_param = 0;
1288     u16 cipher;
1289 
1290     memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1291 
1292     sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1293     sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1294     sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1295     sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1296 
1297     sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1298                         c_ctx->c_mode;
1299     sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1300                         SEC_CKEY_OFFSET_V3);
1301 
1302     if (c_req->encrypt)
1303         cipher = SEC_CIPHER_ENC;
1304     else
1305         cipher = SEC_CIPHER_DEC;
1306     sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1307 
1308     /* Set the CTR counter mode is 128bit rollover */
1309     sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1310                     SEC_CTR_CNT_OFFSET);
1311 
1312     if (req->use_pbuf) {
1313         bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1314         bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1315     } else {
1316         bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1317         bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1318     }
1319 
1320     bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1321     if (req->in_dma != c_req->c_out_dma)
1322         bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1323 
1324     bd_param |= SEC_BD_TYPE3;
1325     sec_sqe3->bd_param = cpu_to_le32(bd_param);
1326 
1327     sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1328     sec_sqe3->tag = cpu_to_le64(req);
1329 
1330     return 0;
1331 }
1332 
1333 /* increment counter (128-bit int) */
1334 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1335 {
1336     do {
1337         --bits;
1338         nums += counter[bits];
1339         counter[bits] = nums & BITS_MASK;
1340         nums >>= BYTE_BITS;
1341     } while (bits && nums);
1342 }
1343 
1344 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1345 {
1346     struct aead_request *aead_req = req->aead_req.aead_req;
1347     struct skcipher_request *sk_req = req->c_req.sk_req;
1348     u32 iv_size = req->ctx->c_ctx.ivsize;
1349     struct scatterlist *sgl;
1350     unsigned int cryptlen;
1351     size_t sz;
1352     u8 *iv;
1353 
1354     if (req->c_req.encrypt)
1355         sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1356     else
1357         sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1358 
1359     if (alg_type == SEC_SKCIPHER) {
1360         iv = sk_req->iv;
1361         cryptlen = sk_req->cryptlen;
1362     } else {
1363         iv = aead_req->iv;
1364         cryptlen = aead_req->cryptlen;
1365     }
1366 
1367     if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1368         sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1369                     cryptlen - iv_size);
1370         if (unlikely(sz != iv_size))
1371             dev_err(req->ctx->dev, "copy output iv error!\n");
1372     } else {
1373         sz = cryptlen / iv_size;
1374         if (cryptlen % iv_size)
1375             sz += 1;
1376         ctr_iv_inc(iv, iv_size, sz);
1377     }
1378 }
1379 
1380 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1381                 struct sec_qp_ctx *qp_ctx)
1382 {
1383     struct sec_req *backlog_req = NULL;
1384 
1385     spin_lock_bh(&qp_ctx->req_lock);
1386     if (ctx->fake_req_limit >=
1387         atomic_read(&qp_ctx->qp->qp_status.used) &&
1388         !list_empty(&qp_ctx->backlog)) {
1389         backlog_req = list_first_entry(&qp_ctx->backlog,
1390                 typeof(*backlog_req), backlog_head);
1391         list_del(&backlog_req->backlog_head);
1392     }
1393     spin_unlock_bh(&qp_ctx->req_lock);
1394 
1395     return backlog_req;
1396 }
1397 
1398 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1399                   int err)
1400 {
1401     struct skcipher_request *sk_req = req->c_req.sk_req;
1402     struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1403     struct skcipher_request *backlog_sk_req;
1404     struct sec_req *backlog_req;
1405 
1406     sec_free_req_id(req);
1407 
1408     /* IV output at encrypto of CBC/CTR mode */
1409     if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1410         ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1411         sec_update_iv(req, SEC_SKCIPHER);
1412 
1413     while (1) {
1414         backlog_req = sec_back_req_clear(ctx, qp_ctx);
1415         if (!backlog_req)
1416             break;
1417 
1418         backlog_sk_req = backlog_req->c_req.sk_req;
1419         backlog_sk_req->base.complete(&backlog_sk_req->base,
1420                         -EINPROGRESS);
1421         atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1422     }
1423 
1424     sk_req->base.complete(&sk_req->base, err);
1425 }
1426 
1427 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1428 {
1429     struct aead_request *aead_req = req->aead_req.aead_req;
1430     struct sec_cipher_req *c_req = &req->c_req;
1431     struct sec_aead_req *a_req = &req->aead_req;
1432     size_t authsize = ctx->a_ctx.mac_len;
1433     u32 data_size = aead_req->cryptlen;
1434     u8 flage = 0;
1435     u8 cm, cl;
1436 
1437     /* the specification has been checked in aead_iv_demension_check() */
1438     cl = c_req->c_ivin[0] + 1;
1439     c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1440     memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1441     c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1442 
1443     /* the last 3bit is L' */
1444     flage |= c_req->c_ivin[0] & IV_CL_MASK;
1445 
1446     /* the M' is bit3~bit5, the Flags is bit6 */
1447     cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1448     flage |= cm << IV_CM_OFFSET;
1449     if (aead_req->assoclen)
1450         flage |= 0x01 << IV_FLAGS_OFFSET;
1451 
1452     memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1453     a_req->a_ivin[0] = flage;
1454 
1455     /*
1456      * the last 32bit is counter's initial number,
1457      * but the nonce uses the first 16bit
1458      * the tail 16bit fill with the cipher length
1459      */
1460     if (!c_req->encrypt)
1461         data_size = aead_req->cryptlen - authsize;
1462 
1463     a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1464             data_size & IV_LAST_BYTE_MASK;
1465     data_size >>= IV_BYTE_OFFSET;
1466     a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1467             data_size & IV_LAST_BYTE_MASK;
1468 }
1469 
1470 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1471 {
1472     struct aead_request *aead_req = req->aead_req.aead_req;
1473     struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1474     size_t authsize = crypto_aead_authsize(tfm);
1475     struct sec_cipher_req *c_req = &req->c_req;
1476     struct sec_aead_req *a_req = &req->aead_req;
1477 
1478     memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1479 
1480     if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1481         /*
1482          * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1483          * the  counter must set to 0x01
1484          */
1485         ctx->a_ctx.mac_len = authsize;
1486         /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1487         set_aead_auth_iv(ctx, req);
1488     }
1489 
1490     /* GCM 12Byte Cipher_IV == Auth_IV */
1491     if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1492         ctx->a_ctx.mac_len = authsize;
1493         memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1494     }
1495 }
1496 
1497 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1498                  struct sec_req *req, struct sec_sqe *sec_sqe)
1499 {
1500     struct sec_aead_req *a_req = &req->aead_req;
1501     struct aead_request *aq = a_req->aead_req;
1502 
1503     /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1504     sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1505 
1506     /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1507     sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1508     sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1509     sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1510 
1511     if (dir)
1512         sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1513     else
1514         sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1515 
1516     sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1517     sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1518     sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1519 
1520     sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1521 }
1522 
1523 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1524                     struct sec_req *req, struct sec_sqe3 *sqe3)
1525 {
1526     struct sec_aead_req *a_req = &req->aead_req;
1527     struct aead_request *aq = a_req->aead_req;
1528 
1529     /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1530     sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1531 
1532     /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1533     sqe3->a_key_addr = sqe3->c_key_addr;
1534     sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1535     sqe3->auth_mac_key |= SEC_NO_AUTH;
1536 
1537     if (dir)
1538         sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1539     else
1540         sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1541 
1542     sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1543     sqe3->auth_src_offset = cpu_to_le16(0x0);
1544     sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1545     sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1546 }
1547 
1548 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1549                    struct sec_req *req, struct sec_sqe *sec_sqe)
1550 {
1551     struct sec_aead_req *a_req = &req->aead_req;
1552     struct sec_cipher_req *c_req = &req->c_req;
1553     struct aead_request *aq = a_req->aead_req;
1554 
1555     sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1556 
1557     sec_sqe->type2.mac_key_alg =
1558             cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1559 
1560     sec_sqe->type2.mac_key_alg |=
1561             cpu_to_le32((u32)((ctx->a_key_len) /
1562             SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1563 
1564     sec_sqe->type2.mac_key_alg |=
1565             cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1566 
1567     if (dir) {
1568         sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1569         sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1570     } else {
1571         sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1572         sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1573     }
1574     sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1575 
1576     sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1577 
1578     sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1579 }
1580 
1581 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1582 {
1583     struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1584     struct sec_sqe *sec_sqe = &req->sec_sqe;
1585     int ret;
1586 
1587     ret = sec_skcipher_bd_fill(ctx, req);
1588     if (unlikely(ret)) {
1589         dev_err(ctx->dev, "skcipher bd fill is error!\n");
1590         return ret;
1591     }
1592 
1593     if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1594         ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1595         sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1596     else
1597         sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1598 
1599     return 0;
1600 }
1601 
1602 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1603                    struct sec_req *req, struct sec_sqe3 *sqe3)
1604 {
1605     struct sec_aead_req *a_req = &req->aead_req;
1606     struct sec_cipher_req *c_req = &req->c_req;
1607     struct aead_request *aq = a_req->aead_req;
1608 
1609     sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1610 
1611     sqe3->auth_mac_key |=
1612             cpu_to_le32((u32)(ctx->mac_len /
1613             SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1614 
1615     sqe3->auth_mac_key |=
1616             cpu_to_le32((u32)(ctx->a_key_len /
1617             SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1618 
1619     sqe3->auth_mac_key |=
1620             cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1621 
1622     if (dir) {
1623         sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1624         sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1625     } else {
1626         sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1627         sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1628     }
1629     sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1630 
1631     sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1632 
1633     sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1634 }
1635 
1636 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1637 {
1638     struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1639     struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1640     int ret;
1641 
1642     ret = sec_skcipher_bd_fill_v3(ctx, req);
1643     if (unlikely(ret)) {
1644         dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1645         return ret;
1646     }
1647 
1648     if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1649         ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1650         sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1651                     req, sec_sqe3);
1652     else
1653         sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1654                        req, sec_sqe3);
1655 
1656     return 0;
1657 }
1658 
1659 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1660 {
1661     struct aead_request *a_req = req->aead_req.aead_req;
1662     struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1663     struct sec_aead_req *aead_req = &req->aead_req;
1664     struct sec_cipher_req *c_req = &req->c_req;
1665     size_t authsize = crypto_aead_authsize(tfm);
1666     struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1667     struct aead_request *backlog_aead_req;
1668     struct sec_req *backlog_req;
1669     size_t sz;
1670 
1671     if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1672         sec_update_iv(req, SEC_AEAD);
1673 
1674     /* Copy output mac */
1675     if (!err && c_req->encrypt) {
1676         struct scatterlist *sgl = a_req->dst;
1677 
1678         sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1679                       aead_req->out_mac,
1680                       authsize, a_req->cryptlen +
1681                       a_req->assoclen);
1682 
1683         if (unlikely(sz != authsize)) {
1684             dev_err(c->dev, "copy out mac err!\n");
1685             err = -EINVAL;
1686         }
1687     }
1688 
1689     sec_free_req_id(req);
1690 
1691     while (1) {
1692         backlog_req = sec_back_req_clear(c, qp_ctx);
1693         if (!backlog_req)
1694             break;
1695 
1696         backlog_aead_req = backlog_req->aead_req.aead_req;
1697         backlog_aead_req->base.complete(&backlog_aead_req->base,
1698                         -EINPROGRESS);
1699         atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1700     }
1701 
1702     a_req->base.complete(&a_req->base, err);
1703 }
1704 
1705 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1706 {
1707     sec_free_req_id(req);
1708     sec_free_queue_id(ctx, req);
1709 }
1710 
1711 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1712 {
1713     struct sec_qp_ctx *qp_ctx;
1714     int queue_id;
1715 
1716     /* To load balance */
1717     queue_id = sec_alloc_queue_id(ctx, req);
1718     qp_ctx = &ctx->qp_ctx[queue_id];
1719 
1720     req->req_id = sec_alloc_req_id(req, qp_ctx);
1721     if (unlikely(req->req_id < 0)) {
1722         sec_free_queue_id(ctx, req);
1723         return req->req_id;
1724     }
1725 
1726     return 0;
1727 }
1728 
1729 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1730 {
1731     struct sec_cipher_req *c_req = &req->c_req;
1732     int ret;
1733 
1734     ret = sec_request_init(ctx, req);
1735     if (unlikely(ret))
1736         return ret;
1737 
1738     ret = sec_request_transfer(ctx, req);
1739     if (unlikely(ret))
1740         goto err_uninit_req;
1741 
1742     /* Output IV as decrypto */
1743     if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1744         ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1745         sec_update_iv(req, ctx->alg_type);
1746 
1747     ret = ctx->req_op->bd_send(ctx, req);
1748     if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1749         (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1750         dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1751         goto err_send_req;
1752     }
1753 
1754     return ret;
1755 
1756 err_send_req:
1757     /* As failing, restore the IV from user */
1758     if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1759         if (ctx->alg_type == SEC_SKCIPHER)
1760             memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1761                    ctx->c_ctx.ivsize);
1762         else
1763             memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1764                    ctx->c_ctx.ivsize);
1765     }
1766 
1767     sec_request_untransfer(ctx, req);
1768 err_uninit_req:
1769     sec_request_uninit(ctx, req);
1770     return ret;
1771 }
1772 
1773 static const struct sec_req_op sec_skcipher_req_ops = {
1774     .buf_map    = sec_skcipher_sgl_map,
1775     .buf_unmap  = sec_skcipher_sgl_unmap,
1776     .do_transfer    = sec_skcipher_copy_iv,
1777     .bd_fill    = sec_skcipher_bd_fill,
1778     .bd_send    = sec_bd_send,
1779     .callback   = sec_skcipher_callback,
1780     .process    = sec_process,
1781 };
1782 
1783 static const struct sec_req_op sec_aead_req_ops = {
1784     .buf_map    = sec_aead_sgl_map,
1785     .buf_unmap  = sec_aead_sgl_unmap,
1786     .do_transfer    = sec_aead_set_iv,
1787     .bd_fill    = sec_aead_bd_fill,
1788     .bd_send    = sec_bd_send,
1789     .callback   = sec_aead_callback,
1790     .process    = sec_process,
1791 };
1792 
1793 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1794     .buf_map    = sec_skcipher_sgl_map,
1795     .buf_unmap  = sec_skcipher_sgl_unmap,
1796     .do_transfer    = sec_skcipher_copy_iv,
1797     .bd_fill    = sec_skcipher_bd_fill_v3,
1798     .bd_send    = sec_bd_send,
1799     .callback   = sec_skcipher_callback,
1800     .process    = sec_process,
1801 };
1802 
1803 static const struct sec_req_op sec_aead_req_ops_v3 = {
1804     .buf_map    = sec_aead_sgl_map,
1805     .buf_unmap  = sec_aead_sgl_unmap,
1806     .do_transfer    = sec_aead_set_iv,
1807     .bd_fill    = sec_aead_bd_fill_v3,
1808     .bd_send    = sec_bd_send,
1809     .callback   = sec_aead_callback,
1810     .process    = sec_process,
1811 };
1812 
1813 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1814 {
1815     struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1816     int ret;
1817 
1818     ret = sec_skcipher_init(tfm);
1819     if (ret)
1820         return ret;
1821 
1822     if (ctx->sec->qm.ver < QM_HW_V3) {
1823         ctx->type_supported = SEC_BD_TYPE2;
1824         ctx->req_op = &sec_skcipher_req_ops;
1825     } else {
1826         ctx->type_supported = SEC_BD_TYPE3;
1827         ctx->req_op = &sec_skcipher_req_ops_v3;
1828     }
1829 
1830     return ret;
1831 }
1832 
1833 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1834 {
1835     sec_skcipher_uninit(tfm);
1836 }
1837 
1838 static int sec_aead_init(struct crypto_aead *tfm)
1839 {
1840     struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1841     int ret;
1842 
1843     crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1844     ctx->alg_type = SEC_AEAD;
1845     ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1846     if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1847         ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1848         pr_err("get error aead iv size!\n");
1849         return -EINVAL;
1850     }
1851 
1852     ret = sec_ctx_base_init(ctx);
1853     if (ret)
1854         return ret;
1855     if (ctx->sec->qm.ver < QM_HW_V3) {
1856         ctx->type_supported = SEC_BD_TYPE2;
1857         ctx->req_op = &sec_aead_req_ops;
1858     } else {
1859         ctx->type_supported = SEC_BD_TYPE3;
1860         ctx->req_op = &sec_aead_req_ops_v3;
1861     }
1862 
1863     ret = sec_auth_init(ctx);
1864     if (ret)
1865         goto err_auth_init;
1866 
1867     ret = sec_cipher_init(ctx);
1868     if (ret)
1869         goto err_cipher_init;
1870 
1871     return ret;
1872 
1873 err_cipher_init:
1874     sec_auth_uninit(ctx);
1875 err_auth_init:
1876     sec_ctx_base_uninit(ctx);
1877     return ret;
1878 }
1879 
1880 static void sec_aead_exit(struct crypto_aead *tfm)
1881 {
1882     struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1883 
1884     sec_cipher_uninit(ctx);
1885     sec_auth_uninit(ctx);
1886     sec_ctx_base_uninit(ctx);
1887 }
1888 
1889 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1890 {
1891     struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1892     struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1893     int ret;
1894 
1895     ret = sec_aead_init(tfm);
1896     if (ret) {
1897         pr_err("hisi_sec2: aead init error!\n");
1898         return ret;
1899     }
1900 
1901     auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1902     if (IS_ERR(auth_ctx->hash_tfm)) {
1903         dev_err(ctx->dev, "aead alloc shash error!\n");
1904         sec_aead_exit(tfm);
1905         return PTR_ERR(auth_ctx->hash_tfm);
1906     }
1907 
1908     return 0;
1909 }
1910 
1911 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1912 {
1913     struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1914 
1915     crypto_free_shash(ctx->a_ctx.hash_tfm);
1916     sec_aead_exit(tfm);
1917 }
1918 
1919 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1920 {
1921     struct aead_alg *alg = crypto_aead_alg(tfm);
1922     struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1923     struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1924     const char *aead_name = alg->base.cra_name;
1925     int ret;
1926 
1927     ret = sec_aead_init(tfm);
1928     if (ret) {
1929         dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1930         return ret;
1931     }
1932 
1933     a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1934                              CRYPTO_ALG_NEED_FALLBACK |
1935                              CRYPTO_ALG_ASYNC);
1936     if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1937         dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1938         sec_aead_exit(tfm);
1939         return PTR_ERR(a_ctx->fallback_aead_tfm);
1940     }
1941     a_ctx->fallback = false;
1942 
1943     return 0;
1944 }
1945 
1946 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1947 {
1948     struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1949 
1950     crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1951     sec_aead_exit(tfm);
1952 }
1953 
1954 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1955 {
1956     return sec_aead_ctx_init(tfm, "sha1");
1957 }
1958 
1959 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
1960 {
1961     return sec_aead_ctx_init(tfm, "sha256");
1962 }
1963 
1964 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
1965 {
1966     return sec_aead_ctx_init(tfm, "sha512");
1967 }
1968 
1969 
1970 static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
1971     struct sec_req *sreq)
1972 {
1973     u32 cryptlen = sreq->c_req.sk_req->cryptlen;
1974     struct device *dev = ctx->dev;
1975     u8 c_mode = ctx->c_ctx.c_mode;
1976     int ret = 0;
1977 
1978     switch (c_mode) {
1979     case SEC_CMODE_XTS:
1980         if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
1981             dev_err(dev, "skcipher XTS mode input length error!\n");
1982             ret = -EINVAL;
1983         }
1984         break;
1985     case SEC_CMODE_ECB:
1986     case SEC_CMODE_CBC:
1987         if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
1988             dev_err(dev, "skcipher AES input length error!\n");
1989             ret = -EINVAL;
1990         }
1991         break;
1992     case SEC_CMODE_CFB:
1993     case SEC_CMODE_OFB:
1994     case SEC_CMODE_CTR:
1995         if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
1996             dev_err(dev, "skcipher HW version error!\n");
1997             ret = -EINVAL;
1998         }
1999         break;
2000     default:
2001         ret = -EINVAL;
2002     }
2003 
2004     return ret;
2005 }
2006 
2007 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2008 {
2009     struct skcipher_request *sk_req = sreq->c_req.sk_req;
2010     struct device *dev = ctx->dev;
2011     u8 c_alg = ctx->c_ctx.c_alg;
2012 
2013     if (unlikely(!sk_req->src || !sk_req->dst ||
2014              sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2015         dev_err(dev, "skcipher input param error!\n");
2016         return -EINVAL;
2017     }
2018     sreq->c_req.c_len = sk_req->cryptlen;
2019 
2020     if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2021         sreq->use_pbuf = true;
2022     else
2023         sreq->use_pbuf = false;
2024 
2025     if (c_alg == SEC_CALG_3DES) {
2026         if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2027             dev_err(dev, "skcipher 3des input length error!\n");
2028             return -EINVAL;
2029         }
2030         return 0;
2031     } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2032         return sec_skcipher_cryptlen_ckeck(ctx, sreq);
2033     }
2034 
2035     dev_err(dev, "skcipher algorithm error!\n");
2036 
2037     return -EINVAL;
2038 }
2039 
2040 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2041                     struct skcipher_request *sreq, bool encrypt)
2042 {
2043     struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2044     SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2045     struct device *dev = ctx->dev;
2046     int ret;
2047 
2048     if (!c_ctx->fbtfm) {
2049         dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2050         return -EINVAL;
2051     }
2052 
2053     skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2054 
2055     /* software need sync mode to do crypto */
2056     skcipher_request_set_callback(subreq, sreq->base.flags,
2057                       NULL, NULL);
2058     skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2059                    sreq->cryptlen, sreq->iv);
2060     if (encrypt)
2061         ret = crypto_skcipher_encrypt(subreq);
2062     else
2063         ret = crypto_skcipher_decrypt(subreq);
2064 
2065     skcipher_request_zero(subreq);
2066 
2067     return ret;
2068 }
2069 
2070 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2071 {
2072     struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2073     struct sec_req *req = skcipher_request_ctx(sk_req);
2074     struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2075     int ret;
2076 
2077     if (!sk_req->cryptlen) {
2078         if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2079             return -EINVAL;
2080         return 0;
2081     }
2082 
2083     req->flag = sk_req->base.flags;
2084     req->c_req.sk_req = sk_req;
2085     req->c_req.encrypt = encrypt;
2086     req->ctx = ctx;
2087 
2088     ret = sec_skcipher_param_check(ctx, req);
2089     if (unlikely(ret))
2090         return -EINVAL;
2091 
2092     if (unlikely(ctx->c_ctx.fallback))
2093         return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2094 
2095     return ctx->req_op->process(ctx, req);
2096 }
2097 
2098 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2099 {
2100     return sec_skcipher_crypto(sk_req, true);
2101 }
2102 
2103 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2104 {
2105     return sec_skcipher_crypto(sk_req, false);
2106 }
2107 
2108 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2109     sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2110 {\
2111     .base = {\
2112         .cra_name = sec_cra_name,\
2113         .cra_driver_name = "hisi_sec_"sec_cra_name,\
2114         .cra_priority = SEC_PRIORITY,\
2115         .cra_flags = CRYPTO_ALG_ASYNC |\
2116          CRYPTO_ALG_NEED_FALLBACK,\
2117         .cra_blocksize = blk_size,\
2118         .cra_ctxsize = sizeof(struct sec_ctx),\
2119         .cra_module = THIS_MODULE,\
2120     },\
2121     .init = ctx_init,\
2122     .exit = ctx_exit,\
2123     .setkey = sec_set_key,\
2124     .decrypt = sec_skcipher_decrypt,\
2125     .encrypt = sec_skcipher_encrypt,\
2126     .min_keysize = sec_min_key_size,\
2127     .max_keysize = sec_max_key_size,\
2128     .ivsize = iv_size,\
2129 },
2130 
2131 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2132     max_key_size, blk_size, iv_size) \
2133     SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2134     sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2135 
2136 static struct skcipher_alg sec_skciphers[] = {
2137     SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
2138              AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2139              AES_BLOCK_SIZE, 0)
2140 
2141     SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
2142              AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2143              AES_BLOCK_SIZE, AES_BLOCK_SIZE)
2144 
2145     SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
2146              SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
2147              AES_BLOCK_SIZE, AES_BLOCK_SIZE)
2148 
2149     SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
2150              SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2151              DES3_EDE_BLOCK_SIZE, 0)
2152 
2153     SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
2154              SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2155              DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
2156 
2157     SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
2158              SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
2159              AES_BLOCK_SIZE, AES_BLOCK_SIZE)
2160 
2161     SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
2162              AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
2163              AES_BLOCK_SIZE, AES_BLOCK_SIZE)
2164 };
2165 
2166 static struct skcipher_alg sec_skciphers_v3[] = {
2167     SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,
2168              AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2169              SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2170 
2171     SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,
2172              AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2173              SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2174 
2175     SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,
2176              AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2177              SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2178 
2179     SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,
2180              AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
2181              SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2182 
2183     SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,
2184              AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
2185              SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2186 
2187     SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr,
2188              AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
2189              SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2190 };
2191 
2192 static int aead_iv_demension_check(struct aead_request *aead_req)
2193 {
2194     u8 cl;
2195 
2196     cl = aead_req->iv[0] + 1;
2197     if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2198         return -EINVAL;
2199 
2200     if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2201         return -EOVERFLOW;
2202 
2203     return 0;
2204 }
2205 
2206 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2207 {
2208     struct aead_request *req = sreq->aead_req.aead_req;
2209     struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2210     size_t authsize = crypto_aead_authsize(tfm);
2211     u8 c_mode = ctx->c_ctx.c_mode;
2212     struct device *dev = ctx->dev;
2213     int ret;
2214 
2215     if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2216         req->assoclen > SEC_MAX_AAD_LEN)) {
2217         dev_err(dev, "aead input spec error!\n");
2218         return -EINVAL;
2219     }
2220 
2221     if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2222        (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2223         authsize & MAC_LEN_MASK)))) {
2224         dev_err(dev, "aead input mac length error!\n");
2225         return -EINVAL;
2226     }
2227 
2228     if (c_mode == SEC_CMODE_CCM) {
2229         if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2230             dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2231             return -EINVAL;
2232         }
2233         ret = aead_iv_demension_check(req);
2234         if (ret) {
2235             dev_err(dev, "aead input iv param error!\n");
2236             return ret;
2237         }
2238     }
2239 
2240     if (sreq->c_req.encrypt)
2241         sreq->c_req.c_len = req->cryptlen;
2242     else
2243         sreq->c_req.c_len = req->cryptlen - authsize;
2244     if (c_mode == SEC_CMODE_CBC) {
2245         if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2246             dev_err(dev, "aead crypto length error!\n");
2247             return -EINVAL;
2248         }
2249     }
2250 
2251     return 0;
2252 }
2253 
2254 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2255 {
2256     struct aead_request *req = sreq->aead_req.aead_req;
2257     struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2258     size_t authsize = crypto_aead_authsize(tfm);
2259     struct device *dev = ctx->dev;
2260     u8 c_alg = ctx->c_ctx.c_alg;
2261 
2262     if (unlikely(!req->src || !req->dst)) {
2263         dev_err(dev, "aead input param error!\n");
2264         return -EINVAL;
2265     }
2266 
2267     if (ctx->sec->qm.ver == QM_HW_V2) {
2268         if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2269             req->cryptlen <= authsize))) {
2270             ctx->a_ctx.fallback = true;
2271             return -EINVAL;
2272         }
2273     }
2274 
2275     /* Support AES or SM4 */
2276     if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2277         dev_err(dev, "aead crypto alg error!\n");
2278         return -EINVAL;
2279     }
2280 
2281     if (unlikely(sec_aead_spec_check(ctx, sreq)))
2282         return -EINVAL;
2283 
2284     if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2285         SEC_PBUF_SZ)
2286         sreq->use_pbuf = true;
2287     else
2288         sreq->use_pbuf = false;
2289 
2290     return 0;
2291 }
2292 
2293 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2294                 struct aead_request *aead_req,
2295                 bool encrypt)
2296 {
2297     struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2298     struct device *dev = ctx->dev;
2299     struct aead_request *subreq;
2300     int ret;
2301 
2302     /* Kunpeng920 aead mode not support input 0 size */
2303     if (!a_ctx->fallback_aead_tfm) {
2304         dev_err(dev, "aead fallback tfm is NULL!\n");
2305         return -EINVAL;
2306     }
2307 
2308     subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2309     if (!subreq)
2310         return -ENOMEM;
2311 
2312     aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2313     aead_request_set_callback(subreq, aead_req->base.flags,
2314                   aead_req->base.complete, aead_req->base.data);
2315     aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2316                    aead_req->cryptlen, aead_req->iv);
2317     aead_request_set_ad(subreq, aead_req->assoclen);
2318 
2319     if (encrypt)
2320         ret = crypto_aead_encrypt(subreq);
2321     else
2322         ret = crypto_aead_decrypt(subreq);
2323     aead_request_free(subreq);
2324 
2325     return ret;
2326 }
2327 
2328 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2329 {
2330     struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2331     struct sec_req *req = aead_request_ctx(a_req);
2332     struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2333     int ret;
2334 
2335     req->flag = a_req->base.flags;
2336     req->aead_req.aead_req = a_req;
2337     req->c_req.encrypt = encrypt;
2338     req->ctx = ctx;
2339 
2340     ret = sec_aead_param_check(ctx, req);
2341     if (unlikely(ret)) {
2342         if (ctx->a_ctx.fallback)
2343             return sec_aead_soft_crypto(ctx, a_req, encrypt);
2344         return -EINVAL;
2345     }
2346 
2347     return ctx->req_op->process(ctx, req);
2348 }
2349 
2350 static int sec_aead_encrypt(struct aead_request *a_req)
2351 {
2352     return sec_aead_crypto(a_req, true);
2353 }
2354 
2355 static int sec_aead_decrypt(struct aead_request *a_req)
2356 {
2357     return sec_aead_crypto(a_req, false);
2358 }
2359 
2360 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2361              ctx_exit, blk_size, iv_size, max_authsize)\
2362 {\
2363     .base = {\
2364         .cra_name = sec_cra_name,\
2365         .cra_driver_name = "hisi_sec_"sec_cra_name,\
2366         .cra_priority = SEC_PRIORITY,\
2367         .cra_flags = CRYPTO_ALG_ASYNC |\
2368          CRYPTO_ALG_NEED_FALLBACK,\
2369         .cra_blocksize = blk_size,\
2370         .cra_ctxsize = sizeof(struct sec_ctx),\
2371         .cra_module = THIS_MODULE,\
2372     },\
2373     .init = ctx_init,\
2374     .exit = ctx_exit,\
2375     .setkey = sec_set_key,\
2376     .setauthsize = sec_aead_setauthsize,\
2377     .decrypt = sec_aead_decrypt,\
2378     .encrypt = sec_aead_encrypt,\
2379     .ivsize = iv_size,\
2380     .maxauthsize = max_authsize,\
2381 }
2382 
2383 static struct aead_alg sec_aeads[] = {
2384     SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
2385              sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
2386              sec_aead_ctx_exit, AES_BLOCK_SIZE,
2387              AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2388 
2389     SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
2390              sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
2391              sec_aead_ctx_exit, AES_BLOCK_SIZE,
2392              AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2393 
2394     SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
2395              sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
2396              sec_aead_ctx_exit, AES_BLOCK_SIZE,
2397              AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2398 
2399     SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2400              sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
2401              AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2402 
2403     SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2404              sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
2405              SEC_AIV_SIZE, AES_BLOCK_SIZE)
2406 };
2407 
2408 static struct aead_alg sec_aeads_v3[] = {
2409     SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2410              sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
2411              AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2412 
2413     SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2414              sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
2415              SEC_AIV_SIZE, AES_BLOCK_SIZE)
2416 };
2417 
2418 int sec_register_to_crypto(struct hisi_qm *qm)
2419 {
2420     int ret;
2421 
2422     /* To avoid repeat register */
2423     ret = crypto_register_skciphers(sec_skciphers,
2424                     ARRAY_SIZE(sec_skciphers));
2425     if (ret)
2426         return ret;
2427 
2428     if (qm->ver > QM_HW_V2) {
2429         ret = crypto_register_skciphers(sec_skciphers_v3,
2430                         ARRAY_SIZE(sec_skciphers_v3));
2431         if (ret)
2432             goto reg_skcipher_fail;
2433     }
2434 
2435     ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2436     if (ret)
2437         goto reg_aead_fail;
2438     if (qm->ver > QM_HW_V2) {
2439         ret = crypto_register_aeads(sec_aeads_v3, ARRAY_SIZE(sec_aeads_v3));
2440         if (ret)
2441             goto reg_aead_v3_fail;
2442     }
2443     return ret;
2444 
2445 reg_aead_v3_fail:
2446     crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2447 reg_aead_fail:
2448     if (qm->ver > QM_HW_V2)
2449         crypto_unregister_skciphers(sec_skciphers_v3,
2450                         ARRAY_SIZE(sec_skciphers_v3));
2451 reg_skcipher_fail:
2452     crypto_unregister_skciphers(sec_skciphers,
2453                     ARRAY_SIZE(sec_skciphers));
2454     return ret;
2455 }
2456 
2457 void sec_unregister_from_crypto(struct hisi_qm *qm)
2458 {
2459     if (qm->ver > QM_HW_V2)
2460         crypto_unregister_aeads(sec_aeads_v3,
2461                     ARRAY_SIZE(sec_aeads_v3));
2462     crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2463 
2464     if (qm->ver > QM_HW_V2)
2465         crypto_unregister_skciphers(sec_skciphers_v3,
2466                         ARRAY_SIZE(sec_skciphers_v3));
2467     crypto_unregister_skciphers(sec_skciphers,
2468                     ARRAY_SIZE(sec_skciphers));
2469 }