0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/clk.h>
0009 #include <linux/clockchips.h>
0010 #include <linux/clocksource.h>
0011 #include <linux/err.h>
0012 #include <linux/interrupt.h>
0013 #include <linux/io.h>
0014 #include <linux/of_address.h>
0015 #include <linux/of_irq.h>
0016 #include <linux/sched_clock.h>
0017 #include <linux/slab.h>
0018 #include <linux/fsl/ftm.h>
0019
0020 #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
0021
0022 struct ftm_clock_device {
0023 void __iomem *clksrc_base;
0024 void __iomem *clkevt_base;
0025 unsigned long periodic_cyc;
0026 unsigned long ps;
0027 bool big_endian;
0028 };
0029
0030 static struct ftm_clock_device *priv;
0031
0032 static inline u32 ftm_readl(void __iomem *addr)
0033 {
0034 if (priv->big_endian)
0035 return ioread32be(addr);
0036 else
0037 return ioread32(addr);
0038 }
0039
0040 static inline void ftm_writel(u32 val, void __iomem *addr)
0041 {
0042 if (priv->big_endian)
0043 iowrite32be(val, addr);
0044 else
0045 iowrite32(val, addr);
0046 }
0047
0048 static inline void ftm_counter_enable(void __iomem *base)
0049 {
0050 u32 val;
0051
0052
0053 val = ftm_readl(base + FTM_SC);
0054 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
0055 val |= priv->ps | FTM_SC_CLK(1);
0056 ftm_writel(val, base + FTM_SC);
0057 }
0058
0059 static inline void ftm_counter_disable(void __iomem *base)
0060 {
0061 u32 val;
0062
0063
0064 val = ftm_readl(base + FTM_SC);
0065 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
0066 ftm_writel(val, base + FTM_SC);
0067 }
0068
0069 static inline void ftm_irq_acknowledge(void __iomem *base)
0070 {
0071 u32 val;
0072
0073 val = ftm_readl(base + FTM_SC);
0074 val &= ~FTM_SC_TOF;
0075 ftm_writel(val, base + FTM_SC);
0076 }
0077
0078 static inline void ftm_irq_enable(void __iomem *base)
0079 {
0080 u32 val;
0081
0082 val = ftm_readl(base + FTM_SC);
0083 val |= FTM_SC_TOIE;
0084 ftm_writel(val, base + FTM_SC);
0085 }
0086
0087 static inline void ftm_irq_disable(void __iomem *base)
0088 {
0089 u32 val;
0090
0091 val = ftm_readl(base + FTM_SC);
0092 val &= ~FTM_SC_TOIE;
0093 ftm_writel(val, base + FTM_SC);
0094 }
0095
0096 static inline void ftm_reset_counter(void __iomem *base)
0097 {
0098
0099
0100
0101
0102
0103 ftm_writel(0x00, base + FTM_CNT);
0104 }
0105
0106 static u64 notrace ftm_read_sched_clock(void)
0107 {
0108 return ftm_readl(priv->clksrc_base + FTM_CNT);
0109 }
0110
0111 static int ftm_set_next_event(unsigned long delta,
0112 struct clock_event_device *unused)
0113 {
0114
0115
0116
0117
0118
0119
0120
0121 ftm_counter_disable(priv->clkevt_base);
0122
0123
0124 ftm_reset_counter(priv->clkevt_base);
0125
0126
0127
0128
0129
0130
0131
0132 ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD);
0133
0134 ftm_counter_enable(priv->clkevt_base);
0135
0136 ftm_irq_enable(priv->clkevt_base);
0137
0138 return 0;
0139 }
0140
0141 static int ftm_set_oneshot(struct clock_event_device *evt)
0142 {
0143 ftm_counter_disable(priv->clkevt_base);
0144 return 0;
0145 }
0146
0147 static int ftm_set_periodic(struct clock_event_device *evt)
0148 {
0149 ftm_set_next_event(priv->periodic_cyc, evt);
0150 return 0;
0151 }
0152
0153 static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
0154 {
0155 struct clock_event_device *evt = dev_id;
0156
0157 ftm_irq_acknowledge(priv->clkevt_base);
0158
0159 if (likely(clockevent_state_oneshot(evt))) {
0160 ftm_irq_disable(priv->clkevt_base);
0161 ftm_counter_disable(priv->clkevt_base);
0162 }
0163
0164 evt->event_handler(evt);
0165
0166 return IRQ_HANDLED;
0167 }
0168
0169 static struct clock_event_device ftm_clockevent = {
0170 .name = "Freescale ftm timer",
0171 .features = CLOCK_EVT_FEAT_PERIODIC |
0172 CLOCK_EVT_FEAT_ONESHOT,
0173 .set_state_periodic = ftm_set_periodic,
0174 .set_state_oneshot = ftm_set_oneshot,
0175 .set_next_event = ftm_set_next_event,
0176 .rating = 300,
0177 };
0178
0179 static int __init ftm_clockevent_init(unsigned long freq, int irq)
0180 {
0181 int err;
0182
0183 ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN);
0184 ftm_writel(~0u, priv->clkevt_base + FTM_MOD);
0185
0186 ftm_reset_counter(priv->clkevt_base);
0187
0188 err = request_irq(irq, ftm_evt_interrupt, IRQF_TIMER | IRQF_IRQPOLL,
0189 "Freescale ftm timer", &ftm_clockevent);
0190 if (err) {
0191 pr_err("ftm: setup irq failed: %d\n", err);
0192 return err;
0193 }
0194
0195 ftm_clockevent.cpumask = cpumask_of(0);
0196 ftm_clockevent.irq = irq;
0197
0198 clockevents_config_and_register(&ftm_clockevent,
0199 freq / (1 << priv->ps),
0200 1, 0xffff);
0201
0202 ftm_counter_enable(priv->clkevt_base);
0203
0204 return 0;
0205 }
0206
0207 static int __init ftm_clocksource_init(unsigned long freq)
0208 {
0209 int err;
0210
0211 ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN);
0212 ftm_writel(~0u, priv->clksrc_base + FTM_MOD);
0213
0214 ftm_reset_counter(priv->clksrc_base);
0215
0216 sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps));
0217 err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
0218 freq / (1 << priv->ps), 300, 16,
0219 clocksource_mmio_readl_up);
0220 if (err) {
0221 pr_err("ftm: init clock source mmio failed: %d\n", err);
0222 return err;
0223 }
0224
0225 ftm_counter_enable(priv->clksrc_base);
0226
0227 return 0;
0228 }
0229
0230 static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
0231 char *ftm_name)
0232 {
0233 struct clk *clk;
0234 int err;
0235
0236 clk = of_clk_get_by_name(np, cnt_name);
0237 if (IS_ERR(clk)) {
0238 pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
0239 return PTR_ERR(clk);
0240 }
0241 err = clk_prepare_enable(clk);
0242 if (err) {
0243 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
0244 cnt_name, err);
0245 return err;
0246 }
0247
0248 clk = of_clk_get_by_name(np, ftm_name);
0249 if (IS_ERR(clk)) {
0250 pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
0251 return PTR_ERR(clk);
0252 }
0253 err = clk_prepare_enable(clk);
0254 if (err)
0255 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
0256 ftm_name, err);
0257
0258 return clk_get_rate(clk);
0259 }
0260
0261 static unsigned long __init ftm_clk_init(struct device_node *np)
0262 {
0263 long freq;
0264
0265 freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt");
0266 if (freq <= 0)
0267 return 0;
0268
0269 freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src");
0270 if (freq <= 0)
0271 return 0;
0272
0273 return freq;
0274 }
0275
0276 static int __init ftm_calc_closest_round_cyc(unsigned long freq)
0277 {
0278 priv->ps = 0;
0279
0280
0281
0282
0283
0284 do {
0285 priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
0286 HZ * (1 << priv->ps++));
0287 } while (priv->periodic_cyc > 0xFFFF);
0288
0289 if (priv->ps > FTM_PS_MAX) {
0290 pr_err("ftm: the prescaler is %lu > %d\n",
0291 priv->ps, FTM_PS_MAX);
0292 return -EINVAL;
0293 }
0294
0295 return 0;
0296 }
0297
0298 static int __init ftm_timer_init(struct device_node *np)
0299 {
0300 unsigned long freq;
0301 int ret, irq;
0302
0303 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
0304 if (!priv)
0305 return -ENOMEM;
0306
0307 ret = -ENXIO;
0308 priv->clkevt_base = of_iomap(np, 0);
0309 if (!priv->clkevt_base) {
0310 pr_err("ftm: unable to map event timer registers\n");
0311 goto err_clkevt;
0312 }
0313
0314 priv->clksrc_base = of_iomap(np, 1);
0315 if (!priv->clksrc_base) {
0316 pr_err("ftm: unable to map source timer registers\n");
0317 goto err_clksrc;
0318 }
0319
0320 ret = -EINVAL;
0321 irq = irq_of_parse_and_map(np, 0);
0322 if (irq <= 0) {
0323 pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
0324 goto err;
0325 }
0326
0327 priv->big_endian = of_property_read_bool(np, "big-endian");
0328
0329 freq = ftm_clk_init(np);
0330 if (!freq)
0331 goto err;
0332
0333 ret = ftm_calc_closest_round_cyc(freq);
0334 if (ret)
0335 goto err;
0336
0337 ret = ftm_clocksource_init(freq);
0338 if (ret)
0339 goto err;
0340
0341 ret = ftm_clockevent_init(freq, irq);
0342 if (ret)
0343 goto err;
0344
0345 return 0;
0346
0347 err:
0348 iounmap(priv->clksrc_base);
0349 err_clksrc:
0350 iounmap(priv->clkevt_base);
0351 err_clkevt:
0352 kfree(priv);
0353 return ret;
0354 }
0355 TIMER_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);