Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * coupled.c - helper functions to enter the same idle state on multiple cpus
0004  *
0005  * Copyright (c) 2011 Google, Inc.
0006  *
0007  * Author: Colin Cross <ccross@android.com>
0008  */
0009 
0010 #include <linux/kernel.h>
0011 #include <linux/cpu.h>
0012 #include <linux/cpuidle.h>
0013 #include <linux/mutex.h>
0014 #include <linux/sched.h>
0015 #include <linux/slab.h>
0016 #include <linux/spinlock.h>
0017 
0018 #include "cpuidle.h"
0019 
0020 /**
0021  * DOC: Coupled cpuidle states
0022  *
0023  * On some ARM SMP SoCs (OMAP4460, Tegra 2, and probably more), the
0024  * cpus cannot be independently powered down, either due to
0025  * sequencing restrictions (on Tegra 2, cpu 0 must be the last to
0026  * power down), or due to HW bugs (on OMAP4460, a cpu powering up
0027  * will corrupt the gic state unless the other cpu runs a work
0028  * around).  Each cpu has a power state that it can enter without
0029  * coordinating with the other cpu (usually Wait For Interrupt, or
0030  * WFI), and one or more "coupled" power states that affect blocks
0031  * shared between the cpus (L2 cache, interrupt controller, and
0032  * sometimes the whole SoC).  Entering a coupled power state must
0033  * be tightly controlled on both cpus.
0034  *
0035  * This file implements a solution, where each cpu will wait in the
0036  * WFI state until all cpus are ready to enter a coupled state, at
0037  * which point the coupled state function will be called on all
0038  * cpus at approximately the same time.
0039  *
0040  * Once all cpus are ready to enter idle, they are woken by an smp
0041  * cross call.  At this point, there is a chance that one of the
0042  * cpus will find work to do, and choose not to enter idle.  A
0043  * final pass is needed to guarantee that all cpus will call the
0044  * power state enter function at the same time.  During this pass,
0045  * each cpu will increment the ready counter, and continue once the
0046  * ready counter matches the number of online coupled cpus.  If any
0047  * cpu exits idle, the other cpus will decrement their counter and
0048  * retry.
0049  *
0050  * requested_state stores the deepest coupled idle state each cpu
0051  * is ready for.  It is assumed that the states are indexed from
0052  * shallowest (highest power, lowest exit latency) to deepest
0053  * (lowest power, highest exit latency).  The requested_state
0054  * variable is not locked.  It is only written from the cpu that
0055  * it stores (or by the on/offlining cpu if that cpu is offline),
0056  * and only read after all the cpus are ready for the coupled idle
0057  * state are are no longer updating it.
0058  *
0059  * Three atomic counters are used.  alive_count tracks the number
0060  * of cpus in the coupled set that are currently or soon will be
0061  * online.  waiting_count tracks the number of cpus that are in
0062  * the waiting loop, in the ready loop, or in the coupled idle state.
0063  * ready_count tracks the number of cpus that are in the ready loop
0064  * or in the coupled idle state.
0065  *
0066  * To use coupled cpuidle states, a cpuidle driver must:
0067  *
0068  *    Set struct cpuidle_device.coupled_cpus to the mask of all
0069  *    coupled cpus, usually the same as cpu_possible_mask if all cpus
0070  *    are part of the same cluster.  The coupled_cpus mask must be
0071  *    set in the struct cpuidle_device for each cpu.
0072  *
0073  *    Set struct cpuidle_device.safe_state to a state that is not a
0074  *    coupled state.  This is usually WFI.
0075  *
0076  *    Set CPUIDLE_FLAG_COUPLED in struct cpuidle_state.flags for each
0077  *    state that affects multiple cpus.
0078  *
0079  *    Provide a struct cpuidle_state.enter function for each state
0080  *    that affects multiple cpus.  This function is guaranteed to be
0081  *    called on all cpus at approximately the same time.  The driver
0082  *    should ensure that the cpus all abort together if any cpu tries
0083  *    to abort once the function is called.  The function should return
0084  *    with interrupts still disabled.
0085  */
0086 
0087 /**
0088  * struct cpuidle_coupled - data for set of cpus that share a coupled idle state
0089  * @coupled_cpus: mask of cpus that are part of the coupled set
0090  * @requested_state: array of requested states for cpus in the coupled set
0091  * @ready_waiting_counts: combined count of cpus  in ready or waiting loops
0092  * @abort_barrier: synchronisation point for abort cases
0093  * @online_count: count of cpus that are online
0094  * @refcnt: reference count of cpuidle devices that are using this struct
0095  * @prevent: flag to prevent coupled idle while a cpu is hotplugging
0096  */
0097 struct cpuidle_coupled {
0098     cpumask_t coupled_cpus;
0099     int requested_state[NR_CPUS];
0100     atomic_t ready_waiting_counts;
0101     atomic_t abort_barrier;
0102     int online_count;
0103     int refcnt;
0104     int prevent;
0105 };
0106 
0107 #define WAITING_BITS 16
0108 #define MAX_WAITING_CPUS (1 << WAITING_BITS)
0109 #define WAITING_MASK (MAX_WAITING_CPUS - 1)
0110 #define READY_MASK (~WAITING_MASK)
0111 
0112 #define CPUIDLE_COUPLED_NOT_IDLE    (-1)
0113 
0114 static DEFINE_PER_CPU(call_single_data_t, cpuidle_coupled_poke_cb);
0115 
0116 /*
0117  * The cpuidle_coupled_poke_pending mask is used to avoid calling
0118  * __smp_call_function_single with the per cpu call_single_data_t struct already
0119  * in use.  This prevents a deadlock where two cpus are waiting for each others
0120  * call_single_data_t struct to be available
0121  */
0122 static cpumask_t cpuidle_coupled_poke_pending;
0123 
0124 /*
0125  * The cpuidle_coupled_poked mask is used to ensure that each cpu has been poked
0126  * once to minimize entering the ready loop with a poke pending, which would
0127  * require aborting and retrying.
0128  */
0129 static cpumask_t cpuidle_coupled_poked;
0130 
0131 /**
0132  * cpuidle_coupled_parallel_barrier - synchronize all online coupled cpus
0133  * @dev: cpuidle_device of the calling cpu
0134  * @a:   atomic variable to hold the barrier
0135  *
0136  * No caller to this function will return from this function until all online
0137  * cpus in the same coupled group have called this function.  Once any caller
0138  * has returned from this function, the barrier is immediately available for
0139  * reuse.
0140  *
0141  * The atomic variable must be initialized to 0 before any cpu calls
0142  * this function, will be reset to 0 before any cpu returns from this function.
0143  *
0144  * Must only be called from within a coupled idle state handler
0145  * (state.enter when state.flags has CPUIDLE_FLAG_COUPLED set).
0146  *
0147  * Provides full smp barrier semantics before and after calling.
0148  */
0149 void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a)
0150 {
0151     int n = dev->coupled->online_count;
0152 
0153     smp_mb__before_atomic();
0154     atomic_inc(a);
0155 
0156     while (atomic_read(a) < n)
0157         cpu_relax();
0158 
0159     if (atomic_inc_return(a) == n * 2) {
0160         atomic_set(a, 0);
0161         return;
0162     }
0163 
0164     while (atomic_read(a) > n)
0165         cpu_relax();
0166 }
0167 
0168 /**
0169  * cpuidle_state_is_coupled - check if a state is part of a coupled set
0170  * @drv: struct cpuidle_driver for the platform
0171  * @state: index of the target state in drv->states
0172  *
0173  * Returns true if the target state is coupled with cpus besides this one
0174  */
0175 bool cpuidle_state_is_coupled(struct cpuidle_driver *drv, int state)
0176 {
0177     return drv->states[state].flags & CPUIDLE_FLAG_COUPLED;
0178 }
0179 
0180 /**
0181  * cpuidle_coupled_state_verify - check if the coupled states are correctly set.
0182  * @drv: struct cpuidle_driver for the platform
0183  *
0184  * Returns 0 for valid state values, a negative error code otherwise:
0185  *  * -EINVAL if any coupled state(safe_state_index) is wrongly set.
0186  */
0187 int cpuidle_coupled_state_verify(struct cpuidle_driver *drv)
0188 {
0189     int i;
0190 
0191     for (i = drv->state_count - 1; i >= 0; i--) {
0192         if (cpuidle_state_is_coupled(drv, i) &&
0193             (drv->safe_state_index == i ||
0194              drv->safe_state_index < 0 ||
0195              drv->safe_state_index >= drv->state_count))
0196             return -EINVAL;
0197     }
0198 
0199     return 0;
0200 }
0201 
0202 /**
0203  * cpuidle_coupled_set_ready - mark a cpu as ready
0204  * @coupled: the struct coupled that contains the current cpu
0205  */
0206 static inline void cpuidle_coupled_set_ready(struct cpuidle_coupled *coupled)
0207 {
0208     atomic_add(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
0209 }
0210 
0211 /**
0212  * cpuidle_coupled_set_not_ready - mark a cpu as not ready
0213  * @coupled: the struct coupled that contains the current cpu
0214  *
0215  * Decrements the ready counter, unless the ready (and thus the waiting) counter
0216  * is equal to the number of online cpus.  Prevents a race where one cpu
0217  * decrements the waiting counter and then re-increments it just before another
0218  * cpu has decremented its ready counter, leading to the ready counter going
0219  * down from the number of online cpus without going through the coupled idle
0220  * state.
0221  *
0222  * Returns 0 if the counter was decremented successfully, -EINVAL if the ready
0223  * counter was equal to the number of online cpus.
0224  */
0225 static
0226 inline int cpuidle_coupled_set_not_ready(struct cpuidle_coupled *coupled)
0227 {
0228     int all;
0229     int ret;
0230 
0231     all = coupled->online_count | (coupled->online_count << WAITING_BITS);
0232     ret = atomic_add_unless(&coupled->ready_waiting_counts,
0233         -MAX_WAITING_CPUS, all);
0234 
0235     return ret ? 0 : -EINVAL;
0236 }
0237 
0238 /**
0239  * cpuidle_coupled_no_cpus_ready - check if no cpus in a coupled set are ready
0240  * @coupled: the struct coupled that contains the current cpu
0241  *
0242  * Returns true if all of the cpus in a coupled set are out of the ready loop.
0243  */
0244 static inline int cpuidle_coupled_no_cpus_ready(struct cpuidle_coupled *coupled)
0245 {
0246     int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
0247     return r == 0;
0248 }
0249 
0250 /**
0251  * cpuidle_coupled_cpus_ready - check if all cpus in a coupled set are ready
0252  * @coupled: the struct coupled that contains the current cpu
0253  *
0254  * Returns true if all cpus coupled to this target state are in the ready loop
0255  */
0256 static inline bool cpuidle_coupled_cpus_ready(struct cpuidle_coupled *coupled)
0257 {
0258     int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
0259     return r == coupled->online_count;
0260 }
0261 
0262 /**
0263  * cpuidle_coupled_cpus_waiting - check if all cpus in a coupled set are waiting
0264  * @coupled: the struct coupled that contains the current cpu
0265  *
0266  * Returns true if all cpus coupled to this target state are in the wait loop
0267  */
0268 static inline bool cpuidle_coupled_cpus_waiting(struct cpuidle_coupled *coupled)
0269 {
0270     int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
0271     return w == coupled->online_count;
0272 }
0273 
0274 /**
0275  * cpuidle_coupled_no_cpus_waiting - check if no cpus in coupled set are waiting
0276  * @coupled: the struct coupled that contains the current cpu
0277  *
0278  * Returns true if all of the cpus in a coupled set are out of the waiting loop.
0279  */
0280 static inline int cpuidle_coupled_no_cpus_waiting(struct cpuidle_coupled *coupled)
0281 {
0282     int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
0283     return w == 0;
0284 }
0285 
0286 /**
0287  * cpuidle_coupled_get_state - determine the deepest idle state
0288  * @dev: struct cpuidle_device for this cpu
0289  * @coupled: the struct coupled that contains the current cpu
0290  *
0291  * Returns the deepest idle state that all coupled cpus can enter
0292  */
0293 static inline int cpuidle_coupled_get_state(struct cpuidle_device *dev,
0294         struct cpuidle_coupled *coupled)
0295 {
0296     int i;
0297     int state = INT_MAX;
0298 
0299     /*
0300      * Read barrier ensures that read of requested_state is ordered after
0301      * reads of ready_count.  Matches the write barriers
0302      * cpuidle_set_state_waiting.
0303      */
0304     smp_rmb();
0305 
0306     for_each_cpu(i, &coupled->coupled_cpus)
0307         if (cpu_online(i) && coupled->requested_state[i] < state)
0308             state = coupled->requested_state[i];
0309 
0310     return state;
0311 }
0312 
0313 static void cpuidle_coupled_handle_poke(void *info)
0314 {
0315     int cpu = (unsigned long)info;
0316     cpumask_set_cpu(cpu, &cpuidle_coupled_poked);
0317     cpumask_clear_cpu(cpu, &cpuidle_coupled_poke_pending);
0318 }
0319 
0320 /**
0321  * cpuidle_coupled_poke - wake up a cpu that may be waiting
0322  * @cpu: target cpu
0323  *
0324  * Ensures that the target cpu exits it's waiting idle state (if it is in it)
0325  * and will see updates to waiting_count before it re-enters it's waiting idle
0326  * state.
0327  *
0328  * If cpuidle_coupled_poked_mask is already set for the target cpu, that cpu
0329  * either has or will soon have a pending IPI that will wake it out of idle,
0330  * or it is currently processing the IPI and is not in idle.
0331  */
0332 static void cpuidle_coupled_poke(int cpu)
0333 {
0334     call_single_data_t *csd = &per_cpu(cpuidle_coupled_poke_cb, cpu);
0335 
0336     if (!cpumask_test_and_set_cpu(cpu, &cpuidle_coupled_poke_pending))
0337         smp_call_function_single_async(cpu, csd);
0338 }
0339 
0340 /**
0341  * cpuidle_coupled_poke_others - wake up all other cpus that may be waiting
0342  * @this_cpu: target cpu
0343  * @coupled: the struct coupled that contains the current cpu
0344  *
0345  * Calls cpuidle_coupled_poke on all other online cpus.
0346  */
0347 static void cpuidle_coupled_poke_others(int this_cpu,
0348         struct cpuidle_coupled *coupled)
0349 {
0350     int cpu;
0351 
0352     for_each_cpu(cpu, &coupled->coupled_cpus)
0353         if (cpu != this_cpu && cpu_online(cpu))
0354             cpuidle_coupled_poke(cpu);
0355 }
0356 
0357 /**
0358  * cpuidle_coupled_set_waiting - mark this cpu as in the wait loop
0359  * @cpu: target cpu
0360  * @coupled: the struct coupled that contains the current cpu
0361  * @next_state: the index in drv->states of the requested state for this cpu
0362  *
0363  * Updates the requested idle state for the specified cpuidle device.
0364  * Returns the number of waiting cpus.
0365  */
0366 static int cpuidle_coupled_set_waiting(int cpu,
0367         struct cpuidle_coupled *coupled, int next_state)
0368 {
0369     coupled->requested_state[cpu] = next_state;
0370 
0371     /*
0372      * The atomic_inc_return provides a write barrier to order the write
0373      * to requested_state with the later write that increments ready_count.
0374      */
0375     return atomic_inc_return(&coupled->ready_waiting_counts) & WAITING_MASK;
0376 }
0377 
0378 /**
0379  * cpuidle_coupled_set_not_waiting - mark this cpu as leaving the wait loop
0380  * @cpu: target cpu
0381  * @coupled: the struct coupled that contains the current cpu
0382  *
0383  * Removes the requested idle state for the specified cpuidle device.
0384  */
0385 static void cpuidle_coupled_set_not_waiting(int cpu,
0386         struct cpuidle_coupled *coupled)
0387 {
0388     /*
0389      * Decrementing waiting count can race with incrementing it in
0390      * cpuidle_coupled_set_waiting, but that's OK.  Worst case, some
0391      * cpus will increment ready_count and then spin until they
0392      * notice that this cpu has cleared it's requested_state.
0393      */
0394     atomic_dec(&coupled->ready_waiting_counts);
0395 
0396     coupled->requested_state[cpu] = CPUIDLE_COUPLED_NOT_IDLE;
0397 }
0398 
0399 /**
0400  * cpuidle_coupled_set_done - mark this cpu as leaving the ready loop
0401  * @cpu: the current cpu
0402  * @coupled: the struct coupled that contains the current cpu
0403  *
0404  * Marks this cpu as no longer in the ready and waiting loops.  Decrements
0405  * the waiting count first to prevent another cpu looping back in and seeing
0406  * this cpu as waiting just before it exits idle.
0407  */
0408 static void cpuidle_coupled_set_done(int cpu, struct cpuidle_coupled *coupled)
0409 {
0410     cpuidle_coupled_set_not_waiting(cpu, coupled);
0411     atomic_sub(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
0412 }
0413 
0414 /**
0415  * cpuidle_coupled_clear_pokes - spin until the poke interrupt is processed
0416  * @cpu: this cpu
0417  *
0418  * Turns on interrupts and spins until any outstanding poke interrupts have
0419  * been processed and the poke bit has been cleared.
0420  *
0421  * Other interrupts may also be processed while interrupts are enabled, so
0422  * need_resched() must be tested after this function returns to make sure
0423  * the interrupt didn't schedule work that should take the cpu out of idle.
0424  *
0425  * Returns 0 if no poke was pending, 1 if a poke was cleared.
0426  */
0427 static int cpuidle_coupled_clear_pokes(int cpu)
0428 {
0429     if (!cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending))
0430         return 0;
0431 
0432     local_irq_enable();
0433     while (cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending))
0434         cpu_relax();
0435     local_irq_disable();
0436 
0437     return 1;
0438 }
0439 
0440 static bool cpuidle_coupled_any_pokes_pending(struct cpuidle_coupled *coupled)
0441 {
0442     cpumask_t cpus;
0443     int ret;
0444 
0445     cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
0446     ret = cpumask_and(&cpus, &cpuidle_coupled_poke_pending, &cpus);
0447 
0448     return ret;
0449 }
0450 
0451 /**
0452  * cpuidle_enter_state_coupled - attempt to enter a state with coupled cpus
0453  * @dev: struct cpuidle_device for the current cpu
0454  * @drv: struct cpuidle_driver for the platform
0455  * @next_state: index of the requested state in drv->states
0456  *
0457  * Coordinate with coupled cpus to enter the target state.  This is a two
0458  * stage process.  In the first stage, the cpus are operating independently,
0459  * and may call into cpuidle_enter_state_coupled at completely different times.
0460  * To save as much power as possible, the first cpus to call this function will
0461  * go to an intermediate state (the cpuidle_device's safe state), and wait for
0462  * all the other cpus to call this function.  Once all coupled cpus are idle,
0463  * the second stage will start.  Each coupled cpu will spin until all cpus have
0464  * guaranteed that they will call the target_state.
0465  *
0466  * This function must be called with interrupts disabled.  It may enable
0467  * interrupts while preparing for idle, and it will always return with
0468  * interrupts enabled.
0469  */
0470 int cpuidle_enter_state_coupled(struct cpuidle_device *dev,
0471         struct cpuidle_driver *drv, int next_state)
0472 {
0473     int entered_state = -1;
0474     struct cpuidle_coupled *coupled = dev->coupled;
0475     int w;
0476 
0477     if (!coupled)
0478         return -EINVAL;
0479 
0480     while (coupled->prevent) {
0481         cpuidle_coupled_clear_pokes(dev->cpu);
0482         if (need_resched()) {
0483             local_irq_enable();
0484             return entered_state;
0485         }
0486         entered_state = cpuidle_enter_state(dev, drv,
0487             drv->safe_state_index);
0488         local_irq_disable();
0489     }
0490 
0491     /* Read barrier ensures online_count is read after prevent is cleared */
0492     smp_rmb();
0493 
0494 reset:
0495     cpumask_clear_cpu(dev->cpu, &cpuidle_coupled_poked);
0496 
0497     w = cpuidle_coupled_set_waiting(dev->cpu, coupled, next_state);
0498     /*
0499      * If this is the last cpu to enter the waiting state, poke
0500      * all the other cpus out of their waiting state so they can
0501      * enter a deeper state.  This can race with one of the cpus
0502      * exiting the waiting state due to an interrupt and
0503      * decrementing waiting_count, see comment below.
0504      */
0505     if (w == coupled->online_count) {
0506         cpumask_set_cpu(dev->cpu, &cpuidle_coupled_poked);
0507         cpuidle_coupled_poke_others(dev->cpu, coupled);
0508     }
0509 
0510 retry:
0511     /*
0512      * Wait for all coupled cpus to be idle, using the deepest state
0513      * allowed for a single cpu.  If this was not the poking cpu, wait
0514      * for at least one poke before leaving to avoid a race where
0515      * two cpus could arrive at the waiting loop at the same time,
0516      * but the first of the two to arrive could skip the loop without
0517      * processing the pokes from the last to arrive.
0518      */
0519     while (!cpuidle_coupled_cpus_waiting(coupled) ||
0520             !cpumask_test_cpu(dev->cpu, &cpuidle_coupled_poked)) {
0521         if (cpuidle_coupled_clear_pokes(dev->cpu))
0522             continue;
0523 
0524         if (need_resched()) {
0525             cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
0526             goto out;
0527         }
0528 
0529         if (coupled->prevent) {
0530             cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
0531             goto out;
0532         }
0533 
0534         entered_state = cpuidle_enter_state(dev, drv,
0535             drv->safe_state_index);
0536         local_irq_disable();
0537     }
0538 
0539     cpuidle_coupled_clear_pokes(dev->cpu);
0540     if (need_resched()) {
0541         cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
0542         goto out;
0543     }
0544 
0545     /*
0546      * Make sure final poke status for this cpu is visible before setting
0547      * cpu as ready.
0548      */
0549     smp_wmb();
0550 
0551     /*
0552      * All coupled cpus are probably idle.  There is a small chance that
0553      * one of the other cpus just became active.  Increment the ready count,
0554      * and spin until all coupled cpus have incremented the counter. Once a
0555      * cpu has incremented the ready counter, it cannot abort idle and must
0556      * spin until either all cpus have incremented the ready counter, or
0557      * another cpu leaves idle and decrements the waiting counter.
0558      */
0559 
0560     cpuidle_coupled_set_ready(coupled);
0561     while (!cpuidle_coupled_cpus_ready(coupled)) {
0562         /* Check if any other cpus bailed out of idle. */
0563         if (!cpuidle_coupled_cpus_waiting(coupled))
0564             if (!cpuidle_coupled_set_not_ready(coupled))
0565                 goto retry;
0566 
0567         cpu_relax();
0568     }
0569 
0570     /*
0571      * Make sure read of all cpus ready is done before reading pending pokes
0572      */
0573     smp_rmb();
0574 
0575     /*
0576      * There is a small chance that a cpu left and reentered idle after this
0577      * cpu saw that all cpus were waiting.  The cpu that reentered idle will
0578      * have sent this cpu a poke, which will still be pending after the
0579      * ready loop.  The pending interrupt may be lost by the interrupt
0580      * controller when entering the deep idle state.  It's not possible to
0581      * clear a pending interrupt without turning interrupts on and handling
0582      * it, and it's too late to turn on interrupts here, so reset the
0583      * coupled idle state of all cpus and retry.
0584      */
0585     if (cpuidle_coupled_any_pokes_pending(coupled)) {
0586         cpuidle_coupled_set_done(dev->cpu, coupled);
0587         /* Wait for all cpus to see the pending pokes */
0588         cpuidle_coupled_parallel_barrier(dev, &coupled->abort_barrier);
0589         goto reset;
0590     }
0591 
0592     /* all cpus have acked the coupled state */
0593     next_state = cpuidle_coupled_get_state(dev, coupled);
0594 
0595     entered_state = cpuidle_enter_state(dev, drv, next_state);
0596 
0597     cpuidle_coupled_set_done(dev->cpu, coupled);
0598 
0599 out:
0600     /*
0601      * Normal cpuidle states are expected to return with irqs enabled.
0602      * That leads to an inefficiency where a cpu receiving an interrupt
0603      * that brings it out of idle will process that interrupt before
0604      * exiting the idle enter function and decrementing ready_count.  All
0605      * other cpus will need to spin waiting for the cpu that is processing
0606      * the interrupt.  If the driver returns with interrupts disabled,
0607      * all other cpus will loop back into the safe idle state instead of
0608      * spinning, saving power.
0609      *
0610      * Calling local_irq_enable here allows coupled states to return with
0611      * interrupts disabled, but won't cause problems for drivers that
0612      * exit with interrupts enabled.
0613      */
0614     local_irq_enable();
0615 
0616     /*
0617      * Wait until all coupled cpus have exited idle.  There is no risk that
0618      * a cpu exits and re-enters the ready state because this cpu has
0619      * already decremented its waiting_count.
0620      */
0621     while (!cpuidle_coupled_no_cpus_ready(coupled))
0622         cpu_relax();
0623 
0624     return entered_state;
0625 }
0626 
0627 static void cpuidle_coupled_update_online_cpus(struct cpuidle_coupled *coupled)
0628 {
0629     cpumask_t cpus;
0630     cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
0631     coupled->online_count = cpumask_weight(&cpus);
0632 }
0633 
0634 /**
0635  * cpuidle_coupled_register_device - register a coupled cpuidle device
0636  * @dev: struct cpuidle_device for the current cpu
0637  *
0638  * Called from cpuidle_register_device to handle coupled idle init.  Finds the
0639  * cpuidle_coupled struct for this set of coupled cpus, or creates one if none
0640  * exists yet.
0641  */
0642 int cpuidle_coupled_register_device(struct cpuidle_device *dev)
0643 {
0644     int cpu;
0645     struct cpuidle_device *other_dev;
0646     call_single_data_t *csd;
0647     struct cpuidle_coupled *coupled;
0648 
0649     if (cpumask_empty(&dev->coupled_cpus))
0650         return 0;
0651 
0652     for_each_cpu(cpu, &dev->coupled_cpus) {
0653         other_dev = per_cpu(cpuidle_devices, cpu);
0654         if (other_dev && other_dev->coupled) {
0655             coupled = other_dev->coupled;
0656             goto have_coupled;
0657         }
0658     }
0659 
0660     /* No existing coupled info found, create a new one */
0661     coupled = kzalloc(sizeof(struct cpuidle_coupled), GFP_KERNEL);
0662     if (!coupled)
0663         return -ENOMEM;
0664 
0665     coupled->coupled_cpus = dev->coupled_cpus;
0666 
0667 have_coupled:
0668     dev->coupled = coupled;
0669     if (WARN_ON(!cpumask_equal(&dev->coupled_cpus, &coupled->coupled_cpus)))
0670         coupled->prevent++;
0671 
0672     cpuidle_coupled_update_online_cpus(coupled);
0673 
0674     coupled->refcnt++;
0675 
0676     csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu);
0677     INIT_CSD(csd, cpuidle_coupled_handle_poke, (void *)(unsigned long)dev->cpu);
0678 
0679     return 0;
0680 }
0681 
0682 /**
0683  * cpuidle_coupled_unregister_device - unregister a coupled cpuidle device
0684  * @dev: struct cpuidle_device for the current cpu
0685  *
0686  * Called from cpuidle_unregister_device to tear down coupled idle.  Removes the
0687  * cpu from the coupled idle set, and frees the cpuidle_coupled_info struct if
0688  * this was the last cpu in the set.
0689  */
0690 void cpuidle_coupled_unregister_device(struct cpuidle_device *dev)
0691 {
0692     struct cpuidle_coupled *coupled = dev->coupled;
0693 
0694     if (cpumask_empty(&dev->coupled_cpus))
0695         return;
0696 
0697     if (--coupled->refcnt)
0698         kfree(coupled);
0699     dev->coupled = NULL;
0700 }
0701 
0702 /**
0703  * cpuidle_coupled_prevent_idle - prevent cpus from entering a coupled state
0704  * @coupled: the struct coupled that contains the cpu that is changing state
0705  *
0706  * Disables coupled cpuidle on a coupled set of cpus.  Used to ensure that
0707  * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
0708  */
0709 static void cpuidle_coupled_prevent_idle(struct cpuidle_coupled *coupled)
0710 {
0711     int cpu = get_cpu();
0712 
0713     /* Force all cpus out of the waiting loop. */
0714     coupled->prevent++;
0715     cpuidle_coupled_poke_others(cpu, coupled);
0716     put_cpu();
0717     while (!cpuidle_coupled_no_cpus_waiting(coupled))
0718         cpu_relax();
0719 }
0720 
0721 /**
0722  * cpuidle_coupled_allow_idle - allows cpus to enter a coupled state
0723  * @coupled: the struct coupled that contains the cpu that is changing state
0724  *
0725  * Enables coupled cpuidle on a coupled set of cpus.  Used to ensure that
0726  * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
0727  */
0728 static void cpuidle_coupled_allow_idle(struct cpuidle_coupled *coupled)
0729 {
0730     int cpu = get_cpu();
0731 
0732     /*
0733      * Write barrier ensures readers see the new online_count when they
0734      * see prevent == 0.
0735      */
0736     smp_wmb();
0737     coupled->prevent--;
0738     /* Force cpus out of the prevent loop. */
0739     cpuidle_coupled_poke_others(cpu, coupled);
0740     put_cpu();
0741 }
0742 
0743 static int coupled_cpu_online(unsigned int cpu)
0744 {
0745     struct cpuidle_device *dev;
0746 
0747     mutex_lock(&cpuidle_lock);
0748 
0749     dev = per_cpu(cpuidle_devices, cpu);
0750     if (dev && dev->coupled) {
0751         cpuidle_coupled_update_online_cpus(dev->coupled);
0752         cpuidle_coupled_allow_idle(dev->coupled);
0753     }
0754 
0755     mutex_unlock(&cpuidle_lock);
0756     return 0;
0757 }
0758 
0759 static int coupled_cpu_up_prepare(unsigned int cpu)
0760 {
0761     struct cpuidle_device *dev;
0762 
0763     mutex_lock(&cpuidle_lock);
0764 
0765     dev = per_cpu(cpuidle_devices, cpu);
0766     if (dev && dev->coupled)
0767         cpuidle_coupled_prevent_idle(dev->coupled);
0768 
0769     mutex_unlock(&cpuidle_lock);
0770     return 0;
0771 }
0772 
0773 static int __init cpuidle_coupled_init(void)
0774 {
0775     int ret;
0776 
0777     ret = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE,
0778                     "cpuidle/coupled:prepare",
0779                     coupled_cpu_up_prepare,
0780                     coupled_cpu_online);
0781     if (ret)
0782         return ret;
0783     ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
0784                     "cpuidle/coupled:online",
0785                     coupled_cpu_online,
0786                     coupled_cpu_up_prepare);
0787     if (ret < 0)
0788         cpuhp_remove_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE);
0789     return ret;
0790 }
0791 core_initcall(cpuidle_coupled_init);