0001
0002
0003
0004 #include <linux/kernel.h>
0005 #include <linux/module.h>
0006 #include <crypto/algapi.h>
0007 #include <crypto/internal/skcipher.h>
0008 #include <crypto/internal/des.h>
0009 #include <crypto/xts.h>
0010 #include <crypto/sm4.h>
0011 #include <crypto/scatterwalk.h>
0012
0013 #include "cc_driver.h"
0014 #include "cc_lli_defs.h"
0015 #include "cc_buffer_mgr.h"
0016 #include "cc_cipher.h"
0017 #include "cc_request_mgr.h"
0018
0019 #define MAX_SKCIPHER_SEQ_LEN 6
0020
0021 #define template_skcipher template_u.skcipher
0022
0023 struct cc_user_key_info {
0024 u8 *key;
0025 dma_addr_t key_dma_addr;
0026 };
0027
0028 struct cc_hw_key_info {
0029 enum cc_hw_crypto_key key1_slot;
0030 enum cc_hw_crypto_key key2_slot;
0031 };
0032
0033 struct cc_cpp_key_info {
0034 u8 slot;
0035 enum cc_cpp_alg alg;
0036 };
0037
0038 enum cc_key_type {
0039 CC_UNPROTECTED_KEY,
0040 CC_HW_PROTECTED_KEY,
0041 CC_POLICY_PROTECTED_KEY,
0042 CC_INVALID_PROTECTED_KEY
0043 };
0044
0045 struct cc_cipher_ctx {
0046 struct cc_drvdata *drvdata;
0047 int keylen;
0048 int cipher_mode;
0049 int flow_mode;
0050 unsigned int flags;
0051 enum cc_key_type key_type;
0052 struct cc_user_key_info user;
0053 union {
0054 struct cc_hw_key_info hw;
0055 struct cc_cpp_key_info cpp;
0056 };
0057 struct crypto_shash *shash_tfm;
0058 struct crypto_skcipher *fallback_tfm;
0059 bool fallback_on;
0060 };
0061
0062 static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
0063
0064 static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
0065 {
0066 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0067
0068 return ctx_p->key_type;
0069 }
0070
0071 static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
0072 {
0073 switch (ctx_p->flow_mode) {
0074 case S_DIN_to_AES:
0075 switch (size) {
0076 case CC_AES_128_BIT_KEY_SIZE:
0077 case CC_AES_192_BIT_KEY_SIZE:
0078 if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
0079 return 0;
0080 break;
0081 case CC_AES_256_BIT_KEY_SIZE:
0082 return 0;
0083 case (CC_AES_192_BIT_KEY_SIZE * 2):
0084 case (CC_AES_256_BIT_KEY_SIZE * 2):
0085 if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
0086 ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
0087 return 0;
0088 break;
0089 default:
0090 break;
0091 }
0092 break;
0093 case S_DIN_to_DES:
0094 if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
0095 return 0;
0096 break;
0097 case S_DIN_to_SM4:
0098 if (size == SM4_KEY_SIZE)
0099 return 0;
0100 break;
0101 default:
0102 break;
0103 }
0104 return -EINVAL;
0105 }
0106
0107 static int validate_data_size(struct cc_cipher_ctx *ctx_p,
0108 unsigned int size)
0109 {
0110 switch (ctx_p->flow_mode) {
0111 case S_DIN_to_AES:
0112 switch (ctx_p->cipher_mode) {
0113 case DRV_CIPHER_XTS:
0114 case DRV_CIPHER_CBC_CTS:
0115 if (size >= AES_BLOCK_SIZE)
0116 return 0;
0117 break;
0118 case DRV_CIPHER_OFB:
0119 case DRV_CIPHER_CTR:
0120 return 0;
0121 case DRV_CIPHER_ECB:
0122 case DRV_CIPHER_CBC:
0123 case DRV_CIPHER_ESSIV:
0124 if (IS_ALIGNED(size, AES_BLOCK_SIZE))
0125 return 0;
0126 break;
0127 default:
0128 break;
0129 }
0130 break;
0131 case S_DIN_to_DES:
0132 if (IS_ALIGNED(size, DES_BLOCK_SIZE))
0133 return 0;
0134 break;
0135 case S_DIN_to_SM4:
0136 switch (ctx_p->cipher_mode) {
0137 case DRV_CIPHER_CTR:
0138 return 0;
0139 case DRV_CIPHER_ECB:
0140 case DRV_CIPHER_CBC:
0141 if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
0142 return 0;
0143 break;
0144 default:
0145 break;
0146 }
0147 break;
0148 default:
0149 break;
0150 }
0151 return -EINVAL;
0152 }
0153
0154 static int cc_cipher_init(struct crypto_tfm *tfm)
0155 {
0156 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0157 struct cc_crypto_alg *cc_alg =
0158 container_of(tfm->__crt_alg, struct cc_crypto_alg,
0159 skcipher_alg.base);
0160 struct device *dev = drvdata_to_dev(cc_alg->drvdata);
0161 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
0162 unsigned int fallback_req_size = 0;
0163
0164 dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
0165 crypto_tfm_alg_name(tfm));
0166
0167 ctx_p->cipher_mode = cc_alg->cipher_mode;
0168 ctx_p->flow_mode = cc_alg->flow_mode;
0169 ctx_p->drvdata = cc_alg->drvdata;
0170
0171 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
0172 const char *name = crypto_tfm_alg_name(tfm);
0173
0174
0175 ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
0176 if (IS_ERR(ctx_p->shash_tfm)) {
0177 dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
0178 return PTR_ERR(ctx_p->shash_tfm);
0179 }
0180 max_key_buf_size <<= 1;
0181
0182
0183 ctx_p->fallback_tfm =
0184 crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
0185
0186 if (IS_ERR(ctx_p->fallback_tfm)) {
0187
0188
0189
0190 dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
0191 name);
0192 ctx_p->fallback_tfm = NULL;
0193 } else {
0194 fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
0195 }
0196 }
0197
0198 crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
0199 sizeof(struct cipher_req_ctx) + fallback_req_size);
0200
0201
0202 ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
0203 if (!ctx_p->user.key)
0204 goto free_fallback;
0205
0206 dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
0207 ctx_p->user.key);
0208
0209
0210 ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
0211 max_key_buf_size,
0212 DMA_TO_DEVICE);
0213 if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
0214 dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
0215 max_key_buf_size, ctx_p->user.key);
0216 goto free_key;
0217 }
0218 dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
0219 max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
0220
0221 return 0;
0222
0223 free_key:
0224 kfree(ctx_p->user.key);
0225 free_fallback:
0226 crypto_free_skcipher(ctx_p->fallback_tfm);
0227 crypto_free_shash(ctx_p->shash_tfm);
0228
0229 return -ENOMEM;
0230 }
0231
0232 static void cc_cipher_exit(struct crypto_tfm *tfm)
0233 {
0234 struct crypto_alg *alg = tfm->__crt_alg;
0235 struct cc_crypto_alg *cc_alg =
0236 container_of(alg, struct cc_crypto_alg,
0237 skcipher_alg.base);
0238 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
0239 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0240 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0241
0242 dev_dbg(dev, "Clearing context @%p for %s\n",
0243 crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
0244
0245 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
0246
0247 crypto_free_shash(ctx_p->shash_tfm);
0248 ctx_p->shash_tfm = NULL;
0249 crypto_free_skcipher(ctx_p->fallback_tfm);
0250 ctx_p->fallback_tfm = NULL;
0251 }
0252
0253
0254 dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
0255 DMA_TO_DEVICE);
0256 dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
0257 &ctx_p->user.key_dma_addr);
0258
0259
0260 dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
0261 kfree_sensitive(ctx_p->user.key);
0262 }
0263
0264 struct tdes_keys {
0265 u8 key1[DES_KEY_SIZE];
0266 u8 key2[DES_KEY_SIZE];
0267 u8 key3[DES_KEY_SIZE];
0268 };
0269
0270 static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
0271 {
0272 switch (slot_num) {
0273 case 0:
0274 return KFDE0_KEY;
0275 case 1:
0276 return KFDE1_KEY;
0277 case 2:
0278 return KFDE2_KEY;
0279 case 3:
0280 return KFDE3_KEY;
0281 }
0282 return END_OF_KEYS;
0283 }
0284
0285 static u8 cc_slot_to_cpp_key(u8 slot_num)
0286 {
0287 return (slot_num - CC_FIRST_CPP_KEY_SLOT);
0288 }
0289
0290 static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
0291 {
0292 if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
0293 return CC_HW_PROTECTED_KEY;
0294 else if (slot_num >= CC_FIRST_CPP_KEY_SLOT &&
0295 slot_num <= CC_LAST_CPP_KEY_SLOT)
0296 return CC_POLICY_PROTECTED_KEY;
0297 else
0298 return CC_INVALID_PROTECTED_KEY;
0299 }
0300
0301 static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
0302 unsigned int keylen)
0303 {
0304 struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
0305 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0306 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0307 struct cc_hkey_info hki;
0308
0309 dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
0310 ctx_p, crypto_tfm_alg_name(tfm), keylen);
0311 dump_byte_array("key", key, keylen);
0312
0313
0314
0315
0316 if (keylen != sizeof(hki)) {
0317 dev_err(dev, "Unsupported protected key size %d.\n", keylen);
0318 return -EINVAL;
0319 }
0320
0321 memcpy(&hki, key, keylen);
0322
0323
0324
0325
0326 keylen = hki.keylen;
0327
0328 if (validate_keys_sizes(ctx_p, keylen)) {
0329 dev_dbg(dev, "Unsupported key size %d.\n", keylen);
0330 return -EINVAL;
0331 }
0332
0333 ctx_p->keylen = keylen;
0334 ctx_p->fallback_on = false;
0335
0336 switch (cc_slot_to_key_type(hki.hw_key1)) {
0337 case CC_HW_PROTECTED_KEY:
0338 if (ctx_p->flow_mode == S_DIN_to_SM4) {
0339 dev_err(dev, "Only AES HW protected keys are supported\n");
0340 return -EINVAL;
0341 }
0342
0343 ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
0344 if (ctx_p->hw.key1_slot == END_OF_KEYS) {
0345 dev_err(dev, "Unsupported hw key1 number (%d)\n",
0346 hki.hw_key1);
0347 return -EINVAL;
0348 }
0349
0350 if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
0351 ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
0352 if (hki.hw_key1 == hki.hw_key2) {
0353 dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
0354 hki.hw_key1, hki.hw_key2);
0355 return -EINVAL;
0356 }
0357
0358 ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
0359 if (ctx_p->hw.key2_slot == END_OF_KEYS) {
0360 dev_err(dev, "Unsupported hw key2 number (%d)\n",
0361 hki.hw_key2);
0362 return -EINVAL;
0363 }
0364 }
0365
0366 ctx_p->key_type = CC_HW_PROTECTED_KEY;
0367 dev_dbg(dev, "HW protected key %d/%d set\n.",
0368 ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
0369 break;
0370
0371 case CC_POLICY_PROTECTED_KEY:
0372 if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
0373 dev_err(dev, "CPP keys not supported in this hardware revision.\n");
0374 return -EINVAL;
0375 }
0376
0377 if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
0378 ctx_p->cipher_mode != DRV_CIPHER_CTR) {
0379 dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
0380 return -EINVAL;
0381 }
0382
0383 ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
0384 if (ctx_p->flow_mode == S_DIN_to_AES)
0385 ctx_p->cpp.alg = CC_CPP_AES;
0386 else
0387 ctx_p->cpp.alg = CC_CPP_SM4;
0388 ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
0389 dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
0390 ctx_p->cpp.alg, ctx_p->cpp.slot);
0391 break;
0392
0393 default:
0394 dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
0395 return -EINVAL;
0396 }
0397
0398 return 0;
0399 }
0400
0401 static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
0402 unsigned int keylen)
0403 {
0404 struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
0405 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0406 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0407 struct cc_crypto_alg *cc_alg =
0408 container_of(tfm->__crt_alg, struct cc_crypto_alg,
0409 skcipher_alg.base);
0410 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
0411
0412 dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
0413 ctx_p, crypto_tfm_alg_name(tfm), keylen);
0414 dump_byte_array("key", key, keylen);
0415
0416
0417
0418 if (validate_keys_sizes(ctx_p, keylen)) {
0419 dev_dbg(dev, "Invalid key size %d.\n", keylen);
0420 return -EINVAL;
0421 }
0422
0423 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
0424
0425
0426 if (keylen != AES_KEYSIZE_256) {
0427 unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
0428
0429 if (likely(ctx_p->fallback_tfm)) {
0430 ctx_p->fallback_on = true;
0431 crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
0432 CRYPTO_TFM_REQ_MASK);
0433 crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
0434 return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
0435 }
0436
0437 dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
0438 return -EINVAL;
0439 }
0440
0441
0442 max_key_buf_size <<= 1;
0443 }
0444
0445 ctx_p->fallback_on = false;
0446 ctx_p->key_type = CC_UNPROTECTED_KEY;
0447
0448
0449
0450
0451
0452
0453 if (ctx_p->flow_mode == S_DIN_to_DES) {
0454 if ((keylen == DES3_EDE_KEY_SIZE &&
0455 verify_skcipher_des3_key(sktfm, key)) ||
0456 verify_skcipher_des_key(sktfm, key)) {
0457 dev_dbg(dev, "weak DES key");
0458 return -EINVAL;
0459 }
0460 }
0461
0462 if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
0463 xts_check_key(tfm, key, keylen)) {
0464 dev_dbg(dev, "weak XTS key");
0465 return -EINVAL;
0466 }
0467
0468
0469 dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
0470 max_key_buf_size, DMA_TO_DEVICE);
0471
0472 memcpy(ctx_p->user.key, key, keylen);
0473
0474 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
0475
0476 int err;
0477
0478 err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
0479 ctx_p->user.key, keylen,
0480 ctx_p->user.key + keylen);
0481 if (err) {
0482 dev_err(dev, "Failed to hash ESSIV key.\n");
0483 return err;
0484 }
0485
0486 keylen <<= 1;
0487 }
0488 dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
0489 max_key_buf_size, DMA_TO_DEVICE);
0490 ctx_p->keylen = keylen;
0491
0492 dev_dbg(dev, "return safely");
0493 return 0;
0494 }
0495
0496 static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
0497 {
0498 switch (ctx_p->flow_mode) {
0499 case S_DIN_to_AES:
0500 return S_AES_to_DOUT;
0501 case S_DIN_to_DES:
0502 return S_DES_to_DOUT;
0503 case S_DIN_to_SM4:
0504 return S_SM4_to_DOUT;
0505 default:
0506 return ctx_p->flow_mode;
0507 }
0508 }
0509
0510 static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
0511 struct cipher_req_ctx *req_ctx,
0512 unsigned int ivsize, struct cc_hw_desc desc[],
0513 unsigned int *seq_size)
0514 {
0515 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0516 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0517 int cipher_mode = ctx_p->cipher_mode;
0518 int flow_mode = cc_out_setup_mode(ctx_p);
0519 int direction = req_ctx->gen_ctx.op_type;
0520 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
0521
0522 if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
0523 return;
0524
0525 switch (cipher_mode) {
0526 case DRV_CIPHER_ECB:
0527 break;
0528 case DRV_CIPHER_CBC:
0529 case DRV_CIPHER_CBC_CTS:
0530 case DRV_CIPHER_CTR:
0531 case DRV_CIPHER_OFB:
0532
0533 hw_desc_init(&desc[*seq_size]);
0534 set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
0535 set_cipher_config0(&desc[*seq_size], direction);
0536 set_flow_mode(&desc[*seq_size], flow_mode);
0537 set_cipher_mode(&desc[*seq_size], cipher_mode);
0538 if (cipher_mode == DRV_CIPHER_CTR ||
0539 cipher_mode == DRV_CIPHER_OFB) {
0540 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
0541 } else {
0542 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
0543 }
0544 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
0545 (*seq_size)++;
0546 break;
0547 case DRV_CIPHER_XTS:
0548 case DRV_CIPHER_ESSIV:
0549
0550 hw_desc_init(&desc[*seq_size]);
0551 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
0552 set_cipher_mode(&desc[*seq_size], cipher_mode);
0553 set_cipher_config0(&desc[*seq_size], direction);
0554 set_flow_mode(&desc[*seq_size], flow_mode);
0555 set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
0556 NS_BIT, 1);
0557 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
0558 (*seq_size)++;
0559 break;
0560 default:
0561 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
0562 }
0563 }
0564
0565
0566 static void cc_setup_state_desc(struct crypto_tfm *tfm,
0567 struct cipher_req_ctx *req_ctx,
0568 unsigned int ivsize, unsigned int nbytes,
0569 struct cc_hw_desc desc[],
0570 unsigned int *seq_size)
0571 {
0572 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0573 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0574 int cipher_mode = ctx_p->cipher_mode;
0575 int flow_mode = ctx_p->flow_mode;
0576 int direction = req_ctx->gen_ctx.op_type;
0577 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
0578
0579 switch (cipher_mode) {
0580 case DRV_CIPHER_ECB:
0581 break;
0582 case DRV_CIPHER_CBC:
0583 case DRV_CIPHER_CBC_CTS:
0584 case DRV_CIPHER_CTR:
0585 case DRV_CIPHER_OFB:
0586
0587 hw_desc_init(&desc[*seq_size]);
0588 set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
0589 NS_BIT);
0590 set_cipher_config0(&desc[*seq_size], direction);
0591 set_flow_mode(&desc[*seq_size], flow_mode);
0592 set_cipher_mode(&desc[*seq_size], cipher_mode);
0593 if (cipher_mode == DRV_CIPHER_CTR ||
0594 cipher_mode == DRV_CIPHER_OFB) {
0595 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
0596 } else {
0597 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
0598 }
0599 (*seq_size)++;
0600 break;
0601 case DRV_CIPHER_XTS:
0602 case DRV_CIPHER_ESSIV:
0603 break;
0604 default:
0605 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
0606 }
0607 }
0608
0609
0610 static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
0611 struct cipher_req_ctx *req_ctx,
0612 unsigned int ivsize, unsigned int nbytes,
0613 struct cc_hw_desc desc[],
0614 unsigned int *seq_size)
0615 {
0616 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0617 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0618 int cipher_mode = ctx_p->cipher_mode;
0619 int flow_mode = ctx_p->flow_mode;
0620 int direction = req_ctx->gen_ctx.op_type;
0621 dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
0622 unsigned int key_len = (ctx_p->keylen / 2);
0623 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
0624 unsigned int key_offset = key_len;
0625
0626 switch (cipher_mode) {
0627 case DRV_CIPHER_ECB:
0628 break;
0629 case DRV_CIPHER_CBC:
0630 case DRV_CIPHER_CBC_CTS:
0631 case DRV_CIPHER_CTR:
0632 case DRV_CIPHER_OFB:
0633 break;
0634 case DRV_CIPHER_XTS:
0635 case DRV_CIPHER_ESSIV:
0636
0637 if (cipher_mode == DRV_CIPHER_ESSIV)
0638 key_len = SHA256_DIGEST_SIZE;
0639
0640
0641 hw_desc_init(&desc[*seq_size]);
0642 set_cipher_mode(&desc[*seq_size], cipher_mode);
0643 set_cipher_config0(&desc[*seq_size], direction);
0644 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
0645 set_hw_crypto_key(&desc[*seq_size],
0646 ctx_p->hw.key2_slot);
0647 } else {
0648 set_din_type(&desc[*seq_size], DMA_DLLI,
0649 (key_dma_addr + key_offset),
0650 key_len, NS_BIT);
0651 }
0652 set_xex_data_unit_size(&desc[*seq_size], nbytes);
0653 set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
0654 set_key_size_aes(&desc[*seq_size], key_len);
0655 set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
0656 (*seq_size)++;
0657
0658
0659 hw_desc_init(&desc[*seq_size]);
0660 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
0661 set_cipher_mode(&desc[*seq_size], cipher_mode);
0662 set_cipher_config0(&desc[*seq_size], direction);
0663 set_key_size_aes(&desc[*seq_size], key_len);
0664 set_flow_mode(&desc[*seq_size], flow_mode);
0665 set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
0666 CC_AES_BLOCK_SIZE, NS_BIT);
0667 (*seq_size)++;
0668 break;
0669 default:
0670 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
0671 }
0672 }
0673
0674 static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
0675 {
0676 switch (ctx_p->flow_mode) {
0677 case S_DIN_to_AES:
0678 return DIN_AES_DOUT;
0679 case S_DIN_to_DES:
0680 return DIN_DES_DOUT;
0681 case S_DIN_to_SM4:
0682 return DIN_SM4_DOUT;
0683 default:
0684 return ctx_p->flow_mode;
0685 }
0686 }
0687
0688 static void cc_setup_key_desc(struct crypto_tfm *tfm,
0689 struct cipher_req_ctx *req_ctx,
0690 unsigned int nbytes, struct cc_hw_desc desc[],
0691 unsigned int *seq_size)
0692 {
0693 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0694 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0695 int cipher_mode = ctx_p->cipher_mode;
0696 int flow_mode = ctx_p->flow_mode;
0697 int direction = req_ctx->gen_ctx.op_type;
0698 dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
0699 unsigned int key_len = ctx_p->keylen;
0700 unsigned int din_size;
0701
0702 switch (cipher_mode) {
0703 case DRV_CIPHER_CBC:
0704 case DRV_CIPHER_CBC_CTS:
0705 case DRV_CIPHER_CTR:
0706 case DRV_CIPHER_OFB:
0707 case DRV_CIPHER_ECB:
0708
0709 hw_desc_init(&desc[*seq_size]);
0710 set_cipher_mode(&desc[*seq_size], cipher_mode);
0711 set_cipher_config0(&desc[*seq_size], direction);
0712
0713 if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
0714
0715 set_key_size_aes(&desc[*seq_size], key_len);
0716 set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
0717 flow_mode = cc_out_flow_mode(ctx_p);
0718 } else {
0719 if (flow_mode == S_DIN_to_AES) {
0720 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
0721 set_hw_crypto_key(&desc[*seq_size],
0722 ctx_p->hw.key1_slot);
0723 } else {
0724
0725
0726
0727
0728 din_size = (key_len == 24) ?
0729 AES_MAX_KEY_SIZE : key_len;
0730
0731 set_din_type(&desc[*seq_size], DMA_DLLI,
0732 key_dma_addr, din_size,
0733 NS_BIT);
0734 }
0735 set_key_size_aes(&desc[*seq_size], key_len);
0736 } else {
0737
0738 set_din_type(&desc[*seq_size], DMA_DLLI,
0739 key_dma_addr, key_len, NS_BIT);
0740 set_key_size_des(&desc[*seq_size], key_len);
0741 }
0742 set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
0743 }
0744 set_flow_mode(&desc[*seq_size], flow_mode);
0745 (*seq_size)++;
0746 break;
0747 case DRV_CIPHER_XTS:
0748 case DRV_CIPHER_ESSIV:
0749
0750 hw_desc_init(&desc[*seq_size]);
0751 set_cipher_mode(&desc[*seq_size], cipher_mode);
0752 set_cipher_config0(&desc[*seq_size], direction);
0753 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
0754 set_hw_crypto_key(&desc[*seq_size],
0755 ctx_p->hw.key1_slot);
0756 } else {
0757 set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
0758 (key_len / 2), NS_BIT);
0759 }
0760 set_key_size_aes(&desc[*seq_size], (key_len / 2));
0761 set_flow_mode(&desc[*seq_size], flow_mode);
0762 set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
0763 (*seq_size)++;
0764 break;
0765 default:
0766 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
0767 }
0768 }
0769
0770 static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
0771 struct cipher_req_ctx *req_ctx,
0772 struct scatterlist *dst, struct scatterlist *src,
0773 unsigned int nbytes, void *areq,
0774 struct cc_hw_desc desc[], unsigned int *seq_size)
0775 {
0776 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0777 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0778
0779 if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
0780
0781 dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
0782 &req_ctx->mlli_params.mlli_dma_addr,
0783 req_ctx->mlli_params.mlli_len,
0784 ctx_p->drvdata->mlli_sram_addr);
0785 hw_desc_init(&desc[*seq_size]);
0786 set_din_type(&desc[*seq_size], DMA_DLLI,
0787 req_ctx->mlli_params.mlli_dma_addr,
0788 req_ctx->mlli_params.mlli_len, NS_BIT);
0789 set_dout_sram(&desc[*seq_size],
0790 ctx_p->drvdata->mlli_sram_addr,
0791 req_ctx->mlli_params.mlli_len);
0792 set_flow_mode(&desc[*seq_size], BYPASS);
0793 (*seq_size)++;
0794 }
0795 }
0796
0797 static void cc_setup_flow_desc(struct crypto_tfm *tfm,
0798 struct cipher_req_ctx *req_ctx,
0799 struct scatterlist *dst, struct scatterlist *src,
0800 unsigned int nbytes, struct cc_hw_desc desc[],
0801 unsigned int *seq_size)
0802 {
0803 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0804 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0805 unsigned int flow_mode = cc_out_flow_mode(ctx_p);
0806 bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
0807 ctx_p->cipher_mode == DRV_CIPHER_ECB);
0808
0809
0810 if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
0811 dev_dbg(dev, " data params addr %pad length 0x%X\n",
0812 &sg_dma_address(src), nbytes);
0813 dev_dbg(dev, " data params addr %pad length 0x%X\n",
0814 &sg_dma_address(dst), nbytes);
0815 hw_desc_init(&desc[*seq_size]);
0816 set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
0817 nbytes, NS_BIT);
0818 set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
0819 nbytes, NS_BIT, (!last_desc ? 0 : 1));
0820 if (last_desc)
0821 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
0822
0823 set_flow_mode(&desc[*seq_size], flow_mode);
0824 (*seq_size)++;
0825 } else {
0826 hw_desc_init(&desc[*seq_size]);
0827 set_din_type(&desc[*seq_size], DMA_MLLI,
0828 ctx_p->drvdata->mlli_sram_addr,
0829 req_ctx->in_mlli_nents, NS_BIT);
0830 if (req_ctx->out_nents == 0) {
0831 dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
0832 ctx_p->drvdata->mlli_sram_addr,
0833 ctx_p->drvdata->mlli_sram_addr);
0834 set_dout_mlli(&desc[*seq_size],
0835 ctx_p->drvdata->mlli_sram_addr,
0836 req_ctx->in_mlli_nents, NS_BIT,
0837 (!last_desc ? 0 : 1));
0838 } else {
0839 dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
0840 ctx_p->drvdata->mlli_sram_addr,
0841 ctx_p->drvdata->mlli_sram_addr +
0842 (u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
0843 set_dout_mlli(&desc[*seq_size],
0844 (ctx_p->drvdata->mlli_sram_addr +
0845 (LLI_ENTRY_BYTE_SIZE *
0846 req_ctx->in_mlli_nents)),
0847 req_ctx->out_mlli_nents, NS_BIT,
0848 (!last_desc ? 0 : 1));
0849 }
0850 if (last_desc)
0851 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
0852
0853 set_flow_mode(&desc[*seq_size], flow_mode);
0854 (*seq_size)++;
0855 }
0856 }
0857
0858 static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
0859 {
0860 struct skcipher_request *req = (struct skcipher_request *)cc_req;
0861 struct scatterlist *dst = req->dst;
0862 struct scatterlist *src = req->src;
0863 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
0864 struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
0865 unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
0866
0867 if (err != -EINPROGRESS) {
0868
0869 cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
0870 memcpy(req->iv, req_ctx->iv, ivsize);
0871 kfree_sensitive(req_ctx->iv);
0872 }
0873
0874 skcipher_request_complete(req, err);
0875 }
0876
0877 static int cc_cipher_process(struct skcipher_request *req,
0878 enum drv_crypto_direction direction)
0879 {
0880 struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
0881 struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
0882 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
0883 unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
0884 struct scatterlist *dst = req->dst;
0885 struct scatterlist *src = req->src;
0886 unsigned int nbytes = req->cryptlen;
0887 void *iv = req->iv;
0888 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
0889 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
0890 struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
0891 struct cc_crypto_req cc_req = {};
0892 int rc;
0893 unsigned int seq_len = 0;
0894 gfp_t flags = cc_gfp_flags(&req->base);
0895
0896 dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
0897 ((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
0898 "Encrypt" : "Decrypt"), req, iv, nbytes);
0899
0900
0901
0902 if (validate_data_size(ctx_p, nbytes)) {
0903 dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
0904 rc = -EINVAL;
0905 goto exit_process;
0906 }
0907 if (nbytes == 0) {
0908
0909 rc = 0;
0910 goto exit_process;
0911 }
0912
0913 if (ctx_p->fallback_on) {
0914 struct skcipher_request *subreq = skcipher_request_ctx(req);
0915
0916 *subreq = *req;
0917 skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
0918 if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
0919 return crypto_skcipher_encrypt(subreq);
0920 else
0921 return crypto_skcipher_decrypt(subreq);
0922 }
0923
0924
0925
0926
0927 req_ctx->iv = kmemdup(iv, ivsize, flags);
0928 if (!req_ctx->iv) {
0929 rc = -ENOMEM;
0930 goto exit_process;
0931 }
0932
0933
0934 cc_req.user_cb = cc_cipher_complete;
0935 cc_req.user_arg = req;
0936
0937
0938 if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
0939 cc_req.cpp.is_cpp = true;
0940 cc_req.cpp.alg = ctx_p->cpp.alg;
0941 cc_req.cpp.slot = ctx_p->cpp.slot;
0942 }
0943
0944
0945 req_ctx->gen_ctx.op_type = direction;
0946
0947
0948
0949 rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
0950 req_ctx->iv, src, dst, flags);
0951 if (rc) {
0952 dev_err(dev, "map_request() failed\n");
0953 goto exit_process;
0954 }
0955
0956
0957
0958
0959 cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
0960
0961 cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
0962
0963 cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
0964
0965 cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
0966
0967 cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
0968
0969 cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
0970
0971
0972
0973 rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
0974 &req->base);
0975 if (rc != -EINPROGRESS && rc != -EBUSY) {
0976
0977
0978
0979 cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
0980 }
0981
0982 exit_process:
0983 if (rc != -EINPROGRESS && rc != -EBUSY) {
0984 kfree_sensitive(req_ctx->iv);
0985 }
0986
0987 return rc;
0988 }
0989
0990 static int cc_cipher_encrypt(struct skcipher_request *req)
0991 {
0992 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
0993
0994 memset(req_ctx, 0, sizeof(*req_ctx));
0995
0996 return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
0997 }
0998
0999 static int cc_cipher_decrypt(struct skcipher_request *req)
1000 {
1001 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
1002
1003 memset(req_ctx, 0, sizeof(*req_ctx));
1004
1005 return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1006 }
1007
1008
1009 static const struct cc_alg_template skcipher_algs[] = {
1010 {
1011 .name = "xts(paes)",
1012 .driver_name = "xts-paes-ccree",
1013 .blocksize = 1,
1014 .template_skcipher = {
1015 .setkey = cc_cipher_sethkey,
1016 .encrypt = cc_cipher_encrypt,
1017 .decrypt = cc_cipher_decrypt,
1018 .min_keysize = CC_HW_KEY_SIZE,
1019 .max_keysize = CC_HW_KEY_SIZE,
1020 .ivsize = AES_BLOCK_SIZE,
1021 },
1022 .cipher_mode = DRV_CIPHER_XTS,
1023 .flow_mode = S_DIN_to_AES,
1024 .min_hw_rev = CC_HW_REV_630,
1025 .std_body = CC_STD_NIST,
1026 .sec_func = true,
1027 },
1028 {
1029 .name = "essiv(cbc(paes),sha256)",
1030 .driver_name = "essiv-paes-ccree",
1031 .blocksize = AES_BLOCK_SIZE,
1032 .template_skcipher = {
1033 .setkey = cc_cipher_sethkey,
1034 .encrypt = cc_cipher_encrypt,
1035 .decrypt = cc_cipher_decrypt,
1036 .min_keysize = CC_HW_KEY_SIZE,
1037 .max_keysize = CC_HW_KEY_SIZE,
1038 .ivsize = AES_BLOCK_SIZE,
1039 },
1040 .cipher_mode = DRV_CIPHER_ESSIV,
1041 .flow_mode = S_DIN_to_AES,
1042 .min_hw_rev = CC_HW_REV_712,
1043 .std_body = CC_STD_NIST,
1044 .sec_func = true,
1045 },
1046 {
1047 .name = "ecb(paes)",
1048 .driver_name = "ecb-paes-ccree",
1049 .blocksize = AES_BLOCK_SIZE,
1050 .template_skcipher = {
1051 .setkey = cc_cipher_sethkey,
1052 .encrypt = cc_cipher_encrypt,
1053 .decrypt = cc_cipher_decrypt,
1054 .min_keysize = CC_HW_KEY_SIZE,
1055 .max_keysize = CC_HW_KEY_SIZE,
1056 .ivsize = 0,
1057 },
1058 .cipher_mode = DRV_CIPHER_ECB,
1059 .flow_mode = S_DIN_to_AES,
1060 .min_hw_rev = CC_HW_REV_712,
1061 .std_body = CC_STD_NIST,
1062 .sec_func = true,
1063 },
1064 {
1065 .name = "cbc(paes)",
1066 .driver_name = "cbc-paes-ccree",
1067 .blocksize = AES_BLOCK_SIZE,
1068 .template_skcipher = {
1069 .setkey = cc_cipher_sethkey,
1070 .encrypt = cc_cipher_encrypt,
1071 .decrypt = cc_cipher_decrypt,
1072 .min_keysize = CC_HW_KEY_SIZE,
1073 .max_keysize = CC_HW_KEY_SIZE,
1074 .ivsize = AES_BLOCK_SIZE,
1075 },
1076 .cipher_mode = DRV_CIPHER_CBC,
1077 .flow_mode = S_DIN_to_AES,
1078 .min_hw_rev = CC_HW_REV_712,
1079 .std_body = CC_STD_NIST,
1080 .sec_func = true,
1081 },
1082 {
1083 .name = "ofb(paes)",
1084 .driver_name = "ofb-paes-ccree",
1085 .blocksize = AES_BLOCK_SIZE,
1086 .template_skcipher = {
1087 .setkey = cc_cipher_sethkey,
1088 .encrypt = cc_cipher_encrypt,
1089 .decrypt = cc_cipher_decrypt,
1090 .min_keysize = CC_HW_KEY_SIZE,
1091 .max_keysize = CC_HW_KEY_SIZE,
1092 .ivsize = AES_BLOCK_SIZE,
1093 },
1094 .cipher_mode = DRV_CIPHER_OFB,
1095 .flow_mode = S_DIN_to_AES,
1096 .min_hw_rev = CC_HW_REV_712,
1097 .std_body = CC_STD_NIST,
1098 .sec_func = true,
1099 },
1100 {
1101 .name = "cts(cbc(paes))",
1102 .driver_name = "cts-cbc-paes-ccree",
1103 .blocksize = AES_BLOCK_SIZE,
1104 .template_skcipher = {
1105 .setkey = cc_cipher_sethkey,
1106 .encrypt = cc_cipher_encrypt,
1107 .decrypt = cc_cipher_decrypt,
1108 .min_keysize = CC_HW_KEY_SIZE,
1109 .max_keysize = CC_HW_KEY_SIZE,
1110 .ivsize = AES_BLOCK_SIZE,
1111 },
1112 .cipher_mode = DRV_CIPHER_CBC_CTS,
1113 .flow_mode = S_DIN_to_AES,
1114 .min_hw_rev = CC_HW_REV_712,
1115 .std_body = CC_STD_NIST,
1116 .sec_func = true,
1117 },
1118 {
1119 .name = "ctr(paes)",
1120 .driver_name = "ctr-paes-ccree",
1121 .blocksize = 1,
1122 .template_skcipher = {
1123 .setkey = cc_cipher_sethkey,
1124 .encrypt = cc_cipher_encrypt,
1125 .decrypt = cc_cipher_decrypt,
1126 .min_keysize = CC_HW_KEY_SIZE,
1127 .max_keysize = CC_HW_KEY_SIZE,
1128 .ivsize = AES_BLOCK_SIZE,
1129 },
1130 .cipher_mode = DRV_CIPHER_CTR,
1131 .flow_mode = S_DIN_to_AES,
1132 .min_hw_rev = CC_HW_REV_712,
1133 .std_body = CC_STD_NIST,
1134 .sec_func = true,
1135 },
1136 {
1137
1138
1139
1140
1141 .name = "xts(aes)",
1142 .driver_name = "xts-aes-ccree",
1143 .blocksize = 1,
1144 .template_skcipher = {
1145 .setkey = cc_cipher_setkey,
1146 .encrypt = cc_cipher_encrypt,
1147 .decrypt = cc_cipher_decrypt,
1148 .min_keysize = AES_MIN_KEY_SIZE * 2,
1149 .max_keysize = AES_MAX_KEY_SIZE * 2,
1150 .ivsize = AES_BLOCK_SIZE,
1151 },
1152 .cipher_mode = DRV_CIPHER_XTS,
1153 .flow_mode = S_DIN_to_AES,
1154 .min_hw_rev = CC_HW_REV_630,
1155 .std_body = CC_STD_NIST,
1156 },
1157 {
1158 .name = "essiv(cbc(aes),sha256)",
1159 .driver_name = "essiv-aes-ccree",
1160 .blocksize = AES_BLOCK_SIZE,
1161 .template_skcipher = {
1162 .setkey = cc_cipher_setkey,
1163 .encrypt = cc_cipher_encrypt,
1164 .decrypt = cc_cipher_decrypt,
1165 .min_keysize = AES_MIN_KEY_SIZE,
1166 .max_keysize = AES_MAX_KEY_SIZE,
1167 .ivsize = AES_BLOCK_SIZE,
1168 },
1169 .cipher_mode = DRV_CIPHER_ESSIV,
1170 .flow_mode = S_DIN_to_AES,
1171 .min_hw_rev = CC_HW_REV_712,
1172 .std_body = CC_STD_NIST,
1173 },
1174 {
1175 .name = "ecb(aes)",
1176 .driver_name = "ecb-aes-ccree",
1177 .blocksize = AES_BLOCK_SIZE,
1178 .template_skcipher = {
1179 .setkey = cc_cipher_setkey,
1180 .encrypt = cc_cipher_encrypt,
1181 .decrypt = cc_cipher_decrypt,
1182 .min_keysize = AES_MIN_KEY_SIZE,
1183 .max_keysize = AES_MAX_KEY_SIZE,
1184 .ivsize = 0,
1185 },
1186 .cipher_mode = DRV_CIPHER_ECB,
1187 .flow_mode = S_DIN_to_AES,
1188 .min_hw_rev = CC_HW_REV_630,
1189 .std_body = CC_STD_NIST,
1190 },
1191 {
1192 .name = "cbc(aes)",
1193 .driver_name = "cbc-aes-ccree",
1194 .blocksize = AES_BLOCK_SIZE,
1195 .template_skcipher = {
1196 .setkey = cc_cipher_setkey,
1197 .encrypt = cc_cipher_encrypt,
1198 .decrypt = cc_cipher_decrypt,
1199 .min_keysize = AES_MIN_KEY_SIZE,
1200 .max_keysize = AES_MAX_KEY_SIZE,
1201 .ivsize = AES_BLOCK_SIZE,
1202 },
1203 .cipher_mode = DRV_CIPHER_CBC,
1204 .flow_mode = S_DIN_to_AES,
1205 .min_hw_rev = CC_HW_REV_630,
1206 .std_body = CC_STD_NIST,
1207 },
1208 {
1209 .name = "ofb(aes)",
1210 .driver_name = "ofb-aes-ccree",
1211 .blocksize = 1,
1212 .template_skcipher = {
1213 .setkey = cc_cipher_setkey,
1214 .encrypt = cc_cipher_encrypt,
1215 .decrypt = cc_cipher_decrypt,
1216 .min_keysize = AES_MIN_KEY_SIZE,
1217 .max_keysize = AES_MAX_KEY_SIZE,
1218 .ivsize = AES_BLOCK_SIZE,
1219 },
1220 .cipher_mode = DRV_CIPHER_OFB,
1221 .flow_mode = S_DIN_to_AES,
1222 .min_hw_rev = CC_HW_REV_630,
1223 .std_body = CC_STD_NIST,
1224 },
1225 {
1226 .name = "cts(cbc(aes))",
1227 .driver_name = "cts-cbc-aes-ccree",
1228 .blocksize = AES_BLOCK_SIZE,
1229 .template_skcipher = {
1230 .setkey = cc_cipher_setkey,
1231 .encrypt = cc_cipher_encrypt,
1232 .decrypt = cc_cipher_decrypt,
1233 .min_keysize = AES_MIN_KEY_SIZE,
1234 .max_keysize = AES_MAX_KEY_SIZE,
1235 .ivsize = AES_BLOCK_SIZE,
1236 },
1237 .cipher_mode = DRV_CIPHER_CBC_CTS,
1238 .flow_mode = S_DIN_to_AES,
1239 .min_hw_rev = CC_HW_REV_630,
1240 .std_body = CC_STD_NIST,
1241 },
1242 {
1243 .name = "ctr(aes)",
1244 .driver_name = "ctr-aes-ccree",
1245 .blocksize = 1,
1246 .template_skcipher = {
1247 .setkey = cc_cipher_setkey,
1248 .encrypt = cc_cipher_encrypt,
1249 .decrypt = cc_cipher_decrypt,
1250 .min_keysize = AES_MIN_KEY_SIZE,
1251 .max_keysize = AES_MAX_KEY_SIZE,
1252 .ivsize = AES_BLOCK_SIZE,
1253 },
1254 .cipher_mode = DRV_CIPHER_CTR,
1255 .flow_mode = S_DIN_to_AES,
1256 .min_hw_rev = CC_HW_REV_630,
1257 .std_body = CC_STD_NIST,
1258 },
1259 {
1260 .name = "cbc(des3_ede)",
1261 .driver_name = "cbc-3des-ccree",
1262 .blocksize = DES3_EDE_BLOCK_SIZE,
1263 .template_skcipher = {
1264 .setkey = cc_cipher_setkey,
1265 .encrypt = cc_cipher_encrypt,
1266 .decrypt = cc_cipher_decrypt,
1267 .min_keysize = DES3_EDE_KEY_SIZE,
1268 .max_keysize = DES3_EDE_KEY_SIZE,
1269 .ivsize = DES3_EDE_BLOCK_SIZE,
1270 },
1271 .cipher_mode = DRV_CIPHER_CBC,
1272 .flow_mode = S_DIN_to_DES,
1273 .min_hw_rev = CC_HW_REV_630,
1274 .std_body = CC_STD_NIST,
1275 },
1276 {
1277 .name = "ecb(des3_ede)",
1278 .driver_name = "ecb-3des-ccree",
1279 .blocksize = DES3_EDE_BLOCK_SIZE,
1280 .template_skcipher = {
1281 .setkey = cc_cipher_setkey,
1282 .encrypt = cc_cipher_encrypt,
1283 .decrypt = cc_cipher_decrypt,
1284 .min_keysize = DES3_EDE_KEY_SIZE,
1285 .max_keysize = DES3_EDE_KEY_SIZE,
1286 .ivsize = 0,
1287 },
1288 .cipher_mode = DRV_CIPHER_ECB,
1289 .flow_mode = S_DIN_to_DES,
1290 .min_hw_rev = CC_HW_REV_630,
1291 .std_body = CC_STD_NIST,
1292 },
1293 {
1294 .name = "cbc(des)",
1295 .driver_name = "cbc-des-ccree",
1296 .blocksize = DES_BLOCK_SIZE,
1297 .template_skcipher = {
1298 .setkey = cc_cipher_setkey,
1299 .encrypt = cc_cipher_encrypt,
1300 .decrypt = cc_cipher_decrypt,
1301 .min_keysize = DES_KEY_SIZE,
1302 .max_keysize = DES_KEY_SIZE,
1303 .ivsize = DES_BLOCK_SIZE,
1304 },
1305 .cipher_mode = DRV_CIPHER_CBC,
1306 .flow_mode = S_DIN_to_DES,
1307 .min_hw_rev = CC_HW_REV_630,
1308 .std_body = CC_STD_NIST,
1309 },
1310 {
1311 .name = "ecb(des)",
1312 .driver_name = "ecb-des-ccree",
1313 .blocksize = DES_BLOCK_SIZE,
1314 .template_skcipher = {
1315 .setkey = cc_cipher_setkey,
1316 .encrypt = cc_cipher_encrypt,
1317 .decrypt = cc_cipher_decrypt,
1318 .min_keysize = DES_KEY_SIZE,
1319 .max_keysize = DES_KEY_SIZE,
1320 .ivsize = 0,
1321 },
1322 .cipher_mode = DRV_CIPHER_ECB,
1323 .flow_mode = S_DIN_to_DES,
1324 .min_hw_rev = CC_HW_REV_630,
1325 .std_body = CC_STD_NIST,
1326 },
1327 {
1328 .name = "cbc(sm4)",
1329 .driver_name = "cbc-sm4-ccree",
1330 .blocksize = SM4_BLOCK_SIZE,
1331 .template_skcipher = {
1332 .setkey = cc_cipher_setkey,
1333 .encrypt = cc_cipher_encrypt,
1334 .decrypt = cc_cipher_decrypt,
1335 .min_keysize = SM4_KEY_SIZE,
1336 .max_keysize = SM4_KEY_SIZE,
1337 .ivsize = SM4_BLOCK_SIZE,
1338 },
1339 .cipher_mode = DRV_CIPHER_CBC,
1340 .flow_mode = S_DIN_to_SM4,
1341 .min_hw_rev = CC_HW_REV_713,
1342 .std_body = CC_STD_OSCCA,
1343 },
1344 {
1345 .name = "ecb(sm4)",
1346 .driver_name = "ecb-sm4-ccree",
1347 .blocksize = SM4_BLOCK_SIZE,
1348 .template_skcipher = {
1349 .setkey = cc_cipher_setkey,
1350 .encrypt = cc_cipher_encrypt,
1351 .decrypt = cc_cipher_decrypt,
1352 .min_keysize = SM4_KEY_SIZE,
1353 .max_keysize = SM4_KEY_SIZE,
1354 .ivsize = 0,
1355 },
1356 .cipher_mode = DRV_CIPHER_ECB,
1357 .flow_mode = S_DIN_to_SM4,
1358 .min_hw_rev = CC_HW_REV_713,
1359 .std_body = CC_STD_OSCCA,
1360 },
1361 {
1362 .name = "ctr(sm4)",
1363 .driver_name = "ctr-sm4-ccree",
1364 .blocksize = 1,
1365 .template_skcipher = {
1366 .setkey = cc_cipher_setkey,
1367 .encrypt = cc_cipher_encrypt,
1368 .decrypt = cc_cipher_decrypt,
1369 .min_keysize = SM4_KEY_SIZE,
1370 .max_keysize = SM4_KEY_SIZE,
1371 .ivsize = SM4_BLOCK_SIZE,
1372 },
1373 .cipher_mode = DRV_CIPHER_CTR,
1374 .flow_mode = S_DIN_to_SM4,
1375 .min_hw_rev = CC_HW_REV_713,
1376 .std_body = CC_STD_OSCCA,
1377 },
1378 {
1379 .name = "cbc(psm4)",
1380 .driver_name = "cbc-psm4-ccree",
1381 .blocksize = SM4_BLOCK_SIZE,
1382 .template_skcipher = {
1383 .setkey = cc_cipher_sethkey,
1384 .encrypt = cc_cipher_encrypt,
1385 .decrypt = cc_cipher_decrypt,
1386 .min_keysize = CC_HW_KEY_SIZE,
1387 .max_keysize = CC_HW_KEY_SIZE,
1388 .ivsize = SM4_BLOCK_SIZE,
1389 },
1390 .cipher_mode = DRV_CIPHER_CBC,
1391 .flow_mode = S_DIN_to_SM4,
1392 .min_hw_rev = CC_HW_REV_713,
1393 .std_body = CC_STD_OSCCA,
1394 .sec_func = true,
1395 },
1396 {
1397 .name = "ctr(psm4)",
1398 .driver_name = "ctr-psm4-ccree",
1399 .blocksize = SM4_BLOCK_SIZE,
1400 .template_skcipher = {
1401 .setkey = cc_cipher_sethkey,
1402 .encrypt = cc_cipher_encrypt,
1403 .decrypt = cc_cipher_decrypt,
1404 .min_keysize = CC_HW_KEY_SIZE,
1405 .max_keysize = CC_HW_KEY_SIZE,
1406 .ivsize = SM4_BLOCK_SIZE,
1407 },
1408 .cipher_mode = DRV_CIPHER_CTR,
1409 .flow_mode = S_DIN_to_SM4,
1410 .min_hw_rev = CC_HW_REV_713,
1411 .std_body = CC_STD_OSCCA,
1412 .sec_func = true,
1413 },
1414 };
1415
1416 static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1417 struct device *dev)
1418 {
1419 struct cc_crypto_alg *t_alg;
1420 struct skcipher_alg *alg;
1421
1422 t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1423 if (!t_alg)
1424 return ERR_PTR(-ENOMEM);
1425
1426 alg = &t_alg->skcipher_alg;
1427
1428 memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1429
1430 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1431 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1432 tmpl->driver_name);
1433 alg->base.cra_module = THIS_MODULE;
1434 alg->base.cra_priority = CC_CRA_PRIO;
1435 alg->base.cra_blocksize = tmpl->blocksize;
1436 alg->base.cra_alignmask = 0;
1437 alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1438
1439 alg->base.cra_init = cc_cipher_init;
1440 alg->base.cra_exit = cc_cipher_exit;
1441 alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1442
1443 t_alg->cipher_mode = tmpl->cipher_mode;
1444 t_alg->flow_mode = tmpl->flow_mode;
1445
1446 return t_alg;
1447 }
1448
1449 int cc_cipher_free(struct cc_drvdata *drvdata)
1450 {
1451 struct cc_crypto_alg *t_alg, *n;
1452
1453
1454 list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1455 crypto_unregister_skcipher(&t_alg->skcipher_alg);
1456 list_del(&t_alg->entry);
1457 }
1458 return 0;
1459 }
1460
1461 int cc_cipher_alloc(struct cc_drvdata *drvdata)
1462 {
1463 struct cc_crypto_alg *t_alg;
1464 struct device *dev = drvdata_to_dev(drvdata);
1465 int rc = -ENOMEM;
1466 int alg;
1467
1468 INIT_LIST_HEAD(&drvdata->alg_list);
1469
1470
1471 dev_dbg(dev, "Number of algorithms = %zu\n",
1472 ARRAY_SIZE(skcipher_algs));
1473 for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1474 if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1475 !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1476 (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1477 continue;
1478
1479 dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1480 t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1481 if (IS_ERR(t_alg)) {
1482 rc = PTR_ERR(t_alg);
1483 dev_err(dev, "%s alg allocation failed\n",
1484 skcipher_algs[alg].driver_name);
1485 goto fail0;
1486 }
1487 t_alg->drvdata = drvdata;
1488
1489 dev_dbg(dev, "registering %s\n",
1490 skcipher_algs[alg].driver_name);
1491 rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1492 dev_dbg(dev, "%s alg registration rc = %x\n",
1493 t_alg->skcipher_alg.base.cra_driver_name, rc);
1494 if (rc) {
1495 dev_err(dev, "%s alg registration failed\n",
1496 t_alg->skcipher_alg.base.cra_driver_name);
1497 goto fail0;
1498 }
1499
1500 list_add_tail(&t_alg->entry, &drvdata->alg_list);
1501 dev_dbg(dev, "Registered %s\n",
1502 t_alg->skcipher_alg.base.cra_driver_name);
1503 }
1504 return 0;
1505
1506 fail0:
1507 cc_cipher_free(drvdata);
1508 return rc;
1509 }