Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * CAAM/SEC 4.x QI transport/backend driver
0004  * Queue Interface backend functionality
0005  *
0006  * Copyright 2013-2016 Freescale Semiconductor, Inc.
0007  * Copyright 2016-2017, 2019-2020 NXP
0008  */
0009 
0010 #include <linux/cpumask.h>
0011 #include <linux/kthread.h>
0012 #include <soc/fsl/qman.h>
0013 
0014 #include "debugfs.h"
0015 #include "regs.h"
0016 #include "qi.h"
0017 #include "desc.h"
0018 #include "intern.h"
0019 #include "desc_constr.h"
0020 
0021 #define PREHDR_RSLS_SHIFT   31
0022 #define PREHDR_ABS      BIT(25)
0023 
0024 /*
0025  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
0026  * so that resources used by the in-flight buffers do not become a memory hog.
0027  */
0028 #define MAX_RSP_FQ_BACKLOG_PER_CPU  256
0029 
0030 #define CAAM_QI_ENQUEUE_RETRIES 10000
0031 
0032 #define CAAM_NAPI_WEIGHT    63
0033 
0034 /*
0035  * caam_napi - struct holding CAAM NAPI-related params
0036  * @irqtask: IRQ task for QI backend
0037  * @p: QMan portal
0038  */
0039 struct caam_napi {
0040     struct napi_struct irqtask;
0041     struct qman_portal *p;
0042 };
0043 
0044 /*
0045  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
0046  *                     responses expected on each cpu.
0047  * @caam_napi: CAAM NAPI params
0048  * @net_dev: netdev used by NAPI
0049  * @rsp_fq: response FQ from CAAM
0050  */
0051 struct caam_qi_pcpu_priv {
0052     struct caam_napi caam_napi;
0053     struct net_device net_dev;
0054     struct qman_fq *rsp_fq;
0055 } ____cacheline_aligned;
0056 
0057 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
0058 static DEFINE_PER_CPU(int, last_cpu);
0059 
0060 /*
0061  * caam_qi_priv - CAAM QI backend private params
0062  * @cgr: QMan congestion group
0063  */
0064 struct caam_qi_priv {
0065     struct qman_cgr cgr;
0066 };
0067 
0068 static struct caam_qi_priv qipriv ____cacheline_aligned;
0069 
0070 /*
0071  * This is written by only one core - the one that initialized the CGR - and
0072  * read by multiple cores (all the others).
0073  */
0074 bool caam_congested __read_mostly;
0075 EXPORT_SYMBOL(caam_congested);
0076 
0077 /*
0078  * This is a cache of buffers, from which the users of CAAM QI driver
0079  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
0080  * doing malloc on the hotpath.
0081  * NOTE: A more elegant solution would be to have some headroom in the frames
0082  *       being processed. This could be added by the dpaa-ethernet driver.
0083  *       This would pose a problem for userspace application processing which
0084  *       cannot know of this limitation. So for now, this will work.
0085  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
0086  */
0087 static struct kmem_cache *qi_cache;
0088 
0089 static void *caam_iova_to_virt(struct iommu_domain *domain,
0090                    dma_addr_t iova_addr)
0091 {
0092     phys_addr_t phys_addr;
0093 
0094     phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
0095 
0096     return phys_to_virt(phys_addr);
0097 }
0098 
0099 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
0100 {
0101     struct qm_fd fd;
0102     dma_addr_t addr;
0103     int ret;
0104     int num_retries = 0;
0105 
0106     qm_fd_clear_fd(&fd);
0107     qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
0108 
0109     addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
0110                   DMA_BIDIRECTIONAL);
0111     if (dma_mapping_error(qidev, addr)) {
0112         dev_err(qidev, "DMA mapping error for QI enqueue request\n");
0113         return -EIO;
0114     }
0115     qm_fd_addr_set64(&fd, addr);
0116 
0117     do {
0118         ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
0119         if (likely(!ret)) {
0120             refcount_inc(&req->drv_ctx->refcnt);
0121             return 0;
0122         }
0123 
0124         if (ret != -EBUSY)
0125             break;
0126         num_retries++;
0127     } while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
0128 
0129     dev_err(qidev, "qman_enqueue failed: %d\n", ret);
0130 
0131     return ret;
0132 }
0133 EXPORT_SYMBOL(caam_qi_enqueue);
0134 
0135 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
0136                const union qm_mr_entry *msg)
0137 {
0138     const struct qm_fd *fd;
0139     struct caam_drv_req *drv_req;
0140     struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
0141     struct caam_drv_private *priv = dev_get_drvdata(qidev);
0142 
0143     fd = &msg->ern.fd;
0144 
0145     drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
0146     if (!drv_req) {
0147         dev_err(qidev,
0148             "Can't find original request for CAAM response\n");
0149         return;
0150     }
0151 
0152     refcount_dec(&drv_req->drv_ctx->refcnt);
0153 
0154     if (qm_fd_get_format(fd) != qm_fd_compound) {
0155         dev_err(qidev, "Non-compound FD from CAAM\n");
0156         return;
0157     }
0158 
0159     dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
0160              sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
0161 
0162     if (fd->status)
0163         drv_req->cbk(drv_req, be32_to_cpu(fd->status));
0164     else
0165         drv_req->cbk(drv_req, JRSTA_SSRC_QI);
0166 }
0167 
0168 static struct qman_fq *create_caam_req_fq(struct device *qidev,
0169                       struct qman_fq *rsp_fq,
0170                       dma_addr_t hwdesc,
0171                       int fq_sched_flag)
0172 {
0173     int ret;
0174     struct qman_fq *req_fq;
0175     struct qm_mcc_initfq opts;
0176 
0177     req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
0178     if (!req_fq)
0179         return ERR_PTR(-ENOMEM);
0180 
0181     req_fq->cb.ern = caam_fq_ern_cb;
0182     req_fq->cb.fqs = NULL;
0183 
0184     ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
0185                 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
0186     if (ret) {
0187         dev_err(qidev, "Failed to create session req FQ\n");
0188         goto create_req_fq_fail;
0189     }
0190 
0191     memset(&opts, 0, sizeof(opts));
0192     opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
0193                    QM_INITFQ_WE_CONTEXTB |
0194                    QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
0195     opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
0196     qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
0197     opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
0198     qm_fqd_context_a_set64(&opts.fqd, hwdesc);
0199     opts.fqd.cgid = qipriv.cgr.cgrid;
0200 
0201     ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
0202     if (ret) {
0203         dev_err(qidev, "Failed to init session req FQ\n");
0204         goto init_req_fq_fail;
0205     }
0206 
0207     dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
0208         smp_processor_id());
0209     return req_fq;
0210 
0211 init_req_fq_fail:
0212     qman_destroy_fq(req_fq);
0213 create_req_fq_fail:
0214     kfree(req_fq);
0215     return ERR_PTR(ret);
0216 }
0217 
0218 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
0219 {
0220     int ret;
0221 
0222     ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
0223                     QMAN_VOLATILE_FLAG_FINISH,
0224                     QM_VDQCR_PRECEDENCE_VDQCR |
0225                     QM_VDQCR_NUMFRAMES_TILLEMPTY);
0226     if (ret) {
0227         dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
0228         return ret;
0229     }
0230 
0231     do {
0232         struct qman_portal *p;
0233 
0234         p = qman_get_affine_portal(smp_processor_id());
0235         qman_p_poll_dqrr(p, 16);
0236     } while (fq->flags & QMAN_FQ_STATE_NE);
0237 
0238     return 0;
0239 }
0240 
0241 static int kill_fq(struct device *qidev, struct qman_fq *fq)
0242 {
0243     u32 flags;
0244     int ret;
0245 
0246     ret = qman_retire_fq(fq, &flags);
0247     if (ret < 0) {
0248         dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
0249         return ret;
0250     }
0251 
0252     if (!ret)
0253         goto empty_fq;
0254 
0255     /* Async FQ retirement condition */
0256     if (ret == 1) {
0257         /* Retry till FQ gets in retired state */
0258         do {
0259             msleep(20);
0260         } while (fq->state != qman_fq_state_retired);
0261 
0262         WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
0263         WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
0264     }
0265 
0266 empty_fq:
0267     if (fq->flags & QMAN_FQ_STATE_NE) {
0268         ret = empty_retired_fq(qidev, fq);
0269         if (ret) {
0270             dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
0271                 fq->fqid);
0272             return ret;
0273         }
0274     }
0275 
0276     ret = qman_oos_fq(fq);
0277     if (ret)
0278         dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
0279 
0280     qman_destroy_fq(fq);
0281     kfree(fq);
0282 
0283     return ret;
0284 }
0285 
0286 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
0287 {
0288     int ret;
0289     int retries = 10;
0290     struct qm_mcr_queryfq_np np;
0291 
0292     /* Wait till the older CAAM FQ get empty */
0293     do {
0294         ret = qman_query_fq_np(fq, &np);
0295         if (ret)
0296             return ret;
0297 
0298         if (!qm_mcr_np_get(&np, frm_cnt))
0299             break;
0300 
0301         msleep(20);
0302     } while (1);
0303 
0304     /* Wait until pending jobs from this FQ are processed by CAAM */
0305     do {
0306         if (refcount_read(&drv_ctx->refcnt) == 1)
0307             break;
0308 
0309         msleep(20);
0310     } while (--retries);
0311 
0312     if (!retries)
0313         dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
0314                   refcount_read(&drv_ctx->refcnt), fq->fqid);
0315 
0316     return 0;
0317 }
0318 
0319 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
0320 {
0321     int ret;
0322     u32 num_words;
0323     struct qman_fq *new_fq, *old_fq;
0324     struct device *qidev = drv_ctx->qidev;
0325 
0326     num_words = desc_len(sh_desc);
0327     if (num_words > MAX_SDLEN) {
0328         dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
0329         return -EINVAL;
0330     }
0331 
0332     /* Note down older req FQ */
0333     old_fq = drv_ctx->req_fq;
0334 
0335     /* Create a new req FQ in parked state */
0336     new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
0337                     drv_ctx->context_a, 0);
0338     if (IS_ERR(new_fq)) {
0339         dev_err(qidev, "FQ allocation for shdesc update failed\n");
0340         return PTR_ERR(new_fq);
0341     }
0342 
0343     /* Hook up new FQ to context so that new requests keep queuing */
0344     drv_ctx->req_fq = new_fq;
0345 
0346     /* Empty and remove the older FQ */
0347     ret = empty_caam_fq(old_fq, drv_ctx);
0348     if (ret) {
0349         dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
0350 
0351         /* We can revert to older FQ */
0352         drv_ctx->req_fq = old_fq;
0353 
0354         if (kill_fq(qidev, new_fq))
0355             dev_warn(qidev, "New CAAM FQ kill failed\n");
0356 
0357         return ret;
0358     }
0359 
0360     /*
0361      * Re-initialise pre-header. Set RSLS and SDLEN.
0362      * Update the shared descriptor for driver context.
0363      */
0364     drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
0365                        num_words);
0366     drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
0367     memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
0368     dma_sync_single_for_device(qidev, drv_ctx->context_a,
0369                    sizeof(drv_ctx->sh_desc) +
0370                    sizeof(drv_ctx->prehdr),
0371                    DMA_BIDIRECTIONAL);
0372 
0373     /* Put the new FQ in scheduled state */
0374     ret = qman_schedule_fq(new_fq);
0375     if (ret) {
0376         dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
0377 
0378         /*
0379          * We can kill new FQ and revert to old FQ.
0380          * Since the desc is already modified, it is success case
0381          */
0382 
0383         drv_ctx->req_fq = old_fq;
0384 
0385         if (kill_fq(qidev, new_fq))
0386             dev_warn(qidev, "New CAAM FQ kill failed\n");
0387     } else if (kill_fq(qidev, old_fq)) {
0388         dev_warn(qidev, "Old CAAM FQ kill failed\n");
0389     }
0390 
0391     return 0;
0392 }
0393 EXPORT_SYMBOL(caam_drv_ctx_update);
0394 
0395 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
0396                        int *cpu,
0397                        u32 *sh_desc)
0398 {
0399     size_t size;
0400     u32 num_words;
0401     dma_addr_t hwdesc;
0402     struct caam_drv_ctx *drv_ctx;
0403     const cpumask_t *cpus = qman_affine_cpus();
0404 
0405     num_words = desc_len(sh_desc);
0406     if (num_words > MAX_SDLEN) {
0407         dev_err(qidev, "Invalid descriptor len: %d words\n",
0408             num_words);
0409         return ERR_PTR(-EINVAL);
0410     }
0411 
0412     drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
0413     if (!drv_ctx)
0414         return ERR_PTR(-ENOMEM);
0415 
0416     /*
0417      * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
0418      * and dma-map them.
0419      */
0420     drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
0421                        num_words);
0422     drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
0423     memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
0424     size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
0425     hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
0426                 DMA_BIDIRECTIONAL);
0427     if (dma_mapping_error(qidev, hwdesc)) {
0428         dev_err(qidev, "DMA map error for preheader + shdesc\n");
0429         kfree(drv_ctx);
0430         return ERR_PTR(-ENOMEM);
0431     }
0432     drv_ctx->context_a = hwdesc;
0433 
0434     /* If given CPU does not own the portal, choose another one that does */
0435     if (!cpumask_test_cpu(*cpu, cpus)) {
0436         int *pcpu = &get_cpu_var(last_cpu);
0437 
0438         *pcpu = cpumask_next(*pcpu, cpus);
0439         if (*pcpu >= nr_cpu_ids)
0440             *pcpu = cpumask_first(cpus);
0441         *cpu = *pcpu;
0442 
0443         put_cpu_var(last_cpu);
0444     }
0445     drv_ctx->cpu = *cpu;
0446 
0447     /* Find response FQ hooked with this CPU */
0448     drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
0449 
0450     /* Attach request FQ */
0451     drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
0452                          QMAN_INITFQ_FLAG_SCHED);
0453     if (IS_ERR(drv_ctx->req_fq)) {
0454         dev_err(qidev, "create_caam_req_fq failed\n");
0455         dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
0456         kfree(drv_ctx);
0457         return ERR_PTR(-ENOMEM);
0458     }
0459 
0460     /* init reference counter used to track references to request FQ */
0461     refcount_set(&drv_ctx->refcnt, 1);
0462 
0463     drv_ctx->qidev = qidev;
0464     return drv_ctx;
0465 }
0466 EXPORT_SYMBOL(caam_drv_ctx_init);
0467 
0468 void *qi_cache_alloc(gfp_t flags)
0469 {
0470     return kmem_cache_alloc(qi_cache, flags);
0471 }
0472 EXPORT_SYMBOL(qi_cache_alloc);
0473 
0474 void qi_cache_free(void *obj)
0475 {
0476     kmem_cache_free(qi_cache, obj);
0477 }
0478 EXPORT_SYMBOL(qi_cache_free);
0479 
0480 static int caam_qi_poll(struct napi_struct *napi, int budget)
0481 {
0482     struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
0483 
0484     int cleaned = qman_p_poll_dqrr(np->p, budget);
0485 
0486     if (cleaned < budget) {
0487         napi_complete(napi);
0488         qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
0489     }
0490 
0491     return cleaned;
0492 }
0493 
0494 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
0495 {
0496     if (IS_ERR_OR_NULL(drv_ctx))
0497         return;
0498 
0499     /* Remove request FQ */
0500     if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
0501         dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
0502 
0503     dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
0504              sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
0505              DMA_BIDIRECTIONAL);
0506     kfree(drv_ctx);
0507 }
0508 EXPORT_SYMBOL(caam_drv_ctx_rel);
0509 
0510 static void caam_qi_shutdown(void *data)
0511 {
0512     int i;
0513     struct device *qidev = data;
0514     struct caam_qi_priv *priv = &qipriv;
0515     const cpumask_t *cpus = qman_affine_cpus();
0516 
0517     for_each_cpu(i, cpus) {
0518         struct napi_struct *irqtask;
0519 
0520         irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
0521         napi_disable(irqtask);
0522         netif_napi_del(irqtask);
0523 
0524         if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
0525             dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
0526     }
0527 
0528     qman_delete_cgr_safe(&priv->cgr);
0529     qman_release_cgrid(priv->cgr.cgrid);
0530 
0531     kmem_cache_destroy(qi_cache);
0532 }
0533 
0534 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
0535 {
0536     caam_congested = congested;
0537 
0538     if (congested) {
0539         caam_debugfs_qi_congested();
0540 
0541         pr_debug_ratelimited("CAAM entered congestion\n");
0542 
0543     } else {
0544         pr_debug_ratelimited("CAAM exited congestion\n");
0545     }
0546 }
0547 
0548 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np,
0549                  bool sched_napi)
0550 {
0551     if (sched_napi) {
0552         /* Disable QMan IRQ source and invoke NAPI */
0553         qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
0554         np->p = p;
0555         napi_schedule(&np->irqtask);
0556         return 1;
0557     }
0558     return 0;
0559 }
0560 
0561 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
0562                             struct qman_fq *rsp_fq,
0563                             const struct qm_dqrr_entry *dqrr,
0564                             bool sched_napi)
0565 {
0566     struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
0567     struct caam_drv_req *drv_req;
0568     const struct qm_fd *fd;
0569     struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
0570     struct caam_drv_private *priv = dev_get_drvdata(qidev);
0571     u32 status;
0572 
0573     if (caam_qi_napi_schedule(p, caam_napi, sched_napi))
0574         return qman_cb_dqrr_stop;
0575 
0576     fd = &dqrr->fd;
0577 
0578     drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
0579     if (unlikely(!drv_req)) {
0580         dev_err(qidev,
0581             "Can't find original request for caam response\n");
0582         return qman_cb_dqrr_consume;
0583     }
0584 
0585     refcount_dec(&drv_req->drv_ctx->refcnt);
0586 
0587     status = be32_to_cpu(fd->status);
0588     if (unlikely(status)) {
0589         u32 ssrc = status & JRSTA_SSRC_MASK;
0590         u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
0591 
0592         if (ssrc != JRSTA_SSRC_CCB_ERROR ||
0593             err_id != JRSTA_CCBERR_ERRID_ICVCHK)
0594             dev_err_ratelimited(qidev,
0595                         "Error: %#x in CAAM response FD\n",
0596                         status);
0597     }
0598 
0599     if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
0600         dev_err(qidev, "Non-compound FD from CAAM\n");
0601         return qman_cb_dqrr_consume;
0602     }
0603 
0604     dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
0605              sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
0606 
0607     drv_req->cbk(drv_req, status);
0608     return qman_cb_dqrr_consume;
0609 }
0610 
0611 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
0612 {
0613     struct qm_mcc_initfq opts;
0614     struct qman_fq *fq;
0615     int ret;
0616 
0617     fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
0618     if (!fq)
0619         return -ENOMEM;
0620 
0621     fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
0622 
0623     ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
0624                  QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
0625     if (ret) {
0626         dev_err(qidev, "Rsp FQ create failed\n");
0627         kfree(fq);
0628         return -ENODEV;
0629     }
0630 
0631     memset(&opts, 0, sizeof(opts));
0632     opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
0633                    QM_INITFQ_WE_CONTEXTB |
0634                    QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
0635     opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
0636                        QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
0637     qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
0638     opts.fqd.cgid = qipriv.cgr.cgrid;
0639     opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
0640                         QM_STASHING_EXCL_DATA;
0641     qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
0642 
0643     ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
0644     if (ret) {
0645         dev_err(qidev, "Rsp FQ init failed\n");
0646         kfree(fq);
0647         return -ENODEV;
0648     }
0649 
0650     per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
0651 
0652     dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
0653     return 0;
0654 }
0655 
0656 static int init_cgr(struct device *qidev)
0657 {
0658     int ret;
0659     struct qm_mcc_initcgr opts;
0660     const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
0661             MAX_RSP_FQ_BACKLOG_PER_CPU;
0662 
0663     ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
0664     if (ret) {
0665         dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
0666         return ret;
0667     }
0668 
0669     qipriv.cgr.cb = cgr_cb;
0670     memset(&opts, 0, sizeof(opts));
0671     opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
0672                    QM_CGR_WE_MODE);
0673     opts.cgr.cscn_en = QM_CGR_EN;
0674     opts.cgr.mode = QMAN_CGR_MODE_FRAME;
0675     qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
0676 
0677     ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
0678     if (ret) {
0679         dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
0680             qipriv.cgr.cgrid);
0681         return ret;
0682     }
0683 
0684     dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
0685     return 0;
0686 }
0687 
0688 static int alloc_rsp_fqs(struct device *qidev)
0689 {
0690     int ret, i;
0691     const cpumask_t *cpus = qman_affine_cpus();
0692 
0693     /*Now create response FQs*/
0694     for_each_cpu(i, cpus) {
0695         ret = alloc_rsp_fq_cpu(qidev, i);
0696         if (ret) {
0697             dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
0698             return ret;
0699         }
0700     }
0701 
0702     return 0;
0703 }
0704 
0705 static void free_rsp_fqs(void)
0706 {
0707     int i;
0708     const cpumask_t *cpus = qman_affine_cpus();
0709 
0710     for_each_cpu(i, cpus)
0711         kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
0712 }
0713 
0714 int caam_qi_init(struct platform_device *caam_pdev)
0715 {
0716     int err, i;
0717     struct device *ctrldev = &caam_pdev->dev, *qidev;
0718     struct caam_drv_private *ctrlpriv;
0719     const cpumask_t *cpus = qman_affine_cpus();
0720 
0721     ctrlpriv = dev_get_drvdata(ctrldev);
0722     qidev = ctrldev;
0723 
0724     /* Initialize the congestion detection */
0725     err = init_cgr(qidev);
0726     if (err) {
0727         dev_err(qidev, "CGR initialization failed: %d\n", err);
0728         return err;
0729     }
0730 
0731     /* Initialise response FQs */
0732     err = alloc_rsp_fqs(qidev);
0733     if (err) {
0734         dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
0735         free_rsp_fqs();
0736         return err;
0737     }
0738 
0739     /*
0740      * Enable the NAPI contexts on each of the core which has an affine
0741      * portal.
0742      */
0743     for_each_cpu(i, cpus) {
0744         struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
0745         struct caam_napi *caam_napi = &priv->caam_napi;
0746         struct napi_struct *irqtask = &caam_napi->irqtask;
0747         struct net_device *net_dev = &priv->net_dev;
0748 
0749         net_dev->dev = *qidev;
0750         INIT_LIST_HEAD(&net_dev->napi_list);
0751 
0752         netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll,
0753                      CAAM_NAPI_WEIGHT);
0754 
0755         napi_enable(irqtask);
0756     }
0757 
0758     qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
0759                      SLAB_CACHE_DMA, NULL);
0760     if (!qi_cache) {
0761         dev_err(qidev, "Can't allocate CAAM cache\n");
0762         free_rsp_fqs();
0763         return -ENOMEM;
0764     }
0765 
0766     caam_debugfs_qi_init(ctrlpriv);
0767 
0768     err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
0769     if (err)
0770         return err;
0771 
0772     dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
0773     return 0;
0774 }