![]() |
|
|||
0001 // SPDX-License-Identifier: GPL-2.0-only 0002 /* 0003 * menu.c - the menu idle governor 0004 * 0005 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com> 0006 * Copyright (C) 2009 Intel Corporation 0007 * Author: 0008 * Arjan van de Ven <arjan@linux.intel.com> 0009 */ 0010 0011 #include <linux/kernel.h> 0012 #include <linux/cpuidle.h> 0013 #include <linux/time.h> 0014 #include <linux/ktime.h> 0015 #include <linux/hrtimer.h> 0016 #include <linux/tick.h> 0017 #include <linux/sched.h> 0018 #include <linux/sched/loadavg.h> 0019 #include <linux/sched/stat.h> 0020 #include <linux/math64.h> 0021 0022 #define BUCKETS 12 0023 #define INTERVAL_SHIFT 3 0024 #define INTERVALS (1UL << INTERVAL_SHIFT) 0025 #define RESOLUTION 1024 0026 #define DECAY 8 0027 #define MAX_INTERESTING (50000 * NSEC_PER_USEC) 0028 0029 /* 0030 * Concepts and ideas behind the menu governor 0031 * 0032 * For the menu governor, there are 3 decision factors for picking a C 0033 * state: 0034 * 1) Energy break even point 0035 * 2) Performance impact 0036 * 3) Latency tolerance (from pmqos infrastructure) 0037 * These three factors are treated independently. 0038 * 0039 * Energy break even point 0040 * ----------------------- 0041 * C state entry and exit have an energy cost, and a certain amount of time in 0042 * the C state is required to actually break even on this cost. CPUIDLE 0043 * provides us this duration in the "target_residency" field. So all that we 0044 * need is a good prediction of how long we'll be idle. Like the traditional 0045 * menu governor, we start with the actual known "next timer event" time. 0046 * 0047 * Since there are other source of wakeups (interrupts for example) than 0048 * the next timer event, this estimation is rather optimistic. To get a 0049 * more realistic estimate, a correction factor is applied to the estimate, 0050 * that is based on historic behavior. For example, if in the past the actual 0051 * duration always was 50% of the next timer tick, the correction factor will 0052 * be 0.5. 0053 * 0054 * menu uses a running average for this correction factor, however it uses a 0055 * set of factors, not just a single factor. This stems from the realization 0056 * that the ratio is dependent on the order of magnitude of the expected 0057 * duration; if we expect 500 milliseconds of idle time the likelihood of 0058 * getting an interrupt very early is much higher than if we expect 50 micro 0059 * seconds of idle time. A second independent factor that has big impact on 0060 * the actual factor is if there is (disk) IO outstanding or not. 0061 * (as a special twist, we consider every sleep longer than 50 milliseconds 0062 * as perfect; there are no power gains for sleeping longer than this) 0063 * 0064 * For these two reasons we keep an array of 12 independent factors, that gets 0065 * indexed based on the magnitude of the expected duration as well as the 0066 * "is IO outstanding" property. 0067 * 0068 * Repeatable-interval-detector 0069 * ---------------------------- 0070 * There are some cases where "next timer" is a completely unusable predictor: 0071 * Those cases where the interval is fixed, for example due to hardware 0072 * interrupt mitigation, but also due to fixed transfer rate devices such as 0073 * mice. 0074 * For this, we use a different predictor: We track the duration of the last 8 0075 * intervals and if the stand deviation of these 8 intervals is below a 0076 * threshold value, we use the average of these intervals as prediction. 0077 * 0078 * Limiting Performance Impact 0079 * --------------------------- 0080 * C states, especially those with large exit latencies, can have a real 0081 * noticeable impact on workloads, which is not acceptable for most sysadmins, 0082 * and in addition, less performance has a power price of its own. 0083 * 0084 * As a general rule of thumb, menu assumes that the following heuristic 0085 * holds: 0086 * The busier the system, the less impact of C states is acceptable 0087 * 0088 * This rule-of-thumb is implemented using a performance-multiplier: 0089 * If the exit latency times the performance multiplier is longer than 0090 * the predicted duration, the C state is not considered a candidate 0091 * for selection due to a too high performance impact. So the higher 0092 * this multiplier is, the longer we need to be idle to pick a deep C 0093 * state, and thus the less likely a busy CPU will hit such a deep 0094 * C state. 0095 * 0096 * Two factors are used in determing this multiplier: 0097 * a value of 10 is added for each point of "per cpu load average" we have. 0098 * a value of 5 points is added for each process that is waiting for 0099 * IO on this CPU. 0100 * (these values are experimentally determined) 0101 * 0102 * The load average factor gives a longer term (few seconds) input to the 0103 * decision, while the iowait value gives a cpu local instantanious input. 0104 * The iowait factor may look low, but realize that this is also already 0105 * represented in the system load average. 0106 * 0107 */ 0108 0109 struct menu_device { 0110 int needs_update; 0111 int tick_wakeup; 0112 0113 u64 next_timer_ns; 0114 unsigned int bucket; 0115 unsigned int correction_factor[BUCKETS]; 0116 unsigned int intervals[INTERVALS]; 0117 int interval_ptr; 0118 }; 0119 0120 static inline int which_bucket(u64 duration_ns, unsigned int nr_iowaiters) 0121 { 0122 int bucket = 0; 0123 0124 /* 0125 * We keep two groups of stats; one with no 0126 * IO pending, one without. 0127 * This allows us to calculate 0128 * E(duration)|iowait 0129 */ 0130 if (nr_iowaiters) 0131 bucket = BUCKETS/2; 0132 0133 if (duration_ns < 10ULL * NSEC_PER_USEC) 0134 return bucket; 0135 if (duration_ns < 100ULL * NSEC_PER_USEC) 0136 return bucket + 1; 0137 if (duration_ns < 1000ULL * NSEC_PER_USEC) 0138 return bucket + 2; 0139 if (duration_ns < 10000ULL * NSEC_PER_USEC) 0140 return bucket + 3; 0141 if (duration_ns < 100000ULL * NSEC_PER_USEC) 0142 return bucket + 4; 0143 return bucket + 5; 0144 } 0145 0146 /* 0147 * Return a multiplier for the exit latency that is intended 0148 * to take performance requirements into account. 0149 * The more performance critical we estimate the system 0150 * to be, the higher this multiplier, and thus the higher 0151 * the barrier to go to an expensive C state. 0152 */ 0153 static inline int performance_multiplier(unsigned int nr_iowaiters) 0154 { 0155 /* for IO wait tasks (per cpu!) we add 10x each */ 0156 return 1 + 10 * nr_iowaiters; 0157 } 0158 0159 static DEFINE_PER_CPU(struct menu_device, menu_devices); 0160 0161 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev); 0162 0163 /* 0164 * Try detecting repeating patterns by keeping track of the last 8 0165 * intervals, and checking if the standard deviation of that set 0166 * of points is below a threshold. If it is... then use the 0167 * average of these 8 points as the estimated value. 0168 */ 0169 static unsigned int get_typical_interval(struct menu_device *data, 0170 unsigned int predicted_us) 0171 { 0172 int i, divisor; 0173 unsigned int min, max, thresh, avg; 0174 uint64_t sum, variance; 0175 0176 thresh = INT_MAX; /* Discard outliers above this value */ 0177 0178 again: 0179 0180 /* First calculate the average of past intervals */ 0181 min = UINT_MAX; 0182 max = 0; 0183 sum = 0; 0184 divisor = 0; 0185 for (i = 0; i < INTERVALS; i++) { 0186 unsigned int value = data->intervals[i]; 0187 if (value <= thresh) { 0188 sum += value; 0189 divisor++; 0190 if (value > max) 0191 max = value; 0192 0193 if (value < min) 0194 min = value; 0195 } 0196 } 0197 0198 /* 0199 * If the result of the computation is going to be discarded anyway, 0200 * avoid the computation altogether. 0201 */ 0202 if (min >= predicted_us) 0203 return UINT_MAX; 0204 0205 if (divisor == INTERVALS) 0206 avg = sum >> INTERVAL_SHIFT; 0207 else 0208 avg = div_u64(sum, divisor); 0209 0210 /* Then try to determine variance */ 0211 variance = 0; 0212 for (i = 0; i < INTERVALS; i++) { 0213 unsigned int value = data->intervals[i]; 0214 if (value <= thresh) { 0215 int64_t diff = (int64_t)value - avg; 0216 variance += diff * diff; 0217 } 0218 } 0219 if (divisor == INTERVALS) 0220 variance >>= INTERVAL_SHIFT; 0221 else 0222 do_div(variance, divisor); 0223 0224 /* 0225 * The typical interval is obtained when standard deviation is 0226 * small (stddev <= 20 us, variance <= 400 us^2) or standard 0227 * deviation is small compared to the average interval (avg > 0228 * 6*stddev, avg^2 > 36*variance). The average is smaller than 0229 * UINT_MAX aka U32_MAX, so computing its square does not 0230 * overflow a u64. We simply reject this candidate average if 0231 * the standard deviation is greater than 715 s (which is 0232 * rather unlikely). 0233 * 0234 * Use this result only if there is no timer to wake us up sooner. 0235 */ 0236 if (likely(variance <= U64_MAX/36)) { 0237 if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3)) 0238 || variance <= 400) { 0239 return avg; 0240 } 0241 } 0242 0243 /* 0244 * If we have outliers to the upside in our distribution, discard 0245 * those by setting the threshold to exclude these outliers, then 0246 * calculate the average and standard deviation again. Once we get 0247 * down to the bottom 3/4 of our samples, stop excluding samples. 0248 * 0249 * This can deal with workloads that have long pauses interspersed 0250 * with sporadic activity with a bunch of short pauses. 0251 */ 0252 if ((divisor * 4) <= INTERVALS * 3) 0253 return UINT_MAX; 0254 0255 thresh = max - 1; 0256 goto again; 0257 } 0258 0259 /** 0260 * menu_select - selects the next idle state to enter 0261 * @drv: cpuidle driver containing state data 0262 * @dev: the CPU 0263 * @stop_tick: indication on whether or not to stop the tick 0264 */ 0265 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev, 0266 bool *stop_tick) 0267 { 0268 struct menu_device *data = this_cpu_ptr(&menu_devices); 0269 s64 latency_req = cpuidle_governor_latency_req(dev->cpu); 0270 unsigned int predicted_us; 0271 u64 predicted_ns; 0272 u64 interactivity_req; 0273 unsigned int nr_iowaiters; 0274 ktime_t delta, delta_tick; 0275 int i, idx; 0276 0277 if (data->needs_update) { 0278 menu_update(drv, dev); 0279 data->needs_update = 0; 0280 } 0281 0282 /* determine the expected residency time, round up */ 0283 delta = tick_nohz_get_sleep_length(&delta_tick); 0284 if (unlikely(delta < 0)) { 0285 delta = 0; 0286 delta_tick = 0; 0287 } 0288 data->next_timer_ns = delta; 0289 0290 nr_iowaiters = nr_iowait_cpu(dev->cpu); 0291 data->bucket = which_bucket(data->next_timer_ns, nr_iowaiters); 0292 0293 if (unlikely(drv->state_count <= 1 || latency_req == 0) || 0294 ((data->next_timer_ns < drv->states[1].target_residency_ns || 0295 latency_req < drv->states[1].exit_latency_ns) && 0296 !dev->states_usage[0].disable)) { 0297 /* 0298 * In this case state[0] will be used no matter what, so return 0299 * it right away and keep the tick running if state[0] is a 0300 * polling one. 0301 */ 0302 *stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING); 0303 return 0; 0304 } 0305 0306 /* Round up the result for half microseconds. */ 0307 predicted_us = div_u64(data->next_timer_ns * 0308 data->correction_factor[data->bucket] + 0309 (RESOLUTION * DECAY * NSEC_PER_USEC) / 2, 0310 RESOLUTION * DECAY * NSEC_PER_USEC); 0311 /* Use the lowest expected idle interval to pick the idle state. */ 0312 predicted_ns = (u64)min(predicted_us, 0313 get_typical_interval(data, predicted_us)) * 0314 NSEC_PER_USEC; 0315 0316 if (tick_nohz_tick_stopped()) { 0317 /* 0318 * If the tick is already stopped, the cost of possible short 0319 * idle duration misprediction is much higher, because the CPU 0320 * may be stuck in a shallow idle state for a long time as a 0321 * result of it. In that case say we might mispredict and use 0322 * the known time till the closest timer event for the idle 0323 * state selection. 0324 */ 0325 if (predicted_ns < TICK_NSEC) 0326 predicted_ns = data->next_timer_ns; 0327 } else { 0328 /* 0329 * Use the performance multiplier and the user-configurable 0330 * latency_req to determine the maximum exit latency. 0331 */ 0332 interactivity_req = div64_u64(predicted_ns, 0333 performance_multiplier(nr_iowaiters)); 0334 if (latency_req > interactivity_req) 0335 latency_req = interactivity_req; 0336 } 0337 0338 /* 0339 * Find the idle state with the lowest power while satisfying 0340 * our constraints. 0341 */ 0342 idx = -1; 0343 for (i = 0; i < drv->state_count; i++) { 0344 struct cpuidle_state *s = &drv->states[i]; 0345 0346 if (dev->states_usage[i].disable) 0347 continue; 0348 0349 if (idx == -1) 0350 idx = i; /* first enabled state */ 0351 0352 if (s->target_residency_ns > predicted_ns) { 0353 /* 0354 * Use a physical idle state, not busy polling, unless 0355 * a timer is going to trigger soon enough. 0356 */ 0357 if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) && 0358 s->exit_latency_ns <= latency_req && 0359 s->target_residency_ns <= data->next_timer_ns) { 0360 predicted_ns = s->target_residency_ns; 0361 idx = i; 0362 break; 0363 } 0364 if (predicted_ns < TICK_NSEC) 0365 break; 0366 0367 if (!tick_nohz_tick_stopped()) { 0368 /* 0369 * If the state selected so far is shallow, 0370 * waking up early won't hurt, so retain the 0371 * tick in that case and let the governor run 0372 * again in the next iteration of the loop. 0373 */ 0374 predicted_ns = drv->states[idx].target_residency_ns; 0375 break; 0376 } 0377 0378 /* 0379 * If the state selected so far is shallow and this 0380 * state's target residency matches the time till the 0381 * closest timer event, select this one to avoid getting 0382 * stuck in the shallow one for too long. 0383 */ 0384 if (drv->states[idx].target_residency_ns < TICK_NSEC && 0385 s->target_residency_ns <= delta_tick) 0386 idx = i; 0387 0388 return idx; 0389 } 0390 if (s->exit_latency_ns > latency_req) 0391 break; 0392 0393 idx = i; 0394 } 0395 0396 if (idx == -1) 0397 idx = 0; /* No states enabled. Must use 0. */ 0398 0399 /* 0400 * Don't stop the tick if the selected state is a polling one or if the 0401 * expected idle duration is shorter than the tick period length. 0402 */ 0403 if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) || 0404 predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) { 0405 *stop_tick = false; 0406 0407 if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) { 0408 /* 0409 * The tick is not going to be stopped and the target 0410 * residency of the state to be returned is not within 0411 * the time until the next timer event including the 0412 * tick, so try to correct that. 0413 */ 0414 for (i = idx - 1; i >= 0; i--) { 0415 if (dev->states_usage[i].disable) 0416 continue; 0417 0418 idx = i; 0419 if (drv->states[i].target_residency_ns <= delta_tick) 0420 break; 0421 } 0422 } 0423 } 0424 0425 return idx; 0426 } 0427 0428 /** 0429 * menu_reflect - records that data structures need update 0430 * @dev: the CPU 0431 * @index: the index of actual entered state 0432 * 0433 * NOTE: it's important to be fast here because this operation will add to 0434 * the overall exit latency. 0435 */ 0436 static void menu_reflect(struct cpuidle_device *dev, int index) 0437 { 0438 struct menu_device *data = this_cpu_ptr(&menu_devices); 0439 0440 dev->last_state_idx = index; 0441 data->needs_update = 1; 0442 data->tick_wakeup = tick_nohz_idle_got_tick(); 0443 } 0444 0445 /** 0446 * menu_update - attempts to guess what happened after entry 0447 * @drv: cpuidle driver containing state data 0448 * @dev: the CPU 0449 */ 0450 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev) 0451 { 0452 struct menu_device *data = this_cpu_ptr(&menu_devices); 0453 int last_idx = dev->last_state_idx; 0454 struct cpuidle_state *target = &drv->states[last_idx]; 0455 u64 measured_ns; 0456 unsigned int new_factor; 0457 0458 /* 0459 * Try to figure out how much time passed between entry to low 0460 * power state and occurrence of the wakeup event. 0461 * 0462 * If the entered idle state didn't support residency measurements, 0463 * we use them anyway if they are short, and if long, 0464 * truncate to the whole expected time. 0465 * 0466 * Any measured amount of time will include the exit latency. 0467 * Since we are interested in when the wakeup begun, not when it 0468 * was completed, we must subtract the exit latency. However, if 0469 * the measured amount of time is less than the exit latency, 0470 * assume the state was never reached and the exit latency is 0. 0471 */ 0472 0473 if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) { 0474 /* 0475 * The nohz code said that there wouldn't be any events within 0476 * the tick boundary (if the tick was stopped), but the idle 0477 * duration predictor had a differing opinion. Since the CPU 0478 * was woken up by a tick (that wasn't stopped after all), the 0479 * predictor was not quite right, so assume that the CPU could 0480 * have been idle long (but not forever) to help the idle 0481 * duration predictor do a better job next time. 0482 */ 0483 measured_ns = 9 * MAX_INTERESTING / 10; 0484 } else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) && 0485 dev->poll_time_limit) { 0486 /* 0487 * The CPU exited the "polling" state due to a time limit, so 0488 * the idle duration prediction leading to the selection of that 0489 * state was inaccurate. If a better prediction had been made, 0490 * the CPU might have been woken up from idle by the next timer. 0491 * Assume that to be the case. 0492 */ 0493 measured_ns = data->next_timer_ns; 0494 } else { 0495 /* measured value */ 0496 measured_ns = dev->last_residency_ns; 0497 0498 /* Deduct exit latency */ 0499 if (measured_ns > 2 * target->exit_latency_ns) 0500 measured_ns -= target->exit_latency_ns; 0501 else 0502 measured_ns /= 2; 0503 } 0504 0505 /* Make sure our coefficients do not exceed unity */ 0506 if (measured_ns > data->next_timer_ns) 0507 measured_ns = data->next_timer_ns; 0508 0509 /* Update our correction ratio */ 0510 new_factor = data->correction_factor[data->bucket]; 0511 new_factor -= new_factor / DECAY; 0512 0513 if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING) 0514 new_factor += div64_u64(RESOLUTION * measured_ns, 0515 data->next_timer_ns); 0516 else 0517 /* 0518 * we were idle so long that we count it as a perfect 0519 * prediction 0520 */ 0521 new_factor += RESOLUTION; 0522 0523 /* 0524 * We don't want 0 as factor; we always want at least 0525 * a tiny bit of estimated time. Fortunately, due to rounding, 0526 * new_factor will stay nonzero regardless of measured_us values 0527 * and the compiler can eliminate this test as long as DECAY > 1. 0528 */ 0529 if (DECAY == 1 && unlikely(new_factor == 0)) 0530 new_factor = 1; 0531 0532 data->correction_factor[data->bucket] = new_factor; 0533 0534 /* update the repeating-pattern data */ 0535 data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns); 0536 if (data->interval_ptr >= INTERVALS) 0537 data->interval_ptr = 0; 0538 } 0539 0540 /** 0541 * menu_enable_device - scans a CPU's states and does setup 0542 * @drv: cpuidle driver 0543 * @dev: the CPU 0544 */ 0545 static int menu_enable_device(struct cpuidle_driver *drv, 0546 struct cpuidle_device *dev) 0547 { 0548 struct menu_device *data = &per_cpu(menu_devices, dev->cpu); 0549 int i; 0550 0551 memset(data, 0, sizeof(struct menu_device)); 0552 0553 /* 0554 * if the correction factor is 0 (eg first time init or cpu hotplug 0555 * etc), we actually want to start out with a unity factor. 0556 */ 0557 for(i = 0; i < BUCKETS; i++) 0558 data->correction_factor[i] = RESOLUTION * DECAY; 0559 0560 return 0; 0561 } 0562 0563 static struct cpuidle_governor menu_governor = { 0564 .name = "menu", 0565 .rating = 20, 0566 .enable = menu_enable_device, 0567 .select = menu_select, 0568 .reflect = menu_reflect, 0569 }; 0570 0571 /** 0572 * init_menu - initializes the governor 0573 */ 0574 static int __init init_menu(void) 0575 { 0576 return cpuidle_register_governor(&menu_governor); 0577 } 0578 0579 postcore_initcall(init_menu);
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |