Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/drivers/cpufreq/cpufreq.c
0004  *
0005  *  Copyright (C) 2001 Russell King
0006  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
0007  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
0008  *
0009  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
0010  *  Added handling for CPU hotplug
0011  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
0012  *  Fix handling for CPU hotplug -- affected CPUs
0013  */
0014 
0015 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0016 
0017 #include <linux/cpu.h>
0018 #include <linux/cpufreq.h>
0019 #include <linux/cpu_cooling.h>
0020 #include <linux/delay.h>
0021 #include <linux/device.h>
0022 #include <linux/init.h>
0023 #include <linux/kernel_stat.h>
0024 #include <linux/module.h>
0025 #include <linux/mutex.h>
0026 #include <linux/pm_qos.h>
0027 #include <linux/slab.h>
0028 #include <linux/suspend.h>
0029 #include <linux/syscore_ops.h>
0030 #include <linux/tick.h>
0031 #include <linux/units.h>
0032 #include <trace/events/power.h>
0033 
0034 static LIST_HEAD(cpufreq_policy_list);
0035 
0036 /* Macros to iterate over CPU policies */
0037 #define for_each_suitable_policy(__policy, __active)             \
0038     list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
0039         if ((__active) == !policy_is_inactive(__policy))
0040 
0041 #define for_each_active_policy(__policy)        \
0042     for_each_suitable_policy(__policy, true)
0043 #define for_each_inactive_policy(__policy)      \
0044     for_each_suitable_policy(__policy, false)
0045 
0046 /* Iterate over governors */
0047 static LIST_HEAD(cpufreq_governor_list);
0048 #define for_each_governor(__governor)               \
0049     list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
0050 
0051 static char default_governor[CPUFREQ_NAME_LEN];
0052 
0053 /*
0054  * The "cpufreq driver" - the arch- or hardware-dependent low
0055  * level driver of CPUFreq support, and its spinlock. This lock
0056  * also protects the cpufreq_cpu_data array.
0057  */
0058 static struct cpufreq_driver *cpufreq_driver;
0059 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
0060 static DEFINE_RWLOCK(cpufreq_driver_lock);
0061 
0062 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
0063 bool cpufreq_supports_freq_invariance(void)
0064 {
0065     return static_branch_likely(&cpufreq_freq_invariance);
0066 }
0067 
0068 /* Flag to suspend/resume CPUFreq governors */
0069 static bool cpufreq_suspended;
0070 
0071 static inline bool has_target(void)
0072 {
0073     return cpufreq_driver->target_index || cpufreq_driver->target;
0074 }
0075 
0076 /* internal prototypes */
0077 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
0078 static int cpufreq_init_governor(struct cpufreq_policy *policy);
0079 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
0080 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
0081 static int cpufreq_set_policy(struct cpufreq_policy *policy,
0082                   struct cpufreq_governor *new_gov,
0083                   unsigned int new_pol);
0084 
0085 /*
0086  * Two notifier lists: the "policy" list is involved in the
0087  * validation process for a new CPU frequency policy; the
0088  * "transition" list for kernel code that needs to handle
0089  * changes to devices when the CPU clock speed changes.
0090  * The mutex locks both lists.
0091  */
0092 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
0093 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
0094 
0095 static int off __read_mostly;
0096 static int cpufreq_disabled(void)
0097 {
0098     return off;
0099 }
0100 void disable_cpufreq(void)
0101 {
0102     off = 1;
0103 }
0104 static DEFINE_MUTEX(cpufreq_governor_mutex);
0105 
0106 bool have_governor_per_policy(void)
0107 {
0108     return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
0109 }
0110 EXPORT_SYMBOL_GPL(have_governor_per_policy);
0111 
0112 static struct kobject *cpufreq_global_kobject;
0113 
0114 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
0115 {
0116     if (have_governor_per_policy())
0117         return &policy->kobj;
0118     else
0119         return cpufreq_global_kobject;
0120 }
0121 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
0122 
0123 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
0124 {
0125     struct kernel_cpustat kcpustat;
0126     u64 cur_wall_time;
0127     u64 idle_time;
0128     u64 busy_time;
0129 
0130     cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
0131 
0132     kcpustat_cpu_fetch(&kcpustat, cpu);
0133 
0134     busy_time = kcpustat.cpustat[CPUTIME_USER];
0135     busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
0136     busy_time += kcpustat.cpustat[CPUTIME_IRQ];
0137     busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
0138     busy_time += kcpustat.cpustat[CPUTIME_STEAL];
0139     busy_time += kcpustat.cpustat[CPUTIME_NICE];
0140 
0141     idle_time = cur_wall_time - busy_time;
0142     if (wall)
0143         *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
0144 
0145     return div_u64(idle_time, NSEC_PER_USEC);
0146 }
0147 
0148 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
0149 {
0150     u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
0151 
0152     if (idle_time == -1ULL)
0153         return get_cpu_idle_time_jiffy(cpu, wall);
0154     else if (!io_busy)
0155         idle_time += get_cpu_iowait_time_us(cpu, wall);
0156 
0157     return idle_time;
0158 }
0159 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
0160 
0161 /*
0162  * This is a generic cpufreq init() routine which can be used by cpufreq
0163  * drivers of SMP systems. It will do following:
0164  * - validate & show freq table passed
0165  * - set policies transition latency
0166  * - policy->cpus with all possible CPUs
0167  */
0168 void cpufreq_generic_init(struct cpufreq_policy *policy,
0169         struct cpufreq_frequency_table *table,
0170         unsigned int transition_latency)
0171 {
0172     policy->freq_table = table;
0173     policy->cpuinfo.transition_latency = transition_latency;
0174 
0175     /*
0176      * The driver only supports the SMP configuration where all processors
0177      * share the clock and voltage and clock.
0178      */
0179     cpumask_setall(policy->cpus);
0180 }
0181 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
0182 
0183 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
0184 {
0185     struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
0186 
0187     return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
0188 }
0189 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
0190 
0191 unsigned int cpufreq_generic_get(unsigned int cpu)
0192 {
0193     struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
0194 
0195     if (!policy || IS_ERR(policy->clk)) {
0196         pr_err("%s: No %s associated to cpu: %d\n",
0197                __func__, policy ? "clk" : "policy", cpu);
0198         return 0;
0199     }
0200 
0201     return clk_get_rate(policy->clk) / 1000;
0202 }
0203 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
0204 
0205 /**
0206  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
0207  * @cpu: CPU to find the policy for.
0208  *
0209  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
0210  * the kobject reference counter of that policy.  Return a valid policy on
0211  * success or NULL on failure.
0212  *
0213  * The policy returned by this function has to be released with the help of
0214  * cpufreq_cpu_put() to balance its kobject reference counter properly.
0215  */
0216 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
0217 {
0218     struct cpufreq_policy *policy = NULL;
0219     unsigned long flags;
0220 
0221     if (WARN_ON(cpu >= nr_cpu_ids))
0222         return NULL;
0223 
0224     /* get the cpufreq driver */
0225     read_lock_irqsave(&cpufreq_driver_lock, flags);
0226 
0227     if (cpufreq_driver) {
0228         /* get the CPU */
0229         policy = cpufreq_cpu_get_raw(cpu);
0230         if (policy)
0231             kobject_get(&policy->kobj);
0232     }
0233 
0234     read_unlock_irqrestore(&cpufreq_driver_lock, flags);
0235 
0236     return policy;
0237 }
0238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
0239 
0240 /**
0241  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
0242  * @policy: cpufreq policy returned by cpufreq_cpu_get().
0243  */
0244 void cpufreq_cpu_put(struct cpufreq_policy *policy)
0245 {
0246     kobject_put(&policy->kobj);
0247 }
0248 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
0249 
0250 /**
0251  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
0252  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
0253  */
0254 void cpufreq_cpu_release(struct cpufreq_policy *policy)
0255 {
0256     if (WARN_ON(!policy))
0257         return;
0258 
0259     lockdep_assert_held(&policy->rwsem);
0260 
0261     up_write(&policy->rwsem);
0262 
0263     cpufreq_cpu_put(policy);
0264 }
0265 
0266 /**
0267  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
0268  * @cpu: CPU to find the policy for.
0269  *
0270  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
0271  * if the policy returned by it is not NULL, acquire its rwsem for writing.
0272  * Return the policy if it is active or release it and return NULL otherwise.
0273  *
0274  * The policy returned by this function has to be released with the help of
0275  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
0276  * counter properly.
0277  */
0278 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
0279 {
0280     struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
0281 
0282     if (!policy)
0283         return NULL;
0284 
0285     down_write(&policy->rwsem);
0286 
0287     if (policy_is_inactive(policy)) {
0288         cpufreq_cpu_release(policy);
0289         return NULL;
0290     }
0291 
0292     return policy;
0293 }
0294 
0295 /*********************************************************************
0296  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
0297  *********************************************************************/
0298 
0299 /**
0300  * adjust_jiffies - Adjust the system "loops_per_jiffy".
0301  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
0302  * @ci: Frequency change information.
0303  *
0304  * This function alters the system "loops_per_jiffy" for the clock
0305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
0306  * systems as each CPU might be scaled differently. So, use the arch
0307  * per-CPU loops_per_jiffy value wherever possible.
0308  */
0309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
0310 {
0311 #ifndef CONFIG_SMP
0312     static unsigned long l_p_j_ref;
0313     static unsigned int l_p_j_ref_freq;
0314 
0315     if (ci->flags & CPUFREQ_CONST_LOOPS)
0316         return;
0317 
0318     if (!l_p_j_ref_freq) {
0319         l_p_j_ref = loops_per_jiffy;
0320         l_p_j_ref_freq = ci->old;
0321         pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
0322              l_p_j_ref, l_p_j_ref_freq);
0323     }
0324     if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
0325         loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
0326                                 ci->new);
0327         pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
0328              loops_per_jiffy, ci->new);
0329     }
0330 #endif
0331 }
0332 
0333 /**
0334  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
0335  * @policy: cpufreq policy to enable fast frequency switching for.
0336  * @freqs: contain details of the frequency update.
0337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
0338  *
0339  * This function calls the transition notifiers and adjust_jiffies().
0340  *
0341  * It is called twice on all CPU frequency changes that have external effects.
0342  */
0343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
0344                       struct cpufreq_freqs *freqs,
0345                       unsigned int state)
0346 {
0347     int cpu;
0348 
0349     BUG_ON(irqs_disabled());
0350 
0351     if (cpufreq_disabled())
0352         return;
0353 
0354     freqs->policy = policy;
0355     freqs->flags = cpufreq_driver->flags;
0356     pr_debug("notification %u of frequency transition to %u kHz\n",
0357          state, freqs->new);
0358 
0359     switch (state) {
0360     case CPUFREQ_PRECHANGE:
0361         /*
0362          * Detect if the driver reported a value as "old frequency"
0363          * which is not equal to what the cpufreq core thinks is
0364          * "old frequency".
0365          */
0366         if (policy->cur && policy->cur != freqs->old) {
0367             pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
0368                  freqs->old, policy->cur);
0369             freqs->old = policy->cur;
0370         }
0371 
0372         srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
0373                      CPUFREQ_PRECHANGE, freqs);
0374 
0375         adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
0376         break;
0377 
0378     case CPUFREQ_POSTCHANGE:
0379         adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
0380         pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
0381              cpumask_pr_args(policy->cpus));
0382 
0383         for_each_cpu(cpu, policy->cpus)
0384             trace_cpu_frequency(freqs->new, cpu);
0385 
0386         srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
0387                      CPUFREQ_POSTCHANGE, freqs);
0388 
0389         cpufreq_stats_record_transition(policy, freqs->new);
0390         policy->cur = freqs->new;
0391     }
0392 }
0393 
0394 /* Do post notifications when there are chances that transition has failed */
0395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
0396         struct cpufreq_freqs *freqs, int transition_failed)
0397 {
0398     cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
0399     if (!transition_failed)
0400         return;
0401 
0402     swap(freqs->old, freqs->new);
0403     cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
0404     cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
0405 }
0406 
0407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
0408         struct cpufreq_freqs *freqs)
0409 {
0410 
0411     /*
0412      * Catch double invocations of _begin() which lead to self-deadlock.
0413      * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
0414      * doesn't invoke _begin() on their behalf, and hence the chances of
0415      * double invocations are very low. Moreover, there are scenarios
0416      * where these checks can emit false-positive warnings in these
0417      * drivers; so we avoid that by skipping them altogether.
0418      */
0419     WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
0420                 && current == policy->transition_task);
0421 
0422 wait:
0423     wait_event(policy->transition_wait, !policy->transition_ongoing);
0424 
0425     spin_lock(&policy->transition_lock);
0426 
0427     if (unlikely(policy->transition_ongoing)) {
0428         spin_unlock(&policy->transition_lock);
0429         goto wait;
0430     }
0431 
0432     policy->transition_ongoing = true;
0433     policy->transition_task = current;
0434 
0435     spin_unlock(&policy->transition_lock);
0436 
0437     cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
0438 }
0439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
0440 
0441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
0442         struct cpufreq_freqs *freqs, int transition_failed)
0443 {
0444     if (WARN_ON(!policy->transition_ongoing))
0445         return;
0446 
0447     cpufreq_notify_post_transition(policy, freqs, transition_failed);
0448 
0449     arch_set_freq_scale(policy->related_cpus,
0450                 policy->cur,
0451                 policy->cpuinfo.max_freq);
0452 
0453     policy->transition_ongoing = false;
0454     policy->transition_task = NULL;
0455 
0456     wake_up(&policy->transition_wait);
0457 }
0458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
0459 
0460 /*
0461  * Fast frequency switching status count.  Positive means "enabled", negative
0462  * means "disabled" and 0 means "not decided yet".
0463  */
0464 static int cpufreq_fast_switch_count;
0465 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
0466 
0467 static void cpufreq_list_transition_notifiers(void)
0468 {
0469     struct notifier_block *nb;
0470 
0471     pr_info("Registered transition notifiers:\n");
0472 
0473     mutex_lock(&cpufreq_transition_notifier_list.mutex);
0474 
0475     for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
0476         pr_info("%pS\n", nb->notifier_call);
0477 
0478     mutex_unlock(&cpufreq_transition_notifier_list.mutex);
0479 }
0480 
0481 /**
0482  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
0483  * @policy: cpufreq policy to enable fast frequency switching for.
0484  *
0485  * Try to enable fast frequency switching for @policy.
0486  *
0487  * The attempt will fail if there is at least one transition notifier registered
0488  * at this point, as fast frequency switching is quite fundamentally at odds
0489  * with transition notifiers.  Thus if successful, it will make registration of
0490  * transition notifiers fail going forward.
0491  */
0492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
0493 {
0494     lockdep_assert_held(&policy->rwsem);
0495 
0496     if (!policy->fast_switch_possible)
0497         return;
0498 
0499     mutex_lock(&cpufreq_fast_switch_lock);
0500     if (cpufreq_fast_switch_count >= 0) {
0501         cpufreq_fast_switch_count++;
0502         policy->fast_switch_enabled = true;
0503     } else {
0504         pr_warn("CPU%u: Fast frequency switching not enabled\n",
0505             policy->cpu);
0506         cpufreq_list_transition_notifiers();
0507     }
0508     mutex_unlock(&cpufreq_fast_switch_lock);
0509 }
0510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
0511 
0512 /**
0513  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
0514  * @policy: cpufreq policy to disable fast frequency switching for.
0515  */
0516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
0517 {
0518     mutex_lock(&cpufreq_fast_switch_lock);
0519     if (policy->fast_switch_enabled) {
0520         policy->fast_switch_enabled = false;
0521         if (!WARN_ON(cpufreq_fast_switch_count <= 0))
0522             cpufreq_fast_switch_count--;
0523     }
0524     mutex_unlock(&cpufreq_fast_switch_lock);
0525 }
0526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
0527 
0528 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
0529         unsigned int target_freq, unsigned int relation)
0530 {
0531     unsigned int idx;
0532 
0533     target_freq = clamp_val(target_freq, policy->min, policy->max);
0534 
0535     if (!policy->freq_table)
0536         return target_freq;
0537 
0538     idx = cpufreq_frequency_table_target(policy, target_freq, relation);
0539     policy->cached_resolved_idx = idx;
0540     policy->cached_target_freq = target_freq;
0541     return policy->freq_table[idx].frequency;
0542 }
0543 
0544 /**
0545  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
0546  * one.
0547  * @policy: associated policy to interrogate
0548  * @target_freq: target frequency to resolve.
0549  *
0550  * The target to driver frequency mapping is cached in the policy.
0551  *
0552  * Return: Lowest driver-supported frequency greater than or equal to the
0553  * given target_freq, subject to policy (min/max) and driver limitations.
0554  */
0555 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
0556                      unsigned int target_freq)
0557 {
0558     return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
0559 }
0560 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
0561 
0562 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
0563 {
0564     unsigned int latency;
0565 
0566     if (policy->transition_delay_us)
0567         return policy->transition_delay_us;
0568 
0569     latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
0570     if (latency) {
0571         /*
0572          * For platforms that can change the frequency very fast (< 10
0573          * us), the above formula gives a decent transition delay. But
0574          * for platforms where transition_latency is in milliseconds, it
0575          * ends up giving unrealistic values.
0576          *
0577          * Cap the default transition delay to 10 ms, which seems to be
0578          * a reasonable amount of time after which we should reevaluate
0579          * the frequency.
0580          */
0581         return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
0582     }
0583 
0584     return LATENCY_MULTIPLIER;
0585 }
0586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
0587 
0588 /*********************************************************************
0589  *                          SYSFS INTERFACE                          *
0590  *********************************************************************/
0591 static ssize_t show_boost(struct kobject *kobj,
0592               struct kobj_attribute *attr, char *buf)
0593 {
0594     return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
0595 }
0596 
0597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
0598                const char *buf, size_t count)
0599 {
0600     int ret, enable;
0601 
0602     ret = sscanf(buf, "%d", &enable);
0603     if (ret != 1 || enable < 0 || enable > 1)
0604         return -EINVAL;
0605 
0606     if (cpufreq_boost_trigger_state(enable)) {
0607         pr_err("%s: Cannot %s BOOST!\n",
0608                __func__, enable ? "enable" : "disable");
0609         return -EINVAL;
0610     }
0611 
0612     pr_debug("%s: cpufreq BOOST %s\n",
0613          __func__, enable ? "enabled" : "disabled");
0614 
0615     return count;
0616 }
0617 define_one_global_rw(boost);
0618 
0619 static struct cpufreq_governor *find_governor(const char *str_governor)
0620 {
0621     struct cpufreq_governor *t;
0622 
0623     for_each_governor(t)
0624         if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
0625             return t;
0626 
0627     return NULL;
0628 }
0629 
0630 static struct cpufreq_governor *get_governor(const char *str_governor)
0631 {
0632     struct cpufreq_governor *t;
0633 
0634     mutex_lock(&cpufreq_governor_mutex);
0635     t = find_governor(str_governor);
0636     if (!t)
0637         goto unlock;
0638 
0639     if (!try_module_get(t->owner))
0640         t = NULL;
0641 
0642 unlock:
0643     mutex_unlock(&cpufreq_governor_mutex);
0644 
0645     return t;
0646 }
0647 
0648 static unsigned int cpufreq_parse_policy(char *str_governor)
0649 {
0650     if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
0651         return CPUFREQ_POLICY_PERFORMANCE;
0652 
0653     if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
0654         return CPUFREQ_POLICY_POWERSAVE;
0655 
0656     return CPUFREQ_POLICY_UNKNOWN;
0657 }
0658 
0659 /**
0660  * cpufreq_parse_governor - parse a governor string only for has_target()
0661  * @str_governor: Governor name.
0662  */
0663 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
0664 {
0665     struct cpufreq_governor *t;
0666 
0667     t = get_governor(str_governor);
0668     if (t)
0669         return t;
0670 
0671     if (request_module("cpufreq_%s", str_governor))
0672         return NULL;
0673 
0674     return get_governor(str_governor);
0675 }
0676 
0677 /*
0678  * cpufreq_per_cpu_attr_read() / show_##file_name() -
0679  * print out cpufreq information
0680  *
0681  * Write out information from cpufreq_driver->policy[cpu]; object must be
0682  * "unsigned int".
0683  */
0684 
0685 #define show_one(file_name, object)         \
0686 static ssize_t show_##file_name             \
0687 (struct cpufreq_policy *policy, char *buf)      \
0688 {                           \
0689     return sprintf(buf, "%u\n", policy->object);    \
0690 }
0691 
0692 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
0693 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
0694 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
0695 show_one(scaling_min_freq, min);
0696 show_one(scaling_max_freq, max);
0697 
0698 __weak unsigned int arch_freq_get_on_cpu(int cpu)
0699 {
0700     return 0;
0701 }
0702 
0703 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
0704 {
0705     ssize_t ret;
0706     unsigned int freq;
0707 
0708     freq = arch_freq_get_on_cpu(policy->cpu);
0709     if (freq)
0710         ret = sprintf(buf, "%u\n", freq);
0711     else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
0712         ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
0713     else
0714         ret = sprintf(buf, "%u\n", policy->cur);
0715     return ret;
0716 }
0717 
0718 /*
0719  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
0720  */
0721 #define store_one(file_name, object)            \
0722 static ssize_t store_##file_name                    \
0723 (struct cpufreq_policy *policy, const char *buf, size_t count)      \
0724 {                                   \
0725     unsigned long val;                      \
0726     int ret;                            \
0727                                     \
0728     ret = sscanf(buf, "%lu", &val);                 \
0729     if (ret != 1)                           \
0730         return -EINVAL;                     \
0731                                     \
0732     ret = freq_qos_update_request(policy->object##_freq_req, val);\
0733     return ret >= 0 ? count : ret;                  \
0734 }
0735 
0736 store_one(scaling_min_freq, min);
0737 store_one(scaling_max_freq, max);
0738 
0739 /*
0740  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
0741  */
0742 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
0743                     char *buf)
0744 {
0745     unsigned int cur_freq = __cpufreq_get(policy);
0746 
0747     if (cur_freq)
0748         return sprintf(buf, "%u\n", cur_freq);
0749 
0750     return sprintf(buf, "<unknown>\n");
0751 }
0752 
0753 /*
0754  * show_scaling_governor - show the current policy for the specified CPU
0755  */
0756 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
0757 {
0758     if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
0759         return sprintf(buf, "powersave\n");
0760     else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
0761         return sprintf(buf, "performance\n");
0762     else if (policy->governor)
0763         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
0764                 policy->governor->name);
0765     return -EINVAL;
0766 }
0767 
0768 /*
0769  * store_scaling_governor - store policy for the specified CPU
0770  */
0771 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
0772                     const char *buf, size_t count)
0773 {
0774     char str_governor[16];
0775     int ret;
0776 
0777     ret = sscanf(buf, "%15s", str_governor);
0778     if (ret != 1)
0779         return -EINVAL;
0780 
0781     if (cpufreq_driver->setpolicy) {
0782         unsigned int new_pol;
0783 
0784         new_pol = cpufreq_parse_policy(str_governor);
0785         if (!new_pol)
0786             return -EINVAL;
0787 
0788         ret = cpufreq_set_policy(policy, NULL, new_pol);
0789     } else {
0790         struct cpufreq_governor *new_gov;
0791 
0792         new_gov = cpufreq_parse_governor(str_governor);
0793         if (!new_gov)
0794             return -EINVAL;
0795 
0796         ret = cpufreq_set_policy(policy, new_gov,
0797                      CPUFREQ_POLICY_UNKNOWN);
0798 
0799         module_put(new_gov->owner);
0800     }
0801 
0802     return ret ? ret : count;
0803 }
0804 
0805 /*
0806  * show_scaling_driver - show the cpufreq driver currently loaded
0807  */
0808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
0809 {
0810     return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
0811 }
0812 
0813 /*
0814  * show_scaling_available_governors - show the available CPUfreq governors
0815  */
0816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
0817                         char *buf)
0818 {
0819     ssize_t i = 0;
0820     struct cpufreq_governor *t;
0821 
0822     if (!has_target()) {
0823         i += sprintf(buf, "performance powersave");
0824         goto out;
0825     }
0826 
0827     mutex_lock(&cpufreq_governor_mutex);
0828     for_each_governor(t) {
0829         if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
0830             - (CPUFREQ_NAME_LEN + 2)))
0831             break;
0832         i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
0833     }
0834     mutex_unlock(&cpufreq_governor_mutex);
0835 out:
0836     i += sprintf(&buf[i], "\n");
0837     return i;
0838 }
0839 
0840 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
0841 {
0842     ssize_t i = 0;
0843     unsigned int cpu;
0844 
0845     for_each_cpu(cpu, mask) {
0846         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
0847         if (i >= (PAGE_SIZE - 5))
0848             break;
0849     }
0850 
0851     /* Remove the extra space at the end */
0852     i--;
0853 
0854     i += sprintf(&buf[i], "\n");
0855     return i;
0856 }
0857 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
0858 
0859 /*
0860  * show_related_cpus - show the CPUs affected by each transition even if
0861  * hw coordination is in use
0862  */
0863 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
0864 {
0865     return cpufreq_show_cpus(policy->related_cpus, buf);
0866 }
0867 
0868 /*
0869  * show_affected_cpus - show the CPUs affected by each transition
0870  */
0871 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
0872 {
0873     return cpufreq_show_cpus(policy->cpus, buf);
0874 }
0875 
0876 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
0877                     const char *buf, size_t count)
0878 {
0879     unsigned int freq = 0;
0880     unsigned int ret;
0881 
0882     if (!policy->governor || !policy->governor->store_setspeed)
0883         return -EINVAL;
0884 
0885     ret = sscanf(buf, "%u", &freq);
0886     if (ret != 1)
0887         return -EINVAL;
0888 
0889     policy->governor->store_setspeed(policy, freq);
0890 
0891     return count;
0892 }
0893 
0894 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
0895 {
0896     if (!policy->governor || !policy->governor->show_setspeed)
0897         return sprintf(buf, "<unsupported>\n");
0898 
0899     return policy->governor->show_setspeed(policy, buf);
0900 }
0901 
0902 /*
0903  * show_bios_limit - show the current cpufreq HW/BIOS limitation
0904  */
0905 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
0906 {
0907     unsigned int limit;
0908     int ret;
0909     ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
0910     if (!ret)
0911         return sprintf(buf, "%u\n", limit);
0912     return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
0913 }
0914 
0915 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
0916 cpufreq_freq_attr_ro(cpuinfo_min_freq);
0917 cpufreq_freq_attr_ro(cpuinfo_max_freq);
0918 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
0919 cpufreq_freq_attr_ro(scaling_available_governors);
0920 cpufreq_freq_attr_ro(scaling_driver);
0921 cpufreq_freq_attr_ro(scaling_cur_freq);
0922 cpufreq_freq_attr_ro(bios_limit);
0923 cpufreq_freq_attr_ro(related_cpus);
0924 cpufreq_freq_attr_ro(affected_cpus);
0925 cpufreq_freq_attr_rw(scaling_min_freq);
0926 cpufreq_freq_attr_rw(scaling_max_freq);
0927 cpufreq_freq_attr_rw(scaling_governor);
0928 cpufreq_freq_attr_rw(scaling_setspeed);
0929 
0930 static struct attribute *cpufreq_attrs[] = {
0931     &cpuinfo_min_freq.attr,
0932     &cpuinfo_max_freq.attr,
0933     &cpuinfo_transition_latency.attr,
0934     &scaling_min_freq.attr,
0935     &scaling_max_freq.attr,
0936     &affected_cpus.attr,
0937     &related_cpus.attr,
0938     &scaling_governor.attr,
0939     &scaling_driver.attr,
0940     &scaling_available_governors.attr,
0941     &scaling_setspeed.attr,
0942     NULL
0943 };
0944 ATTRIBUTE_GROUPS(cpufreq);
0945 
0946 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
0947 #define to_attr(a) container_of(a, struct freq_attr, attr)
0948 
0949 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
0950 {
0951     struct cpufreq_policy *policy = to_policy(kobj);
0952     struct freq_attr *fattr = to_attr(attr);
0953     ssize_t ret = -EBUSY;
0954 
0955     if (!fattr->show)
0956         return -EIO;
0957 
0958     down_read(&policy->rwsem);
0959     if (likely(!policy_is_inactive(policy)))
0960         ret = fattr->show(policy, buf);
0961     up_read(&policy->rwsem);
0962 
0963     return ret;
0964 }
0965 
0966 static ssize_t store(struct kobject *kobj, struct attribute *attr,
0967              const char *buf, size_t count)
0968 {
0969     struct cpufreq_policy *policy = to_policy(kobj);
0970     struct freq_attr *fattr = to_attr(attr);
0971     ssize_t ret = -EBUSY;
0972 
0973     if (!fattr->store)
0974         return -EIO;
0975 
0976     down_write(&policy->rwsem);
0977     if (likely(!policy_is_inactive(policy)))
0978         ret = fattr->store(policy, buf, count);
0979     up_write(&policy->rwsem);
0980 
0981     return ret;
0982 }
0983 
0984 static void cpufreq_sysfs_release(struct kobject *kobj)
0985 {
0986     struct cpufreq_policy *policy = to_policy(kobj);
0987     pr_debug("last reference is dropped\n");
0988     complete(&policy->kobj_unregister);
0989 }
0990 
0991 static const struct sysfs_ops sysfs_ops = {
0992     .show   = show,
0993     .store  = store,
0994 };
0995 
0996 static struct kobj_type ktype_cpufreq = {
0997     .sysfs_ops  = &sysfs_ops,
0998     .default_groups = cpufreq_groups,
0999     .release    = cpufreq_sysfs_release,
1000 };
1001 
1002 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1003                 struct device *dev)
1004 {
1005     if (unlikely(!dev))
1006         return;
1007 
1008     if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1009         return;
1010 
1011     dev_dbg(dev, "%s: Adding symlink\n", __func__);
1012     if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1013         dev_err(dev, "cpufreq symlink creation failed\n");
1014 }
1015 
1016 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1017                    struct device *dev)
1018 {
1019     dev_dbg(dev, "%s: Removing symlink\n", __func__);
1020     sysfs_remove_link(&dev->kobj, "cpufreq");
1021     cpumask_clear_cpu(cpu, policy->real_cpus);
1022 }
1023 
1024 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1025 {
1026     struct freq_attr **drv_attr;
1027     int ret = 0;
1028 
1029     /* set up files for this cpu device */
1030     drv_attr = cpufreq_driver->attr;
1031     while (drv_attr && *drv_attr) {
1032         ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1033         if (ret)
1034             return ret;
1035         drv_attr++;
1036     }
1037     if (cpufreq_driver->get) {
1038         ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1039         if (ret)
1040             return ret;
1041     }
1042 
1043     ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1044     if (ret)
1045         return ret;
1046 
1047     if (cpufreq_driver->bios_limit) {
1048         ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1049         if (ret)
1050             return ret;
1051     }
1052 
1053     return 0;
1054 }
1055 
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058     struct cpufreq_governor *gov = NULL;
1059     unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1060     int ret;
1061 
1062     if (has_target()) {
1063         /* Update policy governor to the one used before hotplug. */
1064         gov = get_governor(policy->last_governor);
1065         if (gov) {
1066             pr_debug("Restoring governor %s for cpu %d\n",
1067                  gov->name, policy->cpu);
1068         } else {
1069             gov = get_governor(default_governor);
1070         }
1071 
1072         if (!gov) {
1073             gov = cpufreq_default_governor();
1074             __module_get(gov->owner);
1075         }
1076 
1077     } else {
1078 
1079         /* Use the default policy if there is no last_policy. */
1080         if (policy->last_policy) {
1081             pol = policy->last_policy;
1082         } else {
1083             pol = cpufreq_parse_policy(default_governor);
1084             /*
1085              * In case the default governor is neither "performance"
1086              * nor "powersave", fall back to the initial policy
1087              * value set by the driver.
1088              */
1089             if (pol == CPUFREQ_POLICY_UNKNOWN)
1090                 pol = policy->policy;
1091         }
1092         if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1093             pol != CPUFREQ_POLICY_POWERSAVE)
1094             return -ENODATA;
1095     }
1096 
1097     ret = cpufreq_set_policy(policy, gov, pol);
1098     if (gov)
1099         module_put(gov->owner);
1100 
1101     return ret;
1102 }
1103 
1104 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1105 {
1106     int ret = 0;
1107 
1108     /* Has this CPU been taken care of already? */
1109     if (cpumask_test_cpu(cpu, policy->cpus))
1110         return 0;
1111 
1112     down_write(&policy->rwsem);
1113     if (has_target())
1114         cpufreq_stop_governor(policy);
1115 
1116     cpumask_set_cpu(cpu, policy->cpus);
1117 
1118     if (has_target()) {
1119         ret = cpufreq_start_governor(policy);
1120         if (ret)
1121             pr_err("%s: Failed to start governor\n", __func__);
1122     }
1123     up_write(&policy->rwsem);
1124     return ret;
1125 }
1126 
1127 void refresh_frequency_limits(struct cpufreq_policy *policy)
1128 {
1129     if (!policy_is_inactive(policy)) {
1130         pr_debug("updating policy for CPU %u\n", policy->cpu);
1131 
1132         cpufreq_set_policy(policy, policy->governor, policy->policy);
1133     }
1134 }
1135 EXPORT_SYMBOL(refresh_frequency_limits);
1136 
1137 static void handle_update(struct work_struct *work)
1138 {
1139     struct cpufreq_policy *policy =
1140         container_of(work, struct cpufreq_policy, update);
1141 
1142     pr_debug("handle_update for cpu %u called\n", policy->cpu);
1143     down_write(&policy->rwsem);
1144     refresh_frequency_limits(policy);
1145     up_write(&policy->rwsem);
1146 }
1147 
1148 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1149                 void *data)
1150 {
1151     struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1152 
1153     schedule_work(&policy->update);
1154     return 0;
1155 }
1156 
1157 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1158                 void *data)
1159 {
1160     struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1161 
1162     schedule_work(&policy->update);
1163     return 0;
1164 }
1165 
1166 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1167 {
1168     struct kobject *kobj;
1169     struct completion *cmp;
1170 
1171     down_write(&policy->rwsem);
1172     cpufreq_stats_free_table(policy);
1173     kobj = &policy->kobj;
1174     cmp = &policy->kobj_unregister;
1175     up_write(&policy->rwsem);
1176     kobject_put(kobj);
1177 
1178     /*
1179      * We need to make sure that the underlying kobj is
1180      * actually not referenced anymore by anybody before we
1181      * proceed with unloading.
1182      */
1183     pr_debug("waiting for dropping of refcount\n");
1184     wait_for_completion(cmp);
1185     pr_debug("wait complete\n");
1186 }
1187 
1188 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1189 {
1190     struct cpufreq_policy *policy;
1191     struct device *dev = get_cpu_device(cpu);
1192     int ret;
1193 
1194     if (!dev)
1195         return NULL;
1196 
1197     policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1198     if (!policy)
1199         return NULL;
1200 
1201     if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1202         goto err_free_policy;
1203 
1204     if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1205         goto err_free_cpumask;
1206 
1207     if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1208         goto err_free_rcpumask;
1209 
1210     ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1211                    cpufreq_global_kobject, "policy%u", cpu);
1212     if (ret) {
1213         dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1214         /*
1215          * The entire policy object will be freed below, but the extra
1216          * memory allocated for the kobject name needs to be freed by
1217          * releasing the kobject.
1218          */
1219         kobject_put(&policy->kobj);
1220         goto err_free_real_cpus;
1221     }
1222 
1223     freq_constraints_init(&policy->constraints);
1224 
1225     policy->nb_min.notifier_call = cpufreq_notifier_min;
1226     policy->nb_max.notifier_call = cpufreq_notifier_max;
1227 
1228     ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1229                     &policy->nb_min);
1230     if (ret) {
1231         dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1232             ret, cpumask_pr_args(policy->cpus));
1233         goto err_kobj_remove;
1234     }
1235 
1236     ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1237                     &policy->nb_max);
1238     if (ret) {
1239         dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1240             ret, cpumask_pr_args(policy->cpus));
1241         goto err_min_qos_notifier;
1242     }
1243 
1244     INIT_LIST_HEAD(&policy->policy_list);
1245     init_rwsem(&policy->rwsem);
1246     spin_lock_init(&policy->transition_lock);
1247     init_waitqueue_head(&policy->transition_wait);
1248     init_completion(&policy->kobj_unregister);
1249     INIT_WORK(&policy->update, handle_update);
1250 
1251     policy->cpu = cpu;
1252     return policy;
1253 
1254 err_min_qos_notifier:
1255     freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1256                  &policy->nb_min);
1257 err_kobj_remove:
1258     cpufreq_policy_put_kobj(policy);
1259 err_free_real_cpus:
1260     free_cpumask_var(policy->real_cpus);
1261 err_free_rcpumask:
1262     free_cpumask_var(policy->related_cpus);
1263 err_free_cpumask:
1264     free_cpumask_var(policy->cpus);
1265 err_free_policy:
1266     kfree(policy);
1267 
1268     return NULL;
1269 }
1270 
1271 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1272 {
1273     unsigned long flags;
1274     int cpu;
1275 
1276     /*
1277      * The callers must ensure the policy is inactive by now, to avoid any
1278      * races with show()/store() callbacks.
1279      */
1280     if (unlikely(!policy_is_inactive(policy)))
1281         pr_warn("%s: Freeing active policy\n", __func__);
1282 
1283     /* Remove policy from list */
1284     write_lock_irqsave(&cpufreq_driver_lock, flags);
1285     list_del(&policy->policy_list);
1286 
1287     for_each_cpu(cpu, policy->related_cpus)
1288         per_cpu(cpufreq_cpu_data, cpu) = NULL;
1289     write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1290 
1291     freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1292                  &policy->nb_max);
1293     freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294                  &policy->nb_min);
1295 
1296     /* Cancel any pending policy->update work before freeing the policy. */
1297     cancel_work_sync(&policy->update);
1298 
1299     if (policy->max_freq_req) {
1300         /*
1301          * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1302          * notification, since CPUFREQ_CREATE_POLICY notification was
1303          * sent after adding max_freq_req earlier.
1304          */
1305         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1306                          CPUFREQ_REMOVE_POLICY, policy);
1307         freq_qos_remove_request(policy->max_freq_req);
1308     }
1309 
1310     freq_qos_remove_request(policy->min_freq_req);
1311     kfree(policy->min_freq_req);
1312 
1313     cpufreq_policy_put_kobj(policy);
1314     free_cpumask_var(policy->real_cpus);
1315     free_cpumask_var(policy->related_cpus);
1316     free_cpumask_var(policy->cpus);
1317     kfree(policy);
1318 }
1319 
1320 static int cpufreq_online(unsigned int cpu)
1321 {
1322     struct cpufreq_policy *policy;
1323     bool new_policy;
1324     unsigned long flags;
1325     unsigned int j;
1326     int ret;
1327 
1328     pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1329 
1330     /* Check if this CPU already has a policy to manage it */
1331     policy = per_cpu(cpufreq_cpu_data, cpu);
1332     if (policy) {
1333         WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1334         if (!policy_is_inactive(policy))
1335             return cpufreq_add_policy_cpu(policy, cpu);
1336 
1337         /* This is the only online CPU for the policy.  Start over. */
1338         new_policy = false;
1339         down_write(&policy->rwsem);
1340         policy->cpu = cpu;
1341         policy->governor = NULL;
1342     } else {
1343         new_policy = true;
1344         policy = cpufreq_policy_alloc(cpu);
1345         if (!policy)
1346             return -ENOMEM;
1347         down_write(&policy->rwsem);
1348     }
1349 
1350     if (!new_policy && cpufreq_driver->online) {
1351         /* Recover policy->cpus using related_cpus */
1352         cpumask_copy(policy->cpus, policy->related_cpus);
1353 
1354         ret = cpufreq_driver->online(policy);
1355         if (ret) {
1356             pr_debug("%s: %d: initialization failed\n", __func__,
1357                  __LINE__);
1358             goto out_exit_policy;
1359         }
1360     } else {
1361         cpumask_copy(policy->cpus, cpumask_of(cpu));
1362 
1363         /*
1364          * Call driver. From then on the cpufreq must be able
1365          * to accept all calls to ->verify and ->setpolicy for this CPU.
1366          */
1367         ret = cpufreq_driver->init(policy);
1368         if (ret) {
1369             pr_debug("%s: %d: initialization failed\n", __func__,
1370                  __LINE__);
1371             goto out_free_policy;
1372         }
1373 
1374         /*
1375          * The initialization has succeeded and the policy is online.
1376          * If there is a problem with its frequency table, take it
1377          * offline and drop it.
1378          */
1379         ret = cpufreq_table_validate_and_sort(policy);
1380         if (ret)
1381             goto out_offline_policy;
1382 
1383         /* related_cpus should at least include policy->cpus. */
1384         cpumask_copy(policy->related_cpus, policy->cpus);
1385     }
1386 
1387     /*
1388      * affected cpus must always be the one, which are online. We aren't
1389      * managing offline cpus here.
1390      */
1391     cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1392 
1393     if (new_policy) {
1394         for_each_cpu(j, policy->related_cpus) {
1395             per_cpu(cpufreq_cpu_data, j) = policy;
1396             add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1397         }
1398 
1399         policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1400                            GFP_KERNEL);
1401         if (!policy->min_freq_req) {
1402             ret = -ENOMEM;
1403             goto out_destroy_policy;
1404         }
1405 
1406         ret = freq_qos_add_request(&policy->constraints,
1407                        policy->min_freq_req, FREQ_QOS_MIN,
1408                        FREQ_QOS_MIN_DEFAULT_VALUE);
1409         if (ret < 0) {
1410             /*
1411              * So we don't call freq_qos_remove_request() for an
1412              * uninitialized request.
1413              */
1414             kfree(policy->min_freq_req);
1415             policy->min_freq_req = NULL;
1416             goto out_destroy_policy;
1417         }
1418 
1419         /*
1420          * This must be initialized right here to avoid calling
1421          * freq_qos_remove_request() on uninitialized request in case
1422          * of errors.
1423          */
1424         policy->max_freq_req = policy->min_freq_req + 1;
1425 
1426         ret = freq_qos_add_request(&policy->constraints,
1427                        policy->max_freq_req, FREQ_QOS_MAX,
1428                        FREQ_QOS_MAX_DEFAULT_VALUE);
1429         if (ret < 0) {
1430             policy->max_freq_req = NULL;
1431             goto out_destroy_policy;
1432         }
1433 
1434         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1435                 CPUFREQ_CREATE_POLICY, policy);
1436     }
1437 
1438     if (cpufreq_driver->get && has_target()) {
1439         policy->cur = cpufreq_driver->get(policy->cpu);
1440         if (!policy->cur) {
1441             ret = -EIO;
1442             pr_err("%s: ->get() failed\n", __func__);
1443             goto out_destroy_policy;
1444         }
1445     }
1446 
1447     /*
1448      * Sometimes boot loaders set CPU frequency to a value outside of
1449      * frequency table present with cpufreq core. In such cases CPU might be
1450      * unstable if it has to run on that frequency for long duration of time
1451      * and so its better to set it to a frequency which is specified in
1452      * freq-table. This also makes cpufreq stats inconsistent as
1453      * cpufreq-stats would fail to register because current frequency of CPU
1454      * isn't found in freq-table.
1455      *
1456      * Because we don't want this change to effect boot process badly, we go
1457      * for the next freq which is >= policy->cur ('cur' must be set by now,
1458      * otherwise we will end up setting freq to lowest of the table as 'cur'
1459      * is initialized to zero).
1460      *
1461      * We are passing target-freq as "policy->cur - 1" otherwise
1462      * __cpufreq_driver_target() would simply fail, as policy->cur will be
1463      * equal to target-freq.
1464      */
1465     if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1466         && has_target()) {
1467         unsigned int old_freq = policy->cur;
1468 
1469         /* Are we running at unknown frequency ? */
1470         ret = cpufreq_frequency_table_get_index(policy, old_freq);
1471         if (ret == -EINVAL) {
1472             ret = __cpufreq_driver_target(policy, old_freq - 1,
1473                               CPUFREQ_RELATION_L);
1474 
1475             /*
1476              * Reaching here after boot in a few seconds may not
1477              * mean that system will remain stable at "unknown"
1478              * frequency for longer duration. Hence, a BUG_ON().
1479              */
1480             BUG_ON(ret);
1481             pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1482                 __func__, policy->cpu, old_freq, policy->cur);
1483         }
1484     }
1485 
1486     if (new_policy) {
1487         ret = cpufreq_add_dev_interface(policy);
1488         if (ret)
1489             goto out_destroy_policy;
1490 
1491         cpufreq_stats_create_table(policy);
1492 
1493         write_lock_irqsave(&cpufreq_driver_lock, flags);
1494         list_add(&policy->policy_list, &cpufreq_policy_list);
1495         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1496 
1497         /*
1498          * Register with the energy model before
1499          * sched_cpufreq_governor_change() is called, which will result
1500          * in rebuilding of the sched domains, which should only be done
1501          * once the energy model is properly initialized for the policy
1502          * first.
1503          *
1504          * Also, this should be called before the policy is registered
1505          * with cooling framework.
1506          */
1507         if (cpufreq_driver->register_em)
1508             cpufreq_driver->register_em(policy);
1509     }
1510 
1511     ret = cpufreq_init_policy(policy);
1512     if (ret) {
1513         pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1514                __func__, cpu, ret);
1515         goto out_destroy_policy;
1516     }
1517 
1518     up_write(&policy->rwsem);
1519 
1520     kobject_uevent(&policy->kobj, KOBJ_ADD);
1521 
1522     /* Callback for handling stuff after policy is ready */
1523     if (cpufreq_driver->ready)
1524         cpufreq_driver->ready(policy);
1525 
1526     if (cpufreq_thermal_control_enabled(cpufreq_driver))
1527         policy->cdev = of_cpufreq_cooling_register(policy);
1528 
1529     pr_debug("initialization complete\n");
1530 
1531     return 0;
1532 
1533 out_destroy_policy:
1534     for_each_cpu(j, policy->real_cpus)
1535         remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1536 
1537 out_offline_policy:
1538     if (cpufreq_driver->offline)
1539         cpufreq_driver->offline(policy);
1540 
1541 out_exit_policy:
1542     if (cpufreq_driver->exit)
1543         cpufreq_driver->exit(policy);
1544 
1545 out_free_policy:
1546     cpumask_clear(policy->cpus);
1547     up_write(&policy->rwsem);
1548 
1549     cpufreq_policy_free(policy);
1550     return ret;
1551 }
1552 
1553 /**
1554  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1555  * @dev: CPU device.
1556  * @sif: Subsystem interface structure pointer (not used)
1557  */
1558 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1559 {
1560     struct cpufreq_policy *policy;
1561     unsigned cpu = dev->id;
1562     int ret;
1563 
1564     dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1565 
1566     if (cpu_online(cpu)) {
1567         ret = cpufreq_online(cpu);
1568         if (ret)
1569             return ret;
1570     }
1571 
1572     /* Create sysfs link on CPU registration */
1573     policy = per_cpu(cpufreq_cpu_data, cpu);
1574     if (policy)
1575         add_cpu_dev_symlink(policy, cpu, dev);
1576 
1577     return 0;
1578 }
1579 
1580 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1581 {
1582     int ret;
1583 
1584     if (has_target())
1585         cpufreq_stop_governor(policy);
1586 
1587     cpumask_clear_cpu(cpu, policy->cpus);
1588 
1589     if (!policy_is_inactive(policy)) {
1590         /* Nominate a new CPU if necessary. */
1591         if (cpu == policy->cpu)
1592             policy->cpu = cpumask_any(policy->cpus);
1593 
1594         /* Start the governor again for the active policy. */
1595         if (has_target()) {
1596             ret = cpufreq_start_governor(policy);
1597             if (ret)
1598                 pr_err("%s: Failed to start governor\n", __func__);
1599         }
1600 
1601         return;
1602     }
1603 
1604     if (has_target())
1605         strncpy(policy->last_governor, policy->governor->name,
1606             CPUFREQ_NAME_LEN);
1607     else
1608         policy->last_policy = policy->policy;
1609 
1610     if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1611         cpufreq_cooling_unregister(policy->cdev);
1612         policy->cdev = NULL;
1613     }
1614 
1615     if (has_target())
1616         cpufreq_exit_governor(policy);
1617 
1618     /*
1619      * Perform the ->offline() during light-weight tear-down, as
1620      * that allows fast recovery when the CPU comes back.
1621      */
1622     if (cpufreq_driver->offline) {
1623         cpufreq_driver->offline(policy);
1624     } else if (cpufreq_driver->exit) {
1625         cpufreq_driver->exit(policy);
1626         policy->freq_table = NULL;
1627     }
1628 }
1629 
1630 static int cpufreq_offline(unsigned int cpu)
1631 {
1632     struct cpufreq_policy *policy;
1633 
1634     pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1635 
1636     policy = cpufreq_cpu_get_raw(cpu);
1637     if (!policy) {
1638         pr_debug("%s: No cpu_data found\n", __func__);
1639         return 0;
1640     }
1641 
1642     down_write(&policy->rwsem);
1643 
1644     __cpufreq_offline(cpu, policy);
1645 
1646     up_write(&policy->rwsem);
1647     return 0;
1648 }
1649 
1650 /*
1651  * cpufreq_remove_dev - remove a CPU device
1652  *
1653  * Removes the cpufreq interface for a CPU device.
1654  */
1655 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1656 {
1657     unsigned int cpu = dev->id;
1658     struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1659 
1660     if (!policy)
1661         return;
1662 
1663     down_write(&policy->rwsem);
1664 
1665     if (cpu_online(cpu))
1666         __cpufreq_offline(cpu, policy);
1667 
1668     remove_cpu_dev_symlink(policy, cpu, dev);
1669 
1670     if (!cpumask_empty(policy->real_cpus)) {
1671         up_write(&policy->rwsem);
1672         return;
1673     }
1674 
1675     /* We did light-weight exit earlier, do full tear down now */
1676     if (cpufreq_driver->offline)
1677         cpufreq_driver->exit(policy);
1678 
1679     up_write(&policy->rwsem);
1680 
1681     cpufreq_policy_free(policy);
1682 }
1683 
1684 /**
1685  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1686  * @policy: Policy managing CPUs.
1687  * @new_freq: New CPU frequency.
1688  *
1689  * Adjust to the current frequency first and clean up later by either calling
1690  * cpufreq_update_policy(), or scheduling handle_update().
1691  */
1692 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1693                 unsigned int new_freq)
1694 {
1695     struct cpufreq_freqs freqs;
1696 
1697     pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1698          policy->cur, new_freq);
1699 
1700     freqs.old = policy->cur;
1701     freqs.new = new_freq;
1702 
1703     cpufreq_freq_transition_begin(policy, &freqs);
1704     cpufreq_freq_transition_end(policy, &freqs, 0);
1705 }
1706 
1707 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1708 {
1709     unsigned int new_freq;
1710 
1711     new_freq = cpufreq_driver->get(policy->cpu);
1712     if (!new_freq)
1713         return 0;
1714 
1715     /*
1716      * If fast frequency switching is used with the given policy, the check
1717      * against policy->cur is pointless, so skip it in that case.
1718      */
1719     if (policy->fast_switch_enabled || !has_target())
1720         return new_freq;
1721 
1722     if (policy->cur != new_freq) {
1723         /*
1724          * For some platforms, the frequency returned by hardware may be
1725          * slightly different from what is provided in the frequency
1726          * table, for example hardware may return 499 MHz instead of 500
1727          * MHz. In such cases it is better to avoid getting into
1728          * unnecessary frequency updates.
1729          */
1730         if (abs(policy->cur - new_freq) < HZ_PER_MHZ)
1731             return policy->cur;
1732 
1733         cpufreq_out_of_sync(policy, new_freq);
1734         if (update)
1735             schedule_work(&policy->update);
1736     }
1737 
1738     return new_freq;
1739 }
1740 
1741 /**
1742  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1743  * @cpu: CPU number
1744  *
1745  * This is the last known freq, without actually getting it from the driver.
1746  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1747  */
1748 unsigned int cpufreq_quick_get(unsigned int cpu)
1749 {
1750     struct cpufreq_policy *policy;
1751     unsigned int ret_freq = 0;
1752     unsigned long flags;
1753 
1754     read_lock_irqsave(&cpufreq_driver_lock, flags);
1755 
1756     if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1757         ret_freq = cpufreq_driver->get(cpu);
1758         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1759         return ret_freq;
1760     }
1761 
1762     read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1763 
1764     policy = cpufreq_cpu_get(cpu);
1765     if (policy) {
1766         ret_freq = policy->cur;
1767         cpufreq_cpu_put(policy);
1768     }
1769 
1770     return ret_freq;
1771 }
1772 EXPORT_SYMBOL(cpufreq_quick_get);
1773 
1774 /**
1775  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1776  * @cpu: CPU number
1777  *
1778  * Just return the max possible frequency for a given CPU.
1779  */
1780 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1781 {
1782     struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783     unsigned int ret_freq = 0;
1784 
1785     if (policy) {
1786         ret_freq = policy->max;
1787         cpufreq_cpu_put(policy);
1788     }
1789 
1790     return ret_freq;
1791 }
1792 EXPORT_SYMBOL(cpufreq_quick_get_max);
1793 
1794 /**
1795  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1796  * @cpu: CPU number
1797  *
1798  * The default return value is the max_freq field of cpuinfo.
1799  */
1800 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1801 {
1802     struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1803     unsigned int ret_freq = 0;
1804 
1805     if (policy) {
1806         ret_freq = policy->cpuinfo.max_freq;
1807         cpufreq_cpu_put(policy);
1808     }
1809 
1810     return ret_freq;
1811 }
1812 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1813 
1814 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1815 {
1816     if (unlikely(policy_is_inactive(policy)))
1817         return 0;
1818 
1819     return cpufreq_verify_current_freq(policy, true);
1820 }
1821 
1822 /**
1823  * cpufreq_get - get the current CPU frequency (in kHz)
1824  * @cpu: CPU number
1825  *
1826  * Get the CPU current (static) CPU frequency
1827  */
1828 unsigned int cpufreq_get(unsigned int cpu)
1829 {
1830     struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831     unsigned int ret_freq = 0;
1832 
1833     if (policy) {
1834         down_read(&policy->rwsem);
1835         if (cpufreq_driver->get)
1836             ret_freq = __cpufreq_get(policy);
1837         up_read(&policy->rwsem);
1838 
1839         cpufreq_cpu_put(policy);
1840     }
1841 
1842     return ret_freq;
1843 }
1844 EXPORT_SYMBOL(cpufreq_get);
1845 
1846 static struct subsys_interface cpufreq_interface = {
1847     .name       = "cpufreq",
1848     .subsys     = &cpu_subsys,
1849     .add_dev    = cpufreq_add_dev,
1850     .remove_dev = cpufreq_remove_dev,
1851 };
1852 
1853 /*
1854  * In case platform wants some specific frequency to be configured
1855  * during suspend..
1856  */
1857 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1858 {
1859     int ret;
1860 
1861     if (!policy->suspend_freq) {
1862         pr_debug("%s: suspend_freq not defined\n", __func__);
1863         return 0;
1864     }
1865 
1866     pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1867             policy->suspend_freq);
1868 
1869     ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1870             CPUFREQ_RELATION_H);
1871     if (ret)
1872         pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1873                 __func__, policy->suspend_freq, ret);
1874 
1875     return ret;
1876 }
1877 EXPORT_SYMBOL(cpufreq_generic_suspend);
1878 
1879 /**
1880  * cpufreq_suspend() - Suspend CPUFreq governors.
1881  *
1882  * Called during system wide Suspend/Hibernate cycles for suspending governors
1883  * as some platforms can't change frequency after this point in suspend cycle.
1884  * Because some of the devices (like: i2c, regulators, etc) they use for
1885  * changing frequency are suspended quickly after this point.
1886  */
1887 void cpufreq_suspend(void)
1888 {
1889     struct cpufreq_policy *policy;
1890 
1891     if (!cpufreq_driver)
1892         return;
1893 
1894     if (!has_target() && !cpufreq_driver->suspend)
1895         goto suspend;
1896 
1897     pr_debug("%s: Suspending Governors\n", __func__);
1898 
1899     for_each_active_policy(policy) {
1900         if (has_target()) {
1901             down_write(&policy->rwsem);
1902             cpufreq_stop_governor(policy);
1903             up_write(&policy->rwsem);
1904         }
1905 
1906         if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1907             pr_err("%s: Failed to suspend driver: %s\n", __func__,
1908                 cpufreq_driver->name);
1909     }
1910 
1911 suspend:
1912     cpufreq_suspended = true;
1913 }
1914 
1915 /**
1916  * cpufreq_resume() - Resume CPUFreq governors.
1917  *
1918  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1919  * are suspended with cpufreq_suspend().
1920  */
1921 void cpufreq_resume(void)
1922 {
1923     struct cpufreq_policy *policy;
1924     int ret;
1925 
1926     if (!cpufreq_driver)
1927         return;
1928 
1929     if (unlikely(!cpufreq_suspended))
1930         return;
1931 
1932     cpufreq_suspended = false;
1933 
1934     if (!has_target() && !cpufreq_driver->resume)
1935         return;
1936 
1937     pr_debug("%s: Resuming Governors\n", __func__);
1938 
1939     for_each_active_policy(policy) {
1940         if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1941             pr_err("%s: Failed to resume driver: %p\n", __func__,
1942                 policy);
1943         } else if (has_target()) {
1944             down_write(&policy->rwsem);
1945             ret = cpufreq_start_governor(policy);
1946             up_write(&policy->rwsem);
1947 
1948             if (ret)
1949                 pr_err("%s: Failed to start governor for policy: %p\n",
1950                        __func__, policy);
1951         }
1952     }
1953 }
1954 
1955 /**
1956  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1957  * @flags: Flags to test against the current cpufreq driver's flags.
1958  *
1959  * Assumes that the driver is there, so callers must ensure that this is the
1960  * case.
1961  */
1962 bool cpufreq_driver_test_flags(u16 flags)
1963 {
1964     return !!(cpufreq_driver->flags & flags);
1965 }
1966 
1967 /**
1968  * cpufreq_get_current_driver - Return the current driver's name.
1969  *
1970  * Return the name string of the currently registered cpufreq driver or NULL if
1971  * none.
1972  */
1973 const char *cpufreq_get_current_driver(void)
1974 {
1975     if (cpufreq_driver)
1976         return cpufreq_driver->name;
1977 
1978     return NULL;
1979 }
1980 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1981 
1982 /**
1983  * cpufreq_get_driver_data - Return current driver data.
1984  *
1985  * Return the private data of the currently registered cpufreq driver, or NULL
1986  * if no cpufreq driver has been registered.
1987  */
1988 void *cpufreq_get_driver_data(void)
1989 {
1990     if (cpufreq_driver)
1991         return cpufreq_driver->driver_data;
1992 
1993     return NULL;
1994 }
1995 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1996 
1997 /*********************************************************************
1998  *                     NOTIFIER LISTS INTERFACE                      *
1999  *********************************************************************/
2000 
2001 /**
2002  * cpufreq_register_notifier - Register a notifier with cpufreq.
2003  * @nb: notifier function to register.
2004  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2005  *
2006  * Add a notifier to one of two lists: either a list of notifiers that run on
2007  * clock rate changes (once before and once after every transition), or a list
2008  * of notifiers that ron on cpufreq policy changes.
2009  *
2010  * This function may sleep and it has the same return values as
2011  * blocking_notifier_chain_register().
2012  */
2013 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2014 {
2015     int ret;
2016 
2017     if (cpufreq_disabled())
2018         return -EINVAL;
2019 
2020     switch (list) {
2021     case CPUFREQ_TRANSITION_NOTIFIER:
2022         mutex_lock(&cpufreq_fast_switch_lock);
2023 
2024         if (cpufreq_fast_switch_count > 0) {
2025             mutex_unlock(&cpufreq_fast_switch_lock);
2026             return -EBUSY;
2027         }
2028         ret = srcu_notifier_chain_register(
2029                 &cpufreq_transition_notifier_list, nb);
2030         if (!ret)
2031             cpufreq_fast_switch_count--;
2032 
2033         mutex_unlock(&cpufreq_fast_switch_lock);
2034         break;
2035     case CPUFREQ_POLICY_NOTIFIER:
2036         ret = blocking_notifier_chain_register(
2037                 &cpufreq_policy_notifier_list, nb);
2038         break;
2039     default:
2040         ret = -EINVAL;
2041     }
2042 
2043     return ret;
2044 }
2045 EXPORT_SYMBOL(cpufreq_register_notifier);
2046 
2047 /**
2048  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2049  * @nb: notifier block to be unregistered.
2050  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2051  *
2052  * Remove a notifier from one of the cpufreq notifier lists.
2053  *
2054  * This function may sleep and it has the same return values as
2055  * blocking_notifier_chain_unregister().
2056  */
2057 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2058 {
2059     int ret;
2060 
2061     if (cpufreq_disabled())
2062         return -EINVAL;
2063 
2064     switch (list) {
2065     case CPUFREQ_TRANSITION_NOTIFIER:
2066         mutex_lock(&cpufreq_fast_switch_lock);
2067 
2068         ret = srcu_notifier_chain_unregister(
2069                 &cpufreq_transition_notifier_list, nb);
2070         if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2071             cpufreq_fast_switch_count++;
2072 
2073         mutex_unlock(&cpufreq_fast_switch_lock);
2074         break;
2075     case CPUFREQ_POLICY_NOTIFIER:
2076         ret = blocking_notifier_chain_unregister(
2077                 &cpufreq_policy_notifier_list, nb);
2078         break;
2079     default:
2080         ret = -EINVAL;
2081     }
2082 
2083     return ret;
2084 }
2085 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2086 
2087 
2088 /*********************************************************************
2089  *                              GOVERNORS                            *
2090  *********************************************************************/
2091 
2092 /**
2093  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2094  * @policy: cpufreq policy to switch the frequency for.
2095  * @target_freq: New frequency to set (may be approximate).
2096  *
2097  * Carry out a fast frequency switch without sleeping.
2098  *
2099  * The driver's ->fast_switch() callback invoked by this function must be
2100  * suitable for being called from within RCU-sched read-side critical sections
2101  * and it is expected to select the minimum available frequency greater than or
2102  * equal to @target_freq (CPUFREQ_RELATION_L).
2103  *
2104  * This function must not be called if policy->fast_switch_enabled is unset.
2105  *
2106  * Governors calling this function must guarantee that it will never be invoked
2107  * twice in parallel for the same policy and that it will never be called in
2108  * parallel with either ->target() or ->target_index() for the same policy.
2109  *
2110  * Returns the actual frequency set for the CPU.
2111  *
2112  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2113  * error condition, the hardware configuration must be preserved.
2114  */
2115 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2116                     unsigned int target_freq)
2117 {
2118     unsigned int freq;
2119     int cpu;
2120 
2121     target_freq = clamp_val(target_freq, policy->min, policy->max);
2122     freq = cpufreq_driver->fast_switch(policy, target_freq);
2123 
2124     if (!freq)
2125         return 0;
2126 
2127     policy->cur = freq;
2128     arch_set_freq_scale(policy->related_cpus, freq,
2129                 policy->cpuinfo.max_freq);
2130     cpufreq_stats_record_transition(policy, freq);
2131 
2132     if (trace_cpu_frequency_enabled()) {
2133         for_each_cpu(cpu, policy->cpus)
2134             trace_cpu_frequency(freq, cpu);
2135     }
2136 
2137     return freq;
2138 }
2139 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2140 
2141 /**
2142  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2143  * @cpu: Target CPU.
2144  * @min_perf: Minimum (required) performance level (units of @capacity).
2145  * @target_perf: Target (desired) performance level (units of @capacity).
2146  * @capacity: Capacity of the target CPU.
2147  *
2148  * Carry out a fast performance level switch of @cpu without sleeping.
2149  *
2150  * The driver's ->adjust_perf() callback invoked by this function must be
2151  * suitable for being called from within RCU-sched read-side critical sections
2152  * and it is expected to select a suitable performance level equal to or above
2153  * @min_perf and preferably equal to or below @target_perf.
2154  *
2155  * This function must not be called if policy->fast_switch_enabled is unset.
2156  *
2157  * Governors calling this function must guarantee that it will never be invoked
2158  * twice in parallel for the same CPU and that it will never be called in
2159  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2160  * the same CPU.
2161  */
2162 void cpufreq_driver_adjust_perf(unsigned int cpu,
2163                  unsigned long min_perf,
2164                  unsigned long target_perf,
2165                  unsigned long capacity)
2166 {
2167     cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2168 }
2169 
2170 /**
2171  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2172  *
2173  * Return 'true' if the ->adjust_perf callback is present for the
2174  * current driver or 'false' otherwise.
2175  */
2176 bool cpufreq_driver_has_adjust_perf(void)
2177 {
2178     return !!cpufreq_driver->adjust_perf;
2179 }
2180 
2181 /* Must set freqs->new to intermediate frequency */
2182 static int __target_intermediate(struct cpufreq_policy *policy,
2183                  struct cpufreq_freqs *freqs, int index)
2184 {
2185     int ret;
2186 
2187     freqs->new = cpufreq_driver->get_intermediate(policy, index);
2188 
2189     /* We don't need to switch to intermediate freq */
2190     if (!freqs->new)
2191         return 0;
2192 
2193     pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2194          __func__, policy->cpu, freqs->old, freqs->new);
2195 
2196     cpufreq_freq_transition_begin(policy, freqs);
2197     ret = cpufreq_driver->target_intermediate(policy, index);
2198     cpufreq_freq_transition_end(policy, freqs, ret);
2199 
2200     if (ret)
2201         pr_err("%s: Failed to change to intermediate frequency: %d\n",
2202                __func__, ret);
2203 
2204     return ret;
2205 }
2206 
2207 static int __target_index(struct cpufreq_policy *policy, int index)
2208 {
2209     struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2210     unsigned int restore_freq, intermediate_freq = 0;
2211     unsigned int newfreq = policy->freq_table[index].frequency;
2212     int retval = -EINVAL;
2213     bool notify;
2214 
2215     if (newfreq == policy->cur)
2216         return 0;
2217 
2218     /* Save last value to restore later on errors */
2219     restore_freq = policy->cur;
2220 
2221     notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2222     if (notify) {
2223         /* Handle switching to intermediate frequency */
2224         if (cpufreq_driver->get_intermediate) {
2225             retval = __target_intermediate(policy, &freqs, index);
2226             if (retval)
2227                 return retval;
2228 
2229             intermediate_freq = freqs.new;
2230             /* Set old freq to intermediate */
2231             if (intermediate_freq)
2232                 freqs.old = freqs.new;
2233         }
2234 
2235         freqs.new = newfreq;
2236         pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2237              __func__, policy->cpu, freqs.old, freqs.new);
2238 
2239         cpufreq_freq_transition_begin(policy, &freqs);
2240     }
2241 
2242     retval = cpufreq_driver->target_index(policy, index);
2243     if (retval)
2244         pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2245                retval);
2246 
2247     if (notify) {
2248         cpufreq_freq_transition_end(policy, &freqs, retval);
2249 
2250         /*
2251          * Failed after setting to intermediate freq? Driver should have
2252          * reverted back to initial frequency and so should we. Check
2253          * here for intermediate_freq instead of get_intermediate, in
2254          * case we haven't switched to intermediate freq at all.
2255          */
2256         if (unlikely(retval && intermediate_freq)) {
2257             freqs.old = intermediate_freq;
2258             freqs.new = restore_freq;
2259             cpufreq_freq_transition_begin(policy, &freqs);
2260             cpufreq_freq_transition_end(policy, &freqs, 0);
2261         }
2262     }
2263 
2264     return retval;
2265 }
2266 
2267 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2268                 unsigned int target_freq,
2269                 unsigned int relation)
2270 {
2271     unsigned int old_target_freq = target_freq;
2272 
2273     if (cpufreq_disabled())
2274         return -ENODEV;
2275 
2276     target_freq = __resolve_freq(policy, target_freq, relation);
2277 
2278     pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2279          policy->cpu, target_freq, relation, old_target_freq);
2280 
2281     /*
2282      * This might look like a redundant call as we are checking it again
2283      * after finding index. But it is left intentionally for cases where
2284      * exactly same freq is called again and so we can save on few function
2285      * calls.
2286      */
2287     if (target_freq == policy->cur &&
2288         !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2289         return 0;
2290 
2291     if (cpufreq_driver->target) {
2292         /*
2293          * If the driver hasn't setup a single inefficient frequency,
2294          * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2295          */
2296         if (!policy->efficiencies_available)
2297             relation &= ~CPUFREQ_RELATION_E;
2298 
2299         return cpufreq_driver->target(policy, target_freq, relation);
2300     }
2301 
2302     if (!cpufreq_driver->target_index)
2303         return -EINVAL;
2304 
2305     return __target_index(policy, policy->cached_resolved_idx);
2306 }
2307 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2308 
2309 int cpufreq_driver_target(struct cpufreq_policy *policy,
2310               unsigned int target_freq,
2311               unsigned int relation)
2312 {
2313     int ret;
2314 
2315     down_write(&policy->rwsem);
2316 
2317     ret = __cpufreq_driver_target(policy, target_freq, relation);
2318 
2319     up_write(&policy->rwsem);
2320 
2321     return ret;
2322 }
2323 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2324 
2325 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2326 {
2327     return NULL;
2328 }
2329 
2330 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2331 {
2332     int ret;
2333 
2334     /* Don't start any governor operations if we are entering suspend */
2335     if (cpufreq_suspended)
2336         return 0;
2337     /*
2338      * Governor might not be initiated here if ACPI _PPC changed
2339      * notification happened, so check it.
2340      */
2341     if (!policy->governor)
2342         return -EINVAL;
2343 
2344     /* Platform doesn't want dynamic frequency switching ? */
2345     if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2346         cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2347         struct cpufreq_governor *gov = cpufreq_fallback_governor();
2348 
2349         if (gov) {
2350             pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2351                 policy->governor->name, gov->name);
2352             policy->governor = gov;
2353         } else {
2354             return -EINVAL;
2355         }
2356     }
2357 
2358     if (!try_module_get(policy->governor->owner))
2359         return -EINVAL;
2360 
2361     pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2362 
2363     if (policy->governor->init) {
2364         ret = policy->governor->init(policy);
2365         if (ret) {
2366             module_put(policy->governor->owner);
2367             return ret;
2368         }
2369     }
2370 
2371     policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2372 
2373     return 0;
2374 }
2375 
2376 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2377 {
2378     if (cpufreq_suspended || !policy->governor)
2379         return;
2380 
2381     pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2382 
2383     if (policy->governor->exit)
2384         policy->governor->exit(policy);
2385 
2386     module_put(policy->governor->owner);
2387 }
2388 
2389 int cpufreq_start_governor(struct cpufreq_policy *policy)
2390 {
2391     int ret;
2392 
2393     if (cpufreq_suspended)
2394         return 0;
2395 
2396     if (!policy->governor)
2397         return -EINVAL;
2398 
2399     pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2400 
2401     if (cpufreq_driver->get)
2402         cpufreq_verify_current_freq(policy, false);
2403 
2404     if (policy->governor->start) {
2405         ret = policy->governor->start(policy);
2406         if (ret)
2407             return ret;
2408     }
2409 
2410     if (policy->governor->limits)
2411         policy->governor->limits(policy);
2412 
2413     return 0;
2414 }
2415 
2416 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2417 {
2418     if (cpufreq_suspended || !policy->governor)
2419         return;
2420 
2421     pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2422 
2423     if (policy->governor->stop)
2424         policy->governor->stop(policy);
2425 }
2426 
2427 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2428 {
2429     if (cpufreq_suspended || !policy->governor)
2430         return;
2431 
2432     pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2433 
2434     if (policy->governor->limits)
2435         policy->governor->limits(policy);
2436 }
2437 
2438 int cpufreq_register_governor(struct cpufreq_governor *governor)
2439 {
2440     int err;
2441 
2442     if (!governor)
2443         return -EINVAL;
2444 
2445     if (cpufreq_disabled())
2446         return -ENODEV;
2447 
2448     mutex_lock(&cpufreq_governor_mutex);
2449 
2450     err = -EBUSY;
2451     if (!find_governor(governor->name)) {
2452         err = 0;
2453         list_add(&governor->governor_list, &cpufreq_governor_list);
2454     }
2455 
2456     mutex_unlock(&cpufreq_governor_mutex);
2457     return err;
2458 }
2459 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2460 
2461 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2462 {
2463     struct cpufreq_policy *policy;
2464     unsigned long flags;
2465 
2466     if (!governor)
2467         return;
2468 
2469     if (cpufreq_disabled())
2470         return;
2471 
2472     /* clear last_governor for all inactive policies */
2473     read_lock_irqsave(&cpufreq_driver_lock, flags);
2474     for_each_inactive_policy(policy) {
2475         if (!strcmp(policy->last_governor, governor->name)) {
2476             policy->governor = NULL;
2477             strcpy(policy->last_governor, "\0");
2478         }
2479     }
2480     read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2481 
2482     mutex_lock(&cpufreq_governor_mutex);
2483     list_del(&governor->governor_list);
2484     mutex_unlock(&cpufreq_governor_mutex);
2485 }
2486 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2487 
2488 
2489 /*********************************************************************
2490  *                          POLICY INTERFACE                         *
2491  *********************************************************************/
2492 
2493 /**
2494  * cpufreq_get_policy - get the current cpufreq_policy
2495  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2496  *  is written
2497  * @cpu: CPU to find the policy for
2498  *
2499  * Reads the current cpufreq policy.
2500  */
2501 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2502 {
2503     struct cpufreq_policy *cpu_policy;
2504     if (!policy)
2505         return -EINVAL;
2506 
2507     cpu_policy = cpufreq_cpu_get(cpu);
2508     if (!cpu_policy)
2509         return -EINVAL;
2510 
2511     memcpy(policy, cpu_policy, sizeof(*policy));
2512 
2513     cpufreq_cpu_put(cpu_policy);
2514     return 0;
2515 }
2516 EXPORT_SYMBOL(cpufreq_get_policy);
2517 
2518 /**
2519  * cpufreq_set_policy - Modify cpufreq policy parameters.
2520  * @policy: Policy object to modify.
2521  * @new_gov: Policy governor pointer.
2522  * @new_pol: Policy value (for drivers with built-in governors).
2523  *
2524  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2525  * limits to be set for the policy, update @policy with the verified limits
2526  * values and either invoke the driver's ->setpolicy() callback (if present) or
2527  * carry out a governor update for @policy.  That is, run the current governor's
2528  * ->limits() callback (if @new_gov points to the same object as the one in
2529  * @policy) or replace the governor for @policy with @new_gov.
2530  *
2531  * The cpuinfo part of @policy is not updated by this function.
2532  */
2533 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2534                   struct cpufreq_governor *new_gov,
2535                   unsigned int new_pol)
2536 {
2537     struct cpufreq_policy_data new_data;
2538     struct cpufreq_governor *old_gov;
2539     int ret;
2540 
2541     memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2542     new_data.freq_table = policy->freq_table;
2543     new_data.cpu = policy->cpu;
2544     /*
2545      * PM QoS framework collects all the requests from users and provide us
2546      * the final aggregated value here.
2547      */
2548     new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2549     new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2550 
2551     pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2552          new_data.cpu, new_data.min, new_data.max);
2553 
2554     /*
2555      * Verify that the CPU speed can be set within these limits and make sure
2556      * that min <= max.
2557      */
2558     ret = cpufreq_driver->verify(&new_data);
2559     if (ret)
2560         return ret;
2561 
2562     /*
2563      * Resolve policy min/max to available frequencies. It ensures
2564      * no frequency resolution will neither overshoot the requested maximum
2565      * nor undershoot the requested minimum.
2566      */
2567     policy->min = new_data.min;
2568     policy->max = new_data.max;
2569     policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2570     policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2571     trace_cpu_frequency_limits(policy);
2572 
2573     policy->cached_target_freq = UINT_MAX;
2574 
2575     pr_debug("new min and max freqs are %u - %u kHz\n",
2576          policy->min, policy->max);
2577 
2578     if (cpufreq_driver->setpolicy) {
2579         policy->policy = new_pol;
2580         pr_debug("setting range\n");
2581         return cpufreq_driver->setpolicy(policy);
2582     }
2583 
2584     if (new_gov == policy->governor) {
2585         pr_debug("governor limits update\n");
2586         cpufreq_governor_limits(policy);
2587         return 0;
2588     }
2589 
2590     pr_debug("governor switch\n");
2591 
2592     /* save old, working values */
2593     old_gov = policy->governor;
2594     /* end old governor */
2595     if (old_gov) {
2596         cpufreq_stop_governor(policy);
2597         cpufreq_exit_governor(policy);
2598     }
2599 
2600     /* start new governor */
2601     policy->governor = new_gov;
2602     ret = cpufreq_init_governor(policy);
2603     if (!ret) {
2604         ret = cpufreq_start_governor(policy);
2605         if (!ret) {
2606             pr_debug("governor change\n");
2607             sched_cpufreq_governor_change(policy, old_gov);
2608             return 0;
2609         }
2610         cpufreq_exit_governor(policy);
2611     }
2612 
2613     /* new governor failed, so re-start old one */
2614     pr_debug("starting governor %s failed\n", policy->governor->name);
2615     if (old_gov) {
2616         policy->governor = old_gov;
2617         if (cpufreq_init_governor(policy))
2618             policy->governor = NULL;
2619         else
2620             cpufreq_start_governor(policy);
2621     }
2622 
2623     return ret;
2624 }
2625 
2626 /**
2627  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2628  * @cpu: CPU to re-evaluate the policy for.
2629  *
2630  * Update the current frequency for the cpufreq policy of @cpu and use
2631  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2632  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2633  * for the policy in question, among other things.
2634  */
2635 void cpufreq_update_policy(unsigned int cpu)
2636 {
2637     struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2638 
2639     if (!policy)
2640         return;
2641 
2642     /*
2643      * BIOS might change freq behind our back
2644      * -> ask driver for current freq and notify governors about a change
2645      */
2646     if (cpufreq_driver->get && has_target() &&
2647         (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2648         goto unlock;
2649 
2650     refresh_frequency_limits(policy);
2651 
2652 unlock:
2653     cpufreq_cpu_release(policy);
2654 }
2655 EXPORT_SYMBOL(cpufreq_update_policy);
2656 
2657 /**
2658  * cpufreq_update_limits - Update policy limits for a given CPU.
2659  * @cpu: CPU to update the policy limits for.
2660  *
2661  * Invoke the driver's ->update_limits callback if present or call
2662  * cpufreq_update_policy() for @cpu.
2663  */
2664 void cpufreq_update_limits(unsigned int cpu)
2665 {
2666     if (cpufreq_driver->update_limits)
2667         cpufreq_driver->update_limits(cpu);
2668     else
2669         cpufreq_update_policy(cpu);
2670 }
2671 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2672 
2673 /*********************************************************************
2674  *               BOOST                           *
2675  *********************************************************************/
2676 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2677 {
2678     int ret;
2679 
2680     if (!policy->freq_table)
2681         return -ENXIO;
2682 
2683     ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2684     if (ret) {
2685         pr_err("%s: Policy frequency update failed\n", __func__);
2686         return ret;
2687     }
2688 
2689     ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2690     if (ret < 0)
2691         return ret;
2692 
2693     return 0;
2694 }
2695 
2696 int cpufreq_boost_trigger_state(int state)
2697 {
2698     struct cpufreq_policy *policy;
2699     unsigned long flags;
2700     int ret = 0;
2701 
2702     if (cpufreq_driver->boost_enabled == state)
2703         return 0;
2704 
2705     write_lock_irqsave(&cpufreq_driver_lock, flags);
2706     cpufreq_driver->boost_enabled = state;
2707     write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2708 
2709     cpus_read_lock();
2710     for_each_active_policy(policy) {
2711         ret = cpufreq_driver->set_boost(policy, state);
2712         if (ret)
2713             goto err_reset_state;
2714     }
2715     cpus_read_unlock();
2716 
2717     return 0;
2718 
2719 err_reset_state:
2720     cpus_read_unlock();
2721 
2722     write_lock_irqsave(&cpufreq_driver_lock, flags);
2723     cpufreq_driver->boost_enabled = !state;
2724     write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2725 
2726     pr_err("%s: Cannot %s BOOST\n",
2727            __func__, state ? "enable" : "disable");
2728 
2729     return ret;
2730 }
2731 
2732 static bool cpufreq_boost_supported(void)
2733 {
2734     return cpufreq_driver->set_boost;
2735 }
2736 
2737 static int create_boost_sysfs_file(void)
2738 {
2739     int ret;
2740 
2741     ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2742     if (ret)
2743         pr_err("%s: cannot register global BOOST sysfs file\n",
2744                __func__);
2745 
2746     return ret;
2747 }
2748 
2749 static void remove_boost_sysfs_file(void)
2750 {
2751     if (cpufreq_boost_supported())
2752         sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2753 }
2754 
2755 int cpufreq_enable_boost_support(void)
2756 {
2757     if (!cpufreq_driver)
2758         return -EINVAL;
2759 
2760     if (cpufreq_boost_supported())
2761         return 0;
2762 
2763     cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2764 
2765     /* This will get removed on driver unregister */
2766     return create_boost_sysfs_file();
2767 }
2768 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2769 
2770 int cpufreq_boost_enabled(void)
2771 {
2772     return cpufreq_driver->boost_enabled;
2773 }
2774 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2775 
2776 /*********************************************************************
2777  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2778  *********************************************************************/
2779 static enum cpuhp_state hp_online;
2780 
2781 static int cpuhp_cpufreq_online(unsigned int cpu)
2782 {
2783     cpufreq_online(cpu);
2784 
2785     return 0;
2786 }
2787 
2788 static int cpuhp_cpufreq_offline(unsigned int cpu)
2789 {
2790     cpufreq_offline(cpu);
2791 
2792     return 0;
2793 }
2794 
2795 /**
2796  * cpufreq_register_driver - register a CPU Frequency driver
2797  * @driver_data: A struct cpufreq_driver containing the values#
2798  * submitted by the CPU Frequency driver.
2799  *
2800  * Registers a CPU Frequency driver to this core code. This code
2801  * returns zero on success, -EEXIST when another driver got here first
2802  * (and isn't unregistered in the meantime).
2803  *
2804  */
2805 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2806 {
2807     unsigned long flags;
2808     int ret;
2809 
2810     if (cpufreq_disabled())
2811         return -ENODEV;
2812 
2813     /*
2814      * The cpufreq core depends heavily on the availability of device
2815      * structure, make sure they are available before proceeding further.
2816      */
2817     if (!get_cpu_device(0))
2818         return -EPROBE_DEFER;
2819 
2820     if (!driver_data || !driver_data->verify || !driver_data->init ||
2821         !(driver_data->setpolicy || driver_data->target_index ||
2822             driver_data->target) ||
2823          (driver_data->setpolicy && (driver_data->target_index ||
2824             driver_data->target)) ||
2825          (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2826          (!driver_data->online != !driver_data->offline))
2827         return -EINVAL;
2828 
2829     pr_debug("trying to register driver %s\n", driver_data->name);
2830 
2831     /* Protect against concurrent CPU online/offline. */
2832     cpus_read_lock();
2833 
2834     write_lock_irqsave(&cpufreq_driver_lock, flags);
2835     if (cpufreq_driver) {
2836         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2837         ret = -EEXIST;
2838         goto out;
2839     }
2840     cpufreq_driver = driver_data;
2841     write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2842 
2843     /*
2844      * Mark support for the scheduler's frequency invariance engine for
2845      * drivers that implement target(), target_index() or fast_switch().
2846      */
2847     if (!cpufreq_driver->setpolicy) {
2848         static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2849         pr_debug("supports frequency invariance");
2850     }
2851 
2852     if (driver_data->setpolicy)
2853         driver_data->flags |= CPUFREQ_CONST_LOOPS;
2854 
2855     if (cpufreq_boost_supported()) {
2856         ret = create_boost_sysfs_file();
2857         if (ret)
2858             goto err_null_driver;
2859     }
2860 
2861     ret = subsys_interface_register(&cpufreq_interface);
2862     if (ret)
2863         goto err_boost_unreg;
2864 
2865     if (unlikely(list_empty(&cpufreq_policy_list))) {
2866         /* if all ->init() calls failed, unregister */
2867         ret = -ENODEV;
2868         pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2869              driver_data->name);
2870         goto err_if_unreg;
2871     }
2872 
2873     ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2874                            "cpufreq:online",
2875                            cpuhp_cpufreq_online,
2876                            cpuhp_cpufreq_offline);
2877     if (ret < 0)
2878         goto err_if_unreg;
2879     hp_online = ret;
2880     ret = 0;
2881 
2882     pr_debug("driver %s up and running\n", driver_data->name);
2883     goto out;
2884 
2885 err_if_unreg:
2886     subsys_interface_unregister(&cpufreq_interface);
2887 err_boost_unreg:
2888     remove_boost_sysfs_file();
2889 err_null_driver:
2890     write_lock_irqsave(&cpufreq_driver_lock, flags);
2891     cpufreq_driver = NULL;
2892     write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2893 out:
2894     cpus_read_unlock();
2895     return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2898 
2899 /*
2900  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2901  *
2902  * Unregister the current CPUFreq driver. Only call this if you have
2903  * the right to do so, i.e. if you have succeeded in initialising before!
2904  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2905  * currently not initialised.
2906  */
2907 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2908 {
2909     unsigned long flags;
2910 
2911     if (!cpufreq_driver || (driver != cpufreq_driver))
2912         return -EINVAL;
2913 
2914     pr_debug("unregistering driver %s\n", driver->name);
2915 
2916     /* Protect against concurrent cpu hotplug */
2917     cpus_read_lock();
2918     subsys_interface_unregister(&cpufreq_interface);
2919     remove_boost_sysfs_file();
2920     static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2921     cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2922 
2923     write_lock_irqsave(&cpufreq_driver_lock, flags);
2924 
2925     cpufreq_driver = NULL;
2926 
2927     write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2928     cpus_read_unlock();
2929 
2930     return 0;
2931 }
2932 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2933 
2934 static int __init cpufreq_core_init(void)
2935 {
2936     struct cpufreq_governor *gov = cpufreq_default_governor();
2937 
2938     if (cpufreq_disabled())
2939         return -ENODEV;
2940 
2941     cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2942     BUG_ON(!cpufreq_global_kobject);
2943 
2944     if (!strlen(default_governor))
2945         strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2946 
2947     return 0;
2948 }
2949 module_param(off, int, 0444);
2950 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2951 core_initcall(cpufreq_core_init);