0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0015
0016 #include <linux/types.h>
0017 #include <linux/kernel.h>
0018 #include <linux/sched.h>
0019 #include <linux/cpufreq.h>
0020 #include <linux/delay.h>
0021 #include <linux/init.h>
0022 #include <linux/err.h>
0023 #include <linux/clk.h>
0024 #include <linux/io.h>
0025 #include <linux/pm_opp.h>
0026 #include <linux/cpu.h>
0027 #include <linux/module.h>
0028 #include <linux/platform_device.h>
0029 #include <linux/regulator/consumer.h>
0030
0031 #include <asm/smp_plat.h>
0032 #include <asm/cpu.h>
0033
0034
0035 #define OPP_TOLERANCE 4
0036
0037 static struct cpufreq_frequency_table *freq_table;
0038 static atomic_t freq_table_users = ATOMIC_INIT(0);
0039 static struct device *mpu_dev;
0040 static struct regulator *mpu_reg;
0041
0042 static int omap_target(struct cpufreq_policy *policy, unsigned int index)
0043 {
0044 int r, ret;
0045 struct dev_pm_opp *opp;
0046 unsigned long freq, volt = 0, volt_old = 0, tol = 0;
0047 unsigned int old_freq, new_freq;
0048
0049 old_freq = policy->cur;
0050 new_freq = freq_table[index].frequency;
0051
0052 freq = new_freq * 1000;
0053 ret = clk_round_rate(policy->clk, freq);
0054 if (ret < 0) {
0055 dev_warn(mpu_dev,
0056 "CPUfreq: Cannot find matching frequency for %lu\n",
0057 freq);
0058 return ret;
0059 }
0060 freq = ret;
0061
0062 if (mpu_reg) {
0063 opp = dev_pm_opp_find_freq_ceil(mpu_dev, &freq);
0064 if (IS_ERR(opp)) {
0065 dev_err(mpu_dev, "%s: unable to find MPU OPP for %d\n",
0066 __func__, new_freq);
0067 return -EINVAL;
0068 }
0069 volt = dev_pm_opp_get_voltage(opp);
0070 dev_pm_opp_put(opp);
0071 tol = volt * OPP_TOLERANCE / 100;
0072 volt_old = regulator_get_voltage(mpu_reg);
0073 }
0074
0075 dev_dbg(mpu_dev, "cpufreq-omap: %u MHz, %ld mV --> %u MHz, %ld mV\n",
0076 old_freq / 1000, volt_old ? volt_old / 1000 : -1,
0077 new_freq / 1000, volt ? volt / 1000 : -1);
0078
0079
0080 if (mpu_reg && (new_freq > old_freq)) {
0081 r = regulator_set_voltage(mpu_reg, volt - tol, volt + tol);
0082 if (r < 0) {
0083 dev_warn(mpu_dev, "%s: unable to scale voltage up.\n",
0084 __func__);
0085 return r;
0086 }
0087 }
0088
0089 ret = clk_set_rate(policy->clk, new_freq * 1000);
0090
0091
0092 if (mpu_reg && (new_freq < old_freq)) {
0093 r = regulator_set_voltage(mpu_reg, volt - tol, volt + tol);
0094 if (r < 0) {
0095 dev_warn(mpu_dev, "%s: unable to scale voltage down.\n",
0096 __func__);
0097 clk_set_rate(policy->clk, old_freq * 1000);
0098 return r;
0099 }
0100 }
0101
0102 return ret;
0103 }
0104
0105 static inline void freq_table_free(void)
0106 {
0107 if (atomic_dec_and_test(&freq_table_users))
0108 dev_pm_opp_free_cpufreq_table(mpu_dev, &freq_table);
0109 }
0110
0111 static int omap_cpu_init(struct cpufreq_policy *policy)
0112 {
0113 int result;
0114
0115 policy->clk = clk_get(NULL, "cpufreq_ck");
0116 if (IS_ERR(policy->clk))
0117 return PTR_ERR(policy->clk);
0118
0119 if (!freq_table) {
0120 result = dev_pm_opp_init_cpufreq_table(mpu_dev, &freq_table);
0121 if (result) {
0122 dev_err(mpu_dev,
0123 "%s: cpu%d: failed creating freq table[%d]\n",
0124 __func__, policy->cpu, result);
0125 clk_put(policy->clk);
0126 return result;
0127 }
0128 }
0129
0130 atomic_inc_return(&freq_table_users);
0131
0132
0133 cpufreq_generic_init(policy, freq_table, 300 * 1000);
0134
0135 return 0;
0136 }
0137
0138 static int omap_cpu_exit(struct cpufreq_policy *policy)
0139 {
0140 freq_table_free();
0141 clk_put(policy->clk);
0142 return 0;
0143 }
0144
0145 static struct cpufreq_driver omap_driver = {
0146 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
0147 .verify = cpufreq_generic_frequency_table_verify,
0148 .target_index = omap_target,
0149 .get = cpufreq_generic_get,
0150 .init = omap_cpu_init,
0151 .exit = omap_cpu_exit,
0152 .register_em = cpufreq_register_em_with_opp,
0153 .name = "omap",
0154 .attr = cpufreq_generic_attr,
0155 };
0156
0157 static int omap_cpufreq_probe(struct platform_device *pdev)
0158 {
0159 mpu_dev = get_cpu_device(0);
0160 if (!mpu_dev) {
0161 pr_warn("%s: unable to get the MPU device\n", __func__);
0162 return -EINVAL;
0163 }
0164
0165 mpu_reg = regulator_get(mpu_dev, "vcc");
0166 if (IS_ERR(mpu_reg)) {
0167 pr_warn("%s: unable to get MPU regulator\n", __func__);
0168 mpu_reg = NULL;
0169 } else {
0170
0171
0172
0173
0174 if (regulator_get_voltage(mpu_reg) < 0) {
0175 pr_warn("%s: physical regulator not present for MPU\n",
0176 __func__);
0177 regulator_put(mpu_reg);
0178 mpu_reg = NULL;
0179 }
0180 }
0181
0182 return cpufreq_register_driver(&omap_driver);
0183 }
0184
0185 static int omap_cpufreq_remove(struct platform_device *pdev)
0186 {
0187 return cpufreq_unregister_driver(&omap_driver);
0188 }
0189
0190 static struct platform_driver omap_cpufreq_platdrv = {
0191 .driver = {
0192 .name = "omap-cpufreq",
0193 },
0194 .probe = omap_cpufreq_probe,
0195 .remove = omap_cpufreq_remove,
0196 };
0197 module_platform_driver(omap_cpufreq_platdrv);
0198
0199 MODULE_DESCRIPTION("cpufreq driver for OMAP SoCs");
0200 MODULE_LICENSE("GPL");