Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * intel_pstate.c: Native P state management for Intel processors
0004  *
0005  * (C) Copyright 2012 Intel Corporation
0006  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
0007  */
0008 
0009 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0010 
0011 #include <linux/kernel.h>
0012 #include <linux/kernel_stat.h>
0013 #include <linux/module.h>
0014 #include <linux/ktime.h>
0015 #include <linux/hrtimer.h>
0016 #include <linux/tick.h>
0017 #include <linux/slab.h>
0018 #include <linux/sched/cpufreq.h>
0019 #include <linux/list.h>
0020 #include <linux/cpu.h>
0021 #include <linux/cpufreq.h>
0022 #include <linux/sysfs.h>
0023 #include <linux/types.h>
0024 #include <linux/fs.h>
0025 #include <linux/acpi.h>
0026 #include <linux/vmalloc.h>
0027 #include <linux/pm_qos.h>
0028 #include <trace/events/power.h>
0029 
0030 #include <asm/div64.h>
0031 #include <asm/msr.h>
0032 #include <asm/cpu_device_id.h>
0033 #include <asm/cpufeature.h>
0034 #include <asm/intel-family.h>
0035 #include "../drivers/thermal/intel/thermal_interrupt.h"
0036 
0037 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
0038 
0039 #define INTEL_CPUFREQ_TRANSITION_LATENCY    20000
0040 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP  5000
0041 #define INTEL_CPUFREQ_TRANSITION_DELAY      500
0042 
0043 #ifdef CONFIG_ACPI
0044 #include <acpi/processor.h>
0045 #include <acpi/cppc_acpi.h>
0046 #endif
0047 
0048 #define FRAC_BITS 8
0049 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
0050 #define fp_toint(X) ((X) >> FRAC_BITS)
0051 
0052 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
0053 
0054 #define EXT_BITS 6
0055 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
0056 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
0057 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
0058 
0059 static inline int32_t mul_fp(int32_t x, int32_t y)
0060 {
0061     return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
0062 }
0063 
0064 static inline int32_t div_fp(s64 x, s64 y)
0065 {
0066     return div64_s64((int64_t)x << FRAC_BITS, y);
0067 }
0068 
0069 static inline int ceiling_fp(int32_t x)
0070 {
0071     int mask, ret;
0072 
0073     ret = fp_toint(x);
0074     mask = (1 << FRAC_BITS) - 1;
0075     if (x & mask)
0076         ret += 1;
0077     return ret;
0078 }
0079 
0080 static inline u64 mul_ext_fp(u64 x, u64 y)
0081 {
0082     return (x * y) >> EXT_FRAC_BITS;
0083 }
0084 
0085 static inline u64 div_ext_fp(u64 x, u64 y)
0086 {
0087     return div64_u64(x << EXT_FRAC_BITS, y);
0088 }
0089 
0090 /**
0091  * struct sample -  Store performance sample
0092  * @core_avg_perf:  Ratio of APERF/MPERF which is the actual average
0093  *          performance during last sample period
0094  * @busy_scaled:    Scaled busy value which is used to calculate next
0095  *          P state. This can be different than core_avg_perf
0096  *          to account for cpu idle period
0097  * @aperf:      Difference of actual performance frequency clock count
0098  *          read from APERF MSR between last and current sample
0099  * @mperf:      Difference of maximum performance frequency clock count
0100  *          read from MPERF MSR between last and current sample
0101  * @tsc:        Difference of time stamp counter between last and
0102  *          current sample
0103  * @time:       Current time from scheduler
0104  *
0105  * This structure is used in the cpudata structure to store performance sample
0106  * data for choosing next P State.
0107  */
0108 struct sample {
0109     int32_t core_avg_perf;
0110     int32_t busy_scaled;
0111     u64 aperf;
0112     u64 mperf;
0113     u64 tsc;
0114     u64 time;
0115 };
0116 
0117 /**
0118  * struct pstate_data - Store P state data
0119  * @current_pstate: Current requested P state
0120  * @min_pstate:     Min P state possible for this platform
0121  * @max_pstate:     Max P state possible for this platform
0122  * @max_pstate_physical:This is physical Max P state for a processor
0123  *          This can be higher than the max_pstate which can
0124  *          be limited by platform thermal design power limits
0125  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
0126  * @scaling:        Scaling factor between performance and frequency
0127  * @turbo_pstate:   Max Turbo P state possible for this platform
0128  * @min_freq:       @min_pstate frequency in cpufreq units
0129  * @max_freq:       @max_pstate frequency in cpufreq units
0130  * @turbo_freq:     @turbo_pstate frequency in cpufreq units
0131  *
0132  * Stores the per cpu model P state limits and current P state.
0133  */
0134 struct pstate_data {
0135     int current_pstate;
0136     int min_pstate;
0137     int max_pstate;
0138     int max_pstate_physical;
0139     int perf_ctl_scaling;
0140     int scaling;
0141     int turbo_pstate;
0142     unsigned int min_freq;
0143     unsigned int max_freq;
0144     unsigned int turbo_freq;
0145 };
0146 
0147 /**
0148  * struct vid_data -    Stores voltage information data
0149  * @min:        VID data for this platform corresponding to
0150  *          the lowest P state
0151  * @max:        VID data corresponding to the highest P State.
0152  * @turbo:      VID data for turbo P state
0153  * @ratio:      Ratio of (vid max - vid min) /
0154  *          (max P state - Min P State)
0155  *
0156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
0157  * This data is used in Atom platforms, where in addition to target P state,
0158  * the voltage data needs to be specified to select next P State.
0159  */
0160 struct vid_data {
0161     int min;
0162     int max;
0163     int turbo;
0164     int32_t ratio;
0165 };
0166 
0167 /**
0168  * struct global_params - Global parameters, mostly tunable via sysfs.
0169  * @no_turbo:       Whether or not to use turbo P-states.
0170  * @turbo_disabled: Whether or not turbo P-states are available at all,
0171  *          based on the MSR_IA32_MISC_ENABLE value and whether or
0172  *          not the maximum reported turbo P-state is different from
0173  *          the maximum reported non-turbo one.
0174  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
0175  * @min_perf_pct:   Minimum capacity limit in percent of the maximum turbo
0176  *          P-state capacity.
0177  * @max_perf_pct:   Maximum capacity limit in percent of the maximum turbo
0178  *          P-state capacity.
0179  */
0180 struct global_params {
0181     bool no_turbo;
0182     bool turbo_disabled;
0183     bool turbo_disabled_mf;
0184     int max_perf_pct;
0185     int min_perf_pct;
0186 };
0187 
0188 /**
0189  * struct cpudata - Per CPU instance data storage
0190  * @cpu:        CPU number for this instance data
0191  * @policy:     CPUFreq policy value
0192  * @update_util:    CPUFreq utility callback information
0193  * @update_util_set:    CPUFreq utility callback is set
0194  * @iowait_boost:   iowait-related boost fraction
0195  * @last_update:    Time of the last update.
0196  * @pstate:     Stores P state limits for this CPU
0197  * @vid:        Stores VID limits for this CPU
0198  * @last_sample_time:   Last Sample time
0199  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
0200  * @prev_aperf:     Last APERF value read from APERF MSR
0201  * @prev_mperf:     Last MPERF value read from MPERF MSR
0202  * @prev_tsc:       Last timestamp counter (TSC) value
0203  * @prev_cummulative_iowait: IO Wait time difference from last and
0204  *          current sample
0205  * @sample:     Storage for storing last Sample data
0206  * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
0207  * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
0208  * @acpi_perf_data: Stores ACPI perf information read from _PSS
0209  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
0210  * @epp_powersave:  Last saved HWP energy performance preference
0211  *          (EPP) or energy performance bias (EPB),
0212  *          when policy switched to performance
0213  * @epp_policy:     Last saved policy used to set EPP/EPB
0214  * @epp_default:    Power on default HWP energy performance
0215  *          preference/bias
0216  * @epp_cached      Cached HWP energy-performance preference value
0217  * @hwp_req_cached: Cached value of the last HWP Request MSR
0218  * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
0219  * @last_io_update: Last time when IO wake flag was set
0220  * @sched_flags:    Store scheduler flags for possible cross CPU update
0221  * @hwp_boost_min:  Last HWP boosted min performance
0222  * @suspended:      Whether or not the driver has been suspended.
0223  * @hwp_notify_work:    workqueue for HWP notifications.
0224  *
0225  * This structure stores per CPU instance data for all CPUs.
0226  */
0227 struct cpudata {
0228     int cpu;
0229 
0230     unsigned int policy;
0231     struct update_util_data update_util;
0232     bool   update_util_set;
0233 
0234     struct pstate_data pstate;
0235     struct vid_data vid;
0236 
0237     u64 last_update;
0238     u64 last_sample_time;
0239     u64 aperf_mperf_shift;
0240     u64 prev_aperf;
0241     u64 prev_mperf;
0242     u64 prev_tsc;
0243     u64 prev_cummulative_iowait;
0244     struct sample sample;
0245     int32_t min_perf_ratio;
0246     int32_t max_perf_ratio;
0247 #ifdef CONFIG_ACPI
0248     struct acpi_processor_performance acpi_perf_data;
0249     bool valid_pss_table;
0250 #endif
0251     unsigned int iowait_boost;
0252     s16 epp_powersave;
0253     s16 epp_policy;
0254     s16 epp_default;
0255     s16 epp_cached;
0256     u64 hwp_req_cached;
0257     u64 hwp_cap_cached;
0258     u64 last_io_update;
0259     unsigned int sched_flags;
0260     u32 hwp_boost_min;
0261     bool suspended;
0262     struct delayed_work hwp_notify_work;
0263 };
0264 
0265 static struct cpudata **all_cpu_data;
0266 
0267 /**
0268  * struct pstate_funcs - Per CPU model specific callbacks
0269  * @get_max:        Callback to get maximum non turbo effective P state
0270  * @get_max_physical:   Callback to get maximum non turbo physical P state
0271  * @get_min:        Callback to get minimum P state
0272  * @get_turbo:      Callback to get turbo P state
0273  * @get_scaling:    Callback to get frequency scaling factor
0274  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
0275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
0276  * @get_val:        Callback to convert P state to actual MSR write value
0277  * @get_vid:        Callback to get VID data for Atom platforms
0278  *
0279  * Core and Atom CPU models have different way to get P State limits. This
0280  * structure is used to store those callbacks.
0281  */
0282 struct pstate_funcs {
0283     int (*get_max)(void);
0284     int (*get_max_physical)(void);
0285     int (*get_min)(void);
0286     int (*get_turbo)(void);
0287     int (*get_scaling)(void);
0288     int (*get_cpu_scaling)(int cpu);
0289     int (*get_aperf_mperf_shift)(void);
0290     u64 (*get_val)(struct cpudata*, int pstate);
0291     void (*get_vid)(struct cpudata *);
0292 };
0293 
0294 static struct pstate_funcs pstate_funcs __read_mostly;
0295 
0296 static int hwp_active __read_mostly;
0297 static int hwp_mode_bdw __read_mostly;
0298 static bool per_cpu_limits __read_mostly;
0299 static bool hwp_boost __read_mostly;
0300 
0301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
0302 
0303 #ifdef CONFIG_ACPI
0304 static bool acpi_ppc;
0305 #endif
0306 
0307 static struct global_params global;
0308 
0309 static DEFINE_MUTEX(intel_pstate_driver_lock);
0310 static DEFINE_MUTEX(intel_pstate_limits_lock);
0311 
0312 #ifdef CONFIG_ACPI
0313 
0314 static bool intel_pstate_acpi_pm_profile_server(void)
0315 {
0316     if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
0317         acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
0318         return true;
0319 
0320     return false;
0321 }
0322 
0323 static bool intel_pstate_get_ppc_enable_status(void)
0324 {
0325     if (intel_pstate_acpi_pm_profile_server())
0326         return true;
0327 
0328     return acpi_ppc;
0329 }
0330 
0331 #ifdef CONFIG_ACPI_CPPC_LIB
0332 
0333 /* The work item is needed to avoid CPU hotplug locking issues */
0334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
0335 {
0336     sched_set_itmt_support();
0337 }
0338 
0339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
0340 
0341 #define CPPC_MAX_PERF   U8_MAX
0342 
0343 static void intel_pstate_set_itmt_prio(int cpu)
0344 {
0345     struct cppc_perf_caps cppc_perf;
0346     static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
0347     int ret;
0348 
0349     ret = cppc_get_perf_caps(cpu, &cppc_perf);
0350     if (ret)
0351         return;
0352 
0353     /*
0354      * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
0355      * In this case we can't use CPPC.highest_perf to enable ITMT.
0356      * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
0357      */
0358     if (cppc_perf.highest_perf == CPPC_MAX_PERF)
0359         cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
0360 
0361     /*
0362      * The priorities can be set regardless of whether or not
0363      * sched_set_itmt_support(true) has been called and it is valid to
0364      * update them at any time after it has been called.
0365      */
0366     sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
0367 
0368     if (max_highest_perf <= min_highest_perf) {
0369         if (cppc_perf.highest_perf > max_highest_perf)
0370             max_highest_perf = cppc_perf.highest_perf;
0371 
0372         if (cppc_perf.highest_perf < min_highest_perf)
0373             min_highest_perf = cppc_perf.highest_perf;
0374 
0375         if (max_highest_perf > min_highest_perf) {
0376             /*
0377              * This code can be run during CPU online under the
0378              * CPU hotplug locks, so sched_set_itmt_support()
0379              * cannot be called from here.  Queue up a work item
0380              * to invoke it.
0381              */
0382             schedule_work(&sched_itmt_work);
0383         }
0384     }
0385 }
0386 
0387 static int intel_pstate_get_cppc_guaranteed(int cpu)
0388 {
0389     struct cppc_perf_caps cppc_perf;
0390     int ret;
0391 
0392     ret = cppc_get_perf_caps(cpu, &cppc_perf);
0393     if (ret)
0394         return ret;
0395 
0396     if (cppc_perf.guaranteed_perf)
0397         return cppc_perf.guaranteed_perf;
0398 
0399     return cppc_perf.nominal_perf;
0400 }
0401 
0402 static u32 intel_pstate_cppc_nominal(int cpu)
0403 {
0404     u64 nominal_perf;
0405 
0406     if (cppc_get_nominal_perf(cpu, &nominal_perf))
0407         return 0;
0408 
0409     return nominal_perf;
0410 }
0411 #else /* CONFIG_ACPI_CPPC_LIB */
0412 static inline void intel_pstate_set_itmt_prio(int cpu)
0413 {
0414 }
0415 #endif /* CONFIG_ACPI_CPPC_LIB */
0416 
0417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
0418 {
0419     struct cpudata *cpu;
0420     int ret;
0421     int i;
0422 
0423     if (hwp_active) {
0424         intel_pstate_set_itmt_prio(policy->cpu);
0425         return;
0426     }
0427 
0428     if (!intel_pstate_get_ppc_enable_status())
0429         return;
0430 
0431     cpu = all_cpu_data[policy->cpu];
0432 
0433     ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
0434                           policy->cpu);
0435     if (ret)
0436         return;
0437 
0438     /*
0439      * Check if the control value in _PSS is for PERF_CTL MSR, which should
0440      * guarantee that the states returned by it map to the states in our
0441      * list directly.
0442      */
0443     if (cpu->acpi_perf_data.control_register.space_id !=
0444                         ACPI_ADR_SPACE_FIXED_HARDWARE)
0445         goto err;
0446 
0447     /*
0448      * If there is only one entry _PSS, simply ignore _PSS and continue as
0449      * usual without taking _PSS into account
0450      */
0451     if (cpu->acpi_perf_data.state_count < 2)
0452         goto err;
0453 
0454     pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
0455     for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
0456         pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
0457              (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
0458              (u32) cpu->acpi_perf_data.states[i].core_frequency,
0459              (u32) cpu->acpi_perf_data.states[i].power,
0460              (u32) cpu->acpi_perf_data.states[i].control);
0461     }
0462 
0463     /*
0464      * The _PSS table doesn't contain whole turbo frequency range.
0465      * This just contains +1 MHZ above the max non turbo frequency,
0466      * with control value corresponding to max turbo ratio. But
0467      * when cpufreq set policy is called, it will call with this
0468      * max frequency, which will cause a reduced performance as
0469      * this driver uses real max turbo frequency as the max
0470      * frequency. So correct this frequency in _PSS table to
0471      * correct max turbo frequency based on the turbo state.
0472      * Also need to convert to MHz as _PSS freq is in MHz.
0473      */
0474     if (!global.turbo_disabled)
0475         cpu->acpi_perf_data.states[0].core_frequency =
0476                     policy->cpuinfo.max_freq / 1000;
0477     cpu->valid_pss_table = true;
0478     pr_debug("_PPC limits will be enforced\n");
0479 
0480     return;
0481 
0482  err:
0483     cpu->valid_pss_table = false;
0484     acpi_processor_unregister_performance(policy->cpu);
0485 }
0486 
0487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
0488 {
0489     struct cpudata *cpu;
0490 
0491     cpu = all_cpu_data[policy->cpu];
0492     if (!cpu->valid_pss_table)
0493         return;
0494 
0495     acpi_processor_unregister_performance(policy->cpu);
0496 }
0497 #else /* CONFIG_ACPI */
0498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
0499 {
0500 }
0501 
0502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
0503 {
0504 }
0505 
0506 static inline bool intel_pstate_acpi_pm_profile_server(void)
0507 {
0508     return false;
0509 }
0510 #endif /* CONFIG_ACPI */
0511 
0512 #ifndef CONFIG_ACPI_CPPC_LIB
0513 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
0514 {
0515     return -ENOTSUPP;
0516 }
0517 #endif /* CONFIG_ACPI_CPPC_LIB */
0518 
0519 /**
0520  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
0521  * @cpu: Target CPU.
0522  *
0523  * On hybrid processors, HWP may expose more performance levels than there are
0524  * P-states accessible through the PERF_CTL interface.  If that happens, the
0525  * scaling factor between HWP performance levels and CPU frequency will be less
0526  * than the scaling factor between P-state values and CPU frequency.
0527  *
0528  * In that case, adjust the CPU parameters used in computations accordingly.
0529  */
0530 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
0531 {
0532     int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
0533     int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
0534     int perf_ctl_turbo = pstate_funcs.get_turbo();
0535     int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
0536     int scaling = cpu->pstate.scaling;
0537 
0538     pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
0539     pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
0540     pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
0541     pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
0542     pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
0543     pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
0544     pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
0545 
0546     /*
0547      * If the product of the HWP performance scaling factor and the HWP_CAP
0548      * highest performance is greater than the maximum turbo frequency
0549      * corresponding to the pstate_funcs.get_turbo() return value, the
0550      * scaling factor is too high, so recompute it to make the HWP_CAP
0551      * highest performance correspond to the maximum turbo frequency.
0552      */
0553     cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
0554     if (turbo_freq < cpu->pstate.turbo_freq) {
0555         cpu->pstate.turbo_freq = turbo_freq;
0556         scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
0557         cpu->pstate.scaling = scaling;
0558 
0559         pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
0560              cpu->cpu, scaling);
0561     }
0562 
0563     cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
0564                      perf_ctl_scaling);
0565 
0566     cpu->pstate.max_pstate_physical =
0567             DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
0568                      scaling);
0569 
0570     cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
0571     /*
0572      * Cast the min P-state value retrieved via pstate_funcs.get_min() to
0573      * the effective range of HWP performance levels.
0574      */
0575     cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
0576 }
0577 
0578 static inline void update_turbo_state(void)
0579 {
0580     u64 misc_en;
0581     struct cpudata *cpu;
0582 
0583     cpu = all_cpu_data[0];
0584     rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
0585     global.turbo_disabled =
0586         (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
0587          cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
0588 }
0589 
0590 static int min_perf_pct_min(void)
0591 {
0592     struct cpudata *cpu = all_cpu_data[0];
0593     int turbo_pstate = cpu->pstate.turbo_pstate;
0594 
0595     return turbo_pstate ?
0596         (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
0597 }
0598 
0599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
0600 {
0601     u64 epb;
0602     int ret;
0603 
0604     if (!boot_cpu_has(X86_FEATURE_EPB))
0605         return -ENXIO;
0606 
0607     ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
0608     if (ret)
0609         return (s16)ret;
0610 
0611     return (s16)(epb & 0x0f);
0612 }
0613 
0614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
0615 {
0616     s16 epp;
0617 
0618     if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
0619         /*
0620          * When hwp_req_data is 0, means that caller didn't read
0621          * MSR_HWP_REQUEST, so need to read and get EPP.
0622          */
0623         if (!hwp_req_data) {
0624             epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
0625                         &hwp_req_data);
0626             if (epp)
0627                 return epp;
0628         }
0629         epp = (hwp_req_data >> 24) & 0xff;
0630     } else {
0631         /* When there is no EPP present, HWP uses EPB settings */
0632         epp = intel_pstate_get_epb(cpu_data);
0633     }
0634 
0635     return epp;
0636 }
0637 
0638 static int intel_pstate_set_epb(int cpu, s16 pref)
0639 {
0640     u64 epb;
0641     int ret;
0642 
0643     if (!boot_cpu_has(X86_FEATURE_EPB))
0644         return -ENXIO;
0645 
0646     ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
0647     if (ret)
0648         return ret;
0649 
0650     epb = (epb & ~0x0f) | pref;
0651     wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
0652 
0653     return 0;
0654 }
0655 
0656 /*
0657  * EPP/EPB display strings corresponding to EPP index in the
0658  * energy_perf_strings[]
0659  *  index       String
0660  *-------------------------------------
0661  *  0       default
0662  *  1       performance
0663  *  2       balance_performance
0664  *  3       balance_power
0665  *  4       power
0666  */
0667 
0668 enum energy_perf_value_index {
0669     EPP_INDEX_DEFAULT = 0,
0670     EPP_INDEX_PERFORMANCE,
0671     EPP_INDEX_BALANCE_PERFORMANCE,
0672     EPP_INDEX_BALANCE_POWERSAVE,
0673     EPP_INDEX_POWERSAVE,
0674 };
0675 
0676 static const char * const energy_perf_strings[] = {
0677     [EPP_INDEX_DEFAULT] = "default",
0678     [EPP_INDEX_PERFORMANCE] = "performance",
0679     [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
0680     [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
0681     [EPP_INDEX_POWERSAVE] = "power",
0682     NULL
0683 };
0684 static unsigned int epp_values[] = {
0685     [EPP_INDEX_DEFAULT] = 0, /* Unused index */
0686     [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
0687     [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
0688     [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
0689     [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
0690 };
0691 
0692 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
0693 {
0694     s16 epp;
0695     int index = -EINVAL;
0696 
0697     *raw_epp = 0;
0698     epp = intel_pstate_get_epp(cpu_data, 0);
0699     if (epp < 0)
0700         return epp;
0701 
0702     if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
0703         if (epp == epp_values[EPP_INDEX_PERFORMANCE])
0704             return EPP_INDEX_PERFORMANCE;
0705         if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
0706             return EPP_INDEX_BALANCE_PERFORMANCE;
0707         if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
0708             return EPP_INDEX_BALANCE_POWERSAVE;
0709         if (epp == epp_values[EPP_INDEX_POWERSAVE])
0710             return EPP_INDEX_POWERSAVE;
0711         *raw_epp = epp;
0712         return 0;
0713     } else if (boot_cpu_has(X86_FEATURE_EPB)) {
0714         /*
0715          * Range:
0716          *  0x00-0x03   :   Performance
0717          *  0x04-0x07   :   Balance performance
0718          *  0x08-0x0B   :   Balance power
0719          *  0x0C-0x0F   :   Power
0720          * The EPB is a 4 bit value, but our ranges restrict the
0721          * value which can be set. Here only using top two bits
0722          * effectively.
0723          */
0724         index = (epp >> 2) + 1;
0725     }
0726 
0727     return index;
0728 }
0729 
0730 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
0731 {
0732     int ret;
0733 
0734     /*
0735      * Use the cached HWP Request MSR value, because in the active mode the
0736      * register itself may be updated by intel_pstate_hwp_boost_up() or
0737      * intel_pstate_hwp_boost_down() at any time.
0738      */
0739     u64 value = READ_ONCE(cpu->hwp_req_cached);
0740 
0741     value &= ~GENMASK_ULL(31, 24);
0742     value |= (u64)epp << 24;
0743     /*
0744      * The only other updater of hwp_req_cached in the active mode,
0745      * intel_pstate_hwp_set(), is called under the same lock as this
0746      * function, so it cannot run in parallel with the update below.
0747      */
0748     WRITE_ONCE(cpu->hwp_req_cached, value);
0749     ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
0750     if (!ret)
0751         cpu->epp_cached = epp;
0752 
0753     return ret;
0754 }
0755 
0756 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
0757                           int pref_index, bool use_raw,
0758                           u32 raw_epp)
0759 {
0760     int epp = -EINVAL;
0761     int ret;
0762 
0763     if (!pref_index)
0764         epp = cpu_data->epp_default;
0765 
0766     if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
0767         if (use_raw)
0768             epp = raw_epp;
0769         else if (epp == -EINVAL)
0770             epp = epp_values[pref_index];
0771 
0772         /*
0773          * To avoid confusion, refuse to set EPP to any values different
0774          * from 0 (performance) if the current policy is "performance",
0775          * because those values would be overridden.
0776          */
0777         if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
0778             return -EBUSY;
0779 
0780         ret = intel_pstate_set_epp(cpu_data, epp);
0781     } else {
0782         if (epp == -EINVAL)
0783             epp = (pref_index - 1) << 2;
0784         ret = intel_pstate_set_epb(cpu_data->cpu, epp);
0785     }
0786 
0787     return ret;
0788 }
0789 
0790 static ssize_t show_energy_performance_available_preferences(
0791                 struct cpufreq_policy *policy, char *buf)
0792 {
0793     int i = 0;
0794     int ret = 0;
0795 
0796     while (energy_perf_strings[i] != NULL)
0797         ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
0798 
0799     ret += sprintf(&buf[ret], "\n");
0800 
0801     return ret;
0802 }
0803 
0804 cpufreq_freq_attr_ro(energy_performance_available_preferences);
0805 
0806 static struct cpufreq_driver intel_pstate;
0807 
0808 static ssize_t store_energy_performance_preference(
0809         struct cpufreq_policy *policy, const char *buf, size_t count)
0810 {
0811     struct cpudata *cpu = all_cpu_data[policy->cpu];
0812     char str_preference[21];
0813     bool raw = false;
0814     ssize_t ret;
0815     u32 epp = 0;
0816 
0817     ret = sscanf(buf, "%20s", str_preference);
0818     if (ret != 1)
0819         return -EINVAL;
0820 
0821     ret = match_string(energy_perf_strings, -1, str_preference);
0822     if (ret < 0) {
0823         if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
0824             return ret;
0825 
0826         ret = kstrtouint(buf, 10, &epp);
0827         if (ret)
0828             return ret;
0829 
0830         if (epp > 255)
0831             return -EINVAL;
0832 
0833         raw = true;
0834     }
0835 
0836     /*
0837      * This function runs with the policy R/W semaphore held, which
0838      * guarantees that the driver pointer will not change while it is
0839      * running.
0840      */
0841     if (!intel_pstate_driver)
0842         return -EAGAIN;
0843 
0844     mutex_lock(&intel_pstate_limits_lock);
0845 
0846     if (intel_pstate_driver == &intel_pstate) {
0847         ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
0848     } else {
0849         /*
0850          * In the passive mode the governor needs to be stopped on the
0851          * target CPU before the EPP update and restarted after it,
0852          * which is super-heavy-weight, so make sure it is worth doing
0853          * upfront.
0854          */
0855         if (!raw)
0856             epp = ret ? epp_values[ret] : cpu->epp_default;
0857 
0858         if (cpu->epp_cached != epp) {
0859             int err;
0860 
0861             cpufreq_stop_governor(policy);
0862             ret = intel_pstate_set_epp(cpu, epp);
0863             err = cpufreq_start_governor(policy);
0864             if (!ret)
0865                 ret = err;
0866         }
0867     }
0868 
0869     mutex_unlock(&intel_pstate_limits_lock);
0870 
0871     return ret ?: count;
0872 }
0873 
0874 static ssize_t show_energy_performance_preference(
0875                 struct cpufreq_policy *policy, char *buf)
0876 {
0877     struct cpudata *cpu_data = all_cpu_data[policy->cpu];
0878     int preference, raw_epp;
0879 
0880     preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
0881     if (preference < 0)
0882         return preference;
0883 
0884     if (raw_epp)
0885         return  sprintf(buf, "%d\n", raw_epp);
0886     else
0887         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
0888 }
0889 
0890 cpufreq_freq_attr_rw(energy_performance_preference);
0891 
0892 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
0893 {
0894     struct cpudata *cpu = all_cpu_data[policy->cpu];
0895     int ratio, freq;
0896 
0897     ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
0898     if (ratio <= 0) {
0899         u64 cap;
0900 
0901         rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
0902         ratio = HWP_GUARANTEED_PERF(cap);
0903     }
0904 
0905     freq = ratio * cpu->pstate.scaling;
0906     if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
0907         freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
0908 
0909     return sprintf(buf, "%d\n", freq);
0910 }
0911 
0912 cpufreq_freq_attr_ro(base_frequency);
0913 
0914 static struct freq_attr *hwp_cpufreq_attrs[] = {
0915     &energy_performance_preference,
0916     &energy_performance_available_preferences,
0917     &base_frequency,
0918     NULL,
0919 };
0920 
0921 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
0922 {
0923     u64 cap;
0924 
0925     rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
0926     WRITE_ONCE(cpu->hwp_cap_cached, cap);
0927     cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
0928     cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
0929 }
0930 
0931 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
0932 {
0933     int scaling = cpu->pstate.scaling;
0934 
0935     __intel_pstate_get_hwp_cap(cpu);
0936 
0937     cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
0938     cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
0939     if (scaling != cpu->pstate.perf_ctl_scaling) {
0940         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
0941 
0942         cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
0943                          perf_ctl_scaling);
0944         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
0945                            perf_ctl_scaling);
0946     }
0947 }
0948 
0949 static void intel_pstate_hwp_set(unsigned int cpu)
0950 {
0951     struct cpudata *cpu_data = all_cpu_data[cpu];
0952     int max, min;
0953     u64 value;
0954     s16 epp;
0955 
0956     max = cpu_data->max_perf_ratio;
0957     min = cpu_data->min_perf_ratio;
0958 
0959     if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
0960         min = max;
0961 
0962     rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
0963 
0964     value &= ~HWP_MIN_PERF(~0L);
0965     value |= HWP_MIN_PERF(min);
0966 
0967     value &= ~HWP_MAX_PERF(~0L);
0968     value |= HWP_MAX_PERF(max);
0969 
0970     if (cpu_data->epp_policy == cpu_data->policy)
0971         goto skip_epp;
0972 
0973     cpu_data->epp_policy = cpu_data->policy;
0974 
0975     if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
0976         epp = intel_pstate_get_epp(cpu_data, value);
0977         cpu_data->epp_powersave = epp;
0978         /* If EPP read was failed, then don't try to write */
0979         if (epp < 0)
0980             goto skip_epp;
0981 
0982         epp = 0;
0983     } else {
0984         /* skip setting EPP, when saved value is invalid */
0985         if (cpu_data->epp_powersave < 0)
0986             goto skip_epp;
0987 
0988         /*
0989          * No need to restore EPP when it is not zero. This
0990          * means:
0991          *  - Policy is not changed
0992          *  - user has manually changed
0993          *  - Error reading EPB
0994          */
0995         epp = intel_pstate_get_epp(cpu_data, value);
0996         if (epp)
0997             goto skip_epp;
0998 
0999         epp = cpu_data->epp_powersave;
1000     }
1001     if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1002         value &= ~GENMASK_ULL(31, 24);
1003         value |= (u64)epp << 24;
1004     } else {
1005         intel_pstate_set_epb(cpu, epp);
1006     }
1007 skip_epp:
1008     WRITE_ONCE(cpu_data->hwp_req_cached, value);
1009     wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1010 }
1011 
1012 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1013 
1014 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1015 {
1016     u64 value = READ_ONCE(cpu->hwp_req_cached);
1017     int min_perf;
1018 
1019     intel_pstate_disable_hwp_interrupt(cpu);
1020 
1021     if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1022         /*
1023          * In case the EPP has been set to "performance" by the
1024          * active mode "performance" scaling algorithm, replace that
1025          * temporary value with the cached EPP one.
1026          */
1027         value &= ~GENMASK_ULL(31, 24);
1028         value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1029         /*
1030          * However, make sure that EPP will be set to "performance" when
1031          * the CPU is brought back online again and the "performance"
1032          * scaling algorithm is still in effect.
1033          */
1034         cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1035     }
1036 
1037     /*
1038      * Clear the desired perf field in the cached HWP request value to
1039      * prevent nonzero desired values from being leaked into the active
1040      * mode.
1041      */
1042     value &= ~HWP_DESIRED_PERF(~0L);
1043     WRITE_ONCE(cpu->hwp_req_cached, value);
1044 
1045     value &= ~GENMASK_ULL(31, 0);
1046     min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1047 
1048     /* Set hwp_max = hwp_min */
1049     value |= HWP_MAX_PERF(min_perf);
1050     value |= HWP_MIN_PERF(min_perf);
1051 
1052     /* Set EPP to min */
1053     if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1054         value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1055 
1056     wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1057 }
1058 
1059 #define POWER_CTL_EE_ENABLE 1
1060 #define POWER_CTL_EE_DISABLE    2
1061 
1062 static int power_ctl_ee_state;
1063 
1064 static void set_power_ctl_ee_state(bool input)
1065 {
1066     u64 power_ctl;
1067 
1068     mutex_lock(&intel_pstate_driver_lock);
1069     rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1070     if (input) {
1071         power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1072         power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1073     } else {
1074         power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1075         power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1076     }
1077     wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1078     mutex_unlock(&intel_pstate_driver_lock);
1079 }
1080 
1081 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1082 
1083 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1084 {
1085     intel_pstate_hwp_enable(cpu);
1086     wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1087 }
1088 
1089 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1090 {
1091     struct cpudata *cpu = all_cpu_data[policy->cpu];
1092 
1093     pr_debug("CPU %d suspending\n", cpu->cpu);
1094 
1095     cpu->suspended = true;
1096 
1097     /* disable HWP interrupt and cancel any pending work */
1098     intel_pstate_disable_hwp_interrupt(cpu);
1099 
1100     return 0;
1101 }
1102 
1103 static int intel_pstate_resume(struct cpufreq_policy *policy)
1104 {
1105     struct cpudata *cpu = all_cpu_data[policy->cpu];
1106 
1107     pr_debug("CPU %d resuming\n", cpu->cpu);
1108 
1109     /* Only restore if the system default is changed */
1110     if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1111         set_power_ctl_ee_state(true);
1112     else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1113         set_power_ctl_ee_state(false);
1114 
1115     if (cpu->suspended && hwp_active) {
1116         mutex_lock(&intel_pstate_limits_lock);
1117 
1118         /* Re-enable HWP, because "online" has not done that. */
1119         intel_pstate_hwp_reenable(cpu);
1120 
1121         mutex_unlock(&intel_pstate_limits_lock);
1122     }
1123 
1124     cpu->suspended = false;
1125 
1126     return 0;
1127 }
1128 
1129 static void intel_pstate_update_policies(void)
1130 {
1131     int cpu;
1132 
1133     for_each_possible_cpu(cpu)
1134         cpufreq_update_policy(cpu);
1135 }
1136 
1137 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1138                        struct cpufreq_policy *policy)
1139 {
1140     policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1141             cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1142     refresh_frequency_limits(policy);
1143 }
1144 
1145 static void intel_pstate_update_max_freq(unsigned int cpu)
1146 {
1147     struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1148 
1149     if (!policy)
1150         return;
1151 
1152     __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1153 
1154     cpufreq_cpu_release(policy);
1155 }
1156 
1157 static void intel_pstate_update_limits(unsigned int cpu)
1158 {
1159     mutex_lock(&intel_pstate_driver_lock);
1160 
1161     update_turbo_state();
1162     /*
1163      * If turbo has been turned on or off globally, policy limits for
1164      * all CPUs need to be updated to reflect that.
1165      */
1166     if (global.turbo_disabled_mf != global.turbo_disabled) {
1167         global.turbo_disabled_mf = global.turbo_disabled;
1168         arch_set_max_freq_ratio(global.turbo_disabled);
1169         for_each_possible_cpu(cpu)
1170             intel_pstate_update_max_freq(cpu);
1171     } else {
1172         cpufreq_update_policy(cpu);
1173     }
1174 
1175     mutex_unlock(&intel_pstate_driver_lock);
1176 }
1177 
1178 /************************** sysfs begin ************************/
1179 #define show_one(file_name, object)                 \
1180     static ssize_t show_##file_name                 \
1181     (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1182     {                               \
1183         return sprintf(buf, "%u\n", global.object);     \
1184     }
1185 
1186 static ssize_t intel_pstate_show_status(char *buf);
1187 static int intel_pstate_update_status(const char *buf, size_t size);
1188 
1189 static ssize_t show_status(struct kobject *kobj,
1190                struct kobj_attribute *attr, char *buf)
1191 {
1192     ssize_t ret;
1193 
1194     mutex_lock(&intel_pstate_driver_lock);
1195     ret = intel_pstate_show_status(buf);
1196     mutex_unlock(&intel_pstate_driver_lock);
1197 
1198     return ret;
1199 }
1200 
1201 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1202                 const char *buf, size_t count)
1203 {
1204     char *p = memchr(buf, '\n', count);
1205     int ret;
1206 
1207     mutex_lock(&intel_pstate_driver_lock);
1208     ret = intel_pstate_update_status(buf, p ? p - buf : count);
1209     mutex_unlock(&intel_pstate_driver_lock);
1210 
1211     return ret < 0 ? ret : count;
1212 }
1213 
1214 static ssize_t show_turbo_pct(struct kobject *kobj,
1215                 struct kobj_attribute *attr, char *buf)
1216 {
1217     struct cpudata *cpu;
1218     int total, no_turbo, turbo_pct;
1219     uint32_t turbo_fp;
1220 
1221     mutex_lock(&intel_pstate_driver_lock);
1222 
1223     if (!intel_pstate_driver) {
1224         mutex_unlock(&intel_pstate_driver_lock);
1225         return -EAGAIN;
1226     }
1227 
1228     cpu = all_cpu_data[0];
1229 
1230     total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1231     no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1232     turbo_fp = div_fp(no_turbo, total);
1233     turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1234 
1235     mutex_unlock(&intel_pstate_driver_lock);
1236 
1237     return sprintf(buf, "%u\n", turbo_pct);
1238 }
1239 
1240 static ssize_t show_num_pstates(struct kobject *kobj,
1241                 struct kobj_attribute *attr, char *buf)
1242 {
1243     struct cpudata *cpu;
1244     int total;
1245 
1246     mutex_lock(&intel_pstate_driver_lock);
1247 
1248     if (!intel_pstate_driver) {
1249         mutex_unlock(&intel_pstate_driver_lock);
1250         return -EAGAIN;
1251     }
1252 
1253     cpu = all_cpu_data[0];
1254     total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1255 
1256     mutex_unlock(&intel_pstate_driver_lock);
1257 
1258     return sprintf(buf, "%u\n", total);
1259 }
1260 
1261 static ssize_t show_no_turbo(struct kobject *kobj,
1262                  struct kobj_attribute *attr, char *buf)
1263 {
1264     ssize_t ret;
1265 
1266     mutex_lock(&intel_pstate_driver_lock);
1267 
1268     if (!intel_pstate_driver) {
1269         mutex_unlock(&intel_pstate_driver_lock);
1270         return -EAGAIN;
1271     }
1272 
1273     update_turbo_state();
1274     if (global.turbo_disabled)
1275         ret = sprintf(buf, "%u\n", global.turbo_disabled);
1276     else
1277         ret = sprintf(buf, "%u\n", global.no_turbo);
1278 
1279     mutex_unlock(&intel_pstate_driver_lock);
1280 
1281     return ret;
1282 }
1283 
1284 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1285                   const char *buf, size_t count)
1286 {
1287     unsigned int input;
1288     int ret;
1289 
1290     ret = sscanf(buf, "%u", &input);
1291     if (ret != 1)
1292         return -EINVAL;
1293 
1294     mutex_lock(&intel_pstate_driver_lock);
1295 
1296     if (!intel_pstate_driver) {
1297         mutex_unlock(&intel_pstate_driver_lock);
1298         return -EAGAIN;
1299     }
1300 
1301     mutex_lock(&intel_pstate_limits_lock);
1302 
1303     update_turbo_state();
1304     if (global.turbo_disabled) {
1305         pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1306         mutex_unlock(&intel_pstate_limits_lock);
1307         mutex_unlock(&intel_pstate_driver_lock);
1308         return -EPERM;
1309     }
1310 
1311     global.no_turbo = clamp_t(int, input, 0, 1);
1312 
1313     if (global.no_turbo) {
1314         struct cpudata *cpu = all_cpu_data[0];
1315         int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1316 
1317         /* Squash the global minimum into the permitted range. */
1318         if (global.min_perf_pct > pct)
1319             global.min_perf_pct = pct;
1320     }
1321 
1322     mutex_unlock(&intel_pstate_limits_lock);
1323 
1324     intel_pstate_update_policies();
1325     arch_set_max_freq_ratio(global.no_turbo);
1326 
1327     mutex_unlock(&intel_pstate_driver_lock);
1328 
1329     return count;
1330 }
1331 
1332 static void update_qos_request(enum freq_qos_req_type type)
1333 {
1334     struct freq_qos_request *req;
1335     struct cpufreq_policy *policy;
1336     int i;
1337 
1338     for_each_possible_cpu(i) {
1339         struct cpudata *cpu = all_cpu_data[i];
1340         unsigned int freq, perf_pct;
1341 
1342         policy = cpufreq_cpu_get(i);
1343         if (!policy)
1344             continue;
1345 
1346         req = policy->driver_data;
1347         cpufreq_cpu_put(policy);
1348 
1349         if (!req)
1350             continue;
1351 
1352         if (hwp_active)
1353             intel_pstate_get_hwp_cap(cpu);
1354 
1355         if (type == FREQ_QOS_MIN) {
1356             perf_pct = global.min_perf_pct;
1357         } else {
1358             req++;
1359             perf_pct = global.max_perf_pct;
1360         }
1361 
1362         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1363 
1364         if (freq_qos_update_request(req, freq) < 0)
1365             pr_warn("Failed to update freq constraint: CPU%d\n", i);
1366     }
1367 }
1368 
1369 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1370                   const char *buf, size_t count)
1371 {
1372     unsigned int input;
1373     int ret;
1374 
1375     ret = sscanf(buf, "%u", &input);
1376     if (ret != 1)
1377         return -EINVAL;
1378 
1379     mutex_lock(&intel_pstate_driver_lock);
1380 
1381     if (!intel_pstate_driver) {
1382         mutex_unlock(&intel_pstate_driver_lock);
1383         return -EAGAIN;
1384     }
1385 
1386     mutex_lock(&intel_pstate_limits_lock);
1387 
1388     global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1389 
1390     mutex_unlock(&intel_pstate_limits_lock);
1391 
1392     if (intel_pstate_driver == &intel_pstate)
1393         intel_pstate_update_policies();
1394     else
1395         update_qos_request(FREQ_QOS_MAX);
1396 
1397     mutex_unlock(&intel_pstate_driver_lock);
1398 
1399     return count;
1400 }
1401 
1402 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1403                   const char *buf, size_t count)
1404 {
1405     unsigned int input;
1406     int ret;
1407 
1408     ret = sscanf(buf, "%u", &input);
1409     if (ret != 1)
1410         return -EINVAL;
1411 
1412     mutex_lock(&intel_pstate_driver_lock);
1413 
1414     if (!intel_pstate_driver) {
1415         mutex_unlock(&intel_pstate_driver_lock);
1416         return -EAGAIN;
1417     }
1418 
1419     mutex_lock(&intel_pstate_limits_lock);
1420 
1421     global.min_perf_pct = clamp_t(int, input,
1422                       min_perf_pct_min(), global.max_perf_pct);
1423 
1424     mutex_unlock(&intel_pstate_limits_lock);
1425 
1426     if (intel_pstate_driver == &intel_pstate)
1427         intel_pstate_update_policies();
1428     else
1429         update_qos_request(FREQ_QOS_MIN);
1430 
1431     mutex_unlock(&intel_pstate_driver_lock);
1432 
1433     return count;
1434 }
1435 
1436 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1437                 struct kobj_attribute *attr, char *buf)
1438 {
1439     return sprintf(buf, "%u\n", hwp_boost);
1440 }
1441 
1442 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1443                        struct kobj_attribute *b,
1444                        const char *buf, size_t count)
1445 {
1446     unsigned int input;
1447     int ret;
1448 
1449     ret = kstrtouint(buf, 10, &input);
1450     if (ret)
1451         return ret;
1452 
1453     mutex_lock(&intel_pstate_driver_lock);
1454     hwp_boost = !!input;
1455     intel_pstate_update_policies();
1456     mutex_unlock(&intel_pstate_driver_lock);
1457 
1458     return count;
1459 }
1460 
1461 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1462                       char *buf)
1463 {
1464     u64 power_ctl;
1465     int enable;
1466 
1467     rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1468     enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1469     return sprintf(buf, "%d\n", !enable);
1470 }
1471 
1472 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1473                        const char *buf, size_t count)
1474 {
1475     bool input;
1476     int ret;
1477 
1478     ret = kstrtobool(buf, &input);
1479     if (ret)
1480         return ret;
1481 
1482     set_power_ctl_ee_state(input);
1483 
1484     return count;
1485 }
1486 
1487 show_one(max_perf_pct, max_perf_pct);
1488 show_one(min_perf_pct, min_perf_pct);
1489 
1490 define_one_global_rw(status);
1491 define_one_global_rw(no_turbo);
1492 define_one_global_rw(max_perf_pct);
1493 define_one_global_rw(min_perf_pct);
1494 define_one_global_ro(turbo_pct);
1495 define_one_global_ro(num_pstates);
1496 define_one_global_rw(hwp_dynamic_boost);
1497 define_one_global_rw(energy_efficiency);
1498 
1499 static struct attribute *intel_pstate_attributes[] = {
1500     &status.attr,
1501     &no_turbo.attr,
1502     NULL
1503 };
1504 
1505 static const struct attribute_group intel_pstate_attr_group = {
1506     .attrs = intel_pstate_attributes,
1507 };
1508 
1509 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1510 
1511 static struct kobject *intel_pstate_kobject;
1512 
1513 static void __init intel_pstate_sysfs_expose_params(void)
1514 {
1515     int rc;
1516 
1517     intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1518                         &cpu_subsys.dev_root->kobj);
1519     if (WARN_ON(!intel_pstate_kobject))
1520         return;
1521 
1522     rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1523     if (WARN_ON(rc))
1524         return;
1525 
1526     if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1527         rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1528         WARN_ON(rc);
1529 
1530         rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1531         WARN_ON(rc);
1532     }
1533 
1534     /*
1535      * If per cpu limits are enforced there are no global limits, so
1536      * return without creating max/min_perf_pct attributes
1537      */
1538     if (per_cpu_limits)
1539         return;
1540 
1541     rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1542     WARN_ON(rc);
1543 
1544     rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1545     WARN_ON(rc);
1546 
1547     if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1548         rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1549         WARN_ON(rc);
1550     }
1551 }
1552 
1553 static void __init intel_pstate_sysfs_remove(void)
1554 {
1555     if (!intel_pstate_kobject)
1556         return;
1557 
1558     sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1559 
1560     if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1561         sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1562         sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1563     }
1564 
1565     if (!per_cpu_limits) {
1566         sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1567         sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1568 
1569         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1570             sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1571     }
1572 
1573     kobject_put(intel_pstate_kobject);
1574 }
1575 
1576 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1577 {
1578     int rc;
1579 
1580     if (!hwp_active)
1581         return;
1582 
1583     rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1584     WARN_ON_ONCE(rc);
1585 }
1586 
1587 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1588 {
1589     if (!hwp_active)
1590         return;
1591 
1592     sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1593 }
1594 
1595 /************************** sysfs end ************************/
1596 
1597 static void intel_pstate_notify_work(struct work_struct *work)
1598 {
1599     struct cpudata *cpudata =
1600         container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1601     struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1602 
1603     if (policy) {
1604         intel_pstate_get_hwp_cap(cpudata);
1605         __intel_pstate_update_max_freq(cpudata, policy);
1606 
1607         cpufreq_cpu_release(policy);
1608     }
1609 
1610     wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1611 }
1612 
1613 static DEFINE_SPINLOCK(hwp_notify_lock);
1614 static cpumask_t hwp_intr_enable_mask;
1615 
1616 void notify_hwp_interrupt(void)
1617 {
1618     unsigned int this_cpu = smp_processor_id();
1619     struct cpudata *cpudata;
1620     unsigned long flags;
1621     u64 value;
1622 
1623     if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1624         return;
1625 
1626     rdmsrl_safe(MSR_HWP_STATUS, &value);
1627     if (!(value & 0x01))
1628         return;
1629 
1630     spin_lock_irqsave(&hwp_notify_lock, flags);
1631 
1632     if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1633         goto ack_intr;
1634 
1635     /*
1636      * Currently we never free all_cpu_data. And we can't reach here
1637      * without this allocated. But for safety for future changes, added
1638      * check.
1639      */
1640     if (unlikely(!READ_ONCE(all_cpu_data)))
1641         goto ack_intr;
1642 
1643     /*
1644      * The free is done during cleanup, when cpufreq registry is failed.
1645      * We wouldn't be here if it fails on init or switch status. But for
1646      * future changes, added check.
1647      */
1648     cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1649     if (unlikely(!cpudata))
1650         goto ack_intr;
1651 
1652     schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1653 
1654     spin_unlock_irqrestore(&hwp_notify_lock, flags);
1655 
1656     return;
1657 
1658 ack_intr:
1659     wrmsrl_safe(MSR_HWP_STATUS, 0);
1660     spin_unlock_irqrestore(&hwp_notify_lock, flags);
1661 }
1662 
1663 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1664 {
1665     unsigned long flags;
1666 
1667     if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1668         return;
1669 
1670     /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1671     wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1672 
1673     spin_lock_irqsave(&hwp_notify_lock, flags);
1674     if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1675         cancel_delayed_work(&cpudata->hwp_notify_work);
1676     spin_unlock_irqrestore(&hwp_notify_lock, flags);
1677 }
1678 
1679 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1680 {
1681     /* Enable HWP notification interrupt for guaranteed performance change */
1682     if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1683         unsigned long flags;
1684 
1685         spin_lock_irqsave(&hwp_notify_lock, flags);
1686         INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1687         cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1688         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1689 
1690         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1691         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1692         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1693     }
1694 }
1695 
1696 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1697 {
1698     cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1699 
1700     /*
1701      * If this CPU gen doesn't call for change in balance_perf
1702      * EPP return.
1703      */
1704     if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1705         return;
1706 
1707     /*
1708      * If powerup EPP is something other than chipset default 0x80 and
1709      * - is more performance oriented than 0x80 (default balance_perf EPP)
1710      * - But less performance oriented than performance EPP
1711      *   then use this as new balance_perf EPP.
1712      */
1713     if (cpudata->epp_default < HWP_EPP_BALANCE_PERFORMANCE &&
1714         cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1715         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1716         return;
1717     }
1718 
1719     /*
1720      * Use hard coded value per gen to update the balance_perf
1721      * and default EPP.
1722      */
1723     cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1724     intel_pstate_set_epp(cpudata, cpudata->epp_default);
1725 }
1726 
1727 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1728 {
1729     /* First disable HWP notification interrupt till we activate again */
1730     if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1731         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1732 
1733     wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1734 
1735     intel_pstate_enable_hwp_interrupt(cpudata);
1736 
1737     if (cpudata->epp_default >= 0)
1738         return;
1739 
1740     intel_pstate_update_epp_defaults(cpudata);
1741 }
1742 
1743 static int atom_get_min_pstate(void)
1744 {
1745     u64 value;
1746 
1747     rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1748     return (value >> 8) & 0x7F;
1749 }
1750 
1751 static int atom_get_max_pstate(void)
1752 {
1753     u64 value;
1754 
1755     rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1756     return (value >> 16) & 0x7F;
1757 }
1758 
1759 static int atom_get_turbo_pstate(void)
1760 {
1761     u64 value;
1762 
1763     rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1764     return value & 0x7F;
1765 }
1766 
1767 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1768 {
1769     u64 val;
1770     int32_t vid_fp;
1771     u32 vid;
1772 
1773     val = (u64)pstate << 8;
1774     if (global.no_turbo && !global.turbo_disabled)
1775         val |= (u64)1 << 32;
1776 
1777     vid_fp = cpudata->vid.min + mul_fp(
1778         int_tofp(pstate - cpudata->pstate.min_pstate),
1779         cpudata->vid.ratio);
1780 
1781     vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1782     vid = ceiling_fp(vid_fp);
1783 
1784     if (pstate > cpudata->pstate.max_pstate)
1785         vid = cpudata->vid.turbo;
1786 
1787     return val | vid;
1788 }
1789 
1790 static int silvermont_get_scaling(void)
1791 {
1792     u64 value;
1793     int i;
1794     /* Defined in Table 35-6 from SDM (Sept 2015) */
1795     static int silvermont_freq_table[] = {
1796         83300, 100000, 133300, 116700, 80000};
1797 
1798     rdmsrl(MSR_FSB_FREQ, value);
1799     i = value & 0x7;
1800     WARN_ON(i > 4);
1801 
1802     return silvermont_freq_table[i];
1803 }
1804 
1805 static int airmont_get_scaling(void)
1806 {
1807     u64 value;
1808     int i;
1809     /* Defined in Table 35-10 from SDM (Sept 2015) */
1810     static int airmont_freq_table[] = {
1811         83300, 100000, 133300, 116700, 80000,
1812         93300, 90000, 88900, 87500};
1813 
1814     rdmsrl(MSR_FSB_FREQ, value);
1815     i = value & 0xF;
1816     WARN_ON(i > 8);
1817 
1818     return airmont_freq_table[i];
1819 }
1820 
1821 static void atom_get_vid(struct cpudata *cpudata)
1822 {
1823     u64 value;
1824 
1825     rdmsrl(MSR_ATOM_CORE_VIDS, value);
1826     cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1827     cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1828     cpudata->vid.ratio = div_fp(
1829         cpudata->vid.max - cpudata->vid.min,
1830         int_tofp(cpudata->pstate.max_pstate -
1831             cpudata->pstate.min_pstate));
1832 
1833     rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1834     cpudata->vid.turbo = value & 0x7f;
1835 }
1836 
1837 static int core_get_min_pstate(void)
1838 {
1839     u64 value;
1840 
1841     rdmsrl(MSR_PLATFORM_INFO, value);
1842     return (value >> 40) & 0xFF;
1843 }
1844 
1845 static int core_get_max_pstate_physical(void)
1846 {
1847     u64 value;
1848 
1849     rdmsrl(MSR_PLATFORM_INFO, value);
1850     return (value >> 8) & 0xFF;
1851 }
1852 
1853 static int core_get_tdp_ratio(u64 plat_info)
1854 {
1855     /* Check how many TDP levels present */
1856     if (plat_info & 0x600000000) {
1857         u64 tdp_ctrl;
1858         u64 tdp_ratio;
1859         int tdp_msr;
1860         int err;
1861 
1862         /* Get the TDP level (0, 1, 2) to get ratios */
1863         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1864         if (err)
1865             return err;
1866 
1867         /* TDP MSR are continuous starting at 0x648 */
1868         tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1869         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1870         if (err)
1871             return err;
1872 
1873         /* For level 1 and 2, bits[23:16] contain the ratio */
1874         if (tdp_ctrl & 0x03)
1875             tdp_ratio >>= 16;
1876 
1877         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1878         pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1879 
1880         return (int)tdp_ratio;
1881     }
1882 
1883     return -ENXIO;
1884 }
1885 
1886 static int core_get_max_pstate(void)
1887 {
1888     u64 tar;
1889     u64 plat_info;
1890     int max_pstate;
1891     int tdp_ratio;
1892     int err;
1893 
1894     rdmsrl(MSR_PLATFORM_INFO, plat_info);
1895     max_pstate = (plat_info >> 8) & 0xFF;
1896 
1897     tdp_ratio = core_get_tdp_ratio(plat_info);
1898     if (tdp_ratio <= 0)
1899         return max_pstate;
1900 
1901     if (hwp_active) {
1902         /* Turbo activation ratio is not used on HWP platforms */
1903         return tdp_ratio;
1904     }
1905 
1906     err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1907     if (!err) {
1908         int tar_levels;
1909 
1910         /* Do some sanity checking for safety */
1911         tar_levels = tar & 0xff;
1912         if (tdp_ratio - 1 == tar_levels) {
1913             max_pstate = tar_levels;
1914             pr_debug("max_pstate=TAC %x\n", max_pstate);
1915         }
1916     }
1917 
1918     return max_pstate;
1919 }
1920 
1921 static int core_get_turbo_pstate(void)
1922 {
1923     u64 value;
1924     int nont, ret;
1925 
1926     rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1927     nont = core_get_max_pstate();
1928     ret = (value) & 255;
1929     if (ret <= nont)
1930         ret = nont;
1931     return ret;
1932 }
1933 
1934 static inline int core_get_scaling(void)
1935 {
1936     return 100000;
1937 }
1938 
1939 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1940 {
1941     u64 val;
1942 
1943     val = (u64)pstate << 8;
1944     if (global.no_turbo && !global.turbo_disabled)
1945         val |= (u64)1 << 32;
1946 
1947     return val;
1948 }
1949 
1950 static int knl_get_aperf_mperf_shift(void)
1951 {
1952     return 10;
1953 }
1954 
1955 static int knl_get_turbo_pstate(void)
1956 {
1957     u64 value;
1958     int nont, ret;
1959 
1960     rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1961     nont = core_get_max_pstate();
1962     ret = (((value) >> 8) & 0xFF);
1963     if (ret <= nont)
1964         ret = nont;
1965     return ret;
1966 }
1967 
1968 #ifdef CONFIG_ACPI_CPPC_LIB
1969 static u32 hybrid_ref_perf;
1970 
1971 static int hybrid_get_cpu_scaling(int cpu)
1972 {
1973     return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1974                 intel_pstate_cppc_nominal(cpu));
1975 }
1976 
1977 static void intel_pstate_cppc_set_cpu_scaling(void)
1978 {
1979     u32 min_nominal_perf = U32_MAX;
1980     int cpu;
1981 
1982     for_each_present_cpu(cpu) {
1983         u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1984 
1985         if (nominal_perf && nominal_perf < min_nominal_perf)
1986             min_nominal_perf = nominal_perf;
1987     }
1988 
1989     if (min_nominal_perf < U32_MAX) {
1990         hybrid_ref_perf = min_nominal_perf;
1991         pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1992     }
1993 }
1994 #else
1995 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1996 {
1997 }
1998 #endif /* CONFIG_ACPI_CPPC_LIB */
1999 
2000 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2001 {
2002     trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2003     cpu->pstate.current_pstate = pstate;
2004     /*
2005      * Generally, there is no guarantee that this code will always run on
2006      * the CPU being updated, so force the register update to run on the
2007      * right CPU.
2008      */
2009     wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2010               pstate_funcs.get_val(cpu, pstate));
2011 }
2012 
2013 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2014 {
2015     intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2016 }
2017 
2018 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2019 {
2020     int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2021 
2022     update_turbo_state();
2023     intel_pstate_set_pstate(cpu, pstate);
2024 }
2025 
2026 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2027 {
2028     int perf_ctl_max_phys = pstate_funcs.get_max_physical();
2029     int perf_ctl_scaling = pstate_funcs.get_scaling();
2030 
2031     cpu->pstate.min_pstate = pstate_funcs.get_min();
2032     cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2033     cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2034 
2035     if (hwp_active && !hwp_mode_bdw) {
2036         __intel_pstate_get_hwp_cap(cpu);
2037 
2038         if (pstate_funcs.get_cpu_scaling) {
2039             cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2040             if (cpu->pstate.scaling != perf_ctl_scaling)
2041                 intel_pstate_hybrid_hwp_adjust(cpu);
2042         } else {
2043             cpu->pstate.scaling = perf_ctl_scaling;
2044         }
2045     } else {
2046         cpu->pstate.scaling = perf_ctl_scaling;
2047         cpu->pstate.max_pstate = pstate_funcs.get_max();
2048         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
2049     }
2050 
2051     if (cpu->pstate.scaling == perf_ctl_scaling) {
2052         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2053         cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2054         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2055     }
2056 
2057     if (pstate_funcs.get_aperf_mperf_shift)
2058         cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2059 
2060     if (pstate_funcs.get_vid)
2061         pstate_funcs.get_vid(cpu);
2062 
2063     intel_pstate_set_min_pstate(cpu);
2064 }
2065 
2066 /*
2067  * Long hold time will keep high perf limits for long time,
2068  * which negatively impacts perf/watt for some workloads,
2069  * like specpower. 3ms is based on experiements on some
2070  * workoads.
2071  */
2072 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2073 
2074 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2075 {
2076     u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2077     u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2078     u32 max_limit = (hwp_req & 0xff00) >> 8;
2079     u32 min_limit = (hwp_req & 0xff);
2080     u32 boost_level1;
2081 
2082     /*
2083      * Cases to consider (User changes via sysfs or boot time):
2084      * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2085      *  No boost, return.
2086      * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2087      *     Should result in one level boost only for P0.
2088      * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2089      *     Should result in two level boost:
2090      *         (min + p1)/2 and P1.
2091      * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2092      *     Should result in three level boost:
2093      *        (min + p1)/2, P1 and P0.
2094      */
2095 
2096     /* If max and min are equal or already at max, nothing to boost */
2097     if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2098         return;
2099 
2100     if (!cpu->hwp_boost_min)
2101         cpu->hwp_boost_min = min_limit;
2102 
2103     /* level at half way mark between min and guranteed */
2104     boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2105 
2106     if (cpu->hwp_boost_min < boost_level1)
2107         cpu->hwp_boost_min = boost_level1;
2108     else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2109         cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2110     else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2111          max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2112         cpu->hwp_boost_min = max_limit;
2113     else
2114         return;
2115 
2116     hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2117     wrmsrl(MSR_HWP_REQUEST, hwp_req);
2118     cpu->last_update = cpu->sample.time;
2119 }
2120 
2121 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2122 {
2123     if (cpu->hwp_boost_min) {
2124         bool expired;
2125 
2126         /* Check if we are idle for hold time to boost down */
2127         expired = time_after64(cpu->sample.time, cpu->last_update +
2128                        hwp_boost_hold_time_ns);
2129         if (expired) {
2130             wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2131             cpu->hwp_boost_min = 0;
2132         }
2133     }
2134     cpu->last_update = cpu->sample.time;
2135 }
2136 
2137 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2138                               u64 time)
2139 {
2140     cpu->sample.time = time;
2141 
2142     if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2143         bool do_io = false;
2144 
2145         cpu->sched_flags = 0;
2146         /*
2147          * Set iowait_boost flag and update time. Since IO WAIT flag
2148          * is set all the time, we can't just conclude that there is
2149          * some IO bound activity is scheduled on this CPU with just
2150          * one occurrence. If we receive at least two in two
2151          * consecutive ticks, then we treat as boost candidate.
2152          */
2153         if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2154             do_io = true;
2155 
2156         cpu->last_io_update = time;
2157 
2158         if (do_io)
2159             intel_pstate_hwp_boost_up(cpu);
2160 
2161     } else {
2162         intel_pstate_hwp_boost_down(cpu);
2163     }
2164 }
2165 
2166 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2167                         u64 time, unsigned int flags)
2168 {
2169     struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2170 
2171     cpu->sched_flags |= flags;
2172 
2173     if (smp_processor_id() == cpu->cpu)
2174         intel_pstate_update_util_hwp_local(cpu, time);
2175 }
2176 
2177 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2178 {
2179     struct sample *sample = &cpu->sample;
2180 
2181     sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2182 }
2183 
2184 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2185 {
2186     u64 aperf, mperf;
2187     unsigned long flags;
2188     u64 tsc;
2189 
2190     local_irq_save(flags);
2191     rdmsrl(MSR_IA32_APERF, aperf);
2192     rdmsrl(MSR_IA32_MPERF, mperf);
2193     tsc = rdtsc();
2194     if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2195         local_irq_restore(flags);
2196         return false;
2197     }
2198     local_irq_restore(flags);
2199 
2200     cpu->last_sample_time = cpu->sample.time;
2201     cpu->sample.time = time;
2202     cpu->sample.aperf = aperf;
2203     cpu->sample.mperf = mperf;
2204     cpu->sample.tsc =  tsc;
2205     cpu->sample.aperf -= cpu->prev_aperf;
2206     cpu->sample.mperf -= cpu->prev_mperf;
2207     cpu->sample.tsc -= cpu->prev_tsc;
2208 
2209     cpu->prev_aperf = aperf;
2210     cpu->prev_mperf = mperf;
2211     cpu->prev_tsc = tsc;
2212     /*
2213      * First time this function is invoked in a given cycle, all of the
2214      * previous sample data fields are equal to zero or stale and they must
2215      * be populated with meaningful numbers for things to work, so assume
2216      * that sample.time will always be reset before setting the utilization
2217      * update hook and make the caller skip the sample then.
2218      */
2219     if (cpu->last_sample_time) {
2220         intel_pstate_calc_avg_perf(cpu);
2221         return true;
2222     }
2223     return false;
2224 }
2225 
2226 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2227 {
2228     return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2229 }
2230 
2231 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2232 {
2233     return mul_ext_fp(cpu->pstate.max_pstate_physical,
2234               cpu->sample.core_avg_perf);
2235 }
2236 
2237 static inline int32_t get_target_pstate(struct cpudata *cpu)
2238 {
2239     struct sample *sample = &cpu->sample;
2240     int32_t busy_frac;
2241     int target, avg_pstate;
2242 
2243     busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2244                sample->tsc);
2245 
2246     if (busy_frac < cpu->iowait_boost)
2247         busy_frac = cpu->iowait_boost;
2248 
2249     sample->busy_scaled = busy_frac * 100;
2250 
2251     target = global.no_turbo || global.turbo_disabled ?
2252             cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2253     target += target >> 2;
2254     target = mul_fp(target, busy_frac);
2255     if (target < cpu->pstate.min_pstate)
2256         target = cpu->pstate.min_pstate;
2257 
2258     /*
2259      * If the average P-state during the previous cycle was higher than the
2260      * current target, add 50% of the difference to the target to reduce
2261      * possible performance oscillations and offset possible performance
2262      * loss related to moving the workload from one CPU to another within
2263      * a package/module.
2264      */
2265     avg_pstate = get_avg_pstate(cpu);
2266     if (avg_pstate > target)
2267         target += (avg_pstate - target) >> 1;
2268 
2269     return target;
2270 }
2271 
2272 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2273 {
2274     int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2275     int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2276 
2277     return clamp_t(int, pstate, min_pstate, max_pstate);
2278 }
2279 
2280 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2281 {
2282     if (pstate == cpu->pstate.current_pstate)
2283         return;
2284 
2285     cpu->pstate.current_pstate = pstate;
2286     wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2287 }
2288 
2289 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2290 {
2291     int from = cpu->pstate.current_pstate;
2292     struct sample *sample;
2293     int target_pstate;
2294 
2295     update_turbo_state();
2296 
2297     target_pstate = get_target_pstate(cpu);
2298     target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2299     trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2300     intel_pstate_update_pstate(cpu, target_pstate);
2301 
2302     sample = &cpu->sample;
2303     trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2304         fp_toint(sample->busy_scaled),
2305         from,
2306         cpu->pstate.current_pstate,
2307         sample->mperf,
2308         sample->aperf,
2309         sample->tsc,
2310         get_avg_frequency(cpu),
2311         fp_toint(cpu->iowait_boost * 100));
2312 }
2313 
2314 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2315                      unsigned int flags)
2316 {
2317     struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2318     u64 delta_ns;
2319 
2320     /* Don't allow remote callbacks */
2321     if (smp_processor_id() != cpu->cpu)
2322         return;
2323 
2324     delta_ns = time - cpu->last_update;
2325     if (flags & SCHED_CPUFREQ_IOWAIT) {
2326         /* Start over if the CPU may have been idle. */
2327         if (delta_ns > TICK_NSEC) {
2328             cpu->iowait_boost = ONE_EIGHTH_FP;
2329         } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2330             cpu->iowait_boost <<= 1;
2331             if (cpu->iowait_boost > int_tofp(1))
2332                 cpu->iowait_boost = int_tofp(1);
2333         } else {
2334             cpu->iowait_boost = ONE_EIGHTH_FP;
2335         }
2336     } else if (cpu->iowait_boost) {
2337         /* Clear iowait_boost if the CPU may have been idle. */
2338         if (delta_ns > TICK_NSEC)
2339             cpu->iowait_boost = 0;
2340         else
2341             cpu->iowait_boost >>= 1;
2342     }
2343     cpu->last_update = time;
2344     delta_ns = time - cpu->sample.time;
2345     if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2346         return;
2347 
2348     if (intel_pstate_sample(cpu, time))
2349         intel_pstate_adjust_pstate(cpu);
2350 }
2351 
2352 static struct pstate_funcs core_funcs = {
2353     .get_max = core_get_max_pstate,
2354     .get_max_physical = core_get_max_pstate_physical,
2355     .get_min = core_get_min_pstate,
2356     .get_turbo = core_get_turbo_pstate,
2357     .get_scaling = core_get_scaling,
2358     .get_val = core_get_val,
2359 };
2360 
2361 static const struct pstate_funcs silvermont_funcs = {
2362     .get_max = atom_get_max_pstate,
2363     .get_max_physical = atom_get_max_pstate,
2364     .get_min = atom_get_min_pstate,
2365     .get_turbo = atom_get_turbo_pstate,
2366     .get_val = atom_get_val,
2367     .get_scaling = silvermont_get_scaling,
2368     .get_vid = atom_get_vid,
2369 };
2370 
2371 static const struct pstate_funcs airmont_funcs = {
2372     .get_max = atom_get_max_pstate,
2373     .get_max_physical = atom_get_max_pstate,
2374     .get_min = atom_get_min_pstate,
2375     .get_turbo = atom_get_turbo_pstate,
2376     .get_val = atom_get_val,
2377     .get_scaling = airmont_get_scaling,
2378     .get_vid = atom_get_vid,
2379 };
2380 
2381 static const struct pstate_funcs knl_funcs = {
2382     .get_max = core_get_max_pstate,
2383     .get_max_physical = core_get_max_pstate_physical,
2384     .get_min = core_get_min_pstate,
2385     .get_turbo = knl_get_turbo_pstate,
2386     .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2387     .get_scaling = core_get_scaling,
2388     .get_val = core_get_val,
2389 };
2390 
2391 #define X86_MATCH(model, policy)                     \
2392     X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2393                        X86_FEATURE_APERFMPERF, &policy)
2394 
2395 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2396     X86_MATCH(SANDYBRIDGE,      core_funcs),
2397     X86_MATCH(SANDYBRIDGE_X,    core_funcs),
2398     X86_MATCH(ATOM_SILVERMONT,  silvermont_funcs),
2399     X86_MATCH(IVYBRIDGE,        core_funcs),
2400     X86_MATCH(HASWELL,      core_funcs),
2401     X86_MATCH(BROADWELL,        core_funcs),
2402     X86_MATCH(IVYBRIDGE_X,      core_funcs),
2403     X86_MATCH(HASWELL_X,        core_funcs),
2404     X86_MATCH(HASWELL_L,        core_funcs),
2405     X86_MATCH(HASWELL_G,        core_funcs),
2406     X86_MATCH(BROADWELL_G,      core_funcs),
2407     X86_MATCH(ATOM_AIRMONT,     airmont_funcs),
2408     X86_MATCH(SKYLAKE_L,        core_funcs),
2409     X86_MATCH(BROADWELL_X,      core_funcs),
2410     X86_MATCH(SKYLAKE,      core_funcs),
2411     X86_MATCH(BROADWELL_D,      core_funcs),
2412     X86_MATCH(XEON_PHI_KNL,     knl_funcs),
2413     X86_MATCH(XEON_PHI_KNM,     knl_funcs),
2414     X86_MATCH(ATOM_GOLDMONT,    core_funcs),
2415     X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2416     X86_MATCH(SKYLAKE_X,        core_funcs),
2417     X86_MATCH(COMETLAKE,        core_funcs),
2418     X86_MATCH(ICELAKE_X,        core_funcs),
2419     {}
2420 };
2421 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2422 
2423 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2424     X86_MATCH(BROADWELL_D,      core_funcs),
2425     X86_MATCH(BROADWELL_X,      core_funcs),
2426     X86_MATCH(SKYLAKE_X,        core_funcs),
2427     X86_MATCH(ICELAKE_X,        core_funcs),
2428     X86_MATCH(SAPPHIRERAPIDS_X, core_funcs),
2429     {}
2430 };
2431 
2432 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2433     X86_MATCH(KABYLAKE,     core_funcs),
2434     {}
2435 };
2436 
2437 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2438     X86_MATCH(SKYLAKE_X,        core_funcs),
2439     X86_MATCH(SKYLAKE,      core_funcs),
2440     {}
2441 };
2442 
2443 static int intel_pstate_init_cpu(unsigned int cpunum)
2444 {
2445     struct cpudata *cpu;
2446 
2447     cpu = all_cpu_data[cpunum];
2448 
2449     if (!cpu) {
2450         cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2451         if (!cpu)
2452             return -ENOMEM;
2453 
2454         WRITE_ONCE(all_cpu_data[cpunum], cpu);
2455 
2456         cpu->cpu = cpunum;
2457 
2458         cpu->epp_default = -EINVAL;
2459 
2460         if (hwp_active) {
2461             const struct x86_cpu_id *id;
2462 
2463             intel_pstate_hwp_enable(cpu);
2464 
2465             id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2466             if (id && intel_pstate_acpi_pm_profile_server())
2467                 hwp_boost = true;
2468         }
2469     } else if (hwp_active) {
2470         /*
2471          * Re-enable HWP in case this happens after a resume from ACPI
2472          * S3 if the CPU was offline during the whole system/resume
2473          * cycle.
2474          */
2475         intel_pstate_hwp_reenable(cpu);
2476     }
2477 
2478     cpu->epp_powersave = -EINVAL;
2479     cpu->epp_policy = 0;
2480 
2481     intel_pstate_get_cpu_pstates(cpu);
2482 
2483     pr_debug("controlling: cpu %d\n", cpunum);
2484 
2485     return 0;
2486 }
2487 
2488 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2489 {
2490     struct cpudata *cpu = all_cpu_data[cpu_num];
2491 
2492     if (hwp_active && !hwp_boost)
2493         return;
2494 
2495     if (cpu->update_util_set)
2496         return;
2497 
2498     /* Prevent intel_pstate_update_util() from using stale data. */
2499     cpu->sample.time = 0;
2500     cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2501                      (hwp_active ?
2502                       intel_pstate_update_util_hwp :
2503                       intel_pstate_update_util));
2504     cpu->update_util_set = true;
2505 }
2506 
2507 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2508 {
2509     struct cpudata *cpu_data = all_cpu_data[cpu];
2510 
2511     if (!cpu_data->update_util_set)
2512         return;
2513 
2514     cpufreq_remove_update_util_hook(cpu);
2515     cpu_data->update_util_set = false;
2516     synchronize_rcu();
2517 }
2518 
2519 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2520 {
2521     return global.turbo_disabled || global.no_turbo ?
2522             cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2523 }
2524 
2525 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2526                         unsigned int policy_min,
2527                         unsigned int policy_max)
2528 {
2529     int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2530     int32_t max_policy_perf, min_policy_perf;
2531 
2532     max_policy_perf = policy_max / perf_ctl_scaling;
2533     if (policy_max == policy_min) {
2534         min_policy_perf = max_policy_perf;
2535     } else {
2536         min_policy_perf = policy_min / perf_ctl_scaling;
2537         min_policy_perf = clamp_t(int32_t, min_policy_perf,
2538                       0, max_policy_perf);
2539     }
2540 
2541     /*
2542      * HWP needs some special consideration, because HWP_REQUEST uses
2543      * abstract values to represent performance rather than pure ratios.
2544      */
2545     if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2546         int scaling = cpu->pstate.scaling;
2547         int freq;
2548 
2549         freq = max_policy_perf * perf_ctl_scaling;
2550         max_policy_perf = DIV_ROUND_UP(freq, scaling);
2551         freq = min_policy_perf * perf_ctl_scaling;
2552         min_policy_perf = DIV_ROUND_UP(freq, scaling);
2553     }
2554 
2555     pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2556          cpu->cpu, min_policy_perf, max_policy_perf);
2557 
2558     /* Normalize user input to [min_perf, max_perf] */
2559     if (per_cpu_limits) {
2560         cpu->min_perf_ratio = min_policy_perf;
2561         cpu->max_perf_ratio = max_policy_perf;
2562     } else {
2563         int turbo_max = cpu->pstate.turbo_pstate;
2564         int32_t global_min, global_max;
2565 
2566         /* Global limits are in percent of the maximum turbo P-state. */
2567         global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2568         global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2569         global_min = clamp_t(int32_t, global_min, 0, global_max);
2570 
2571         pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2572              global_min, global_max);
2573 
2574         cpu->min_perf_ratio = max(min_policy_perf, global_min);
2575         cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2576         cpu->max_perf_ratio = min(max_policy_perf, global_max);
2577         cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2578 
2579         /* Make sure min_perf <= max_perf */
2580         cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2581                       cpu->max_perf_ratio);
2582 
2583     }
2584     pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2585          cpu->max_perf_ratio,
2586          cpu->min_perf_ratio);
2587 }
2588 
2589 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2590 {
2591     struct cpudata *cpu;
2592 
2593     if (!policy->cpuinfo.max_freq)
2594         return -ENODEV;
2595 
2596     pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2597          policy->cpuinfo.max_freq, policy->max);
2598 
2599     cpu = all_cpu_data[policy->cpu];
2600     cpu->policy = policy->policy;
2601 
2602     mutex_lock(&intel_pstate_limits_lock);
2603 
2604     intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2605 
2606     if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2607         /*
2608          * NOHZ_FULL CPUs need this as the governor callback may not
2609          * be invoked on them.
2610          */
2611         intel_pstate_clear_update_util_hook(policy->cpu);
2612         intel_pstate_max_within_limits(cpu);
2613     } else {
2614         intel_pstate_set_update_util_hook(policy->cpu);
2615     }
2616 
2617     if (hwp_active) {
2618         /*
2619          * When hwp_boost was active before and dynamically it
2620          * was turned off, in that case we need to clear the
2621          * update util hook.
2622          */
2623         if (!hwp_boost)
2624             intel_pstate_clear_update_util_hook(policy->cpu);
2625         intel_pstate_hwp_set(policy->cpu);
2626     }
2627 
2628     mutex_unlock(&intel_pstate_limits_lock);
2629 
2630     return 0;
2631 }
2632 
2633 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2634                        struct cpufreq_policy_data *policy)
2635 {
2636     if (!hwp_active &&
2637         cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2638         policy->max < policy->cpuinfo.max_freq &&
2639         policy->max > cpu->pstate.max_freq) {
2640         pr_debug("policy->max > max non turbo frequency\n");
2641         policy->max = policy->cpuinfo.max_freq;
2642     }
2643 }
2644 
2645 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2646                        struct cpufreq_policy_data *policy)
2647 {
2648     int max_freq;
2649 
2650     update_turbo_state();
2651     if (hwp_active) {
2652         intel_pstate_get_hwp_cap(cpu);
2653         max_freq = global.no_turbo || global.turbo_disabled ?
2654                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2655     } else {
2656         max_freq = intel_pstate_get_max_freq(cpu);
2657     }
2658     cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2659 
2660     intel_pstate_adjust_policy_max(cpu, policy);
2661 }
2662 
2663 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2664 {
2665     intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2666 
2667     return 0;
2668 }
2669 
2670 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2671 {
2672     struct cpudata *cpu = all_cpu_data[policy->cpu];
2673 
2674     pr_debug("CPU %d going offline\n", cpu->cpu);
2675 
2676     if (cpu->suspended)
2677         return 0;
2678 
2679     /*
2680      * If the CPU is an SMT thread and it goes offline with the performance
2681      * settings different from the minimum, it will prevent its sibling
2682      * from getting to lower performance levels, so force the minimum
2683      * performance on CPU offline to prevent that from happening.
2684      */
2685     if (hwp_active)
2686         intel_pstate_hwp_offline(cpu);
2687     else
2688         intel_pstate_set_min_pstate(cpu);
2689 
2690     intel_pstate_exit_perf_limits(policy);
2691 
2692     return 0;
2693 }
2694 
2695 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2696 {
2697     struct cpudata *cpu = all_cpu_data[policy->cpu];
2698 
2699     pr_debug("CPU %d going online\n", cpu->cpu);
2700 
2701     intel_pstate_init_acpi_perf_limits(policy);
2702 
2703     if (hwp_active) {
2704         /*
2705          * Re-enable HWP and clear the "suspended" flag to let "resume"
2706          * know that it need not do that.
2707          */
2708         intel_pstate_hwp_reenable(cpu);
2709         cpu->suspended = false;
2710     }
2711 
2712     return 0;
2713 }
2714 
2715 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2716 {
2717     intel_pstate_clear_update_util_hook(policy->cpu);
2718 
2719     return intel_cpufreq_cpu_offline(policy);
2720 }
2721 
2722 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2723 {
2724     pr_debug("CPU %d exiting\n", policy->cpu);
2725 
2726     policy->fast_switch_possible = false;
2727 
2728     return 0;
2729 }
2730 
2731 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2732 {
2733     struct cpudata *cpu;
2734     int rc;
2735 
2736     rc = intel_pstate_init_cpu(policy->cpu);
2737     if (rc)
2738         return rc;
2739 
2740     cpu = all_cpu_data[policy->cpu];
2741 
2742     cpu->max_perf_ratio = 0xFF;
2743     cpu->min_perf_ratio = 0;
2744 
2745     /* cpuinfo and default policy values */
2746     policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2747     update_turbo_state();
2748     global.turbo_disabled_mf = global.turbo_disabled;
2749     policy->cpuinfo.max_freq = global.turbo_disabled ?
2750             cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2751 
2752     policy->min = policy->cpuinfo.min_freq;
2753     policy->max = policy->cpuinfo.max_freq;
2754 
2755     intel_pstate_init_acpi_perf_limits(policy);
2756 
2757     policy->fast_switch_possible = true;
2758 
2759     return 0;
2760 }
2761 
2762 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2763 {
2764     int ret = __intel_pstate_cpu_init(policy);
2765 
2766     if (ret)
2767         return ret;
2768 
2769     /*
2770      * Set the policy to powersave to provide a valid fallback value in case
2771      * the default cpufreq governor is neither powersave nor performance.
2772      */
2773     policy->policy = CPUFREQ_POLICY_POWERSAVE;
2774 
2775     if (hwp_active) {
2776         struct cpudata *cpu = all_cpu_data[policy->cpu];
2777 
2778         cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2779     }
2780 
2781     return 0;
2782 }
2783 
2784 static struct cpufreq_driver intel_pstate = {
2785     .flags      = CPUFREQ_CONST_LOOPS,
2786     .verify     = intel_pstate_verify_policy,
2787     .setpolicy  = intel_pstate_set_policy,
2788     .suspend    = intel_pstate_suspend,
2789     .resume     = intel_pstate_resume,
2790     .init       = intel_pstate_cpu_init,
2791     .exit       = intel_pstate_cpu_exit,
2792     .offline    = intel_pstate_cpu_offline,
2793     .online     = intel_pstate_cpu_online,
2794     .update_limits  = intel_pstate_update_limits,
2795     .name       = "intel_pstate",
2796 };
2797 
2798 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2799 {
2800     struct cpudata *cpu = all_cpu_data[policy->cpu];
2801 
2802     intel_pstate_verify_cpu_policy(cpu, policy);
2803     intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2804 
2805     return 0;
2806 }
2807 
2808 /* Use of trace in passive mode:
2809  *
2810  * In passive mode the trace core_busy field (also known as the
2811  * performance field, and lablelled as such on the graphs; also known as
2812  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2813  * driver call was via the normal or fast switch path. Various graphs
2814  * output from the intel_pstate_tracer.py utility that include core_busy
2815  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2816  * so we use 10 to indicate the normal path through the driver, and
2817  * 90 to indicate the fast switch path through the driver.
2818  * The scaled_busy field is not used, and is set to 0.
2819  */
2820 
2821 #define INTEL_PSTATE_TRACE_TARGET 10
2822 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2823 
2824 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2825 {
2826     struct sample *sample;
2827 
2828     if (!trace_pstate_sample_enabled())
2829         return;
2830 
2831     if (!intel_pstate_sample(cpu, ktime_get()))
2832         return;
2833 
2834     sample = &cpu->sample;
2835     trace_pstate_sample(trace_type,
2836         0,
2837         old_pstate,
2838         cpu->pstate.current_pstate,
2839         sample->mperf,
2840         sample->aperf,
2841         sample->tsc,
2842         get_avg_frequency(cpu),
2843         fp_toint(cpu->iowait_boost * 100));
2844 }
2845 
2846 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2847                      u32 desired, bool fast_switch)
2848 {
2849     u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2850 
2851     value &= ~HWP_MIN_PERF(~0L);
2852     value |= HWP_MIN_PERF(min);
2853 
2854     value &= ~HWP_MAX_PERF(~0L);
2855     value |= HWP_MAX_PERF(max);
2856 
2857     value &= ~HWP_DESIRED_PERF(~0L);
2858     value |= HWP_DESIRED_PERF(desired);
2859 
2860     if (value == prev)
2861         return;
2862 
2863     WRITE_ONCE(cpu->hwp_req_cached, value);
2864     if (fast_switch)
2865         wrmsrl(MSR_HWP_REQUEST, value);
2866     else
2867         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2868 }
2869 
2870 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2871                       u32 target_pstate, bool fast_switch)
2872 {
2873     if (fast_switch)
2874         wrmsrl(MSR_IA32_PERF_CTL,
2875                pstate_funcs.get_val(cpu, target_pstate));
2876     else
2877         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2878                   pstate_funcs.get_val(cpu, target_pstate));
2879 }
2880 
2881 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2882                        int target_pstate, bool fast_switch)
2883 {
2884     struct cpudata *cpu = all_cpu_data[policy->cpu];
2885     int old_pstate = cpu->pstate.current_pstate;
2886 
2887     target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2888     if (hwp_active) {
2889         int max_pstate = policy->strict_target ?
2890                     target_pstate : cpu->max_perf_ratio;
2891 
2892         intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2893                      fast_switch);
2894     } else if (target_pstate != old_pstate) {
2895         intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2896     }
2897 
2898     cpu->pstate.current_pstate = target_pstate;
2899 
2900     intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2901                 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2902 
2903     return target_pstate;
2904 }
2905 
2906 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2907                 unsigned int target_freq,
2908                 unsigned int relation)
2909 {
2910     struct cpudata *cpu = all_cpu_data[policy->cpu];
2911     struct cpufreq_freqs freqs;
2912     int target_pstate;
2913 
2914     update_turbo_state();
2915 
2916     freqs.old = policy->cur;
2917     freqs.new = target_freq;
2918 
2919     cpufreq_freq_transition_begin(policy, &freqs);
2920 
2921     switch (relation) {
2922     case CPUFREQ_RELATION_L:
2923         target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2924         break;
2925     case CPUFREQ_RELATION_H:
2926         target_pstate = freqs.new / cpu->pstate.scaling;
2927         break;
2928     default:
2929         target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2930         break;
2931     }
2932 
2933     target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2934 
2935     freqs.new = target_pstate * cpu->pstate.scaling;
2936 
2937     cpufreq_freq_transition_end(policy, &freqs, false);
2938 
2939     return 0;
2940 }
2941 
2942 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2943                           unsigned int target_freq)
2944 {
2945     struct cpudata *cpu = all_cpu_data[policy->cpu];
2946     int target_pstate;
2947 
2948     update_turbo_state();
2949 
2950     target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2951 
2952     target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2953 
2954     return target_pstate * cpu->pstate.scaling;
2955 }
2956 
2957 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2958                       unsigned long min_perf,
2959                       unsigned long target_perf,
2960                       unsigned long capacity)
2961 {
2962     struct cpudata *cpu = all_cpu_data[cpunum];
2963     u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2964     int old_pstate = cpu->pstate.current_pstate;
2965     int cap_pstate, min_pstate, max_pstate, target_pstate;
2966 
2967     update_turbo_state();
2968     cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2969                          HWP_HIGHEST_PERF(hwp_cap);
2970 
2971     /* Optimization: Avoid unnecessary divisions. */
2972 
2973     target_pstate = cap_pstate;
2974     if (target_perf < capacity)
2975         target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2976 
2977     min_pstate = cap_pstate;
2978     if (min_perf < capacity)
2979         min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2980 
2981     if (min_pstate < cpu->pstate.min_pstate)
2982         min_pstate = cpu->pstate.min_pstate;
2983 
2984     if (min_pstate < cpu->min_perf_ratio)
2985         min_pstate = cpu->min_perf_ratio;
2986 
2987     max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2988     if (max_pstate < min_pstate)
2989         max_pstate = min_pstate;
2990 
2991     target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2992 
2993     intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2994 
2995     cpu->pstate.current_pstate = target_pstate;
2996     intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2997 }
2998 
2999 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3000 {
3001     struct freq_qos_request *req;
3002     struct cpudata *cpu;
3003     struct device *dev;
3004     int ret, freq;
3005 
3006     dev = get_cpu_device(policy->cpu);
3007     if (!dev)
3008         return -ENODEV;
3009 
3010     ret = __intel_pstate_cpu_init(policy);
3011     if (ret)
3012         return ret;
3013 
3014     policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3015     /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3016     policy->cur = policy->cpuinfo.min_freq;
3017 
3018     req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3019     if (!req) {
3020         ret = -ENOMEM;
3021         goto pstate_exit;
3022     }
3023 
3024     cpu = all_cpu_data[policy->cpu];
3025 
3026     if (hwp_active) {
3027         u64 value;
3028 
3029         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3030 
3031         intel_pstate_get_hwp_cap(cpu);
3032 
3033         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3034         WRITE_ONCE(cpu->hwp_req_cached, value);
3035 
3036         cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3037     } else {
3038         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3039     }
3040 
3041     freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3042 
3043     ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3044                    freq);
3045     if (ret < 0) {
3046         dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3047         goto free_req;
3048     }
3049 
3050     freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3051 
3052     ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3053                    freq);
3054     if (ret < 0) {
3055         dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3056         goto remove_min_req;
3057     }
3058 
3059     policy->driver_data = req;
3060 
3061     return 0;
3062 
3063 remove_min_req:
3064     freq_qos_remove_request(req);
3065 free_req:
3066     kfree(req);
3067 pstate_exit:
3068     intel_pstate_exit_perf_limits(policy);
3069 
3070     return ret;
3071 }
3072 
3073 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3074 {
3075     struct freq_qos_request *req;
3076 
3077     req = policy->driver_data;
3078 
3079     freq_qos_remove_request(req + 1);
3080     freq_qos_remove_request(req);
3081     kfree(req);
3082 
3083     return intel_pstate_cpu_exit(policy);
3084 }
3085 
3086 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3087 {
3088     intel_pstate_suspend(policy);
3089 
3090     if (hwp_active) {
3091         struct cpudata *cpu = all_cpu_data[policy->cpu];
3092         u64 value = READ_ONCE(cpu->hwp_req_cached);
3093 
3094         /*
3095          * Clear the desired perf field in MSR_HWP_REQUEST in case
3096          * intel_cpufreq_adjust_perf() is in use and the last value
3097          * written by it may not be suitable.
3098          */
3099         value &= ~HWP_DESIRED_PERF(~0L);
3100         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3101         WRITE_ONCE(cpu->hwp_req_cached, value);
3102     }
3103 
3104     return 0;
3105 }
3106 
3107 static struct cpufreq_driver intel_cpufreq = {
3108     .flags      = CPUFREQ_CONST_LOOPS,
3109     .verify     = intel_cpufreq_verify_policy,
3110     .target     = intel_cpufreq_target,
3111     .fast_switch    = intel_cpufreq_fast_switch,
3112     .init       = intel_cpufreq_cpu_init,
3113     .exit       = intel_cpufreq_cpu_exit,
3114     .offline    = intel_cpufreq_cpu_offline,
3115     .online     = intel_pstate_cpu_online,
3116     .suspend    = intel_cpufreq_suspend,
3117     .resume     = intel_pstate_resume,
3118     .update_limits  = intel_pstate_update_limits,
3119     .name       = "intel_cpufreq",
3120 };
3121 
3122 static struct cpufreq_driver *default_driver;
3123 
3124 static void intel_pstate_driver_cleanup(void)
3125 {
3126     unsigned int cpu;
3127 
3128     cpus_read_lock();
3129     for_each_online_cpu(cpu) {
3130         if (all_cpu_data[cpu]) {
3131             if (intel_pstate_driver == &intel_pstate)
3132                 intel_pstate_clear_update_util_hook(cpu);
3133 
3134             spin_lock(&hwp_notify_lock);
3135             kfree(all_cpu_data[cpu]);
3136             WRITE_ONCE(all_cpu_data[cpu], NULL);
3137             spin_unlock(&hwp_notify_lock);
3138         }
3139     }
3140     cpus_read_unlock();
3141 
3142     intel_pstate_driver = NULL;
3143 }
3144 
3145 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3146 {
3147     int ret;
3148 
3149     if (driver == &intel_pstate)
3150         intel_pstate_sysfs_expose_hwp_dynamic_boost();
3151 
3152     memset(&global, 0, sizeof(global));
3153     global.max_perf_pct = 100;
3154 
3155     intel_pstate_driver = driver;
3156     ret = cpufreq_register_driver(intel_pstate_driver);
3157     if (ret) {
3158         intel_pstate_driver_cleanup();
3159         return ret;
3160     }
3161 
3162     global.min_perf_pct = min_perf_pct_min();
3163 
3164     return 0;
3165 }
3166 
3167 static ssize_t intel_pstate_show_status(char *buf)
3168 {
3169     if (!intel_pstate_driver)
3170         return sprintf(buf, "off\n");
3171 
3172     return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3173                     "active" : "passive");
3174 }
3175 
3176 static int intel_pstate_update_status(const char *buf, size_t size)
3177 {
3178     if (size == 3 && !strncmp(buf, "off", size)) {
3179         if (!intel_pstate_driver)
3180             return -EINVAL;
3181 
3182         if (hwp_active)
3183             return -EBUSY;
3184 
3185         cpufreq_unregister_driver(intel_pstate_driver);
3186         intel_pstate_driver_cleanup();
3187         return 0;
3188     }
3189 
3190     if (size == 6 && !strncmp(buf, "active", size)) {
3191         if (intel_pstate_driver) {
3192             if (intel_pstate_driver == &intel_pstate)
3193                 return 0;
3194 
3195             cpufreq_unregister_driver(intel_pstate_driver);
3196         }
3197 
3198         return intel_pstate_register_driver(&intel_pstate);
3199     }
3200 
3201     if (size == 7 && !strncmp(buf, "passive", size)) {
3202         if (intel_pstate_driver) {
3203             if (intel_pstate_driver == &intel_cpufreq)
3204                 return 0;
3205 
3206             cpufreq_unregister_driver(intel_pstate_driver);
3207             intel_pstate_sysfs_hide_hwp_dynamic_boost();
3208         }
3209 
3210         return intel_pstate_register_driver(&intel_cpufreq);
3211     }
3212 
3213     return -EINVAL;
3214 }
3215 
3216 static int no_load __initdata;
3217 static int no_hwp __initdata;
3218 static int hwp_only __initdata;
3219 static unsigned int force_load __initdata;
3220 
3221 static int __init intel_pstate_msrs_not_valid(void)
3222 {
3223     if (!pstate_funcs.get_max() ||
3224         !pstate_funcs.get_min() ||
3225         !pstate_funcs.get_turbo())
3226         return -ENODEV;
3227 
3228     return 0;
3229 }
3230 
3231 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3232 {
3233     pstate_funcs.get_max   = funcs->get_max;
3234     pstate_funcs.get_max_physical = funcs->get_max_physical;
3235     pstate_funcs.get_min   = funcs->get_min;
3236     pstate_funcs.get_turbo = funcs->get_turbo;
3237     pstate_funcs.get_scaling = funcs->get_scaling;
3238     pstate_funcs.get_val   = funcs->get_val;
3239     pstate_funcs.get_vid   = funcs->get_vid;
3240     pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3241 }
3242 
3243 #ifdef CONFIG_ACPI
3244 
3245 static bool __init intel_pstate_no_acpi_pss(void)
3246 {
3247     int i;
3248 
3249     for_each_possible_cpu(i) {
3250         acpi_status status;
3251         union acpi_object *pss;
3252         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3253         struct acpi_processor *pr = per_cpu(processors, i);
3254 
3255         if (!pr)
3256             continue;
3257 
3258         status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3259         if (ACPI_FAILURE(status))
3260             continue;
3261 
3262         pss = buffer.pointer;
3263         if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3264             kfree(pss);
3265             return false;
3266         }
3267 
3268         kfree(pss);
3269     }
3270 
3271     pr_debug("ACPI _PSS not found\n");
3272     return true;
3273 }
3274 
3275 static bool __init intel_pstate_no_acpi_pcch(void)
3276 {
3277     acpi_status status;
3278     acpi_handle handle;
3279 
3280     status = acpi_get_handle(NULL, "\\_SB", &handle);
3281     if (ACPI_FAILURE(status))
3282         goto not_found;
3283 
3284     if (acpi_has_method(handle, "PCCH"))
3285         return false;
3286 
3287 not_found:
3288     pr_debug("ACPI PCCH not found\n");
3289     return true;
3290 }
3291 
3292 static bool __init intel_pstate_has_acpi_ppc(void)
3293 {
3294     int i;
3295 
3296     for_each_possible_cpu(i) {
3297         struct acpi_processor *pr = per_cpu(processors, i);
3298 
3299         if (!pr)
3300             continue;
3301         if (acpi_has_method(pr->handle, "_PPC"))
3302             return true;
3303     }
3304     pr_debug("ACPI _PPC not found\n");
3305     return false;
3306 }
3307 
3308 enum {
3309     PSS,
3310     PPC,
3311 };
3312 
3313 /* Hardware vendor-specific info that has its own power management modes */
3314 static struct acpi_platform_list plat_info[] __initdata = {
3315     {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3316     {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3317     {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3318     {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3319     {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3320     {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3321     {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3322     {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3323     {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3324     {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3325     {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3326     {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3327     {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3328     {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3329     {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3330     { } /* End */
3331 };
3332 
3333 #define BITMASK_OOB (BIT(8) | BIT(18))
3334 
3335 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3336 {
3337     const struct x86_cpu_id *id;
3338     u64 misc_pwr;
3339     int idx;
3340 
3341     id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3342     if (id) {
3343         rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3344         if (misc_pwr & BITMASK_OOB) {
3345             pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3346             pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3347             return true;
3348         }
3349     }
3350 
3351     idx = acpi_match_platform_list(plat_info);
3352     if (idx < 0)
3353         return false;
3354 
3355     switch (plat_info[idx].data) {
3356     case PSS:
3357         if (!intel_pstate_no_acpi_pss())
3358             return false;
3359 
3360         return intel_pstate_no_acpi_pcch();
3361     case PPC:
3362         return intel_pstate_has_acpi_ppc() && !force_load;
3363     }
3364 
3365     return false;
3366 }
3367 
3368 static void intel_pstate_request_control_from_smm(void)
3369 {
3370     /*
3371      * It may be unsafe to request P-states control from SMM if _PPC support
3372      * has not been enabled.
3373      */
3374     if (acpi_ppc)
3375         acpi_processor_pstate_control();
3376 }
3377 #else /* CONFIG_ACPI not enabled */
3378 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3379 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3380 static inline void intel_pstate_request_control_from_smm(void) {}
3381 #endif /* CONFIG_ACPI */
3382 
3383 #define INTEL_PSTATE_HWP_BROADWELL  0x01
3384 
3385 #define X86_MATCH_HWP(model, hwp_mode)                  \
3386     X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3387                        X86_FEATURE_HWP, hwp_mode)
3388 
3389 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3390     X86_MATCH_HWP(BROADWELL_X,  INTEL_PSTATE_HWP_BROADWELL),
3391     X86_MATCH_HWP(BROADWELL_D,  INTEL_PSTATE_HWP_BROADWELL),
3392     X86_MATCH_HWP(ANY,      0),
3393     {}
3394 };
3395 
3396 static bool intel_pstate_hwp_is_enabled(void)
3397 {
3398     u64 value;
3399 
3400     rdmsrl(MSR_PM_ENABLE, value);
3401     return !!(value & 0x1);
3402 }
3403 
3404 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3405     /*
3406      * Set EPP value as 102, this is the max suggested EPP
3407      * which can result in one core turbo frequency for
3408      * AlderLake Mobile CPUs.
3409      */
3410     X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3411     {}
3412 };
3413 
3414 static int __init intel_pstate_init(void)
3415 {
3416     static struct cpudata **_all_cpu_data;
3417     const struct x86_cpu_id *id;
3418     int rc;
3419 
3420     if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3421         return -ENODEV;
3422 
3423     id = x86_match_cpu(hwp_support_ids);
3424     if (id) {
3425         bool hwp_forced = intel_pstate_hwp_is_enabled();
3426 
3427         if (hwp_forced)
3428             pr_info("HWP enabled by BIOS\n");
3429         else if (no_load)
3430             return -ENODEV;
3431 
3432         copy_cpu_funcs(&core_funcs);
3433         /*
3434          * Avoid enabling HWP for processors without EPP support,
3435          * because that means incomplete HWP implementation which is a
3436          * corner case and supporting it is generally problematic.
3437          *
3438          * If HWP is enabled already, though, there is no choice but to
3439          * deal with it.
3440          */
3441         if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3442             WRITE_ONCE(hwp_active, 1);
3443             hwp_mode_bdw = id->driver_data;
3444             intel_pstate.attr = hwp_cpufreq_attrs;
3445             intel_cpufreq.attr = hwp_cpufreq_attrs;
3446             intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3447             intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3448             if (!default_driver)
3449                 default_driver = &intel_pstate;
3450 
3451             if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3452                 intel_pstate_cppc_set_cpu_scaling();
3453 
3454             goto hwp_cpu_matched;
3455         }
3456         pr_info("HWP not enabled\n");
3457     } else {
3458         if (no_load)
3459             return -ENODEV;
3460 
3461         id = x86_match_cpu(intel_pstate_cpu_ids);
3462         if (!id) {
3463             pr_info("CPU model not supported\n");
3464             return -ENODEV;
3465         }
3466 
3467         copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3468     }
3469 
3470     if (intel_pstate_msrs_not_valid()) {
3471         pr_info("Invalid MSRs\n");
3472         return -ENODEV;
3473     }
3474     /* Without HWP start in the passive mode. */
3475     if (!default_driver)
3476         default_driver = &intel_cpufreq;
3477 
3478 hwp_cpu_matched:
3479     /*
3480      * The Intel pstate driver will be ignored if the platform
3481      * firmware has its own power management modes.
3482      */
3483     if (intel_pstate_platform_pwr_mgmt_exists()) {
3484         pr_info("P-states controlled by the platform\n");
3485         return -ENODEV;
3486     }
3487 
3488     if (!hwp_active && hwp_only)
3489         return -ENOTSUPP;
3490 
3491     pr_info("Intel P-state driver initializing\n");
3492 
3493     _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3494     if (!_all_cpu_data)
3495         return -ENOMEM;
3496 
3497     WRITE_ONCE(all_cpu_data, _all_cpu_data);
3498 
3499     intel_pstate_request_control_from_smm();
3500 
3501     intel_pstate_sysfs_expose_params();
3502 
3503     if (hwp_active) {
3504         const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3505 
3506         if (id)
3507             epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3508     }
3509 
3510     mutex_lock(&intel_pstate_driver_lock);
3511     rc = intel_pstate_register_driver(default_driver);
3512     mutex_unlock(&intel_pstate_driver_lock);
3513     if (rc) {
3514         intel_pstate_sysfs_remove();
3515         return rc;
3516     }
3517 
3518     if (hwp_active) {
3519         const struct x86_cpu_id *id;
3520 
3521         id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3522         if (id) {
3523             set_power_ctl_ee_state(false);
3524             pr_info("Disabling energy efficiency optimization\n");
3525         }
3526 
3527         pr_info("HWP enabled\n");
3528     } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3529         pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3530     }
3531 
3532     return 0;
3533 }
3534 device_initcall(intel_pstate_init);
3535 
3536 static int __init intel_pstate_setup(char *str)
3537 {
3538     if (!str)
3539         return -EINVAL;
3540 
3541     if (!strcmp(str, "disable"))
3542         no_load = 1;
3543     else if (!strcmp(str, "active"))
3544         default_driver = &intel_pstate;
3545     else if (!strcmp(str, "passive"))
3546         default_driver = &intel_cpufreq;
3547 
3548     if (!strcmp(str, "no_hwp"))
3549         no_hwp = 1;
3550 
3551     if (!strcmp(str, "force"))
3552         force_load = 1;
3553     if (!strcmp(str, "hwp_only"))
3554         hwp_only = 1;
3555     if (!strcmp(str, "per_cpu_perf_limits"))
3556         per_cpu_limits = true;
3557 
3558 #ifdef CONFIG_ACPI
3559     if (!strcmp(str, "support_acpi_ppc"))
3560         acpi_ppc = true;
3561 #endif
3562 
3563     return 0;
3564 }
3565 early_param("intel_pstate", intel_pstate_setup);
3566 
3567 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3568 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3569 MODULE_LICENSE("GPL");