0001
0002
0003
0004
0005
0006 #include <linux/bitfield.h>
0007 #include <linux/cpufreq.h>
0008 #include <linux/energy_model.h>
0009 #include <linux/init.h>
0010 #include <linux/iopoll.h>
0011 #include <linux/kernel.h>
0012 #include <linux/module.h>
0013 #include <linux/of_address.h>
0014 #include <linux/of_platform.h>
0015 #include <linux/slab.h>
0016
0017 #define LUT_MAX_ENTRIES 32U
0018 #define LUT_FREQ GENMASK(11, 0)
0019 #define LUT_ROW_SIZE 0x4
0020 #define CPUFREQ_HW_STATUS BIT(0)
0021 #define SVS_HW_STATUS BIT(1)
0022 #define POLL_USEC 1000
0023 #define TIMEOUT_USEC 300000
0024
0025 enum {
0026 REG_FREQ_LUT_TABLE,
0027 REG_FREQ_ENABLE,
0028 REG_FREQ_PERF_STATE,
0029 REG_FREQ_HW_STATE,
0030 REG_EM_POWER_TBL,
0031 REG_FREQ_LATENCY,
0032
0033 REG_ARRAY_SIZE,
0034 };
0035
0036 struct mtk_cpufreq_data {
0037 struct cpufreq_frequency_table *table;
0038 void __iomem *reg_bases[REG_ARRAY_SIZE];
0039 struct resource *res;
0040 void __iomem *base;
0041 int nr_opp;
0042 };
0043
0044 static const u16 cpufreq_mtk_offsets[REG_ARRAY_SIZE] = {
0045 [REG_FREQ_LUT_TABLE] = 0x0,
0046 [REG_FREQ_ENABLE] = 0x84,
0047 [REG_FREQ_PERF_STATE] = 0x88,
0048 [REG_FREQ_HW_STATE] = 0x8c,
0049 [REG_EM_POWER_TBL] = 0x90,
0050 [REG_FREQ_LATENCY] = 0x110,
0051 };
0052
0053 static int __maybe_unused
0054 mtk_cpufreq_get_cpu_power(struct device *cpu_dev, unsigned long *uW,
0055 unsigned long *KHz)
0056 {
0057 struct mtk_cpufreq_data *data;
0058 struct cpufreq_policy *policy;
0059 int i;
0060
0061 policy = cpufreq_cpu_get_raw(cpu_dev->id);
0062 if (!policy)
0063 return 0;
0064
0065 data = policy->driver_data;
0066
0067 for (i = 0; i < data->nr_opp; i++) {
0068 if (data->table[i].frequency < *KHz)
0069 break;
0070 }
0071 i--;
0072
0073 *KHz = data->table[i].frequency;
0074
0075 *uW = readl_relaxed(data->reg_bases[REG_EM_POWER_TBL] +
0076 i * LUT_ROW_SIZE);
0077
0078 return 0;
0079 }
0080
0081 static int mtk_cpufreq_hw_target_index(struct cpufreq_policy *policy,
0082 unsigned int index)
0083 {
0084 struct mtk_cpufreq_data *data = policy->driver_data;
0085
0086 writel_relaxed(index, data->reg_bases[REG_FREQ_PERF_STATE]);
0087
0088 return 0;
0089 }
0090
0091 static unsigned int mtk_cpufreq_hw_get(unsigned int cpu)
0092 {
0093 struct mtk_cpufreq_data *data;
0094 struct cpufreq_policy *policy;
0095 unsigned int index;
0096
0097 policy = cpufreq_cpu_get_raw(cpu);
0098 if (!policy)
0099 return 0;
0100
0101 data = policy->driver_data;
0102
0103 index = readl_relaxed(data->reg_bases[REG_FREQ_PERF_STATE]);
0104 index = min(index, LUT_MAX_ENTRIES - 1);
0105
0106 return data->table[index].frequency;
0107 }
0108
0109 static unsigned int mtk_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
0110 unsigned int target_freq)
0111 {
0112 struct mtk_cpufreq_data *data = policy->driver_data;
0113 unsigned int index;
0114
0115 index = cpufreq_table_find_index_dl(policy, target_freq, false);
0116
0117 writel_relaxed(index, data->reg_bases[REG_FREQ_PERF_STATE]);
0118
0119 return policy->freq_table[index].frequency;
0120 }
0121
0122 static int mtk_cpu_create_freq_table(struct platform_device *pdev,
0123 struct mtk_cpufreq_data *data)
0124 {
0125 struct device *dev = &pdev->dev;
0126 u32 temp, i, freq, prev_freq = 0;
0127 void __iomem *base_table;
0128
0129 data->table = devm_kcalloc(dev, LUT_MAX_ENTRIES + 1,
0130 sizeof(*data->table), GFP_KERNEL);
0131 if (!data->table)
0132 return -ENOMEM;
0133
0134 base_table = data->reg_bases[REG_FREQ_LUT_TABLE];
0135
0136 for (i = 0; i < LUT_MAX_ENTRIES; i++) {
0137 temp = readl_relaxed(base_table + (i * LUT_ROW_SIZE));
0138 freq = FIELD_GET(LUT_FREQ, temp) * 1000;
0139
0140 if (freq == prev_freq)
0141 break;
0142
0143 data->table[i].frequency = freq;
0144
0145 dev_dbg(dev, "index=%d freq=%d\n", i, data->table[i].frequency);
0146
0147 prev_freq = freq;
0148 }
0149
0150 data->table[i].frequency = CPUFREQ_TABLE_END;
0151 data->nr_opp = i;
0152
0153 return 0;
0154 }
0155
0156 static int mtk_cpu_resources_init(struct platform_device *pdev,
0157 struct cpufreq_policy *policy,
0158 const u16 *offsets)
0159 {
0160 struct mtk_cpufreq_data *data;
0161 struct device *dev = &pdev->dev;
0162 struct resource *res;
0163 void __iomem *base;
0164 int ret, i;
0165 int index;
0166
0167 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
0168 if (!data)
0169 return -ENOMEM;
0170
0171 index = of_perf_domain_get_sharing_cpumask(policy->cpu, "performance-domains",
0172 "#performance-domain-cells",
0173 policy->cpus);
0174 if (index < 0)
0175 return index;
0176
0177 res = platform_get_resource(pdev, IORESOURCE_MEM, index);
0178 if (!res) {
0179 dev_err(dev, "failed to get mem resource %d\n", index);
0180 return -ENODEV;
0181 }
0182
0183 if (!request_mem_region(res->start, resource_size(res), res->name)) {
0184 dev_err(dev, "failed to request resource %pR\n", res);
0185 return -EBUSY;
0186 }
0187
0188 base = ioremap(res->start, resource_size(res));
0189 if (!base) {
0190 dev_err(dev, "failed to map resource %pR\n", res);
0191 ret = -ENOMEM;
0192 goto release_region;
0193 }
0194
0195 data->base = base;
0196 data->res = res;
0197
0198 for (i = REG_FREQ_LUT_TABLE; i < REG_ARRAY_SIZE; i++)
0199 data->reg_bases[i] = base + offsets[i];
0200
0201 ret = mtk_cpu_create_freq_table(pdev, data);
0202 if (ret) {
0203 dev_info(dev, "Domain-%d failed to create freq table\n", index);
0204 return ret;
0205 }
0206
0207 policy->freq_table = data->table;
0208 policy->driver_data = data;
0209
0210 return 0;
0211 release_region:
0212 release_mem_region(res->start, resource_size(res));
0213 return ret;
0214 }
0215
0216 static int mtk_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
0217 {
0218 struct platform_device *pdev = cpufreq_get_driver_data();
0219 int sig, pwr_hw = CPUFREQ_HW_STATUS | SVS_HW_STATUS;
0220 struct mtk_cpufreq_data *data;
0221 unsigned int latency;
0222 int ret;
0223
0224
0225 ret = mtk_cpu_resources_init(pdev, policy, platform_get_drvdata(pdev));
0226 if (ret) {
0227 dev_info(&pdev->dev, "CPUFreq resource init failed\n");
0228 return ret;
0229 }
0230
0231 data = policy->driver_data;
0232
0233 latency = readl_relaxed(data->reg_bases[REG_FREQ_LATENCY]) * 1000;
0234 if (!latency)
0235 latency = CPUFREQ_ETERNAL;
0236
0237 policy->cpuinfo.transition_latency = latency;
0238 policy->fast_switch_possible = true;
0239
0240
0241 writel_relaxed(0x1, data->reg_bases[REG_FREQ_ENABLE]);
0242 if (readl_poll_timeout(data->reg_bases[REG_FREQ_HW_STATE], sig,
0243 (sig & pwr_hw) == pwr_hw, POLL_USEC,
0244 TIMEOUT_USEC)) {
0245 if (!(sig & CPUFREQ_HW_STATUS)) {
0246 pr_info("cpufreq hardware of CPU%d is not enabled\n",
0247 policy->cpu);
0248 return -ENODEV;
0249 }
0250
0251 pr_info("SVS of CPU%d is not enabled\n", policy->cpu);
0252 }
0253
0254 return 0;
0255 }
0256
0257 static int mtk_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
0258 {
0259 struct mtk_cpufreq_data *data = policy->driver_data;
0260 struct resource *res = data->res;
0261 void __iomem *base = data->base;
0262
0263
0264 writel_relaxed(0x0, data->reg_bases[REG_FREQ_ENABLE]);
0265 iounmap(base);
0266 release_mem_region(res->start, resource_size(res));
0267
0268 return 0;
0269 }
0270
0271 static void mtk_cpufreq_register_em(struct cpufreq_policy *policy)
0272 {
0273 struct em_data_callback em_cb = EM_DATA_CB(mtk_cpufreq_get_cpu_power);
0274 struct mtk_cpufreq_data *data = policy->driver_data;
0275
0276 em_dev_register_perf_domain(get_cpu_device(policy->cpu), data->nr_opp,
0277 &em_cb, policy->cpus, true);
0278 }
0279
0280 static struct cpufreq_driver cpufreq_mtk_hw_driver = {
0281 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
0282 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
0283 CPUFREQ_IS_COOLING_DEV,
0284 .verify = cpufreq_generic_frequency_table_verify,
0285 .target_index = mtk_cpufreq_hw_target_index,
0286 .get = mtk_cpufreq_hw_get,
0287 .init = mtk_cpufreq_hw_cpu_init,
0288 .exit = mtk_cpufreq_hw_cpu_exit,
0289 .register_em = mtk_cpufreq_register_em,
0290 .fast_switch = mtk_cpufreq_hw_fast_switch,
0291 .name = "mtk-cpufreq-hw",
0292 .attr = cpufreq_generic_attr,
0293 };
0294
0295 static int mtk_cpufreq_hw_driver_probe(struct platform_device *pdev)
0296 {
0297 const void *data;
0298 int ret;
0299
0300 data = of_device_get_match_data(&pdev->dev);
0301 if (!data)
0302 return -EINVAL;
0303
0304 platform_set_drvdata(pdev, (void *) data);
0305 cpufreq_mtk_hw_driver.driver_data = pdev;
0306
0307 ret = cpufreq_register_driver(&cpufreq_mtk_hw_driver);
0308 if (ret)
0309 dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n");
0310
0311 return ret;
0312 }
0313
0314 static int mtk_cpufreq_hw_driver_remove(struct platform_device *pdev)
0315 {
0316 return cpufreq_unregister_driver(&cpufreq_mtk_hw_driver);
0317 }
0318
0319 static const struct of_device_id mtk_cpufreq_hw_match[] = {
0320 { .compatible = "mediatek,cpufreq-hw", .data = &cpufreq_mtk_offsets },
0321 {}
0322 };
0323
0324 static struct platform_driver mtk_cpufreq_hw_driver = {
0325 .probe = mtk_cpufreq_hw_driver_probe,
0326 .remove = mtk_cpufreq_hw_driver_remove,
0327 .driver = {
0328 .name = "mtk-cpufreq-hw",
0329 .of_match_table = mtk_cpufreq_hw_match,
0330 },
0331 };
0332 module_platform_driver(mtk_cpufreq_hw_driver);
0333
0334 MODULE_AUTHOR("Hector Yuan <hector.yuan@mediatek.com>");
0335 MODULE_DESCRIPTION("Mediatek cpufreq-hw driver");
0336 MODULE_LICENSE("GPL v2");