0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0013
0014 #include <linux/clk.h>
0015 #include <linux/cpu.h>
0016 #include <linux/cpufreq.h>
0017 #include <linux/cpumask.h>
0018 #include <linux/device.h>
0019 #include <linux/module.h>
0020 #include <linux/mutex.h>
0021 #include <linux/of_platform.h>
0022 #include <linux/platform_device.h>
0023 #include <linux/pm_opp.h>
0024 #include <linux/slab.h>
0025 #include <linux/topology.h>
0026 #include <linux/types.h>
0027
0028
0029 #define A15_CLUSTER 0
0030 #define A7_CLUSTER 1
0031 #define MAX_CLUSTERS 2
0032
0033 #ifdef CONFIG_BL_SWITCHER
0034 #include <asm/bL_switcher.h>
0035 static bool bL_switching_enabled;
0036 #define is_bL_switching_enabled() bL_switching_enabled
0037 #define set_switching_enabled(x) (bL_switching_enabled = (x))
0038 #else
0039 #define is_bL_switching_enabled() false
0040 #define set_switching_enabled(x) do { } while (0)
0041 #define bL_switch_request(...) do { } while (0)
0042 #define bL_switcher_put_enabled() do { } while (0)
0043 #define bL_switcher_get_enabled() do { } while (0)
0044 #endif
0045
0046 #define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
0047 #define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
0048
0049 static struct clk *clk[MAX_CLUSTERS];
0050 static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
0051 static atomic_t cluster_usage[MAX_CLUSTERS + 1];
0052
0053 static unsigned int clk_big_min;
0054 static unsigned int clk_little_max;
0055
0056 static DEFINE_PER_CPU(unsigned int, physical_cluster);
0057 static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
0058
0059 static struct mutex cluster_lock[MAX_CLUSTERS];
0060
0061 static inline int raw_cpu_to_cluster(int cpu)
0062 {
0063 return topology_physical_package_id(cpu);
0064 }
0065
0066 static inline int cpu_to_cluster(int cpu)
0067 {
0068 return is_bL_switching_enabled() ?
0069 MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
0070 }
0071
0072 static unsigned int find_cluster_maxfreq(int cluster)
0073 {
0074 int j;
0075 u32 max_freq = 0, cpu_freq;
0076
0077 for_each_online_cpu(j) {
0078 cpu_freq = per_cpu(cpu_last_req_freq, j);
0079
0080 if (cluster == per_cpu(physical_cluster, j) &&
0081 max_freq < cpu_freq)
0082 max_freq = cpu_freq;
0083 }
0084
0085 return max_freq;
0086 }
0087
0088 static unsigned int clk_get_cpu_rate(unsigned int cpu)
0089 {
0090 u32 cur_cluster = per_cpu(physical_cluster, cpu);
0091 u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
0092
0093
0094 if (is_bL_switching_enabled())
0095 rate = VIRT_FREQ(cur_cluster, rate);
0096
0097 return rate;
0098 }
0099
0100 static unsigned int ve_spc_cpufreq_get_rate(unsigned int cpu)
0101 {
0102 if (is_bL_switching_enabled())
0103 return per_cpu(cpu_last_req_freq, cpu);
0104 else
0105 return clk_get_cpu_rate(cpu);
0106 }
0107
0108 static unsigned int
0109 ve_spc_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
0110 {
0111 u32 new_rate, prev_rate;
0112 int ret;
0113 bool bLs = is_bL_switching_enabled();
0114
0115 mutex_lock(&cluster_lock[new_cluster]);
0116
0117 if (bLs) {
0118 prev_rate = per_cpu(cpu_last_req_freq, cpu);
0119 per_cpu(cpu_last_req_freq, cpu) = rate;
0120 per_cpu(physical_cluster, cpu) = new_cluster;
0121
0122 new_rate = find_cluster_maxfreq(new_cluster);
0123 new_rate = ACTUAL_FREQ(new_cluster, new_rate);
0124 } else {
0125 new_rate = rate;
0126 }
0127
0128 ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
0129 if (!ret) {
0130
0131
0132
0133
0134
0135
0136
0137
0138 if (clk_get_rate(clk[new_cluster]) != new_rate * 1000)
0139 ret = -EIO;
0140 }
0141
0142 if (WARN_ON(ret)) {
0143 if (bLs) {
0144 per_cpu(cpu_last_req_freq, cpu) = prev_rate;
0145 per_cpu(physical_cluster, cpu) = old_cluster;
0146 }
0147
0148 mutex_unlock(&cluster_lock[new_cluster]);
0149
0150 return ret;
0151 }
0152
0153 mutex_unlock(&cluster_lock[new_cluster]);
0154
0155
0156 if (old_cluster != new_cluster) {
0157
0158 bL_switch_request(cpu, new_cluster);
0159
0160 mutex_lock(&cluster_lock[old_cluster]);
0161
0162
0163 new_rate = find_cluster_maxfreq(old_cluster);
0164 new_rate = ACTUAL_FREQ(old_cluster, new_rate);
0165
0166 if (new_rate &&
0167 clk_set_rate(clk[old_cluster], new_rate * 1000)) {
0168 pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
0169 __func__, ret, old_cluster);
0170 }
0171 mutex_unlock(&cluster_lock[old_cluster]);
0172 }
0173
0174 return 0;
0175 }
0176
0177
0178 static int ve_spc_cpufreq_set_target(struct cpufreq_policy *policy,
0179 unsigned int index)
0180 {
0181 u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
0182 unsigned int freqs_new;
0183
0184 cur_cluster = cpu_to_cluster(cpu);
0185 new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
0186
0187 freqs_new = freq_table[cur_cluster][index].frequency;
0188
0189 if (is_bL_switching_enabled()) {
0190 if (actual_cluster == A15_CLUSTER && freqs_new < clk_big_min)
0191 new_cluster = A7_CLUSTER;
0192 else if (actual_cluster == A7_CLUSTER &&
0193 freqs_new > clk_little_max)
0194 new_cluster = A15_CLUSTER;
0195 }
0196
0197 return ve_spc_cpufreq_set_rate(cpu, actual_cluster, new_cluster,
0198 freqs_new);
0199 }
0200
0201 static inline u32 get_table_count(struct cpufreq_frequency_table *table)
0202 {
0203 int count;
0204
0205 for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
0206 ;
0207
0208 return count;
0209 }
0210
0211
0212 static inline u32 get_table_min(struct cpufreq_frequency_table *table)
0213 {
0214 struct cpufreq_frequency_table *pos;
0215 u32 min_freq = ~0;
0216
0217 cpufreq_for_each_entry(pos, table)
0218 if (pos->frequency < min_freq)
0219 min_freq = pos->frequency;
0220 return min_freq;
0221 }
0222
0223
0224 static inline u32 get_table_max(struct cpufreq_frequency_table *table)
0225 {
0226 struct cpufreq_frequency_table *pos;
0227 u32 max_freq = 0;
0228
0229 cpufreq_for_each_entry(pos, table)
0230 if (pos->frequency > max_freq)
0231 max_freq = pos->frequency;
0232 return max_freq;
0233 }
0234
0235 static bool search_frequency(struct cpufreq_frequency_table *table, int size,
0236 unsigned int freq)
0237 {
0238 int count;
0239
0240 for (count = 0; count < size; count++) {
0241 if (table[count].frequency == freq)
0242 return true;
0243 }
0244
0245 return false;
0246 }
0247
0248 static int merge_cluster_tables(void)
0249 {
0250 int i, j, k = 0, count = 1;
0251 struct cpufreq_frequency_table *table;
0252
0253 for (i = 0; i < MAX_CLUSTERS; i++)
0254 count += get_table_count(freq_table[i]);
0255
0256 table = kcalloc(count, sizeof(*table), GFP_KERNEL);
0257 if (!table)
0258 return -ENOMEM;
0259
0260 freq_table[MAX_CLUSTERS] = table;
0261
0262
0263 for (i = MAX_CLUSTERS - 1; i >= 0; i--, count = k) {
0264 for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
0265 j++) {
0266 if (i == A15_CLUSTER &&
0267 search_frequency(table, count, freq_table[i][j].frequency))
0268 continue;
0269 table[k++].frequency =
0270 VIRT_FREQ(i, freq_table[i][j].frequency);
0271 }
0272 }
0273
0274 table[k].driver_data = k;
0275 table[k].frequency = CPUFREQ_TABLE_END;
0276
0277 return 0;
0278 }
0279
0280 static void _put_cluster_clk_and_freq_table(struct device *cpu_dev,
0281 const struct cpumask *cpumask)
0282 {
0283 u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
0284
0285 if (!freq_table[cluster])
0286 return;
0287
0288 clk_put(clk[cluster]);
0289 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
0290 }
0291
0292 static void put_cluster_clk_and_freq_table(struct device *cpu_dev,
0293 const struct cpumask *cpumask)
0294 {
0295 u32 cluster = cpu_to_cluster(cpu_dev->id);
0296 int i;
0297
0298 if (atomic_dec_return(&cluster_usage[cluster]))
0299 return;
0300
0301 if (cluster < MAX_CLUSTERS)
0302 return _put_cluster_clk_and_freq_table(cpu_dev, cpumask);
0303
0304 for_each_present_cpu(i) {
0305 struct device *cdev = get_cpu_device(i);
0306
0307 if (!cdev)
0308 return;
0309
0310 _put_cluster_clk_and_freq_table(cdev, cpumask);
0311 }
0312
0313
0314 kfree(freq_table[cluster]);
0315 }
0316
0317 static int _get_cluster_clk_and_freq_table(struct device *cpu_dev,
0318 const struct cpumask *cpumask)
0319 {
0320 u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
0321 int ret;
0322
0323 if (freq_table[cluster])
0324 return 0;
0325
0326
0327
0328
0329
0330 ret = dev_pm_opp_get_opp_count(cpu_dev) <= 0;
0331 if (ret)
0332 goto out;
0333
0334 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
0335 if (ret)
0336 goto out;
0337
0338 clk[cluster] = clk_get(cpu_dev, NULL);
0339 if (!IS_ERR(clk[cluster]))
0340 return 0;
0341
0342 dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
0343 __func__, cpu_dev->id, cluster);
0344 ret = PTR_ERR(clk[cluster]);
0345 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
0346
0347 out:
0348 dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
0349 cluster);
0350 return ret;
0351 }
0352
0353 static int get_cluster_clk_and_freq_table(struct device *cpu_dev,
0354 const struct cpumask *cpumask)
0355 {
0356 u32 cluster = cpu_to_cluster(cpu_dev->id);
0357 int i, ret;
0358
0359 if (atomic_inc_return(&cluster_usage[cluster]) != 1)
0360 return 0;
0361
0362 if (cluster < MAX_CLUSTERS) {
0363 ret = _get_cluster_clk_and_freq_table(cpu_dev, cpumask);
0364 if (ret)
0365 atomic_dec(&cluster_usage[cluster]);
0366 return ret;
0367 }
0368
0369
0370
0371
0372
0373 for_each_present_cpu(i) {
0374 struct device *cdev = get_cpu_device(i);
0375
0376 if (!cdev)
0377 return -ENODEV;
0378
0379 ret = _get_cluster_clk_and_freq_table(cdev, cpumask);
0380 if (ret)
0381 goto put_clusters;
0382 }
0383
0384 ret = merge_cluster_tables();
0385 if (ret)
0386 goto put_clusters;
0387
0388
0389 clk_big_min = get_table_min(freq_table[A15_CLUSTER]);
0390 clk_little_max = VIRT_FREQ(A7_CLUSTER,
0391 get_table_max(freq_table[A7_CLUSTER]));
0392
0393 return 0;
0394
0395 put_clusters:
0396 for_each_present_cpu(i) {
0397 struct device *cdev = get_cpu_device(i);
0398
0399 if (!cdev)
0400 return -ENODEV;
0401
0402 _put_cluster_clk_and_freq_table(cdev, cpumask);
0403 }
0404
0405 atomic_dec(&cluster_usage[cluster]);
0406
0407 return ret;
0408 }
0409
0410
0411 static int ve_spc_cpufreq_init(struct cpufreq_policy *policy)
0412 {
0413 u32 cur_cluster = cpu_to_cluster(policy->cpu);
0414 struct device *cpu_dev;
0415 int ret;
0416
0417 cpu_dev = get_cpu_device(policy->cpu);
0418 if (!cpu_dev) {
0419 pr_err("%s: failed to get cpu%d device\n", __func__,
0420 policy->cpu);
0421 return -ENODEV;
0422 }
0423
0424 if (cur_cluster < MAX_CLUSTERS) {
0425 int cpu;
0426
0427 dev_pm_opp_get_sharing_cpus(cpu_dev, policy->cpus);
0428
0429 for_each_cpu(cpu, policy->cpus)
0430 per_cpu(physical_cluster, cpu) = cur_cluster;
0431 } else {
0432
0433 per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
0434 }
0435
0436 ret = get_cluster_clk_and_freq_table(cpu_dev, policy->cpus);
0437 if (ret)
0438 return ret;
0439
0440 policy->freq_table = freq_table[cur_cluster];
0441 policy->cpuinfo.transition_latency = 1000000;
0442
0443 if (is_bL_switching_enabled())
0444 per_cpu(cpu_last_req_freq, policy->cpu) =
0445 clk_get_cpu_rate(policy->cpu);
0446
0447 dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
0448 return 0;
0449 }
0450
0451 static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy)
0452 {
0453 struct device *cpu_dev;
0454
0455 cpu_dev = get_cpu_device(policy->cpu);
0456 if (!cpu_dev) {
0457 pr_err("%s: failed to get cpu%d device\n", __func__,
0458 policy->cpu);
0459 return -ENODEV;
0460 }
0461
0462 put_cluster_clk_and_freq_table(cpu_dev, policy->related_cpus);
0463 return 0;
0464 }
0465
0466 static struct cpufreq_driver ve_spc_cpufreq_driver = {
0467 .name = "vexpress-spc",
0468 .flags = CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
0469 CPUFREQ_NEED_INITIAL_FREQ_CHECK,
0470 .verify = cpufreq_generic_frequency_table_verify,
0471 .target_index = ve_spc_cpufreq_set_target,
0472 .get = ve_spc_cpufreq_get_rate,
0473 .init = ve_spc_cpufreq_init,
0474 .exit = ve_spc_cpufreq_exit,
0475 .register_em = cpufreq_register_em_with_opp,
0476 .attr = cpufreq_generic_attr,
0477 };
0478
0479 #ifdef CONFIG_BL_SWITCHER
0480 static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
0481 unsigned long action, void *_arg)
0482 {
0483 pr_debug("%s: action: %ld\n", __func__, action);
0484
0485 switch (action) {
0486 case BL_NOTIFY_PRE_ENABLE:
0487 case BL_NOTIFY_PRE_DISABLE:
0488 cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
0489 break;
0490
0491 case BL_NOTIFY_POST_ENABLE:
0492 set_switching_enabled(true);
0493 cpufreq_register_driver(&ve_spc_cpufreq_driver);
0494 break;
0495
0496 case BL_NOTIFY_POST_DISABLE:
0497 set_switching_enabled(false);
0498 cpufreq_register_driver(&ve_spc_cpufreq_driver);
0499 break;
0500
0501 default:
0502 return NOTIFY_DONE;
0503 }
0504
0505 return NOTIFY_OK;
0506 }
0507
0508 static struct notifier_block bL_switcher_notifier = {
0509 .notifier_call = bL_cpufreq_switcher_notifier,
0510 };
0511
0512 static int __bLs_register_notifier(void)
0513 {
0514 return bL_switcher_register_notifier(&bL_switcher_notifier);
0515 }
0516
0517 static int __bLs_unregister_notifier(void)
0518 {
0519 return bL_switcher_unregister_notifier(&bL_switcher_notifier);
0520 }
0521 #else
0522 static int __bLs_register_notifier(void) { return 0; }
0523 static int __bLs_unregister_notifier(void) { return 0; }
0524 #endif
0525
0526 static int ve_spc_cpufreq_probe(struct platform_device *pdev)
0527 {
0528 int ret, i;
0529
0530 set_switching_enabled(bL_switcher_get_enabled());
0531
0532 for (i = 0; i < MAX_CLUSTERS; i++)
0533 mutex_init(&cluster_lock[i]);
0534
0535 if (!is_bL_switching_enabled())
0536 ve_spc_cpufreq_driver.flags |= CPUFREQ_IS_COOLING_DEV;
0537
0538 ret = cpufreq_register_driver(&ve_spc_cpufreq_driver);
0539 if (ret) {
0540 pr_info("%s: Failed registering platform driver: %s, err: %d\n",
0541 __func__, ve_spc_cpufreq_driver.name, ret);
0542 } else {
0543 ret = __bLs_register_notifier();
0544 if (ret)
0545 cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
0546 else
0547 pr_info("%s: Registered platform driver: %s\n",
0548 __func__, ve_spc_cpufreq_driver.name);
0549 }
0550
0551 bL_switcher_put_enabled();
0552 return ret;
0553 }
0554
0555 static int ve_spc_cpufreq_remove(struct platform_device *pdev)
0556 {
0557 bL_switcher_get_enabled();
0558 __bLs_unregister_notifier();
0559 cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
0560 bL_switcher_put_enabled();
0561 pr_info("%s: Un-registered platform driver: %s\n", __func__,
0562 ve_spc_cpufreq_driver.name);
0563 return 0;
0564 }
0565
0566 static struct platform_driver ve_spc_cpufreq_platdrv = {
0567 .driver = {
0568 .name = "vexpress-spc-cpufreq",
0569 },
0570 .probe = ve_spc_cpufreq_probe,
0571 .remove = ve_spc_cpufreq_remove,
0572 };
0573 module_platform_driver(ve_spc_cpufreq_platdrv);
0574
0575 MODULE_ALIAS("platform:vexpress-spc-cpufreq");
0576 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
0577 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
0578 MODULE_DESCRIPTION("Vexpress SPC ARM big LITTLE cpufreq driver");
0579 MODULE_LICENSE("GPL v2");