Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Cryptographic API.
0004  *
0005  * Support for ATMEL SHA1/SHA256 HW acceleration.
0006  *
0007  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
0008  * Author: Nicolas Royer <nicolas@eukrea.com>
0009  *
0010  * Some ideas are from omap-sham.c drivers.
0011  */
0012 
0013 
0014 #include <linux/kernel.h>
0015 #include <linux/module.h>
0016 #include <linux/slab.h>
0017 #include <linux/err.h>
0018 #include <linux/clk.h>
0019 #include <linux/io.h>
0020 #include <linux/hw_random.h>
0021 #include <linux/platform_device.h>
0022 
0023 #include <linux/device.h>
0024 #include <linux/dmaengine.h>
0025 #include <linux/init.h>
0026 #include <linux/errno.h>
0027 #include <linux/interrupt.h>
0028 #include <linux/irq.h>
0029 #include <linux/scatterlist.h>
0030 #include <linux/dma-mapping.h>
0031 #include <linux/of_device.h>
0032 #include <linux/delay.h>
0033 #include <linux/crypto.h>
0034 #include <crypto/scatterwalk.h>
0035 #include <crypto/algapi.h>
0036 #include <crypto/sha1.h>
0037 #include <crypto/sha2.h>
0038 #include <crypto/hash.h>
0039 #include <crypto/internal/hash.h>
0040 #include "atmel-sha-regs.h"
0041 #include "atmel-authenc.h"
0042 
0043 #define ATMEL_SHA_PRIORITY  300
0044 
0045 /* SHA flags */
0046 #define SHA_FLAGS_BUSY          BIT(0)
0047 #define SHA_FLAGS_FINAL         BIT(1)
0048 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
0049 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
0050 #define SHA_FLAGS_INIT          BIT(4)
0051 #define SHA_FLAGS_CPU           BIT(5)
0052 #define SHA_FLAGS_DMA_READY     BIT(6)
0053 #define SHA_FLAGS_DUMP_REG  BIT(7)
0054 
0055 /* bits[11:8] are reserved. */
0056 
0057 #define SHA_FLAGS_FINUP     BIT(16)
0058 #define SHA_FLAGS_SG        BIT(17)
0059 #define SHA_FLAGS_ERROR     BIT(23)
0060 #define SHA_FLAGS_PAD       BIT(24)
0061 #define SHA_FLAGS_RESTORE   BIT(25)
0062 #define SHA_FLAGS_IDATAR0   BIT(26)
0063 #define SHA_FLAGS_WAIT_DATARDY  BIT(27)
0064 
0065 #define SHA_OP_INIT 0
0066 #define SHA_OP_UPDATE   1
0067 #define SHA_OP_FINAL    2
0068 #define SHA_OP_DIGEST   3
0069 
0070 #define SHA_BUFFER_LEN      (PAGE_SIZE / 16)
0071 
0072 #define ATMEL_SHA_DMA_THRESHOLD     56
0073 
0074 struct atmel_sha_caps {
0075     bool    has_dma;
0076     bool    has_dualbuff;
0077     bool    has_sha224;
0078     bool    has_sha_384_512;
0079     bool    has_uihv;
0080     bool    has_hmac;
0081 };
0082 
0083 struct atmel_sha_dev;
0084 
0085 /*
0086  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
0087  * tested by the ahash_prepare_alg() function.
0088  */
0089 struct atmel_sha_reqctx {
0090     struct atmel_sha_dev    *dd;
0091     unsigned long   flags;
0092     unsigned long   op;
0093 
0094     u8  digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
0095     u64 digcnt[2];
0096     size_t  bufcnt;
0097     size_t  buflen;
0098     dma_addr_t  dma_addr;
0099 
0100     /* walk state */
0101     struct scatterlist  *sg;
0102     unsigned int    offset; /* offset in current sg */
0103     unsigned int    total;  /* total request */
0104 
0105     size_t block_size;
0106     size_t hash_size;
0107 
0108     u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
0109 };
0110 
0111 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
0112 
0113 struct atmel_sha_ctx {
0114     struct atmel_sha_dev    *dd;
0115     atmel_sha_fn_t      start;
0116 
0117     unsigned long       flags;
0118 };
0119 
0120 #define ATMEL_SHA_QUEUE_LENGTH  50
0121 
0122 struct atmel_sha_dma {
0123     struct dma_chan         *chan;
0124     struct dma_slave_config dma_conf;
0125     struct scatterlist  *sg;
0126     int         nents;
0127     unsigned int        last_sg_length;
0128 };
0129 
0130 struct atmel_sha_dev {
0131     struct list_head    list;
0132     unsigned long       phys_base;
0133     struct device       *dev;
0134     struct clk          *iclk;
0135     int                 irq;
0136     void __iomem        *io_base;
0137 
0138     spinlock_t      lock;
0139     struct tasklet_struct   done_task;
0140     struct tasklet_struct   queue_task;
0141 
0142     unsigned long       flags;
0143     struct crypto_queue queue;
0144     struct ahash_request    *req;
0145     bool            is_async;
0146     bool            force_complete;
0147     atmel_sha_fn_t      resume;
0148     atmel_sha_fn_t      cpu_transfer_complete;
0149 
0150     struct atmel_sha_dma    dma_lch_in;
0151 
0152     struct atmel_sha_caps   caps;
0153 
0154     struct scatterlist  tmp;
0155 
0156     u32 hw_version;
0157 };
0158 
0159 struct atmel_sha_drv {
0160     struct list_head    dev_list;
0161     spinlock_t      lock;
0162 };
0163 
0164 static struct atmel_sha_drv atmel_sha = {
0165     .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
0166     .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
0167 };
0168 
0169 #ifdef VERBOSE_DEBUG
0170 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
0171 {
0172     switch (offset) {
0173     case SHA_CR:
0174         return "CR";
0175 
0176     case SHA_MR:
0177         return "MR";
0178 
0179     case SHA_IER:
0180         return "IER";
0181 
0182     case SHA_IDR:
0183         return "IDR";
0184 
0185     case SHA_IMR:
0186         return "IMR";
0187 
0188     case SHA_ISR:
0189         return "ISR";
0190 
0191     case SHA_MSR:
0192         return "MSR";
0193 
0194     case SHA_BCR:
0195         return "BCR";
0196 
0197     case SHA_REG_DIN(0):
0198     case SHA_REG_DIN(1):
0199     case SHA_REG_DIN(2):
0200     case SHA_REG_DIN(3):
0201     case SHA_REG_DIN(4):
0202     case SHA_REG_DIN(5):
0203     case SHA_REG_DIN(6):
0204     case SHA_REG_DIN(7):
0205     case SHA_REG_DIN(8):
0206     case SHA_REG_DIN(9):
0207     case SHA_REG_DIN(10):
0208     case SHA_REG_DIN(11):
0209     case SHA_REG_DIN(12):
0210     case SHA_REG_DIN(13):
0211     case SHA_REG_DIN(14):
0212     case SHA_REG_DIN(15):
0213         snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
0214         break;
0215 
0216     case SHA_REG_DIGEST(0):
0217     case SHA_REG_DIGEST(1):
0218     case SHA_REG_DIGEST(2):
0219     case SHA_REG_DIGEST(3):
0220     case SHA_REG_DIGEST(4):
0221     case SHA_REG_DIGEST(5):
0222     case SHA_REG_DIGEST(6):
0223     case SHA_REG_DIGEST(7):
0224     case SHA_REG_DIGEST(8):
0225     case SHA_REG_DIGEST(9):
0226     case SHA_REG_DIGEST(10):
0227     case SHA_REG_DIGEST(11):
0228     case SHA_REG_DIGEST(12):
0229     case SHA_REG_DIGEST(13):
0230     case SHA_REG_DIGEST(14):
0231     case SHA_REG_DIGEST(15):
0232         if (wr)
0233             snprintf(tmp, sz, "IDATAR[%u]",
0234                  16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
0235         else
0236             snprintf(tmp, sz, "ODATAR[%u]",
0237                  (offset - SHA_REG_DIGEST(0)) >> 2);
0238         break;
0239 
0240     case SHA_HW_VERSION:
0241         return "HWVER";
0242 
0243     default:
0244         snprintf(tmp, sz, "0x%02x", offset);
0245         break;
0246     }
0247 
0248     return tmp;
0249 }
0250 
0251 #endif /* VERBOSE_DEBUG */
0252 
0253 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
0254 {
0255     u32 value = readl_relaxed(dd->io_base + offset);
0256 
0257 #ifdef VERBOSE_DEBUG
0258     if (dd->flags & SHA_FLAGS_DUMP_REG) {
0259         char tmp[16];
0260 
0261         dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
0262              atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
0263     }
0264 #endif /* VERBOSE_DEBUG */
0265 
0266     return value;
0267 }
0268 
0269 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
0270                     u32 offset, u32 value)
0271 {
0272 #ifdef VERBOSE_DEBUG
0273     if (dd->flags & SHA_FLAGS_DUMP_REG) {
0274         char tmp[16];
0275 
0276         dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
0277              atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
0278     }
0279 #endif /* VERBOSE_DEBUG */
0280 
0281     writel_relaxed(value, dd->io_base + offset);
0282 }
0283 
0284 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
0285 {
0286     struct ahash_request *req = dd->req;
0287 
0288     dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
0289                SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
0290                SHA_FLAGS_DUMP_REG);
0291 
0292     clk_disable(dd->iclk);
0293 
0294     if ((dd->is_async || dd->force_complete) && req->base.complete)
0295         req->base.complete(&req->base, err);
0296 
0297     /* handle new request */
0298     tasklet_schedule(&dd->queue_task);
0299 
0300     return err;
0301 }
0302 
0303 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
0304 {
0305     size_t count;
0306 
0307     while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
0308         count = min(ctx->sg->length - ctx->offset, ctx->total);
0309         count = min(count, ctx->buflen - ctx->bufcnt);
0310 
0311         if (count <= 0) {
0312             /*
0313             * Check if count <= 0 because the buffer is full or
0314             * because the sg length is 0. In the latest case,
0315             * check if there is another sg in the list, a 0 length
0316             * sg doesn't necessarily mean the end of the sg list.
0317             */
0318             if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
0319                 ctx->sg = sg_next(ctx->sg);
0320                 continue;
0321             } else {
0322                 break;
0323             }
0324         }
0325 
0326         scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
0327             ctx->offset, count, 0);
0328 
0329         ctx->bufcnt += count;
0330         ctx->offset += count;
0331         ctx->total -= count;
0332 
0333         if (ctx->offset == ctx->sg->length) {
0334             ctx->sg = sg_next(ctx->sg);
0335             if (ctx->sg)
0336                 ctx->offset = 0;
0337             else
0338                 ctx->total = 0;
0339         }
0340     }
0341 
0342     return 0;
0343 }
0344 
0345 /*
0346  * The purpose of this padding is to ensure that the padded message is a
0347  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
0348  * The bit "1" is appended at the end of the message followed by
0349  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
0350  * 128 bits block (SHA384/SHA512) equals to the message length in bits
0351  * is appended.
0352  *
0353  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
0354  *  - if message length < 56 bytes then padlen = 56 - message length
0355  *  - else padlen = 64 + 56 - message length
0356  *
0357  * For SHA384/SHA512, padlen is calculated as followed:
0358  *  - if message length < 112 bytes then padlen = 112 - message length
0359  *  - else padlen = 128 + 112 - message length
0360  */
0361 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
0362 {
0363     unsigned int index, padlen;
0364     __be64 bits[2];
0365     u64 size[2];
0366 
0367     size[0] = ctx->digcnt[0];
0368     size[1] = ctx->digcnt[1];
0369 
0370     size[0] += ctx->bufcnt;
0371     if (size[0] < ctx->bufcnt)
0372         size[1]++;
0373 
0374     size[0] += length;
0375     if (size[0]  < length)
0376         size[1]++;
0377 
0378     bits[1] = cpu_to_be64(size[0] << 3);
0379     bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
0380 
0381     switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
0382     case SHA_FLAGS_SHA384:
0383     case SHA_FLAGS_SHA512:
0384         index = ctx->bufcnt & 0x7f;
0385         padlen = (index < 112) ? (112 - index) : ((128+112) - index);
0386         *(ctx->buffer + ctx->bufcnt) = 0x80;
0387         memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
0388         memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
0389         ctx->bufcnt += padlen + 16;
0390         ctx->flags |= SHA_FLAGS_PAD;
0391         break;
0392 
0393     default:
0394         index = ctx->bufcnt & 0x3f;
0395         padlen = (index < 56) ? (56 - index) : ((64+56) - index);
0396         *(ctx->buffer + ctx->bufcnt) = 0x80;
0397         memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
0398         memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
0399         ctx->bufcnt += padlen + 8;
0400         ctx->flags |= SHA_FLAGS_PAD;
0401         break;
0402     }
0403 }
0404 
0405 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
0406 {
0407     struct atmel_sha_dev *dd = NULL;
0408     struct atmel_sha_dev *tmp;
0409 
0410     spin_lock_bh(&atmel_sha.lock);
0411     if (!tctx->dd) {
0412         list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
0413             dd = tmp;
0414             break;
0415         }
0416         tctx->dd = dd;
0417     } else {
0418         dd = tctx->dd;
0419     }
0420 
0421     spin_unlock_bh(&atmel_sha.lock);
0422 
0423     return dd;
0424 }
0425 
0426 static int atmel_sha_init(struct ahash_request *req)
0427 {
0428     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
0429     struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
0430     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
0431     struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
0432 
0433     ctx->dd = dd;
0434 
0435     ctx->flags = 0;
0436 
0437     dev_dbg(dd->dev, "init: digest size: %u\n",
0438         crypto_ahash_digestsize(tfm));
0439 
0440     switch (crypto_ahash_digestsize(tfm)) {
0441     case SHA1_DIGEST_SIZE:
0442         ctx->flags |= SHA_FLAGS_SHA1;
0443         ctx->block_size = SHA1_BLOCK_SIZE;
0444         break;
0445     case SHA224_DIGEST_SIZE:
0446         ctx->flags |= SHA_FLAGS_SHA224;
0447         ctx->block_size = SHA224_BLOCK_SIZE;
0448         break;
0449     case SHA256_DIGEST_SIZE:
0450         ctx->flags |= SHA_FLAGS_SHA256;
0451         ctx->block_size = SHA256_BLOCK_SIZE;
0452         break;
0453     case SHA384_DIGEST_SIZE:
0454         ctx->flags |= SHA_FLAGS_SHA384;
0455         ctx->block_size = SHA384_BLOCK_SIZE;
0456         break;
0457     case SHA512_DIGEST_SIZE:
0458         ctx->flags |= SHA_FLAGS_SHA512;
0459         ctx->block_size = SHA512_BLOCK_SIZE;
0460         break;
0461     default:
0462         return -EINVAL;
0463     }
0464 
0465     ctx->bufcnt = 0;
0466     ctx->digcnt[0] = 0;
0467     ctx->digcnt[1] = 0;
0468     ctx->buflen = SHA_BUFFER_LEN;
0469 
0470     return 0;
0471 }
0472 
0473 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
0474 {
0475     struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
0476     u32 valmr = SHA_MR_MODE_AUTO;
0477     unsigned int i, hashsize = 0;
0478 
0479     if (likely(dma)) {
0480         if (!dd->caps.has_dma)
0481             atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
0482         valmr = SHA_MR_MODE_PDC;
0483         if (dd->caps.has_dualbuff)
0484             valmr |= SHA_MR_DUALBUFF;
0485     } else {
0486         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
0487     }
0488 
0489     switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
0490     case SHA_FLAGS_SHA1:
0491         valmr |= SHA_MR_ALGO_SHA1;
0492         hashsize = SHA1_DIGEST_SIZE;
0493         break;
0494 
0495     case SHA_FLAGS_SHA224:
0496         valmr |= SHA_MR_ALGO_SHA224;
0497         hashsize = SHA256_DIGEST_SIZE;
0498         break;
0499 
0500     case SHA_FLAGS_SHA256:
0501         valmr |= SHA_MR_ALGO_SHA256;
0502         hashsize = SHA256_DIGEST_SIZE;
0503         break;
0504 
0505     case SHA_FLAGS_SHA384:
0506         valmr |= SHA_MR_ALGO_SHA384;
0507         hashsize = SHA512_DIGEST_SIZE;
0508         break;
0509 
0510     case SHA_FLAGS_SHA512:
0511         valmr |= SHA_MR_ALGO_SHA512;
0512         hashsize = SHA512_DIGEST_SIZE;
0513         break;
0514 
0515     default:
0516         break;
0517     }
0518 
0519     /* Setting CR_FIRST only for the first iteration */
0520     if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
0521         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
0522     } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
0523         const u32 *hash = (const u32 *)ctx->digest;
0524 
0525         /*
0526          * Restore the hardware context: update the User Initialize
0527          * Hash Value (UIHV) with the value saved when the latest
0528          * 'update' operation completed on this very same crypto
0529          * request.
0530          */
0531         ctx->flags &= ~SHA_FLAGS_RESTORE;
0532         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
0533         for (i = 0; i < hashsize / sizeof(u32); ++i)
0534             atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
0535         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
0536         valmr |= SHA_MR_UIHV;
0537     }
0538     /*
0539      * WARNING: If the UIHV feature is not available, the hardware CANNOT
0540      * process concurrent requests: the internal registers used to store
0541      * the hash/digest are still set to the partial digest output values
0542      * computed during the latest round.
0543      */
0544 
0545     atmel_sha_write(dd, SHA_MR, valmr);
0546 }
0547 
0548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
0549                         atmel_sha_fn_t resume)
0550 {
0551     u32 isr = atmel_sha_read(dd, SHA_ISR);
0552 
0553     if (unlikely(isr & SHA_INT_DATARDY))
0554         return resume(dd);
0555 
0556     dd->resume = resume;
0557     atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
0558     return -EINPROGRESS;
0559 }
0560 
0561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
0562                   size_t length, int final)
0563 {
0564     struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
0565     int count, len32;
0566     const u32 *buffer = (const u32 *)buf;
0567 
0568     dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
0569         ctx->digcnt[1], ctx->digcnt[0], length, final);
0570 
0571     atmel_sha_write_ctrl(dd, 0);
0572 
0573     /* should be non-zero before next lines to disable clocks later */
0574     ctx->digcnt[0] += length;
0575     if (ctx->digcnt[0] < length)
0576         ctx->digcnt[1]++;
0577 
0578     if (final)
0579         dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
0580 
0581     len32 = DIV_ROUND_UP(length, sizeof(u32));
0582 
0583     dd->flags |= SHA_FLAGS_CPU;
0584 
0585     for (count = 0; count < len32; count++)
0586         atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
0587 
0588     return -EINPROGRESS;
0589 }
0590 
0591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
0592         size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
0593 {
0594     struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
0595     int len32;
0596 
0597     dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
0598         ctx->digcnt[1], ctx->digcnt[0], length1, final);
0599 
0600     len32 = DIV_ROUND_UP(length1, sizeof(u32));
0601     atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
0602     atmel_sha_write(dd, SHA_TPR, dma_addr1);
0603     atmel_sha_write(dd, SHA_TCR, len32);
0604 
0605     len32 = DIV_ROUND_UP(length2, sizeof(u32));
0606     atmel_sha_write(dd, SHA_TNPR, dma_addr2);
0607     atmel_sha_write(dd, SHA_TNCR, len32);
0608 
0609     atmel_sha_write_ctrl(dd, 1);
0610 
0611     /* should be non-zero before next lines to disable clocks later */
0612     ctx->digcnt[0] += length1;
0613     if (ctx->digcnt[0] < length1)
0614         ctx->digcnt[1]++;
0615 
0616     if (final)
0617         dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
0618 
0619     dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
0620 
0621     /* Start DMA transfer */
0622     atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
0623 
0624     return -EINPROGRESS;
0625 }
0626 
0627 static void atmel_sha_dma_callback(void *data)
0628 {
0629     struct atmel_sha_dev *dd = data;
0630 
0631     dd->is_async = true;
0632 
0633     /* dma_lch_in - completed - wait DATRDY */
0634     atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
0635 }
0636 
0637 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
0638         size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
0639 {
0640     struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
0641     struct dma_async_tx_descriptor  *in_desc;
0642     struct scatterlist sg[2];
0643 
0644     dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
0645         ctx->digcnt[1], ctx->digcnt[0], length1, final);
0646 
0647     dd->dma_lch_in.dma_conf.src_maxburst = 16;
0648     dd->dma_lch_in.dma_conf.dst_maxburst = 16;
0649 
0650     dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
0651 
0652     if (length2) {
0653         sg_init_table(sg, 2);
0654         sg_dma_address(&sg[0]) = dma_addr1;
0655         sg_dma_len(&sg[0]) = length1;
0656         sg_dma_address(&sg[1]) = dma_addr2;
0657         sg_dma_len(&sg[1]) = length2;
0658         in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
0659             DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0660     } else {
0661         sg_init_table(sg, 1);
0662         sg_dma_address(&sg[0]) = dma_addr1;
0663         sg_dma_len(&sg[0]) = length1;
0664         in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
0665             DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0666     }
0667     if (!in_desc)
0668         return atmel_sha_complete(dd, -EINVAL);
0669 
0670     in_desc->callback = atmel_sha_dma_callback;
0671     in_desc->callback_param = dd;
0672 
0673     atmel_sha_write_ctrl(dd, 1);
0674 
0675     /* should be non-zero before next lines to disable clocks later */
0676     ctx->digcnt[0] += length1;
0677     if (ctx->digcnt[0] < length1)
0678         ctx->digcnt[1]++;
0679 
0680     if (final)
0681         dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
0682 
0683     dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
0684 
0685     /* Start DMA transfer */
0686     dmaengine_submit(in_desc);
0687     dma_async_issue_pending(dd->dma_lch_in.chan);
0688 
0689     return -EINPROGRESS;
0690 }
0691 
0692 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
0693         size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
0694 {
0695     if (dd->caps.has_dma)
0696         return atmel_sha_xmit_dma(dd, dma_addr1, length1,
0697                 dma_addr2, length2, final);
0698     else
0699         return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
0700                 dma_addr2, length2, final);
0701 }
0702 
0703 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
0704 {
0705     struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
0706     int bufcnt;
0707 
0708     atmel_sha_append_sg(ctx);
0709     atmel_sha_fill_padding(ctx, 0);
0710     bufcnt = ctx->bufcnt;
0711     ctx->bufcnt = 0;
0712 
0713     return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
0714 }
0715 
0716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
0717                     struct atmel_sha_reqctx *ctx,
0718                     size_t length, int final)
0719 {
0720     ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
0721                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
0722     if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
0723         dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
0724                 ctx->block_size);
0725         return atmel_sha_complete(dd, -EINVAL);
0726     }
0727 
0728     ctx->flags &= ~SHA_FLAGS_SG;
0729 
0730     /* next call does not fail... so no unmap in the case of error */
0731     return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
0732 }
0733 
0734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
0735 {
0736     struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
0737     unsigned int final;
0738     size_t count;
0739 
0740     atmel_sha_append_sg(ctx);
0741 
0742     final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
0743 
0744     dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
0745          ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
0746 
0747     if (final)
0748         atmel_sha_fill_padding(ctx, 0);
0749 
0750     if (final || (ctx->bufcnt == ctx->buflen)) {
0751         count = ctx->bufcnt;
0752         ctx->bufcnt = 0;
0753         return atmel_sha_xmit_dma_map(dd, ctx, count, final);
0754     }
0755 
0756     return 0;
0757 }
0758 
0759 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
0760 {
0761     struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
0762     unsigned int length, final, tail;
0763     struct scatterlist *sg;
0764     unsigned int count;
0765 
0766     if (!ctx->total)
0767         return 0;
0768 
0769     if (ctx->bufcnt || ctx->offset)
0770         return atmel_sha_update_dma_slow(dd);
0771 
0772     dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
0773         ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
0774 
0775     sg = ctx->sg;
0776 
0777     if (!IS_ALIGNED(sg->offset, sizeof(u32)))
0778         return atmel_sha_update_dma_slow(dd);
0779 
0780     if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
0781         /* size is not ctx->block_size aligned */
0782         return atmel_sha_update_dma_slow(dd);
0783 
0784     length = min(ctx->total, sg->length);
0785 
0786     if (sg_is_last(sg)) {
0787         if (!(ctx->flags & SHA_FLAGS_FINUP)) {
0788             /* not last sg must be ctx->block_size aligned */
0789             tail = length & (ctx->block_size - 1);
0790             length -= tail;
0791         }
0792     }
0793 
0794     ctx->total -= length;
0795     ctx->offset = length; /* offset where to start slow */
0796 
0797     final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
0798 
0799     /* Add padding */
0800     if (final) {
0801         tail = length & (ctx->block_size - 1);
0802         length -= tail;
0803         ctx->total += tail;
0804         ctx->offset = length; /* offset where to start slow */
0805 
0806         sg = ctx->sg;
0807         atmel_sha_append_sg(ctx);
0808 
0809         atmel_sha_fill_padding(ctx, length);
0810 
0811         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
0812             ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
0813         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
0814             dev_err(dd->dev, "dma %zu bytes error\n",
0815                 ctx->buflen + ctx->block_size);
0816             return atmel_sha_complete(dd, -EINVAL);
0817         }
0818 
0819         if (length == 0) {
0820             ctx->flags &= ~SHA_FLAGS_SG;
0821             count = ctx->bufcnt;
0822             ctx->bufcnt = 0;
0823             return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
0824                     0, final);
0825         } else {
0826             ctx->sg = sg;
0827             if (!dma_map_sg(dd->dev, ctx->sg, 1,
0828                 DMA_TO_DEVICE)) {
0829                     dev_err(dd->dev, "dma_map_sg  error\n");
0830                     return atmel_sha_complete(dd, -EINVAL);
0831             }
0832 
0833             ctx->flags |= SHA_FLAGS_SG;
0834 
0835             count = ctx->bufcnt;
0836             ctx->bufcnt = 0;
0837             return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
0838                     length, ctx->dma_addr, count, final);
0839         }
0840     }
0841 
0842     if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
0843         dev_err(dd->dev, "dma_map_sg  error\n");
0844         return atmel_sha_complete(dd, -EINVAL);
0845     }
0846 
0847     ctx->flags |= SHA_FLAGS_SG;
0848 
0849     /* next call does not fail... so no unmap in the case of error */
0850     return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
0851                                 0, final);
0852 }
0853 
0854 static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
0855 {
0856     struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
0857 
0858     if (ctx->flags & SHA_FLAGS_SG) {
0859         dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
0860         if (ctx->sg->length == ctx->offset) {
0861             ctx->sg = sg_next(ctx->sg);
0862             if (ctx->sg)
0863                 ctx->offset = 0;
0864         }
0865         if (ctx->flags & SHA_FLAGS_PAD) {
0866             dma_unmap_single(dd->dev, ctx->dma_addr,
0867                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
0868         }
0869     } else {
0870         dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
0871                         ctx->block_size, DMA_TO_DEVICE);
0872     }
0873 }
0874 
0875 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
0876 {
0877     struct ahash_request *req = dd->req;
0878     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
0879     int err;
0880 
0881     dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
0882         ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
0883 
0884     if (ctx->flags & SHA_FLAGS_CPU)
0885         err = atmel_sha_update_cpu(dd);
0886     else
0887         err = atmel_sha_update_dma_start(dd);
0888 
0889     /* wait for dma completion before can take more data */
0890     dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
0891             err, ctx->digcnt[1], ctx->digcnt[0]);
0892 
0893     return err;
0894 }
0895 
0896 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
0897 {
0898     struct ahash_request *req = dd->req;
0899     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
0900     int err = 0;
0901     int count;
0902 
0903     if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
0904         atmel_sha_fill_padding(ctx, 0);
0905         count = ctx->bufcnt;
0906         ctx->bufcnt = 0;
0907         err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
0908     }
0909     /* faster to handle last block with cpu */
0910     else {
0911         atmel_sha_fill_padding(ctx, 0);
0912         count = ctx->bufcnt;
0913         ctx->bufcnt = 0;
0914         err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
0915     }
0916 
0917     dev_dbg(dd->dev, "final_req: err: %d\n", err);
0918 
0919     return err;
0920 }
0921 
0922 static void atmel_sha_copy_hash(struct ahash_request *req)
0923 {
0924     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
0925     u32 *hash = (u32 *)ctx->digest;
0926     unsigned int i, hashsize;
0927 
0928     switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
0929     case SHA_FLAGS_SHA1:
0930         hashsize = SHA1_DIGEST_SIZE;
0931         break;
0932 
0933     case SHA_FLAGS_SHA224:
0934     case SHA_FLAGS_SHA256:
0935         hashsize = SHA256_DIGEST_SIZE;
0936         break;
0937 
0938     case SHA_FLAGS_SHA384:
0939     case SHA_FLAGS_SHA512:
0940         hashsize = SHA512_DIGEST_SIZE;
0941         break;
0942 
0943     default:
0944         /* Should not happen... */
0945         return;
0946     }
0947 
0948     for (i = 0; i < hashsize / sizeof(u32); ++i)
0949         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
0950     ctx->flags |= SHA_FLAGS_RESTORE;
0951 }
0952 
0953 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
0954 {
0955     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
0956 
0957     if (!req->result)
0958         return;
0959 
0960     switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
0961     default:
0962     case SHA_FLAGS_SHA1:
0963         memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
0964         break;
0965 
0966     case SHA_FLAGS_SHA224:
0967         memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
0968         break;
0969 
0970     case SHA_FLAGS_SHA256:
0971         memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
0972         break;
0973 
0974     case SHA_FLAGS_SHA384:
0975         memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
0976         break;
0977 
0978     case SHA_FLAGS_SHA512:
0979         memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
0980         break;
0981     }
0982 }
0983 
0984 static int atmel_sha_finish(struct ahash_request *req)
0985 {
0986     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
0987     struct atmel_sha_dev *dd = ctx->dd;
0988 
0989     if (ctx->digcnt[0] || ctx->digcnt[1])
0990         atmel_sha_copy_ready_hash(req);
0991 
0992     dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
0993         ctx->digcnt[0], ctx->bufcnt);
0994 
0995     return 0;
0996 }
0997 
0998 static void atmel_sha_finish_req(struct ahash_request *req, int err)
0999 {
1000     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001     struct atmel_sha_dev *dd = ctx->dd;
1002 
1003     if (!err) {
1004         atmel_sha_copy_hash(req);
1005         if (SHA_FLAGS_FINAL & dd->flags)
1006             err = atmel_sha_finish(req);
1007     } else {
1008         ctx->flags |= SHA_FLAGS_ERROR;
1009     }
1010 
1011     /* atomic operation is not needed here */
1012     (void)atmel_sha_complete(dd, err);
1013 }
1014 
1015 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016 {
1017     int err;
1018 
1019     err = clk_enable(dd->iclk);
1020     if (err)
1021         return err;
1022 
1023     if (!(SHA_FLAGS_INIT & dd->flags)) {
1024         atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025         dd->flags |= SHA_FLAGS_INIT;
1026     }
1027 
1028     return 0;
1029 }
1030 
1031 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032 {
1033     return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034 }
1035 
1036 static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037 {
1038     int err;
1039 
1040     err = atmel_sha_hw_init(dd);
1041     if (err)
1042         return err;
1043 
1044     dd->hw_version = atmel_sha_get_version(dd);
1045 
1046     dev_info(dd->dev,
1047             "version: 0x%x\n", dd->hw_version);
1048 
1049     clk_disable(dd->iclk);
1050 
1051     return 0;
1052 }
1053 
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055                   struct ahash_request *req)
1056 {
1057     struct crypto_async_request *async_req, *backlog;
1058     struct atmel_sha_ctx *ctx;
1059     unsigned long flags;
1060     bool start_async;
1061     int err = 0, ret = 0;
1062 
1063     spin_lock_irqsave(&dd->lock, flags);
1064     if (req)
1065         ret = ahash_enqueue_request(&dd->queue, req);
1066 
1067     if (SHA_FLAGS_BUSY & dd->flags) {
1068         spin_unlock_irqrestore(&dd->lock, flags);
1069         return ret;
1070     }
1071 
1072     backlog = crypto_get_backlog(&dd->queue);
1073     async_req = crypto_dequeue_request(&dd->queue);
1074     if (async_req)
1075         dd->flags |= SHA_FLAGS_BUSY;
1076 
1077     spin_unlock_irqrestore(&dd->lock, flags);
1078 
1079     if (!async_req)
1080         return ret;
1081 
1082     if (backlog)
1083         backlog->complete(backlog, -EINPROGRESS);
1084 
1085     ctx = crypto_tfm_ctx(async_req->tfm);
1086 
1087     dd->req = ahash_request_cast(async_req);
1088     start_async = (dd->req != req);
1089     dd->is_async = start_async;
1090     dd->force_complete = false;
1091 
1092     /* WARNING: ctx->start() MAY change dd->is_async. */
1093     err = ctx->start(dd);
1094     return (start_async) ? ret : err;
1095 }
1096 
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098 
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101     struct ahash_request *req = dd->req;
1102     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103     int err;
1104 
1105     dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106                         ctx->op, req->nbytes);
1107 
1108     err = atmel_sha_hw_init(dd);
1109     if (err)
1110         return atmel_sha_complete(dd, err);
1111 
1112     /*
1113      * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114      *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115      *                its job later in the done_task.
1116      *                This is the main path.
1117      *
1118      * 0: the SHA driver can continue its job then release the hardware
1119      *    later, if needed, with atmel_sha_finish_req().
1120      *    This is the alternate path.
1121      *
1122      * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123      *      been called, hence the hardware has been released.
1124      *      The SHA driver must stop its job without calling
1125      *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126      *      called a second time.
1127      *
1128      * Please note that currently, atmel_sha_final_req() never returns 0.
1129      */
1130 
1131     dd->resume = atmel_sha_done;
1132     if (ctx->op == SHA_OP_UPDATE) {
1133         err = atmel_sha_update_req(dd);
1134         if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135             /* no final() after finup() */
1136             err = atmel_sha_final_req(dd);
1137     } else if (ctx->op == SHA_OP_FINAL) {
1138         err = atmel_sha_final_req(dd);
1139     }
1140 
1141     if (!err)
1142         /* done_task will not finish it, so do it here */
1143         atmel_sha_finish_req(req, err);
1144 
1145     dev_dbg(dd->dev, "exit, err: %d\n", err);
1146 
1147     return err;
1148 }
1149 
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153     struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154     struct atmel_sha_dev *dd = tctx->dd;
1155 
1156     ctx->op = op;
1157 
1158     return atmel_sha_handle_queue(dd, req);
1159 }
1160 
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164 
1165     if (!req->nbytes)
1166         return 0;
1167 
1168     ctx->total = req->nbytes;
1169     ctx->sg = req->src;
1170     ctx->offset = 0;
1171 
1172     if (ctx->flags & SHA_FLAGS_FINUP) {
1173         if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174             /* faster to use CPU for short transfers */
1175             ctx->flags |= SHA_FLAGS_CPU;
1176     } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177         atmel_sha_append_sg(ctx);
1178         return 0;
1179     }
1180     return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182 
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186 
1187     ctx->flags |= SHA_FLAGS_FINUP;
1188 
1189     if (ctx->flags & SHA_FLAGS_ERROR)
1190         return 0; /* uncompleted hash is not needed */
1191 
1192     if (ctx->flags & SHA_FLAGS_PAD)
1193         /* copy ready hash (+ finalize hmac) */
1194         return atmel_sha_finish(req);
1195 
1196     return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198 
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202     int err1, err2;
1203 
1204     ctx->flags |= SHA_FLAGS_FINUP;
1205 
1206     err1 = atmel_sha_update(req);
1207     if (err1 == -EINPROGRESS ||
1208         (err1 == -EBUSY && (ahash_request_flags(req) &
1209                 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210         return err1;
1211 
1212     /*
1213      * final() has to be always called to cleanup resources
1214      * even if udpate() failed, except EINPROGRESS
1215      */
1216     err2 = atmel_sha_final(req);
1217 
1218     return err1 ?: err2;
1219 }
1220 
1221 static int atmel_sha_digest(struct ahash_request *req)
1222 {
1223     return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224 }
1225 
1226 
1227 static int atmel_sha_export(struct ahash_request *req, void *out)
1228 {
1229     const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230 
1231     memcpy(out, ctx, sizeof(*ctx));
1232     return 0;
1233 }
1234 
1235 static int atmel_sha_import(struct ahash_request *req, const void *in)
1236 {
1237     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238 
1239     memcpy(ctx, in, sizeof(*ctx));
1240     return 0;
1241 }
1242 
1243 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244 {
1245     struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246 
1247     crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248                  sizeof(struct atmel_sha_reqctx));
1249     ctx->start = atmel_sha_start;
1250 
1251     return 0;
1252 }
1253 
1254 static void atmel_sha_alg_init(struct ahash_alg *alg)
1255 {
1256     alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257     alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258     alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259     alg->halg.base.cra_module = THIS_MODULE;
1260     alg->halg.base.cra_init = atmel_sha_cra_init;
1261 
1262     alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263 
1264     alg->init = atmel_sha_init;
1265     alg->update = atmel_sha_update;
1266     alg->final = atmel_sha_final;
1267     alg->finup = atmel_sha_finup;
1268     alg->digest = atmel_sha_digest;
1269     alg->export = atmel_sha_export;
1270     alg->import = atmel_sha_import;
1271 }
1272 
1273 static struct ahash_alg sha_1_256_algs[] = {
1274 {
1275     .halg.base.cra_name     = "sha1",
1276     .halg.base.cra_driver_name  = "atmel-sha1",
1277     .halg.base.cra_blocksize    = SHA1_BLOCK_SIZE,
1278 
1279     .halg.digestsize = SHA1_DIGEST_SIZE,
1280 },
1281 {
1282     .halg.base.cra_name     = "sha256",
1283     .halg.base.cra_driver_name  = "atmel-sha256",
1284     .halg.base.cra_blocksize    = SHA256_BLOCK_SIZE,
1285 
1286     .halg.digestsize = SHA256_DIGEST_SIZE,
1287 },
1288 };
1289 
1290 static struct ahash_alg sha_224_alg = {
1291     .halg.base.cra_name     = "sha224",
1292     .halg.base.cra_driver_name  = "atmel-sha224",
1293     .halg.base.cra_blocksize    = SHA224_BLOCK_SIZE,
1294 
1295     .halg.digestsize = SHA224_DIGEST_SIZE,
1296 };
1297 
1298 static struct ahash_alg sha_384_512_algs[] = {
1299 {
1300     .halg.base.cra_name     = "sha384",
1301     .halg.base.cra_driver_name  = "atmel-sha384",
1302     .halg.base.cra_blocksize    = SHA384_BLOCK_SIZE,
1303     .halg.base.cra_alignmask    = 0x3,
1304 
1305     .halg.digestsize = SHA384_DIGEST_SIZE,
1306 },
1307 {
1308     .halg.base.cra_name     = "sha512",
1309     .halg.base.cra_driver_name  = "atmel-sha512",
1310     .halg.base.cra_blocksize    = SHA512_BLOCK_SIZE,
1311     .halg.base.cra_alignmask    = 0x3,
1312 
1313     .halg.digestsize = SHA512_DIGEST_SIZE,
1314 },
1315 };
1316 
1317 static void atmel_sha_queue_task(unsigned long data)
1318 {
1319     struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1320 
1321     atmel_sha_handle_queue(dd, NULL);
1322 }
1323 
1324 static int atmel_sha_done(struct atmel_sha_dev *dd)
1325 {
1326     int err = 0;
1327 
1328     if (SHA_FLAGS_CPU & dd->flags) {
1329         if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1330             dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1331             goto finish;
1332         }
1333     } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1334         if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1335             dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1336             atmel_sha_update_dma_stop(dd);
1337         }
1338         if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1339             /* hash or semi-hash ready */
1340             dd->flags &= ~(SHA_FLAGS_DMA_READY |
1341                         SHA_FLAGS_OUTPUT_READY);
1342             err = atmel_sha_update_dma_start(dd);
1343             if (err != -EINPROGRESS)
1344                 goto finish;
1345         }
1346     }
1347     return err;
1348 
1349 finish:
1350     /* finish curent request */
1351     atmel_sha_finish_req(dd->req, err);
1352 
1353     return err;
1354 }
1355 
1356 static void atmel_sha_done_task(unsigned long data)
1357 {
1358     struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1359 
1360     dd->is_async = true;
1361     (void)dd->resume(dd);
1362 }
1363 
1364 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1365 {
1366     struct atmel_sha_dev *sha_dd = dev_id;
1367     u32 reg;
1368 
1369     reg = atmel_sha_read(sha_dd, SHA_ISR);
1370     if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1371         atmel_sha_write(sha_dd, SHA_IDR, reg);
1372         if (SHA_FLAGS_BUSY & sha_dd->flags) {
1373             sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1374             if (!(SHA_FLAGS_CPU & sha_dd->flags))
1375                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1376             tasklet_schedule(&sha_dd->done_task);
1377         } else {
1378             dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1379         }
1380         return IRQ_HANDLED;
1381     }
1382 
1383     return IRQ_NONE;
1384 }
1385 
1386 
1387 /* DMA transfer functions */
1388 
1389 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1390                     struct scatterlist *sg,
1391                     size_t len)
1392 {
1393     struct atmel_sha_dma *dma = &dd->dma_lch_in;
1394     struct ahash_request *req = dd->req;
1395     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1396     size_t bs = ctx->block_size;
1397     int nents;
1398 
1399     for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1400         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1401             return false;
1402 
1403         /*
1404          * This is the last sg, the only one that is allowed to
1405          * have an unaligned length.
1406          */
1407         if (len <= sg->length) {
1408             dma->nents = nents + 1;
1409             dma->last_sg_length = sg->length;
1410             sg->length = ALIGN(len, sizeof(u32));
1411             return true;
1412         }
1413 
1414         /* All other sg lengths MUST be aligned to the block size. */
1415         if (!IS_ALIGNED(sg->length, bs))
1416             return false;
1417 
1418         len -= sg->length;
1419     }
1420 
1421     return false;
1422 }
1423 
1424 static void atmel_sha_dma_callback2(void *data)
1425 {
1426     struct atmel_sha_dev *dd = data;
1427     struct atmel_sha_dma *dma = &dd->dma_lch_in;
1428     struct scatterlist *sg;
1429     int nents;
1430 
1431     dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1432 
1433     sg = dma->sg;
1434     for (nents = 0; nents < dma->nents - 1; ++nents)
1435         sg = sg_next(sg);
1436     sg->length = dma->last_sg_length;
1437 
1438     dd->is_async = true;
1439     (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1440 }
1441 
1442 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1443                    struct scatterlist *src,
1444                    size_t len,
1445                    atmel_sha_fn_t resume)
1446 {
1447     struct atmel_sha_dma *dma = &dd->dma_lch_in;
1448     struct dma_slave_config *config = &dma->dma_conf;
1449     struct dma_chan *chan = dma->chan;
1450     struct dma_async_tx_descriptor *desc;
1451     dma_cookie_t cookie;
1452     unsigned int sg_len;
1453     int err;
1454 
1455     dd->resume = resume;
1456 
1457     /*
1458      * dma->nents has already been initialized by
1459      * atmel_sha_dma_check_aligned().
1460      */
1461     dma->sg = src;
1462     sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1463     if (!sg_len) {
1464         err = -ENOMEM;
1465         goto exit;
1466     }
1467 
1468     config->src_maxburst = 16;
1469     config->dst_maxburst = 16;
1470     err = dmaengine_slave_config(chan, config);
1471     if (err)
1472         goto unmap_sg;
1473 
1474     desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1475                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1476     if (!desc) {
1477         err = -ENOMEM;
1478         goto unmap_sg;
1479     }
1480 
1481     desc->callback = atmel_sha_dma_callback2;
1482     desc->callback_param = dd;
1483     cookie = dmaengine_submit(desc);
1484     err = dma_submit_error(cookie);
1485     if (err)
1486         goto unmap_sg;
1487 
1488     dma_async_issue_pending(chan);
1489 
1490     return -EINPROGRESS;
1491 
1492 unmap_sg:
1493     dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1494 exit:
1495     return atmel_sha_complete(dd, err);
1496 }
1497 
1498 
1499 /* CPU transfer functions */
1500 
1501 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1502 {
1503     struct ahash_request *req = dd->req;
1504     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1505     const u32 *words = (const u32 *)ctx->buffer;
1506     size_t i, num_words;
1507     u32 isr, din, din_inc;
1508 
1509     din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1510     for (;;) {
1511         /* Write data into the Input Data Registers. */
1512         num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1513         for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1514             atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1515 
1516         ctx->offset += ctx->bufcnt;
1517         ctx->total -= ctx->bufcnt;
1518 
1519         if (!ctx->total)
1520             break;
1521 
1522         /*
1523          * Prepare next block:
1524          * Fill ctx->buffer now with the next data to be written into
1525          * IDATARx: it gives time for the SHA hardware to process
1526          * the current data so the SHA_INT_DATARDY flag might be set
1527          * in SHA_ISR when polling this register at the beginning of
1528          * the next loop.
1529          */
1530         ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1531         scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1532                      ctx->offset, ctx->bufcnt, 0);
1533 
1534         /* Wait for hardware to be ready again. */
1535         isr = atmel_sha_read(dd, SHA_ISR);
1536         if (!(isr & SHA_INT_DATARDY)) {
1537             /* Not ready yet. */
1538             dd->resume = atmel_sha_cpu_transfer;
1539             atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1540             return -EINPROGRESS;
1541         }
1542     }
1543 
1544     if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1545         return dd->cpu_transfer_complete(dd);
1546 
1547     return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1548 }
1549 
1550 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1551                    struct scatterlist *sg,
1552                    unsigned int len,
1553                    bool idatar0_only,
1554                    bool wait_data_ready,
1555                    atmel_sha_fn_t resume)
1556 {
1557     struct ahash_request *req = dd->req;
1558     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1559 
1560     if (!len)
1561         return resume(dd);
1562 
1563     ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1564 
1565     if (idatar0_only)
1566         ctx->flags |= SHA_FLAGS_IDATAR0;
1567 
1568     if (wait_data_ready)
1569         ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1570 
1571     ctx->sg = sg;
1572     ctx->total = len;
1573     ctx->offset = 0;
1574 
1575     /* Prepare the first block to be written. */
1576     ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1577     scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1578                  ctx->offset, ctx->bufcnt, 0);
1579 
1580     dd->cpu_transfer_complete = resume;
1581     return atmel_sha_cpu_transfer(dd);
1582 }
1583 
1584 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1585                   const void *data, unsigned int datalen,
1586                   bool auto_padding,
1587                   atmel_sha_fn_t resume)
1588 {
1589     struct ahash_request *req = dd->req;
1590     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1591     u32 msglen = (auto_padding) ? datalen : 0;
1592     u32 mr = SHA_MR_MODE_AUTO;
1593 
1594     if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1595         return atmel_sha_complete(dd, -EINVAL);
1596 
1597     mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1598     atmel_sha_write(dd, SHA_MR, mr);
1599     atmel_sha_write(dd, SHA_MSR, msglen);
1600     atmel_sha_write(dd, SHA_BCR, msglen);
1601     atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1602 
1603     sg_init_one(&dd->tmp, data, datalen);
1604     return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1605 }
1606 
1607 
1608 /* hmac functions */
1609 
1610 struct atmel_sha_hmac_key {
1611     bool            valid;
1612     unsigned int        keylen;
1613     u8          buffer[SHA512_BLOCK_SIZE];
1614     u8          *keydup;
1615 };
1616 
1617 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1618 {
1619     memset(hkey, 0, sizeof(*hkey));
1620 }
1621 
1622 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1623 {
1624     kfree(hkey->keydup);
1625     memset(hkey, 0, sizeof(*hkey));
1626 }
1627 
1628 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1629                      const u8 *key,
1630                      unsigned int keylen)
1631 {
1632     atmel_sha_hmac_key_release(hkey);
1633 
1634     if (keylen > sizeof(hkey->buffer)) {
1635         hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1636         if (!hkey->keydup)
1637             return -ENOMEM;
1638 
1639     } else {
1640         memcpy(hkey->buffer, key, keylen);
1641     }
1642 
1643     hkey->valid = true;
1644     hkey->keylen = keylen;
1645     return 0;
1646 }
1647 
1648 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1649                       const u8 **key,
1650                       unsigned int *keylen)
1651 {
1652     if (!hkey->valid)
1653         return false;
1654 
1655     *keylen = hkey->keylen;
1656     *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1657     return true;
1658 }
1659 
1660 
1661 struct atmel_sha_hmac_ctx {
1662     struct atmel_sha_ctx    base;
1663 
1664     struct atmel_sha_hmac_key   hkey;
1665     u32         ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1666     u32         opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667     atmel_sha_fn_t      resume;
1668 };
1669 
1670 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1671                 atmel_sha_fn_t resume);
1672 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1673                       const u8 *key, unsigned int keylen);
1674 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1675 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1676 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1677 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1678 
1679 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1680 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1681 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1682 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1683 
1684 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1685                 atmel_sha_fn_t resume)
1686 {
1687     struct ahash_request *req = dd->req;
1688     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1689     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1690     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1691     unsigned int keylen;
1692     const u8 *key;
1693     size_t bs;
1694 
1695     hmac->resume = resume;
1696     switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1697     case SHA_FLAGS_SHA1:
1698         ctx->block_size = SHA1_BLOCK_SIZE;
1699         ctx->hash_size = SHA1_DIGEST_SIZE;
1700         break;
1701 
1702     case SHA_FLAGS_SHA224:
1703         ctx->block_size = SHA224_BLOCK_SIZE;
1704         ctx->hash_size = SHA256_DIGEST_SIZE;
1705         break;
1706 
1707     case SHA_FLAGS_SHA256:
1708         ctx->block_size = SHA256_BLOCK_SIZE;
1709         ctx->hash_size = SHA256_DIGEST_SIZE;
1710         break;
1711 
1712     case SHA_FLAGS_SHA384:
1713         ctx->block_size = SHA384_BLOCK_SIZE;
1714         ctx->hash_size = SHA512_DIGEST_SIZE;
1715         break;
1716 
1717     case SHA_FLAGS_SHA512:
1718         ctx->block_size = SHA512_BLOCK_SIZE;
1719         ctx->hash_size = SHA512_DIGEST_SIZE;
1720         break;
1721 
1722     default:
1723         return atmel_sha_complete(dd, -EINVAL);
1724     }
1725     bs = ctx->block_size;
1726 
1727     if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1728         return resume(dd);
1729 
1730     /* Compute K' from K. */
1731     if (unlikely(keylen > bs))
1732         return atmel_sha_hmac_prehash_key(dd, key, keylen);
1733 
1734     /* Prepare ipad. */
1735     memcpy((u8 *)hmac->ipad, key, keylen);
1736     memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1737     return atmel_sha_hmac_compute_ipad_hash(dd);
1738 }
1739 
1740 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1741                       const u8 *key, unsigned int keylen)
1742 {
1743     return atmel_sha_cpu_hash(dd, key, keylen, true,
1744                   atmel_sha_hmac_prehash_key_done);
1745 }
1746 
1747 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1748 {
1749     struct ahash_request *req = dd->req;
1750     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1751     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1752     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1753     size_t ds = crypto_ahash_digestsize(tfm);
1754     size_t bs = ctx->block_size;
1755     size_t i, num_words = ds / sizeof(u32);
1756 
1757     /* Prepare ipad. */
1758     for (i = 0; i < num_words; ++i)
1759         hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1760     memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1761     return atmel_sha_hmac_compute_ipad_hash(dd);
1762 }
1763 
1764 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1765 {
1766     struct ahash_request *req = dd->req;
1767     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1768     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1769     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1770     size_t bs = ctx->block_size;
1771     size_t i, num_words = bs / sizeof(u32);
1772 
1773     memcpy(hmac->opad, hmac->ipad, bs);
1774     for (i = 0; i < num_words; ++i) {
1775         hmac->ipad[i] ^= 0x36363636;
1776         hmac->opad[i] ^= 0x5c5c5c5c;
1777     }
1778 
1779     return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1780                   atmel_sha_hmac_compute_opad_hash);
1781 }
1782 
1783 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1784 {
1785     struct ahash_request *req = dd->req;
1786     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1787     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1788     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1789     size_t bs = ctx->block_size;
1790     size_t hs = ctx->hash_size;
1791     size_t i, num_words = hs / sizeof(u32);
1792 
1793     for (i = 0; i < num_words; ++i)
1794         hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1795     return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1796                   atmel_sha_hmac_setup_done);
1797 }
1798 
1799 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1800 {
1801     struct ahash_request *req = dd->req;
1802     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1803     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1804     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1805     size_t hs = ctx->hash_size;
1806     size_t i, num_words = hs / sizeof(u32);
1807 
1808     for (i = 0; i < num_words; ++i)
1809         hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1810     atmel_sha_hmac_key_release(&hmac->hkey);
1811     return hmac->resume(dd);
1812 }
1813 
1814 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1815 {
1816     struct ahash_request *req = dd->req;
1817     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1818     int err;
1819 
1820     err = atmel_sha_hw_init(dd);
1821     if (err)
1822         return atmel_sha_complete(dd, err);
1823 
1824     switch (ctx->op) {
1825     case SHA_OP_INIT:
1826         err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1827         break;
1828 
1829     case SHA_OP_UPDATE:
1830         dd->resume = atmel_sha_done;
1831         err = atmel_sha_update_req(dd);
1832         break;
1833 
1834     case SHA_OP_FINAL:
1835         dd->resume = atmel_sha_hmac_final;
1836         err = atmel_sha_final_req(dd);
1837         break;
1838 
1839     case SHA_OP_DIGEST:
1840         err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1841         break;
1842 
1843     default:
1844         return atmel_sha_complete(dd, -EINVAL);
1845     }
1846 
1847     return err;
1848 }
1849 
1850 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1851                  unsigned int keylen)
1852 {
1853     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854 
1855     return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1856 }
1857 
1858 static int atmel_sha_hmac_init(struct ahash_request *req)
1859 {
1860     int err;
1861 
1862     err = atmel_sha_init(req);
1863     if (err)
1864         return err;
1865 
1866     return atmel_sha_enqueue(req, SHA_OP_INIT);
1867 }
1868 
1869 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1870 {
1871     struct ahash_request *req = dd->req;
1872     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1873     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1874     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1875     size_t bs = ctx->block_size;
1876     size_t hs = ctx->hash_size;
1877 
1878     ctx->bufcnt = 0;
1879     ctx->digcnt[0] = bs;
1880     ctx->digcnt[1] = 0;
1881     ctx->flags |= SHA_FLAGS_RESTORE;
1882     memcpy(ctx->digest, hmac->ipad, hs);
1883     return atmel_sha_complete(dd, 0);
1884 }
1885 
1886 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1887 {
1888     struct ahash_request *req = dd->req;
1889     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1890     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1891     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1892     u32 *digest = (u32 *)ctx->digest;
1893     size_t ds = crypto_ahash_digestsize(tfm);
1894     size_t bs = ctx->block_size;
1895     size_t hs = ctx->hash_size;
1896     size_t i, num_words;
1897     u32 mr;
1898 
1899     /* Save d = SHA((K' + ipad) | msg). */
1900     num_words = ds / sizeof(u32);
1901     for (i = 0; i < num_words; ++i)
1902         digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1903 
1904     /* Restore context to finish computing SHA((K' + opad) | d). */
1905     atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1906     num_words = hs / sizeof(u32);
1907     for (i = 0; i < num_words; ++i)
1908         atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1909 
1910     mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1911     mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1912     atmel_sha_write(dd, SHA_MR, mr);
1913     atmel_sha_write(dd, SHA_MSR, bs + ds);
1914     atmel_sha_write(dd, SHA_BCR, ds);
1915     atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1916 
1917     sg_init_one(&dd->tmp, digest, ds);
1918     return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1919                    atmel_sha_hmac_final_done);
1920 }
1921 
1922 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1923 {
1924     /*
1925      * req->result might not be sizeof(u32) aligned, so copy the
1926      * digest into ctx->digest[] before memcpy() the data into
1927      * req->result.
1928      */
1929     atmel_sha_copy_hash(dd->req);
1930     atmel_sha_copy_ready_hash(dd->req);
1931     return atmel_sha_complete(dd, 0);
1932 }
1933 
1934 static int atmel_sha_hmac_digest(struct ahash_request *req)
1935 {
1936     int err;
1937 
1938     err = atmel_sha_init(req);
1939     if (err)
1940         return err;
1941 
1942     return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1943 }
1944 
1945 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1946 {
1947     struct ahash_request *req = dd->req;
1948     struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1949     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1950     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1951     size_t hs = ctx->hash_size;
1952     size_t i, num_words = hs / sizeof(u32);
1953     bool use_dma = false;
1954     u32 mr;
1955 
1956     /* Special case for empty message. */
1957     if (!req->nbytes)
1958         return atmel_sha_complete(dd, -EINVAL); // TODO:
1959 
1960     /* Check DMA threshold and alignment. */
1961     if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1962         atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1963         use_dma = true;
1964 
1965     /* Write both initial hash values to compute a HMAC. */
1966     atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1967     for (i = 0; i < num_words; ++i)
1968         atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1969 
1970     atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1971     for (i = 0; i < num_words; ++i)
1972         atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1973 
1974     /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1975     mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1976     mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1977     if (use_dma)
1978         mr |= SHA_MR_MODE_IDATAR0;
1979     else
1980         mr |= SHA_MR_MODE_AUTO;
1981     atmel_sha_write(dd, SHA_MR, mr);
1982 
1983     atmel_sha_write(dd, SHA_MSR, req->nbytes);
1984     atmel_sha_write(dd, SHA_BCR, req->nbytes);
1985 
1986     atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1987 
1988     /* Process data. */
1989     if (use_dma)
1990         return atmel_sha_dma_start(dd, req->src, req->nbytes,
1991                        atmel_sha_hmac_final_done);
1992 
1993     return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1994                    atmel_sha_hmac_final_done);
1995 }
1996 
1997 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
1998 {
1999     struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2000 
2001     crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2002                  sizeof(struct atmel_sha_reqctx));
2003     hmac->base.start = atmel_sha_hmac_start;
2004     atmel_sha_hmac_key_init(&hmac->hkey);
2005 
2006     return 0;
2007 }
2008 
2009 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2010 {
2011     struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2012 
2013     atmel_sha_hmac_key_release(&hmac->hkey);
2014 }
2015 
2016 static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2017 {
2018     alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2019     alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2020     alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2021     alg->halg.base.cra_module = THIS_MODULE;
2022     alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2023     alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2024 
2025     alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2026 
2027     alg->init = atmel_sha_hmac_init;
2028     alg->update = atmel_sha_update;
2029     alg->final = atmel_sha_final;
2030     alg->digest = atmel_sha_hmac_digest;
2031     alg->setkey = atmel_sha_hmac_setkey;
2032     alg->export = atmel_sha_export;
2033     alg->import = atmel_sha_import;
2034 }
2035 
2036 static struct ahash_alg sha_hmac_algs[] = {
2037 {
2038     .halg.base.cra_name     = "hmac(sha1)",
2039     .halg.base.cra_driver_name  = "atmel-hmac-sha1",
2040     .halg.base.cra_blocksize    = SHA1_BLOCK_SIZE,
2041 
2042     .halg.digestsize = SHA1_DIGEST_SIZE,
2043 },
2044 {
2045     .halg.base.cra_name     = "hmac(sha224)",
2046     .halg.base.cra_driver_name  = "atmel-hmac-sha224",
2047     .halg.base.cra_blocksize    = SHA224_BLOCK_SIZE,
2048 
2049     .halg.digestsize = SHA224_DIGEST_SIZE,
2050 },
2051 {
2052     .halg.base.cra_name     = "hmac(sha256)",
2053     .halg.base.cra_driver_name  = "atmel-hmac-sha256",
2054     .halg.base.cra_blocksize    = SHA256_BLOCK_SIZE,
2055 
2056     .halg.digestsize = SHA256_DIGEST_SIZE,
2057 },
2058 {
2059     .halg.base.cra_name     = "hmac(sha384)",
2060     .halg.base.cra_driver_name  = "atmel-hmac-sha384",
2061     .halg.base.cra_blocksize    = SHA384_BLOCK_SIZE,
2062 
2063     .halg.digestsize = SHA384_DIGEST_SIZE,
2064 },
2065 {
2066     .halg.base.cra_name     = "hmac(sha512)",
2067     .halg.base.cra_driver_name  = "atmel-hmac-sha512",
2068     .halg.base.cra_blocksize    = SHA512_BLOCK_SIZE,
2069 
2070     .halg.digestsize = SHA512_DIGEST_SIZE,
2071 },
2072 };
2073 
2074 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2075 /* authenc functions */
2076 
2077 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2078 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2079 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2080 
2081 
2082 struct atmel_sha_authenc_ctx {
2083     struct crypto_ahash *tfm;
2084 };
2085 
2086 struct atmel_sha_authenc_reqctx {
2087     struct atmel_sha_reqctx base;
2088 
2089     atmel_aes_authenc_fn_t  cb;
2090     struct atmel_aes_dev    *aes_dev;
2091 
2092     /* _init() parameters. */
2093     struct scatterlist  *assoc;
2094     u32         assoclen;
2095     u32         textlen;
2096 
2097     /* _final() parameters. */
2098     u32         *digest;
2099     unsigned int        digestlen;
2100 };
2101 
2102 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2103                        int err)
2104 {
2105     struct ahash_request *req = areq->data;
2106     struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2107 
2108     authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2109 }
2110 
2111 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2112 {
2113     struct ahash_request *req = dd->req;
2114     struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2115     int err;
2116 
2117     /*
2118      * Force atmel_sha_complete() to call req->base.complete(), ie
2119      * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2120      */
2121     dd->force_complete = true;
2122 
2123     err = atmel_sha_hw_init(dd);
2124     return authctx->cb(authctx->aes_dev, err, dd->is_async);
2125 }
2126 
2127 bool atmel_sha_authenc_is_ready(void)
2128 {
2129     struct atmel_sha_ctx dummy;
2130 
2131     dummy.dd = NULL;
2132     return (atmel_sha_find_dev(&dummy) != NULL);
2133 }
2134 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2135 
2136 unsigned int atmel_sha_authenc_get_reqsize(void)
2137 {
2138     return sizeof(struct atmel_sha_authenc_reqctx);
2139 }
2140 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2141 
2142 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2143 {
2144     struct atmel_sha_authenc_ctx *auth;
2145     struct crypto_ahash *tfm;
2146     struct atmel_sha_ctx *tctx;
2147     const char *name;
2148     int err = -EINVAL;
2149 
2150     switch (mode & SHA_FLAGS_MODE_MASK) {
2151     case SHA_FLAGS_HMAC_SHA1:
2152         name = "atmel-hmac-sha1";
2153         break;
2154 
2155     case SHA_FLAGS_HMAC_SHA224:
2156         name = "atmel-hmac-sha224";
2157         break;
2158 
2159     case SHA_FLAGS_HMAC_SHA256:
2160         name = "atmel-hmac-sha256";
2161         break;
2162 
2163     case SHA_FLAGS_HMAC_SHA384:
2164         name = "atmel-hmac-sha384";
2165         break;
2166 
2167     case SHA_FLAGS_HMAC_SHA512:
2168         name = "atmel-hmac-sha512";
2169         break;
2170 
2171     default:
2172         goto error;
2173     }
2174 
2175     tfm = crypto_alloc_ahash(name, 0, 0);
2176     if (IS_ERR(tfm)) {
2177         err = PTR_ERR(tfm);
2178         goto error;
2179     }
2180     tctx = crypto_ahash_ctx(tfm);
2181     tctx->start = atmel_sha_authenc_start;
2182     tctx->flags = mode;
2183 
2184     auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2185     if (!auth) {
2186         err = -ENOMEM;
2187         goto err_free_ahash;
2188     }
2189     auth->tfm = tfm;
2190 
2191     return auth;
2192 
2193 err_free_ahash:
2194     crypto_free_ahash(tfm);
2195 error:
2196     return ERR_PTR(err);
2197 }
2198 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2199 
2200 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2201 {
2202     if (auth)
2203         crypto_free_ahash(auth->tfm);
2204     kfree(auth);
2205 }
2206 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2207 
2208 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2209                  const u8 *key, unsigned int keylen, u32 flags)
2210 {
2211     struct crypto_ahash *tfm = auth->tfm;
2212 
2213     crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2214     crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2215     return crypto_ahash_setkey(tfm, key, keylen);
2216 }
2217 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2218 
2219 int atmel_sha_authenc_schedule(struct ahash_request *req,
2220                    struct atmel_sha_authenc_ctx *auth,
2221                    atmel_aes_authenc_fn_t cb,
2222                    struct atmel_aes_dev *aes_dev)
2223 {
2224     struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2225     struct atmel_sha_reqctx *ctx = &authctx->base;
2226     struct crypto_ahash *tfm = auth->tfm;
2227     struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2228     struct atmel_sha_dev *dd;
2229 
2230     /* Reset request context (MUST be done first). */
2231     memset(authctx, 0, sizeof(*authctx));
2232 
2233     /* Get SHA device. */
2234     dd = atmel_sha_find_dev(tctx);
2235     if (!dd)
2236         return cb(aes_dev, -ENODEV, false);
2237 
2238     /* Init request context. */
2239     ctx->dd = dd;
2240     ctx->buflen = SHA_BUFFER_LEN;
2241     authctx->cb = cb;
2242     authctx->aes_dev = aes_dev;
2243     ahash_request_set_tfm(req, tfm);
2244     ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2245 
2246     return atmel_sha_handle_queue(dd, req);
2247 }
2248 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2249 
2250 int atmel_sha_authenc_init(struct ahash_request *req,
2251                struct scatterlist *assoc, unsigned int assoclen,
2252                unsigned int textlen,
2253                atmel_aes_authenc_fn_t cb,
2254                struct atmel_aes_dev *aes_dev)
2255 {
2256     struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2257     struct atmel_sha_reqctx *ctx = &authctx->base;
2258     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2259     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2260     struct atmel_sha_dev *dd = ctx->dd;
2261 
2262     if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2263         return atmel_sha_complete(dd, -EINVAL);
2264 
2265     authctx->cb = cb;
2266     authctx->aes_dev = aes_dev;
2267     authctx->assoc = assoc;
2268     authctx->assoclen = assoclen;
2269     authctx->textlen = textlen;
2270 
2271     ctx->flags = hmac->base.flags;
2272     return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2273 }
2274 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2275 
2276 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2277 {
2278     struct ahash_request *req = dd->req;
2279     struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2280     struct atmel_sha_reqctx *ctx = &authctx->base;
2281     struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2282     struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2283     size_t hs = ctx->hash_size;
2284     size_t i, num_words = hs / sizeof(u32);
2285     u32 mr, msg_size;
2286 
2287     atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2288     for (i = 0; i < num_words; ++i)
2289         atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2290 
2291     atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2292     for (i = 0; i < num_words; ++i)
2293         atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2294 
2295     mr = (SHA_MR_MODE_IDATAR0 |
2296           SHA_MR_HMAC |
2297           SHA_MR_DUALBUFF);
2298     mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2299     atmel_sha_write(dd, SHA_MR, mr);
2300 
2301     msg_size = authctx->assoclen + authctx->textlen;
2302     atmel_sha_write(dd, SHA_MSR, msg_size);
2303     atmel_sha_write(dd, SHA_BCR, msg_size);
2304 
2305     atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2306 
2307     /* Process assoc data. */
2308     return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2309                    true, false,
2310                    atmel_sha_authenc_init_done);
2311 }
2312 
2313 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2314 {
2315     struct ahash_request *req = dd->req;
2316     struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2317 
2318     return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2319 }
2320 
2321 int atmel_sha_authenc_final(struct ahash_request *req,
2322                 u32 *digest, unsigned int digestlen,
2323                 atmel_aes_authenc_fn_t cb,
2324                 struct atmel_aes_dev *aes_dev)
2325 {
2326     struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2327     struct atmel_sha_reqctx *ctx = &authctx->base;
2328     struct atmel_sha_dev *dd = ctx->dd;
2329 
2330     switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2331     case SHA_FLAGS_SHA1:
2332         authctx->digestlen = SHA1_DIGEST_SIZE;
2333         break;
2334 
2335     case SHA_FLAGS_SHA224:
2336         authctx->digestlen = SHA224_DIGEST_SIZE;
2337         break;
2338 
2339     case SHA_FLAGS_SHA256:
2340         authctx->digestlen = SHA256_DIGEST_SIZE;
2341         break;
2342 
2343     case SHA_FLAGS_SHA384:
2344         authctx->digestlen = SHA384_DIGEST_SIZE;
2345         break;
2346 
2347     case SHA_FLAGS_SHA512:
2348         authctx->digestlen = SHA512_DIGEST_SIZE;
2349         break;
2350 
2351     default:
2352         return atmel_sha_complete(dd, -EINVAL);
2353     }
2354     if (authctx->digestlen > digestlen)
2355         authctx->digestlen = digestlen;
2356 
2357     authctx->cb = cb;
2358     authctx->aes_dev = aes_dev;
2359     authctx->digest = digest;
2360     return atmel_sha_wait_for_data_ready(dd,
2361                          atmel_sha_authenc_final_done);
2362 }
2363 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2364 
2365 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2366 {
2367     struct ahash_request *req = dd->req;
2368     struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2369     size_t i, num_words = authctx->digestlen / sizeof(u32);
2370 
2371     for (i = 0; i < num_words; ++i)
2372         authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2373 
2374     return atmel_sha_complete(dd, 0);
2375 }
2376 
2377 void atmel_sha_authenc_abort(struct ahash_request *req)
2378 {
2379     struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2380     struct atmel_sha_reqctx *ctx = &authctx->base;
2381     struct atmel_sha_dev *dd = ctx->dd;
2382 
2383     /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2384     dd->is_async = false;
2385     dd->force_complete = false;
2386     (void)atmel_sha_complete(dd, 0);
2387 }
2388 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2389 
2390 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2391 
2392 
2393 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2394 {
2395     int i;
2396 
2397     if (dd->caps.has_hmac)
2398         for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2399             crypto_unregister_ahash(&sha_hmac_algs[i]);
2400 
2401     for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2402         crypto_unregister_ahash(&sha_1_256_algs[i]);
2403 
2404     if (dd->caps.has_sha224)
2405         crypto_unregister_ahash(&sha_224_alg);
2406 
2407     if (dd->caps.has_sha_384_512) {
2408         for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2409             crypto_unregister_ahash(&sha_384_512_algs[i]);
2410     }
2411 }
2412 
2413 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2414 {
2415     int err, i, j;
2416 
2417     for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2418         atmel_sha_alg_init(&sha_1_256_algs[i]);
2419 
2420         err = crypto_register_ahash(&sha_1_256_algs[i]);
2421         if (err)
2422             goto err_sha_1_256_algs;
2423     }
2424 
2425     if (dd->caps.has_sha224) {
2426         atmel_sha_alg_init(&sha_224_alg);
2427 
2428         err = crypto_register_ahash(&sha_224_alg);
2429         if (err)
2430             goto err_sha_224_algs;
2431     }
2432 
2433     if (dd->caps.has_sha_384_512) {
2434         for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2435             atmel_sha_alg_init(&sha_384_512_algs[i]);
2436 
2437             err = crypto_register_ahash(&sha_384_512_algs[i]);
2438             if (err)
2439                 goto err_sha_384_512_algs;
2440         }
2441     }
2442 
2443     if (dd->caps.has_hmac) {
2444         for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2445             atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2446 
2447             err = crypto_register_ahash(&sha_hmac_algs[i]);
2448             if (err)
2449                 goto err_sha_hmac_algs;
2450         }
2451     }
2452 
2453     return 0;
2454 
2455     /*i = ARRAY_SIZE(sha_hmac_algs);*/
2456 err_sha_hmac_algs:
2457     for (j = 0; j < i; j++)
2458         crypto_unregister_ahash(&sha_hmac_algs[j]);
2459     i = ARRAY_SIZE(sha_384_512_algs);
2460 err_sha_384_512_algs:
2461     for (j = 0; j < i; j++)
2462         crypto_unregister_ahash(&sha_384_512_algs[j]);
2463     crypto_unregister_ahash(&sha_224_alg);
2464 err_sha_224_algs:
2465     i = ARRAY_SIZE(sha_1_256_algs);
2466 err_sha_1_256_algs:
2467     for (j = 0; j < i; j++)
2468         crypto_unregister_ahash(&sha_1_256_algs[j]);
2469 
2470     return err;
2471 }
2472 
2473 static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2474 {
2475     dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2476     if (IS_ERR(dd->dma_lch_in.chan)) {
2477         dev_err(dd->dev, "DMA channel is not available\n");
2478         return PTR_ERR(dd->dma_lch_in.chan);
2479     }
2480 
2481     dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2482         SHA_REG_DIN(0);
2483     dd->dma_lch_in.dma_conf.src_maxburst = 1;
2484     dd->dma_lch_in.dma_conf.src_addr_width =
2485         DMA_SLAVE_BUSWIDTH_4_BYTES;
2486     dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2487     dd->dma_lch_in.dma_conf.dst_addr_width =
2488         DMA_SLAVE_BUSWIDTH_4_BYTES;
2489     dd->dma_lch_in.dma_conf.device_fc = false;
2490 
2491     return 0;
2492 }
2493 
2494 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2495 {
2496     dma_release_channel(dd->dma_lch_in.chan);
2497 }
2498 
2499 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2500 {
2501 
2502     dd->caps.has_dma = 0;
2503     dd->caps.has_dualbuff = 0;
2504     dd->caps.has_sha224 = 0;
2505     dd->caps.has_sha_384_512 = 0;
2506     dd->caps.has_uihv = 0;
2507     dd->caps.has_hmac = 0;
2508 
2509     /* keep only major version number */
2510     switch (dd->hw_version & 0xff0) {
2511     case 0x700:
2512     case 0x510:
2513         dd->caps.has_dma = 1;
2514         dd->caps.has_dualbuff = 1;
2515         dd->caps.has_sha224 = 1;
2516         dd->caps.has_sha_384_512 = 1;
2517         dd->caps.has_uihv = 1;
2518         dd->caps.has_hmac = 1;
2519         break;
2520     case 0x420:
2521         dd->caps.has_dma = 1;
2522         dd->caps.has_dualbuff = 1;
2523         dd->caps.has_sha224 = 1;
2524         dd->caps.has_sha_384_512 = 1;
2525         dd->caps.has_uihv = 1;
2526         break;
2527     case 0x410:
2528         dd->caps.has_dma = 1;
2529         dd->caps.has_dualbuff = 1;
2530         dd->caps.has_sha224 = 1;
2531         dd->caps.has_sha_384_512 = 1;
2532         break;
2533     case 0x400:
2534         dd->caps.has_dma = 1;
2535         dd->caps.has_dualbuff = 1;
2536         dd->caps.has_sha224 = 1;
2537         break;
2538     case 0x320:
2539         break;
2540     default:
2541         dev_warn(dd->dev,
2542                 "Unmanaged sha version, set minimum capabilities\n");
2543         break;
2544     }
2545 }
2546 
2547 #if defined(CONFIG_OF)
2548 static const struct of_device_id atmel_sha_dt_ids[] = {
2549     { .compatible = "atmel,at91sam9g46-sha" },
2550     { /* sentinel */ }
2551 };
2552 
2553 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2554 #endif
2555 
2556 static int atmel_sha_probe(struct platform_device *pdev)
2557 {
2558     struct atmel_sha_dev *sha_dd;
2559     struct device *dev = &pdev->dev;
2560     struct resource *sha_res;
2561     int err;
2562 
2563     sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2564     if (!sha_dd)
2565         return -ENOMEM;
2566 
2567     sha_dd->dev = dev;
2568 
2569     platform_set_drvdata(pdev, sha_dd);
2570 
2571     INIT_LIST_HEAD(&sha_dd->list);
2572     spin_lock_init(&sha_dd->lock);
2573 
2574     tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2575                     (unsigned long)sha_dd);
2576     tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2577                     (unsigned long)sha_dd);
2578 
2579     crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2580 
2581     /* Get the base address */
2582     sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2583     if (!sha_res) {
2584         dev_err(dev, "no MEM resource info\n");
2585         err = -ENODEV;
2586         goto err_tasklet_kill;
2587     }
2588     sha_dd->phys_base = sha_res->start;
2589 
2590     /* Get the IRQ */
2591     sha_dd->irq = platform_get_irq(pdev,  0);
2592     if (sha_dd->irq < 0) {
2593         err = sha_dd->irq;
2594         goto err_tasklet_kill;
2595     }
2596 
2597     err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2598                    IRQF_SHARED, "atmel-sha", sha_dd);
2599     if (err) {
2600         dev_err(dev, "unable to request sha irq.\n");
2601         goto err_tasklet_kill;
2602     }
2603 
2604     /* Initializing the clock */
2605     sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2606     if (IS_ERR(sha_dd->iclk)) {
2607         dev_err(dev, "clock initialization failed.\n");
2608         err = PTR_ERR(sha_dd->iclk);
2609         goto err_tasklet_kill;
2610     }
2611 
2612     sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2613     if (IS_ERR(sha_dd->io_base)) {
2614         dev_err(dev, "can't ioremap\n");
2615         err = PTR_ERR(sha_dd->io_base);
2616         goto err_tasklet_kill;
2617     }
2618 
2619     err = clk_prepare(sha_dd->iclk);
2620     if (err)
2621         goto err_tasklet_kill;
2622 
2623     err = atmel_sha_hw_version_init(sha_dd);
2624     if (err)
2625         goto err_iclk_unprepare;
2626 
2627     atmel_sha_get_cap(sha_dd);
2628 
2629     if (sha_dd->caps.has_dma) {
2630         err = atmel_sha_dma_init(sha_dd);
2631         if (err)
2632             goto err_iclk_unprepare;
2633 
2634         dev_info(dev, "using %s for DMA transfers\n",
2635                 dma_chan_name(sha_dd->dma_lch_in.chan));
2636     }
2637 
2638     spin_lock(&atmel_sha.lock);
2639     list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2640     spin_unlock(&atmel_sha.lock);
2641 
2642     err = atmel_sha_register_algs(sha_dd);
2643     if (err)
2644         goto err_algs;
2645 
2646     dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2647             sha_dd->caps.has_sha224 ? "/SHA224" : "",
2648             sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2649 
2650     return 0;
2651 
2652 err_algs:
2653     spin_lock(&atmel_sha.lock);
2654     list_del(&sha_dd->list);
2655     spin_unlock(&atmel_sha.lock);
2656     if (sha_dd->caps.has_dma)
2657         atmel_sha_dma_cleanup(sha_dd);
2658 err_iclk_unprepare:
2659     clk_unprepare(sha_dd->iclk);
2660 err_tasklet_kill:
2661     tasklet_kill(&sha_dd->queue_task);
2662     tasklet_kill(&sha_dd->done_task);
2663 
2664     return err;
2665 }
2666 
2667 static int atmel_sha_remove(struct platform_device *pdev)
2668 {
2669     struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2670 
2671     spin_lock(&atmel_sha.lock);
2672     list_del(&sha_dd->list);
2673     spin_unlock(&atmel_sha.lock);
2674 
2675     atmel_sha_unregister_algs(sha_dd);
2676 
2677     tasklet_kill(&sha_dd->queue_task);
2678     tasklet_kill(&sha_dd->done_task);
2679 
2680     if (sha_dd->caps.has_dma)
2681         atmel_sha_dma_cleanup(sha_dd);
2682 
2683     clk_unprepare(sha_dd->iclk);
2684 
2685     return 0;
2686 }
2687 
2688 static struct platform_driver atmel_sha_driver = {
2689     .probe      = atmel_sha_probe,
2690     .remove     = atmel_sha_remove,
2691     .driver     = {
2692         .name   = "atmel_sha",
2693         .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2694     },
2695 };
2696 
2697 module_platform_driver(atmel_sha_driver);
2698 
2699 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2700 MODULE_LICENSE("GPL v2");
2701 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");