0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/module.h>
0012 #include <linux/sched.h>
0013 #include <linux/delay.h>
0014 #include <linux/scatterlist.h>
0015 #include <linux/crypto.h>
0016 #include <crypto/algapi.h>
0017 #include <crypto/hash.h>
0018 #include <crypto/hmac.h>
0019 #include <crypto/internal/hash.h>
0020 #include <crypto/sha1.h>
0021 #include <crypto/sha2.h>
0022 #include <crypto/scatterwalk.h>
0023 #include <linux/string.h>
0024
0025 #include "ccp-crypto.h"
0026
0027 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
0028 {
0029 struct ahash_request *req = ahash_request_cast(async_req);
0030 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0031 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
0032 unsigned int digest_size = crypto_ahash_digestsize(tfm);
0033
0034 if (ret)
0035 goto e_free;
0036
0037 if (rctx->hash_rem) {
0038
0039 unsigned int offset = rctx->nbytes - rctx->hash_rem;
0040
0041 scatterwalk_map_and_copy(rctx->buf, rctx->src,
0042 offset, rctx->hash_rem, 0);
0043 rctx->buf_count = rctx->hash_rem;
0044 } else {
0045 rctx->buf_count = 0;
0046 }
0047
0048
0049 if (req->result && rctx->final)
0050 memcpy(req->result, rctx->ctx, digest_size);
0051
0052 e_free:
0053 sg_free_table(&rctx->data_sg);
0054
0055 return ret;
0056 }
0057
0058 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
0059 unsigned int final)
0060 {
0061 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0062 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
0063 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
0064 struct scatterlist *sg;
0065 unsigned int block_size =
0066 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
0067 unsigned int sg_count;
0068 gfp_t gfp;
0069 u64 len;
0070 int ret;
0071
0072 len = (u64)rctx->buf_count + (u64)nbytes;
0073
0074 if (!final && (len <= block_size)) {
0075 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
0076 0, nbytes, 0);
0077 rctx->buf_count += nbytes;
0078
0079 return 0;
0080 }
0081
0082 rctx->src = req->src;
0083 rctx->nbytes = nbytes;
0084
0085 rctx->final = final;
0086 rctx->hash_rem = final ? 0 : len & (block_size - 1);
0087 rctx->hash_cnt = len - rctx->hash_rem;
0088 if (!final && !rctx->hash_rem) {
0089
0090 rctx->hash_cnt -= block_size;
0091 rctx->hash_rem = block_size;
0092 }
0093
0094
0095 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
0096
0097 sg = NULL;
0098 if (rctx->buf_count && nbytes) {
0099
0100
0101
0102 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
0103 GFP_KERNEL : GFP_ATOMIC;
0104 sg_count = sg_nents(req->src) + 1;
0105 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
0106 if (ret)
0107 return ret;
0108
0109 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
0110 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
0111 if (!sg) {
0112 ret = -EINVAL;
0113 goto e_free;
0114 }
0115 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
0116 if (!sg) {
0117 ret = -EINVAL;
0118 goto e_free;
0119 }
0120 sg_mark_end(sg);
0121
0122 sg = rctx->data_sg.sgl;
0123 } else if (rctx->buf_count) {
0124 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
0125
0126 sg = &rctx->buf_sg;
0127 } else if (nbytes) {
0128 sg = req->src;
0129 }
0130
0131 rctx->msg_bits += (rctx->hash_cnt << 3);
0132
0133 memset(&rctx->cmd, 0, sizeof(rctx->cmd));
0134 INIT_LIST_HEAD(&rctx->cmd.entry);
0135 rctx->cmd.engine = CCP_ENGINE_SHA;
0136 rctx->cmd.u.sha.type = rctx->type;
0137 rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
0138
0139 switch (rctx->type) {
0140 case CCP_SHA_TYPE_1:
0141 rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
0142 break;
0143 case CCP_SHA_TYPE_224:
0144 rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
0145 break;
0146 case CCP_SHA_TYPE_256:
0147 rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
0148 break;
0149 case CCP_SHA_TYPE_384:
0150 rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE;
0151 break;
0152 case CCP_SHA_TYPE_512:
0153 rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE;
0154 break;
0155 default:
0156
0157 break;
0158 }
0159
0160 rctx->cmd.u.sha.src = sg;
0161 rctx->cmd.u.sha.src_len = rctx->hash_cnt;
0162 rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
0163 &ctx->u.sha.opad_sg : NULL;
0164 rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
0165 ctx->u.sha.opad_count : 0;
0166 rctx->cmd.u.sha.first = rctx->first;
0167 rctx->cmd.u.sha.final = rctx->final;
0168 rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
0169
0170 rctx->first = 0;
0171
0172 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
0173
0174 return ret;
0175
0176 e_free:
0177 sg_free_table(&rctx->data_sg);
0178
0179 return ret;
0180 }
0181
0182 static int ccp_sha_init(struct ahash_request *req)
0183 {
0184 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0185 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
0186 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
0187 struct ccp_crypto_ahash_alg *alg =
0188 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
0189 unsigned int block_size =
0190 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
0191
0192 memset(rctx, 0, sizeof(*rctx));
0193
0194 rctx->type = alg->type;
0195 rctx->first = 1;
0196
0197 if (ctx->u.sha.key_len) {
0198
0199 memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
0200 rctx->buf_count = block_size;
0201 }
0202
0203 return 0;
0204 }
0205
0206 static int ccp_sha_update(struct ahash_request *req)
0207 {
0208 return ccp_do_sha_update(req, req->nbytes, 0);
0209 }
0210
0211 static int ccp_sha_final(struct ahash_request *req)
0212 {
0213 return ccp_do_sha_update(req, 0, 1);
0214 }
0215
0216 static int ccp_sha_finup(struct ahash_request *req)
0217 {
0218 return ccp_do_sha_update(req, req->nbytes, 1);
0219 }
0220
0221 static int ccp_sha_digest(struct ahash_request *req)
0222 {
0223 int ret;
0224
0225 ret = ccp_sha_init(req);
0226 if (ret)
0227 return ret;
0228
0229 return ccp_sha_finup(req);
0230 }
0231
0232 static int ccp_sha_export(struct ahash_request *req, void *out)
0233 {
0234 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
0235 struct ccp_sha_exp_ctx state;
0236
0237
0238 memset(&state, 0, sizeof(state));
0239
0240 state.type = rctx->type;
0241 state.msg_bits = rctx->msg_bits;
0242 state.first = rctx->first;
0243 memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
0244 state.buf_count = rctx->buf_count;
0245 memcpy(state.buf, rctx->buf, sizeof(state.buf));
0246
0247
0248 memcpy(out, &state, sizeof(state));
0249
0250 return 0;
0251 }
0252
0253 static int ccp_sha_import(struct ahash_request *req, const void *in)
0254 {
0255 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
0256 struct ccp_sha_exp_ctx state;
0257
0258
0259 memcpy(&state, in, sizeof(state));
0260
0261 memset(rctx, 0, sizeof(*rctx));
0262 rctx->type = state.type;
0263 rctx->msg_bits = state.msg_bits;
0264 rctx->first = state.first;
0265 memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
0266 rctx->buf_count = state.buf_count;
0267 memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
0268
0269 return 0;
0270 }
0271
0272 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
0273 unsigned int key_len)
0274 {
0275 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
0276 struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
0277 unsigned int block_size = crypto_shash_blocksize(shash);
0278 unsigned int digest_size = crypto_shash_digestsize(shash);
0279 int i, ret;
0280
0281
0282 ctx->u.sha.key_len = 0;
0283
0284
0285
0286
0287 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
0288
0289 if (key_len > block_size) {
0290
0291 ret = crypto_shash_tfm_digest(shash, key, key_len,
0292 ctx->u.sha.key);
0293 if (ret)
0294 return -EINVAL;
0295
0296 key_len = digest_size;
0297 } else {
0298 memcpy(ctx->u.sha.key, key, key_len);
0299 }
0300
0301 for (i = 0; i < block_size; i++) {
0302 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE;
0303 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE;
0304 }
0305
0306 sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
0307 ctx->u.sha.opad_count = block_size;
0308
0309 ctx->u.sha.key_len = key_len;
0310
0311 return 0;
0312 }
0313
0314 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
0315 {
0316 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
0317 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
0318
0319 ctx->complete = ccp_sha_complete;
0320 ctx->u.sha.key_len = 0;
0321
0322 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
0323
0324 return 0;
0325 }
0326
0327 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
0328 {
0329 }
0330
0331 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
0332 {
0333 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
0334 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
0335 struct crypto_shash *hmac_tfm;
0336
0337 hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
0338 if (IS_ERR(hmac_tfm)) {
0339 pr_warn("could not load driver %s need for HMAC support\n",
0340 alg->child_alg);
0341 return PTR_ERR(hmac_tfm);
0342 }
0343
0344 ctx->u.sha.hmac_tfm = hmac_tfm;
0345
0346 return ccp_sha_cra_init(tfm);
0347 }
0348
0349 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
0350 {
0351 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
0352
0353 if (ctx->u.sha.hmac_tfm)
0354 crypto_free_shash(ctx->u.sha.hmac_tfm);
0355
0356 ccp_sha_cra_exit(tfm);
0357 }
0358
0359 struct ccp_sha_def {
0360 unsigned int version;
0361 const char *name;
0362 const char *drv_name;
0363 enum ccp_sha_type type;
0364 u32 digest_size;
0365 u32 block_size;
0366 };
0367
0368 static struct ccp_sha_def sha_algs[] = {
0369 {
0370 .version = CCP_VERSION(3, 0),
0371 .name = "sha1",
0372 .drv_name = "sha1-ccp",
0373 .type = CCP_SHA_TYPE_1,
0374 .digest_size = SHA1_DIGEST_SIZE,
0375 .block_size = SHA1_BLOCK_SIZE,
0376 },
0377 {
0378 .version = CCP_VERSION(3, 0),
0379 .name = "sha224",
0380 .drv_name = "sha224-ccp",
0381 .type = CCP_SHA_TYPE_224,
0382 .digest_size = SHA224_DIGEST_SIZE,
0383 .block_size = SHA224_BLOCK_SIZE,
0384 },
0385 {
0386 .version = CCP_VERSION(3, 0),
0387 .name = "sha256",
0388 .drv_name = "sha256-ccp",
0389 .type = CCP_SHA_TYPE_256,
0390 .digest_size = SHA256_DIGEST_SIZE,
0391 .block_size = SHA256_BLOCK_SIZE,
0392 },
0393 {
0394 .version = CCP_VERSION(5, 0),
0395 .name = "sha384",
0396 .drv_name = "sha384-ccp",
0397 .type = CCP_SHA_TYPE_384,
0398 .digest_size = SHA384_DIGEST_SIZE,
0399 .block_size = SHA384_BLOCK_SIZE,
0400 },
0401 {
0402 .version = CCP_VERSION(5, 0),
0403 .name = "sha512",
0404 .drv_name = "sha512-ccp",
0405 .type = CCP_SHA_TYPE_512,
0406 .digest_size = SHA512_DIGEST_SIZE,
0407 .block_size = SHA512_BLOCK_SIZE,
0408 },
0409 };
0410
0411 static int ccp_register_hmac_alg(struct list_head *head,
0412 const struct ccp_sha_def *def,
0413 const struct ccp_crypto_ahash_alg *base_alg)
0414 {
0415 struct ccp_crypto_ahash_alg *ccp_alg;
0416 struct ahash_alg *alg;
0417 struct hash_alg_common *halg;
0418 struct crypto_alg *base;
0419 int ret;
0420
0421 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
0422 if (!ccp_alg)
0423 return -ENOMEM;
0424
0425
0426 *ccp_alg = *base_alg;
0427 INIT_LIST_HEAD(&ccp_alg->entry);
0428
0429 strscpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
0430
0431 alg = &ccp_alg->alg;
0432 alg->setkey = ccp_sha_setkey;
0433
0434 halg = &alg->halg;
0435
0436 base = &halg->base;
0437 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
0438 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
0439 def->drv_name);
0440 base->cra_init = ccp_hmac_sha_cra_init;
0441 base->cra_exit = ccp_hmac_sha_cra_exit;
0442
0443 ret = crypto_register_ahash(alg);
0444 if (ret) {
0445 pr_err("%s ahash algorithm registration error (%d)\n",
0446 base->cra_name, ret);
0447 kfree(ccp_alg);
0448 return ret;
0449 }
0450
0451 list_add(&ccp_alg->entry, head);
0452
0453 return ret;
0454 }
0455
0456 static int ccp_register_sha_alg(struct list_head *head,
0457 const struct ccp_sha_def *def)
0458 {
0459 struct ccp_crypto_ahash_alg *ccp_alg;
0460 struct ahash_alg *alg;
0461 struct hash_alg_common *halg;
0462 struct crypto_alg *base;
0463 int ret;
0464
0465 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
0466 if (!ccp_alg)
0467 return -ENOMEM;
0468
0469 INIT_LIST_HEAD(&ccp_alg->entry);
0470
0471 ccp_alg->type = def->type;
0472
0473 alg = &ccp_alg->alg;
0474 alg->init = ccp_sha_init;
0475 alg->update = ccp_sha_update;
0476 alg->final = ccp_sha_final;
0477 alg->finup = ccp_sha_finup;
0478 alg->digest = ccp_sha_digest;
0479 alg->export = ccp_sha_export;
0480 alg->import = ccp_sha_import;
0481
0482 halg = &alg->halg;
0483 halg->digestsize = def->digest_size;
0484 halg->statesize = sizeof(struct ccp_sha_exp_ctx);
0485
0486 base = &halg->base;
0487 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
0488 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
0489 def->drv_name);
0490 base->cra_flags = CRYPTO_ALG_ASYNC |
0491 CRYPTO_ALG_ALLOCATES_MEMORY |
0492 CRYPTO_ALG_KERN_DRIVER_ONLY |
0493 CRYPTO_ALG_NEED_FALLBACK;
0494 base->cra_blocksize = def->block_size;
0495 base->cra_ctxsize = sizeof(struct ccp_ctx);
0496 base->cra_priority = CCP_CRA_PRIORITY;
0497 base->cra_init = ccp_sha_cra_init;
0498 base->cra_exit = ccp_sha_cra_exit;
0499 base->cra_module = THIS_MODULE;
0500
0501 ret = crypto_register_ahash(alg);
0502 if (ret) {
0503 pr_err("%s ahash algorithm registration error (%d)\n",
0504 base->cra_name, ret);
0505 kfree(ccp_alg);
0506 return ret;
0507 }
0508
0509 list_add(&ccp_alg->entry, head);
0510
0511 ret = ccp_register_hmac_alg(head, def, ccp_alg);
0512
0513 return ret;
0514 }
0515
0516 int ccp_register_sha_algs(struct list_head *head)
0517 {
0518 int i, ret;
0519 unsigned int ccpversion = ccp_version();
0520
0521 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
0522 if (sha_algs[i].version > ccpversion)
0523 continue;
0524 ret = ccp_register_sha_alg(head, &sha_algs[i]);
0525 if (ret)
0526 return ret;
0527 }
0528
0529 return 0;
0530 }