Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/drivers/clocksource/arm_arch_timer.c
0004  *
0005  *  Copyright (C) 2011 ARM Ltd.
0006  *  All Rights Reserved
0007  */
0008 
0009 #define pr_fmt(fmt)     "arch_timer: " fmt
0010 
0011 #include <linux/init.h>
0012 #include <linux/kernel.h>
0013 #include <linux/device.h>
0014 #include <linux/smp.h>
0015 #include <linux/cpu.h>
0016 #include <linux/cpu_pm.h>
0017 #include <linux/clockchips.h>
0018 #include <linux/clocksource.h>
0019 #include <linux/clocksource_ids.h>
0020 #include <linux/interrupt.h>
0021 #include <linux/of_irq.h>
0022 #include <linux/of_address.h>
0023 #include <linux/io.h>
0024 #include <linux/slab.h>
0025 #include <linux/sched/clock.h>
0026 #include <linux/sched_clock.h>
0027 #include <linux/acpi.h>
0028 #include <linux/arm-smccc.h>
0029 #include <linux/ptp_kvm.h>
0030 
0031 #include <asm/arch_timer.h>
0032 #include <asm/virt.h>
0033 
0034 #include <clocksource/arm_arch_timer.h>
0035 
0036 #define CNTTIDR     0x08
0037 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
0038 
0039 #define CNTACR(n)   (0x40 + ((n) * 4))
0040 #define CNTACR_RPCT BIT(0)
0041 #define CNTACR_RVCT BIT(1)
0042 #define CNTACR_RFRQ BIT(2)
0043 #define CNTACR_RVOFF    BIT(3)
0044 #define CNTACR_RWVT BIT(4)
0045 #define CNTACR_RWPT BIT(5)
0046 
0047 #define CNTVCT_LO   0x00
0048 #define CNTPCT_LO   0x08
0049 #define CNTFRQ      0x10
0050 #define CNTP_CVAL_LO    0x20
0051 #define CNTP_CTL    0x2c
0052 #define CNTV_CVAL_LO    0x30
0053 #define CNTV_CTL    0x3c
0054 
0055 /*
0056  * The minimum amount of time a generic counter is guaranteed to not roll over
0057  * (40 years)
0058  */
0059 #define MIN_ROLLOVER_SECS   (40ULL * 365 * 24 * 3600)
0060 
0061 static unsigned arch_timers_present __initdata;
0062 
0063 struct arch_timer {
0064     void __iomem *base;
0065     struct clock_event_device evt;
0066 };
0067 
0068 static struct arch_timer *arch_timer_mem __ro_after_init;
0069 
0070 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
0071 
0072 static u32 arch_timer_rate __ro_after_init;
0073 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
0074 
0075 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
0076     [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
0077     [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
0078     [ARCH_TIMER_VIRT_PPI]       = "virt",
0079     [ARCH_TIMER_HYP_PPI]        = "hyp-phys",
0080     [ARCH_TIMER_HYP_VIRT_PPI]   = "hyp-virt",
0081 };
0082 
0083 static struct clock_event_device __percpu *arch_timer_evt;
0084 
0085 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
0086 static bool arch_timer_c3stop __ro_after_init;
0087 static bool arch_timer_mem_use_virtual __ro_after_init;
0088 static bool arch_counter_suspend_stop __ro_after_init;
0089 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
0090 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
0091 #else
0092 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
0093 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
0094 
0095 static cpumask_t evtstrm_available = CPU_MASK_NONE;
0096 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
0097 
0098 static int __init early_evtstrm_cfg(char *buf)
0099 {
0100     return strtobool(buf, &evtstrm_enable);
0101 }
0102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
0103 
0104 /*
0105  * Makes an educated guess at a valid counter width based on the Generic Timer
0106  * specification. Of note:
0107  *   1) the system counter is at least 56 bits wide
0108  *   2) a roll-over time of not less than 40 years
0109  *
0110  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
0111  */
0112 static int arch_counter_get_width(void)
0113 {
0114     u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
0115 
0116     /* guarantee the returned width is within the valid range */
0117     return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
0118 }
0119 
0120 /*
0121  * Architected system timer support.
0122  */
0123 
0124 static __always_inline
0125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
0126               struct clock_event_device *clk)
0127 {
0128     if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
0129         struct arch_timer *timer = to_arch_timer(clk);
0130         switch (reg) {
0131         case ARCH_TIMER_REG_CTRL:
0132             writel_relaxed((u32)val, timer->base + CNTP_CTL);
0133             break;
0134         case ARCH_TIMER_REG_CVAL:
0135             /*
0136              * Not guaranteed to be atomic, so the timer
0137              * must be disabled at this point.
0138              */
0139             writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
0140             break;
0141         default:
0142             BUILD_BUG();
0143         }
0144     } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
0145         struct arch_timer *timer = to_arch_timer(clk);
0146         switch (reg) {
0147         case ARCH_TIMER_REG_CTRL:
0148             writel_relaxed((u32)val, timer->base + CNTV_CTL);
0149             break;
0150         case ARCH_TIMER_REG_CVAL:
0151             /* Same restriction as above */
0152             writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
0153             break;
0154         default:
0155             BUILD_BUG();
0156         }
0157     } else {
0158         arch_timer_reg_write_cp15(access, reg, val);
0159     }
0160 }
0161 
0162 static __always_inline
0163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
0164             struct clock_event_device *clk)
0165 {
0166     u32 val;
0167 
0168     if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
0169         struct arch_timer *timer = to_arch_timer(clk);
0170         switch (reg) {
0171         case ARCH_TIMER_REG_CTRL:
0172             val = readl_relaxed(timer->base + CNTP_CTL);
0173             break;
0174         default:
0175             BUILD_BUG();
0176         }
0177     } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
0178         struct arch_timer *timer = to_arch_timer(clk);
0179         switch (reg) {
0180         case ARCH_TIMER_REG_CTRL:
0181             val = readl_relaxed(timer->base + CNTV_CTL);
0182             break;
0183         default:
0184             BUILD_BUG();
0185         }
0186     } else {
0187         val = arch_timer_reg_read_cp15(access, reg);
0188     }
0189 
0190     return val;
0191 }
0192 
0193 static notrace u64 arch_counter_get_cntpct_stable(void)
0194 {
0195     return __arch_counter_get_cntpct_stable();
0196 }
0197 
0198 static notrace u64 arch_counter_get_cntpct(void)
0199 {
0200     return __arch_counter_get_cntpct();
0201 }
0202 
0203 static notrace u64 arch_counter_get_cntvct_stable(void)
0204 {
0205     return __arch_counter_get_cntvct_stable();
0206 }
0207 
0208 static notrace u64 arch_counter_get_cntvct(void)
0209 {
0210     return __arch_counter_get_cntvct();
0211 }
0212 
0213 /*
0214  * Default to cp15 based access because arm64 uses this function for
0215  * sched_clock() before DT is probed and the cp15 method is guaranteed
0216  * to exist on arm64. arm doesn't use this before DT is probed so even
0217  * if we don't have the cp15 accessors we won't have a problem.
0218  */
0219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
0220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
0221 
0222 static u64 arch_counter_read(struct clocksource *cs)
0223 {
0224     return arch_timer_read_counter();
0225 }
0226 
0227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
0228 {
0229     return arch_timer_read_counter();
0230 }
0231 
0232 static struct clocksource clocksource_counter = {
0233     .name   = "arch_sys_counter",
0234     .id = CSID_ARM_ARCH_COUNTER,
0235     .rating = 400,
0236     .read   = arch_counter_read,
0237     .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
0238 };
0239 
0240 static struct cyclecounter cyclecounter __ro_after_init = {
0241     .read   = arch_counter_read_cc,
0242 };
0243 
0244 struct ate_acpi_oem_info {
0245     char oem_id[ACPI_OEM_ID_SIZE + 1];
0246     char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
0247     u32 oem_revision;
0248 };
0249 
0250 #ifdef CONFIG_FSL_ERRATUM_A008585
0251 /*
0252  * The number of retries is an arbitrary value well beyond the highest number
0253  * of iterations the loop has been observed to take.
0254  */
0255 #define __fsl_a008585_read_reg(reg) ({          \
0256     u64 _old, _new;                 \
0257     int _retries = 200;             \
0258                             \
0259     do {                        \
0260         _old = read_sysreg(reg);        \
0261         _new = read_sysreg(reg);        \
0262         _retries--;             \
0263     } while (unlikely(_old != _new) && _retries);   \
0264                             \
0265     WARN_ON_ONCE(!_retries);            \
0266     _new;                       \
0267 })
0268 
0269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
0270 {
0271     return __fsl_a008585_read_reg(cntpct_el0);
0272 }
0273 
0274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
0275 {
0276     return __fsl_a008585_read_reg(cntvct_el0);
0277 }
0278 #endif
0279 
0280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
0281 /*
0282  * Verify whether the value of the second read is larger than the first by
0283  * less than 32 is the only way to confirm the value is correct, so clear the
0284  * lower 5 bits to check whether the difference is greater than 32 or not.
0285  * Theoretically the erratum should not occur more than twice in succession
0286  * when reading the system counter, but it is possible that some interrupts
0287  * may lead to more than twice read errors, triggering the warning, so setting
0288  * the number of retries far beyond the number of iterations the loop has been
0289  * observed to take.
0290  */
0291 #define __hisi_161010101_read_reg(reg) ({               \
0292     u64 _old, _new;                     \
0293     int _retries = 50;                  \
0294                                 \
0295     do {                            \
0296         _old = read_sysreg(reg);            \
0297         _new = read_sysreg(reg);            \
0298         _retries--;                 \
0299     } while (unlikely((_new - _old) >> 5) && _retries); \
0300                                 \
0301     WARN_ON_ONCE(!_retries);                \
0302     _new;                           \
0303 })
0304 
0305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
0306 {
0307     return __hisi_161010101_read_reg(cntpct_el0);
0308 }
0309 
0310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
0311 {
0312     return __hisi_161010101_read_reg(cntvct_el0);
0313 }
0314 
0315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
0316     /*
0317      * Note that trailing spaces are required to properly match
0318      * the OEM table information.
0319      */
0320     {
0321         .oem_id     = "HISI  ",
0322         .oem_table_id   = "HIP05   ",
0323         .oem_revision   = 0,
0324     },
0325     {
0326         .oem_id     = "HISI  ",
0327         .oem_table_id   = "HIP06   ",
0328         .oem_revision   = 0,
0329     },
0330     {
0331         .oem_id     = "HISI  ",
0332         .oem_table_id   = "HIP07   ",
0333         .oem_revision   = 0,
0334     },
0335     { /* Sentinel indicating the end of the OEM array */ },
0336 };
0337 #endif
0338 
0339 #ifdef CONFIG_ARM64_ERRATUM_858921
0340 static u64 notrace arm64_858921_read_cntpct_el0(void)
0341 {
0342     u64 old, new;
0343 
0344     old = read_sysreg(cntpct_el0);
0345     new = read_sysreg(cntpct_el0);
0346     return (((old ^ new) >> 32) & 1) ? old : new;
0347 }
0348 
0349 static u64 notrace arm64_858921_read_cntvct_el0(void)
0350 {
0351     u64 old, new;
0352 
0353     old = read_sysreg(cntvct_el0);
0354     new = read_sysreg(cntvct_el0);
0355     return (((old ^ new) >> 32) & 1) ? old : new;
0356 }
0357 #endif
0358 
0359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
0360 /*
0361  * The low bits of the counter registers are indeterminate while bit 10 or
0362  * greater is rolling over. Since the counter value can jump both backward
0363  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
0364  * with all ones or all zeros in the low bits. Bound the loop by the maximum
0365  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
0366  */
0367 #define __sun50i_a64_read_reg(reg) ({                   \
0368     u64 _val;                           \
0369     int _retries = 150;                     \
0370                                     \
0371     do {                                \
0372         _val = read_sysreg(reg);                \
0373         _retries--;                     \
0374     } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);    \
0375                                     \
0376     WARN_ON_ONCE(!_retries);                    \
0377     _val;                               \
0378 })
0379 
0380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
0381 {
0382     return __sun50i_a64_read_reg(cntpct_el0);
0383 }
0384 
0385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
0386 {
0387     return __sun50i_a64_read_reg(cntvct_el0);
0388 }
0389 #endif
0390 
0391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
0392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
0393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
0394 
0395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
0396 
0397 /*
0398  * Force the inlining of this function so that the register accesses
0399  * can be themselves correctly inlined.
0400  */
0401 static __always_inline
0402 void erratum_set_next_event_generic(const int access, unsigned long evt,
0403                     struct clock_event_device *clk)
0404 {
0405     unsigned long ctrl;
0406     u64 cval;
0407 
0408     ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
0409     ctrl |= ARCH_TIMER_CTRL_ENABLE;
0410     ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
0411 
0412     if (access == ARCH_TIMER_PHYS_ACCESS) {
0413         cval = evt + arch_counter_get_cntpct_stable();
0414         write_sysreg(cval, cntp_cval_el0);
0415     } else {
0416         cval = evt + arch_counter_get_cntvct_stable();
0417         write_sysreg(cval, cntv_cval_el0);
0418     }
0419 
0420     arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
0421 }
0422 
0423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
0424                         struct clock_event_device *clk)
0425 {
0426     erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
0427     return 0;
0428 }
0429 
0430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
0431                         struct clock_event_device *clk)
0432 {
0433     erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
0434     return 0;
0435 }
0436 
0437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
0438 #ifdef CONFIG_FSL_ERRATUM_A008585
0439     {
0440         .match_type = ate_match_dt,
0441         .id = "fsl,erratum-a008585",
0442         .desc = "Freescale erratum a005858",
0443         .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
0444         .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
0445         .set_next_event_phys = erratum_set_next_event_phys,
0446         .set_next_event_virt = erratum_set_next_event_virt,
0447     },
0448 #endif
0449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
0450     {
0451         .match_type = ate_match_dt,
0452         .id = "hisilicon,erratum-161010101",
0453         .desc = "HiSilicon erratum 161010101",
0454         .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
0455         .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
0456         .set_next_event_phys = erratum_set_next_event_phys,
0457         .set_next_event_virt = erratum_set_next_event_virt,
0458     },
0459     {
0460         .match_type = ate_match_acpi_oem_info,
0461         .id = hisi_161010101_oem_info,
0462         .desc = "HiSilicon erratum 161010101",
0463         .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
0464         .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
0465         .set_next_event_phys = erratum_set_next_event_phys,
0466         .set_next_event_virt = erratum_set_next_event_virt,
0467     },
0468 #endif
0469 #ifdef CONFIG_ARM64_ERRATUM_858921
0470     {
0471         .match_type = ate_match_local_cap_id,
0472         .id = (void *)ARM64_WORKAROUND_858921,
0473         .desc = "ARM erratum 858921",
0474         .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
0475         .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
0476     },
0477 #endif
0478 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
0479     {
0480         .match_type = ate_match_dt,
0481         .id = "allwinner,erratum-unknown1",
0482         .desc = "Allwinner erratum UNKNOWN1",
0483         .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
0484         .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
0485         .set_next_event_phys = erratum_set_next_event_phys,
0486         .set_next_event_virt = erratum_set_next_event_virt,
0487     },
0488 #endif
0489 #ifdef CONFIG_ARM64_ERRATUM_1418040
0490     {
0491         .match_type = ate_match_local_cap_id,
0492         .id = (void *)ARM64_WORKAROUND_1418040,
0493         .desc = "ARM erratum 1418040",
0494         .disable_compat_vdso = true,
0495     },
0496 #endif
0497 };
0498 
0499 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
0500                    const void *);
0501 
0502 static
0503 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
0504                  const void *arg)
0505 {
0506     const struct device_node *np = arg;
0507 
0508     return of_property_read_bool(np, wa->id);
0509 }
0510 
0511 static
0512 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
0513                     const void *arg)
0514 {
0515     return this_cpu_has_cap((uintptr_t)wa->id);
0516 }
0517 
0518 
0519 static
0520 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
0521                        const void *arg)
0522 {
0523     static const struct ate_acpi_oem_info empty_oem_info = {};
0524     const struct ate_acpi_oem_info *info = wa->id;
0525     const struct acpi_table_header *table = arg;
0526 
0527     /* Iterate over the ACPI OEM info array, looking for a match */
0528     while (memcmp(info, &empty_oem_info, sizeof(*info))) {
0529         if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
0530             !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
0531             info->oem_revision == table->oem_revision)
0532             return true;
0533 
0534         info++;
0535     }
0536 
0537     return false;
0538 }
0539 
0540 static const struct arch_timer_erratum_workaround *
0541 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
0542               ate_match_fn_t match_fn,
0543               void *arg)
0544 {
0545     int i;
0546 
0547     for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
0548         if (ool_workarounds[i].match_type != type)
0549             continue;
0550 
0551         if (match_fn(&ool_workarounds[i], arg))
0552             return &ool_workarounds[i];
0553     }
0554 
0555     return NULL;
0556 }
0557 
0558 static
0559 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
0560                   bool local)
0561 {
0562     int i;
0563 
0564     if (local) {
0565         __this_cpu_write(timer_unstable_counter_workaround, wa);
0566     } else {
0567         for_each_possible_cpu(i)
0568             per_cpu(timer_unstable_counter_workaround, i) = wa;
0569     }
0570 
0571     if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
0572         atomic_set(&timer_unstable_counter_workaround_in_use, 1);
0573 
0574     /*
0575      * Don't use the vdso fastpath if errata require using the
0576      * out-of-line counter accessor. We may change our mind pretty
0577      * late in the game (with a per-CPU erratum, for example), so
0578      * change both the default value and the vdso itself.
0579      */
0580     if (wa->read_cntvct_el0) {
0581         clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
0582         vdso_default = VDSO_CLOCKMODE_NONE;
0583     } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
0584         vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
0585         clocksource_counter.vdso_clock_mode = vdso_default;
0586     }
0587 }
0588 
0589 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
0590                         void *arg)
0591 {
0592     const struct arch_timer_erratum_workaround *wa, *__wa;
0593     ate_match_fn_t match_fn = NULL;
0594     bool local = false;
0595 
0596     switch (type) {
0597     case ate_match_dt:
0598         match_fn = arch_timer_check_dt_erratum;
0599         break;
0600     case ate_match_local_cap_id:
0601         match_fn = arch_timer_check_local_cap_erratum;
0602         local = true;
0603         break;
0604     case ate_match_acpi_oem_info:
0605         match_fn = arch_timer_check_acpi_oem_erratum;
0606         break;
0607     default:
0608         WARN_ON(1);
0609         return;
0610     }
0611 
0612     wa = arch_timer_iterate_errata(type, match_fn, arg);
0613     if (!wa)
0614         return;
0615 
0616     __wa = __this_cpu_read(timer_unstable_counter_workaround);
0617     if (__wa && wa != __wa)
0618         pr_warn("Can't enable workaround for %s (clashes with %s\n)",
0619             wa->desc, __wa->desc);
0620 
0621     if (__wa)
0622         return;
0623 
0624     arch_timer_enable_workaround(wa, local);
0625     pr_info("Enabling %s workaround for %s\n",
0626         local ? "local" : "global", wa->desc);
0627 }
0628 
0629 static bool arch_timer_this_cpu_has_cntvct_wa(void)
0630 {
0631     return has_erratum_handler(read_cntvct_el0);
0632 }
0633 
0634 static bool arch_timer_counter_has_wa(void)
0635 {
0636     return atomic_read(&timer_unstable_counter_workaround_in_use);
0637 }
0638 #else
0639 #define arch_timer_check_ool_workaround(t,a)        do { } while(0)
0640 #define arch_timer_this_cpu_has_cntvct_wa()     ({false;})
0641 #define arch_timer_counter_has_wa()         ({false;})
0642 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
0643 
0644 static __always_inline irqreturn_t timer_handler(const int access,
0645                     struct clock_event_device *evt)
0646 {
0647     unsigned long ctrl;
0648 
0649     ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
0650     if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
0651         ctrl |= ARCH_TIMER_CTRL_IT_MASK;
0652         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
0653         evt->event_handler(evt);
0654         return IRQ_HANDLED;
0655     }
0656 
0657     return IRQ_NONE;
0658 }
0659 
0660 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
0661 {
0662     struct clock_event_device *evt = dev_id;
0663 
0664     return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
0665 }
0666 
0667 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
0668 {
0669     struct clock_event_device *evt = dev_id;
0670 
0671     return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
0672 }
0673 
0674 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
0675 {
0676     struct clock_event_device *evt = dev_id;
0677 
0678     return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
0679 }
0680 
0681 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
0682 {
0683     struct clock_event_device *evt = dev_id;
0684 
0685     return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
0686 }
0687 
0688 static __always_inline int timer_shutdown(const int access,
0689                       struct clock_event_device *clk)
0690 {
0691     unsigned long ctrl;
0692 
0693     ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
0694     ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
0695     arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
0696 
0697     return 0;
0698 }
0699 
0700 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
0701 {
0702     return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
0703 }
0704 
0705 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
0706 {
0707     return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
0708 }
0709 
0710 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
0711 {
0712     return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
0713 }
0714 
0715 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
0716 {
0717     return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
0718 }
0719 
0720 static __always_inline void set_next_event(const int access, unsigned long evt,
0721                        struct clock_event_device *clk)
0722 {
0723     unsigned long ctrl;
0724     u64 cnt;
0725 
0726     ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
0727     ctrl |= ARCH_TIMER_CTRL_ENABLE;
0728     ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
0729 
0730     if (access == ARCH_TIMER_PHYS_ACCESS)
0731         cnt = __arch_counter_get_cntpct();
0732     else
0733         cnt = __arch_counter_get_cntvct();
0734 
0735     arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
0736     arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
0737 }
0738 
0739 static int arch_timer_set_next_event_virt(unsigned long evt,
0740                       struct clock_event_device *clk)
0741 {
0742     set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
0743     return 0;
0744 }
0745 
0746 static int arch_timer_set_next_event_phys(unsigned long evt,
0747                       struct clock_event_device *clk)
0748 {
0749     set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
0750     return 0;
0751 }
0752 
0753 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
0754 {
0755     u32 cnt_lo, cnt_hi, tmp_hi;
0756 
0757     do {
0758         cnt_hi = readl_relaxed(t->base + offset_lo + 4);
0759         cnt_lo = readl_relaxed(t->base + offset_lo);
0760         tmp_hi = readl_relaxed(t->base + offset_lo + 4);
0761     } while (cnt_hi != tmp_hi);
0762 
0763     return ((u64) cnt_hi << 32) | cnt_lo;
0764 }
0765 
0766 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
0767                        struct clock_event_device *clk)
0768 {
0769     struct arch_timer *timer = to_arch_timer(clk);
0770     unsigned long ctrl;
0771     u64 cnt;
0772 
0773     ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
0774     ctrl |= ARCH_TIMER_CTRL_ENABLE;
0775     ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
0776 
0777     if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
0778         cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
0779     else
0780         cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
0781 
0782     arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
0783     arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
0784 }
0785 
0786 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
0787                           struct clock_event_device *clk)
0788 {
0789     set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
0790     return 0;
0791 }
0792 
0793 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
0794                           struct clock_event_device *clk)
0795 {
0796     set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
0797     return 0;
0798 }
0799 
0800 static u64 __arch_timer_check_delta(void)
0801 {
0802 #ifdef CONFIG_ARM64
0803     const struct midr_range broken_cval_midrs[] = {
0804         /*
0805          * XGene-1 implements CVAL in terms of TVAL, meaning
0806          * that the maximum timer range is 32bit. Shame on them.
0807          */
0808         MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
0809                          APM_CPU_PART_POTENZA)),
0810         {},
0811     };
0812 
0813     if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
0814         pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits");
0815         return CLOCKSOURCE_MASK(32);
0816     }
0817 #endif
0818     return CLOCKSOURCE_MASK(arch_counter_get_width());
0819 }
0820 
0821 static void __arch_timer_setup(unsigned type,
0822                    struct clock_event_device *clk)
0823 {
0824     u64 max_delta;
0825 
0826     clk->features = CLOCK_EVT_FEAT_ONESHOT;
0827 
0828     if (type == ARCH_TIMER_TYPE_CP15) {
0829         typeof(clk->set_next_event) sne;
0830 
0831         arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
0832 
0833         if (arch_timer_c3stop)
0834             clk->features |= CLOCK_EVT_FEAT_C3STOP;
0835         clk->name = "arch_sys_timer";
0836         clk->rating = 450;
0837         clk->cpumask = cpumask_of(smp_processor_id());
0838         clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
0839         switch (arch_timer_uses_ppi) {
0840         case ARCH_TIMER_VIRT_PPI:
0841             clk->set_state_shutdown = arch_timer_shutdown_virt;
0842             clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
0843             sne = erratum_handler(set_next_event_virt);
0844             break;
0845         case ARCH_TIMER_PHYS_SECURE_PPI:
0846         case ARCH_TIMER_PHYS_NONSECURE_PPI:
0847         case ARCH_TIMER_HYP_PPI:
0848             clk->set_state_shutdown = arch_timer_shutdown_phys;
0849             clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
0850             sne = erratum_handler(set_next_event_phys);
0851             break;
0852         default:
0853             BUG();
0854         }
0855 
0856         clk->set_next_event = sne;
0857         max_delta = __arch_timer_check_delta();
0858     } else {
0859         clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
0860         clk->name = "arch_mem_timer";
0861         clk->rating = 400;
0862         clk->cpumask = cpu_possible_mask;
0863         if (arch_timer_mem_use_virtual) {
0864             clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
0865             clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
0866             clk->set_next_event =
0867                 arch_timer_set_next_event_virt_mem;
0868         } else {
0869             clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
0870             clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
0871             clk->set_next_event =
0872                 arch_timer_set_next_event_phys_mem;
0873         }
0874 
0875         max_delta = CLOCKSOURCE_MASK(56);
0876     }
0877 
0878     clk->set_state_shutdown(clk);
0879 
0880     clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
0881 }
0882 
0883 static void arch_timer_evtstrm_enable(unsigned int divider)
0884 {
0885     u32 cntkctl = arch_timer_get_cntkctl();
0886 
0887 #ifdef CONFIG_ARM64
0888     /* ECV is likely to require a large divider. Use the EVNTIS flag. */
0889     if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
0890         cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
0891         divider -= 8;
0892     }
0893 #endif
0894 
0895     divider = min(divider, 15U);
0896     cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
0897     /* Set the divider and enable virtual event stream */
0898     cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
0899             | ARCH_TIMER_VIRT_EVT_EN;
0900     arch_timer_set_cntkctl(cntkctl);
0901     arch_timer_set_evtstrm_feature();
0902     cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
0903 }
0904 
0905 static void arch_timer_configure_evtstream(void)
0906 {
0907     int evt_stream_div, lsb;
0908 
0909     /*
0910      * As the event stream can at most be generated at half the frequency
0911      * of the counter, use half the frequency when computing the divider.
0912      */
0913     evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
0914 
0915     /*
0916      * Find the closest power of two to the divisor. If the adjacent bit
0917      * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
0918      */
0919     lsb = fls(evt_stream_div) - 1;
0920     if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
0921         lsb++;
0922 
0923     /* enable event stream */
0924     arch_timer_evtstrm_enable(max(0, lsb));
0925 }
0926 
0927 static void arch_counter_set_user_access(void)
0928 {
0929     u32 cntkctl = arch_timer_get_cntkctl();
0930 
0931     /* Disable user access to the timers and both counters */
0932     /* Also disable virtual event stream */
0933     cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
0934             | ARCH_TIMER_USR_VT_ACCESS_EN
0935                 | ARCH_TIMER_USR_VCT_ACCESS_EN
0936             | ARCH_TIMER_VIRT_EVT_EN
0937             | ARCH_TIMER_USR_PCT_ACCESS_EN);
0938 
0939     /*
0940      * Enable user access to the virtual counter if it doesn't
0941      * need to be workaround. The vdso may have been already
0942      * disabled though.
0943      */
0944     if (arch_timer_this_cpu_has_cntvct_wa())
0945         pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
0946     else
0947         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
0948 
0949     arch_timer_set_cntkctl(cntkctl);
0950 }
0951 
0952 static bool arch_timer_has_nonsecure_ppi(void)
0953 {
0954     return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
0955         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
0956 }
0957 
0958 static u32 check_ppi_trigger(int irq)
0959 {
0960     u32 flags = irq_get_trigger_type(irq);
0961 
0962     if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
0963         pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
0964         pr_warn("WARNING: Please fix your firmware\n");
0965         flags = IRQF_TRIGGER_LOW;
0966     }
0967 
0968     return flags;
0969 }
0970 
0971 static int arch_timer_starting_cpu(unsigned int cpu)
0972 {
0973     struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
0974     u32 flags;
0975 
0976     __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
0977 
0978     flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
0979     enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
0980 
0981     if (arch_timer_has_nonsecure_ppi()) {
0982         flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
0983         enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
0984                   flags);
0985     }
0986 
0987     arch_counter_set_user_access();
0988     if (evtstrm_enable)
0989         arch_timer_configure_evtstream();
0990 
0991     return 0;
0992 }
0993 
0994 static int validate_timer_rate(void)
0995 {
0996     if (!arch_timer_rate)
0997         return -EINVAL;
0998 
0999     /* Arch timer frequency < 1MHz can cause trouble */
1000     WARN_ON(arch_timer_rate < 1000000);
1001 
1002     return 0;
1003 }
1004 
1005 /*
1006  * For historical reasons, when probing with DT we use whichever (non-zero)
1007  * rate was probed first, and don't verify that others match. If the first node
1008  * probed has a clock-frequency property, this overrides the HW register.
1009  */
1010 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1011 {
1012     /* Who has more than one independent system counter? */
1013     if (arch_timer_rate)
1014         return;
1015 
1016     if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1017         arch_timer_rate = rate;
1018 
1019     /* Check the timer frequency. */
1020     if (validate_timer_rate())
1021         pr_warn("frequency not available\n");
1022 }
1023 
1024 static void __init arch_timer_banner(unsigned type)
1025 {
1026     pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1027         type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1028         type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1029             " and " : "",
1030         type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1031         (unsigned long)arch_timer_rate / 1000000,
1032         (unsigned long)(arch_timer_rate / 10000) % 100,
1033         type & ARCH_TIMER_TYPE_CP15 ?
1034             (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1035             "",
1036         type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1037         type & ARCH_TIMER_TYPE_MEM ?
1038             arch_timer_mem_use_virtual ? "virt" : "phys" :
1039             "");
1040 }
1041 
1042 u32 arch_timer_get_rate(void)
1043 {
1044     return arch_timer_rate;
1045 }
1046 
1047 bool arch_timer_evtstrm_available(void)
1048 {
1049     /*
1050      * We might get called from a preemptible context. This is fine
1051      * because availability of the event stream should be always the same
1052      * for a preemptible context and context where we might resume a task.
1053      */
1054     return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1055 }
1056 
1057 static u64 arch_counter_get_cntvct_mem(void)
1058 {
1059     return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1060 }
1061 
1062 static struct arch_timer_kvm_info arch_timer_kvm_info;
1063 
1064 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1065 {
1066     return &arch_timer_kvm_info;
1067 }
1068 
1069 static void __init arch_counter_register(unsigned type)
1070 {
1071     u64 start_count;
1072     int width;
1073 
1074     /* Register the CP15 based counter if we have one */
1075     if (type & ARCH_TIMER_TYPE_CP15) {
1076         u64 (*rd)(void);
1077 
1078         if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1079             arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1080             if (arch_timer_counter_has_wa())
1081                 rd = arch_counter_get_cntvct_stable;
1082             else
1083                 rd = arch_counter_get_cntvct;
1084         } else {
1085             if (arch_timer_counter_has_wa())
1086                 rd = arch_counter_get_cntpct_stable;
1087             else
1088                 rd = arch_counter_get_cntpct;
1089         }
1090 
1091         arch_timer_read_counter = rd;
1092         clocksource_counter.vdso_clock_mode = vdso_default;
1093     } else {
1094         arch_timer_read_counter = arch_counter_get_cntvct_mem;
1095     }
1096 
1097     width = arch_counter_get_width();
1098     clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1099     cyclecounter.mask = CLOCKSOURCE_MASK(width);
1100 
1101     if (!arch_counter_suspend_stop)
1102         clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1103     start_count = arch_timer_read_counter();
1104     clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1105     cyclecounter.mult = clocksource_counter.mult;
1106     cyclecounter.shift = clocksource_counter.shift;
1107     timecounter_init(&arch_timer_kvm_info.timecounter,
1108              &cyclecounter, start_count);
1109 
1110     sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1111 }
1112 
1113 static void arch_timer_stop(struct clock_event_device *clk)
1114 {
1115     pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1116 
1117     disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1118     if (arch_timer_has_nonsecure_ppi())
1119         disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1120 
1121     clk->set_state_shutdown(clk);
1122 }
1123 
1124 static int arch_timer_dying_cpu(unsigned int cpu)
1125 {
1126     struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1127 
1128     cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1129 
1130     arch_timer_stop(clk);
1131     return 0;
1132 }
1133 
1134 #ifdef CONFIG_CPU_PM
1135 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1136 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1137                     unsigned long action, void *hcpu)
1138 {
1139     if (action == CPU_PM_ENTER) {
1140         __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1141 
1142         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1143     } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1144         arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1145 
1146         if (arch_timer_have_evtstrm_feature())
1147             cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1148     }
1149     return NOTIFY_OK;
1150 }
1151 
1152 static struct notifier_block arch_timer_cpu_pm_notifier = {
1153     .notifier_call = arch_timer_cpu_pm_notify,
1154 };
1155 
1156 static int __init arch_timer_cpu_pm_init(void)
1157 {
1158     return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1159 }
1160 
1161 static void __init arch_timer_cpu_pm_deinit(void)
1162 {
1163     WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1164 }
1165 
1166 #else
1167 static int __init arch_timer_cpu_pm_init(void)
1168 {
1169     return 0;
1170 }
1171 
1172 static void __init arch_timer_cpu_pm_deinit(void)
1173 {
1174 }
1175 #endif
1176 
1177 static int __init arch_timer_register(void)
1178 {
1179     int err;
1180     int ppi;
1181 
1182     arch_timer_evt = alloc_percpu(struct clock_event_device);
1183     if (!arch_timer_evt) {
1184         err = -ENOMEM;
1185         goto out;
1186     }
1187 
1188     ppi = arch_timer_ppi[arch_timer_uses_ppi];
1189     switch (arch_timer_uses_ppi) {
1190     case ARCH_TIMER_VIRT_PPI:
1191         err = request_percpu_irq(ppi, arch_timer_handler_virt,
1192                      "arch_timer", arch_timer_evt);
1193         break;
1194     case ARCH_TIMER_PHYS_SECURE_PPI:
1195     case ARCH_TIMER_PHYS_NONSECURE_PPI:
1196         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1197                      "arch_timer", arch_timer_evt);
1198         if (!err && arch_timer_has_nonsecure_ppi()) {
1199             ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1200             err = request_percpu_irq(ppi, arch_timer_handler_phys,
1201                          "arch_timer", arch_timer_evt);
1202             if (err)
1203                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1204                         arch_timer_evt);
1205         }
1206         break;
1207     case ARCH_TIMER_HYP_PPI:
1208         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1209                      "arch_timer", arch_timer_evt);
1210         break;
1211     default:
1212         BUG();
1213     }
1214 
1215     if (err) {
1216         pr_err("can't register interrupt %d (%d)\n", ppi, err);
1217         goto out_free;
1218     }
1219 
1220     err = arch_timer_cpu_pm_init();
1221     if (err)
1222         goto out_unreg_notify;
1223 
1224     /* Register and immediately configure the timer on the boot CPU */
1225     err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1226                 "clockevents/arm/arch_timer:starting",
1227                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1228     if (err)
1229         goto out_unreg_cpupm;
1230     return 0;
1231 
1232 out_unreg_cpupm:
1233     arch_timer_cpu_pm_deinit();
1234 
1235 out_unreg_notify:
1236     free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1237     if (arch_timer_has_nonsecure_ppi())
1238         free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1239                 arch_timer_evt);
1240 
1241 out_free:
1242     free_percpu(arch_timer_evt);
1243 out:
1244     return err;
1245 }
1246 
1247 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1248 {
1249     int ret;
1250     irq_handler_t func;
1251 
1252     arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1253     if (!arch_timer_mem)
1254         return -ENOMEM;
1255 
1256     arch_timer_mem->base = base;
1257     arch_timer_mem->evt.irq = irq;
1258     __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1259 
1260     if (arch_timer_mem_use_virtual)
1261         func = arch_timer_handler_virt_mem;
1262     else
1263         func = arch_timer_handler_phys_mem;
1264 
1265     ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1266     if (ret) {
1267         pr_err("Failed to request mem timer irq\n");
1268         kfree(arch_timer_mem);
1269         arch_timer_mem = NULL;
1270     }
1271 
1272     return ret;
1273 }
1274 
1275 static const struct of_device_id arch_timer_of_match[] __initconst = {
1276     { .compatible   = "arm,armv7-timer",    },
1277     { .compatible   = "arm,armv8-timer",    },
1278     {},
1279 };
1280 
1281 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1282     { .compatible   = "arm,armv7-timer-mem", },
1283     {},
1284 };
1285 
1286 static bool __init arch_timer_needs_of_probing(void)
1287 {
1288     struct device_node *dn;
1289     bool needs_probing = false;
1290     unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1291 
1292     /* We have two timers, and both device-tree nodes are probed. */
1293     if ((arch_timers_present & mask) == mask)
1294         return false;
1295 
1296     /*
1297      * Only one type of timer is probed,
1298      * check if we have another type of timer node in device-tree.
1299      */
1300     if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1301         dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1302     else
1303         dn = of_find_matching_node(NULL, arch_timer_of_match);
1304 
1305     if (dn && of_device_is_available(dn))
1306         needs_probing = true;
1307 
1308     of_node_put(dn);
1309 
1310     return needs_probing;
1311 }
1312 
1313 static int __init arch_timer_common_init(void)
1314 {
1315     arch_timer_banner(arch_timers_present);
1316     arch_counter_register(arch_timers_present);
1317     return arch_timer_arch_init();
1318 }
1319 
1320 /**
1321  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1322  *
1323  * If HYP mode is available, we know that the physical timer
1324  * has been configured to be accessible from PL1. Use it, so
1325  * that a guest can use the virtual timer instead.
1326  *
1327  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1328  * accesses to CNTP_*_EL1 registers are silently redirected to
1329  * their CNTHP_*_EL2 counterparts, and use a different PPI
1330  * number.
1331  *
1332  * If no interrupt provided for virtual timer, we'll have to
1333  * stick to the physical timer. It'd better be accessible...
1334  * For arm64 we never use the secure interrupt.
1335  *
1336  * Return: a suitable PPI type for the current system.
1337  */
1338 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1339 {
1340     if (is_kernel_in_hyp_mode())
1341         return ARCH_TIMER_HYP_PPI;
1342 
1343     if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1344         return ARCH_TIMER_VIRT_PPI;
1345 
1346     if (IS_ENABLED(CONFIG_ARM64))
1347         return ARCH_TIMER_PHYS_NONSECURE_PPI;
1348 
1349     return ARCH_TIMER_PHYS_SECURE_PPI;
1350 }
1351 
1352 static void __init arch_timer_populate_kvm_info(void)
1353 {
1354     arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1355     if (is_kernel_in_hyp_mode())
1356         arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1357 }
1358 
1359 static int __init arch_timer_of_init(struct device_node *np)
1360 {
1361     int i, irq, ret;
1362     u32 rate;
1363     bool has_names;
1364 
1365     if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1366         pr_warn("multiple nodes in dt, skipping\n");
1367         return 0;
1368     }
1369 
1370     arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1371 
1372     has_names = of_property_read_bool(np, "interrupt-names");
1373 
1374     for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1375         if (has_names)
1376             irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1377         else
1378             irq = of_irq_get(np, i);
1379         if (irq > 0)
1380             arch_timer_ppi[i] = irq;
1381     }
1382 
1383     arch_timer_populate_kvm_info();
1384 
1385     rate = arch_timer_get_cntfrq();
1386     arch_timer_of_configure_rate(rate, np);
1387 
1388     arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1389 
1390     /* Check for globally applicable workarounds */
1391     arch_timer_check_ool_workaround(ate_match_dt, np);
1392 
1393     /*
1394      * If we cannot rely on firmware initializing the timer registers then
1395      * we should use the physical timers instead.
1396      */
1397     if (IS_ENABLED(CONFIG_ARM) &&
1398         of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1399         arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1400     else
1401         arch_timer_uses_ppi = arch_timer_select_ppi();
1402 
1403     if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1404         pr_err("No interrupt available, giving up\n");
1405         return -EINVAL;
1406     }
1407 
1408     /* On some systems, the counter stops ticking when in suspend. */
1409     arch_counter_suspend_stop = of_property_read_bool(np,
1410                              "arm,no-tick-in-suspend");
1411 
1412     ret = arch_timer_register();
1413     if (ret)
1414         return ret;
1415 
1416     if (arch_timer_needs_of_probing())
1417         return 0;
1418 
1419     return arch_timer_common_init();
1420 }
1421 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1422 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1423 
1424 static u32 __init
1425 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1426 {
1427     void __iomem *base;
1428     u32 rate;
1429 
1430     base = ioremap(frame->cntbase, frame->size);
1431     if (!base) {
1432         pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1433         return 0;
1434     }
1435 
1436     rate = readl_relaxed(base + CNTFRQ);
1437 
1438     iounmap(base);
1439 
1440     return rate;
1441 }
1442 
1443 static struct arch_timer_mem_frame * __init
1444 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1445 {
1446     struct arch_timer_mem_frame *frame, *best_frame = NULL;
1447     void __iomem *cntctlbase;
1448     u32 cnttidr;
1449     int i;
1450 
1451     cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1452     if (!cntctlbase) {
1453         pr_err("Can't map CNTCTLBase @ %pa\n",
1454             &timer_mem->cntctlbase);
1455         return NULL;
1456     }
1457 
1458     cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1459 
1460     /*
1461      * Try to find a virtual capable frame. Otherwise fall back to a
1462      * physical capable frame.
1463      */
1464     for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1465         u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1466                  CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1467 
1468         frame = &timer_mem->frame[i];
1469         if (!frame->valid)
1470             continue;
1471 
1472         /* Try enabling everything, and see what sticks */
1473         writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1474         cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1475 
1476         if ((cnttidr & CNTTIDR_VIRT(i)) &&
1477             !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1478             best_frame = frame;
1479             arch_timer_mem_use_virtual = true;
1480             break;
1481         }
1482 
1483         if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1484             continue;
1485 
1486         best_frame = frame;
1487     }
1488 
1489     iounmap(cntctlbase);
1490 
1491     return best_frame;
1492 }
1493 
1494 static int __init
1495 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1496 {
1497     void __iomem *base;
1498     int ret, irq = 0;
1499 
1500     if (arch_timer_mem_use_virtual)
1501         irq = frame->virt_irq;
1502     else
1503         irq = frame->phys_irq;
1504 
1505     if (!irq) {
1506         pr_err("Frame missing %s irq.\n",
1507                arch_timer_mem_use_virtual ? "virt" : "phys");
1508         return -EINVAL;
1509     }
1510 
1511     if (!request_mem_region(frame->cntbase, frame->size,
1512                 "arch_mem_timer"))
1513         return -EBUSY;
1514 
1515     base = ioremap(frame->cntbase, frame->size);
1516     if (!base) {
1517         pr_err("Can't map frame's registers\n");
1518         return -ENXIO;
1519     }
1520 
1521     ret = arch_timer_mem_register(base, irq);
1522     if (ret) {
1523         iounmap(base);
1524         return ret;
1525     }
1526 
1527     arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1528 
1529     return 0;
1530 }
1531 
1532 static int __init arch_timer_mem_of_init(struct device_node *np)
1533 {
1534     struct arch_timer_mem *timer_mem;
1535     struct arch_timer_mem_frame *frame;
1536     struct device_node *frame_node;
1537     struct resource res;
1538     int ret = -EINVAL;
1539     u32 rate;
1540 
1541     timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1542     if (!timer_mem)
1543         return -ENOMEM;
1544 
1545     if (of_address_to_resource(np, 0, &res))
1546         goto out;
1547     timer_mem->cntctlbase = res.start;
1548     timer_mem->size = resource_size(&res);
1549 
1550     for_each_available_child_of_node(np, frame_node) {
1551         u32 n;
1552         struct arch_timer_mem_frame *frame;
1553 
1554         if (of_property_read_u32(frame_node, "frame-number", &n)) {
1555             pr_err(FW_BUG "Missing frame-number.\n");
1556             of_node_put(frame_node);
1557             goto out;
1558         }
1559         if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1560             pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1561                    ARCH_TIMER_MEM_MAX_FRAMES - 1);
1562             of_node_put(frame_node);
1563             goto out;
1564         }
1565         frame = &timer_mem->frame[n];
1566 
1567         if (frame->valid) {
1568             pr_err(FW_BUG "Duplicated frame-number.\n");
1569             of_node_put(frame_node);
1570             goto out;
1571         }
1572 
1573         if (of_address_to_resource(frame_node, 0, &res)) {
1574             of_node_put(frame_node);
1575             goto out;
1576         }
1577         frame->cntbase = res.start;
1578         frame->size = resource_size(&res);
1579 
1580         frame->virt_irq = irq_of_parse_and_map(frame_node,
1581                                ARCH_TIMER_VIRT_SPI);
1582         frame->phys_irq = irq_of_parse_and_map(frame_node,
1583                                ARCH_TIMER_PHYS_SPI);
1584 
1585         frame->valid = true;
1586     }
1587 
1588     frame = arch_timer_mem_find_best_frame(timer_mem);
1589     if (!frame) {
1590         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1591             &timer_mem->cntctlbase);
1592         ret = -EINVAL;
1593         goto out;
1594     }
1595 
1596     rate = arch_timer_mem_frame_get_cntfrq(frame);
1597     arch_timer_of_configure_rate(rate, np);
1598 
1599     ret = arch_timer_mem_frame_register(frame);
1600     if (!ret && !arch_timer_needs_of_probing())
1601         ret = arch_timer_common_init();
1602 out:
1603     kfree(timer_mem);
1604     return ret;
1605 }
1606 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1607                arch_timer_mem_of_init);
1608 
1609 #ifdef CONFIG_ACPI_GTDT
1610 static int __init
1611 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1612 {
1613     struct arch_timer_mem_frame *frame;
1614     u32 rate;
1615     int i;
1616 
1617     for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1618         frame = &timer_mem->frame[i];
1619 
1620         if (!frame->valid)
1621             continue;
1622 
1623         rate = arch_timer_mem_frame_get_cntfrq(frame);
1624         if (rate == arch_timer_rate)
1625             continue;
1626 
1627         pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1628             &frame->cntbase,
1629             (unsigned long)rate, (unsigned long)arch_timer_rate);
1630 
1631         return -EINVAL;
1632     }
1633 
1634     return 0;
1635 }
1636 
1637 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1638 {
1639     struct arch_timer_mem *timers, *timer;
1640     struct arch_timer_mem_frame *frame, *best_frame = NULL;
1641     int timer_count, i, ret = 0;
1642 
1643     timers = kcalloc(platform_timer_count, sizeof(*timers),
1644                 GFP_KERNEL);
1645     if (!timers)
1646         return -ENOMEM;
1647 
1648     ret = acpi_arch_timer_mem_init(timers, &timer_count);
1649     if (ret || !timer_count)
1650         goto out;
1651 
1652     /*
1653      * While unlikely, it's theoretically possible that none of the frames
1654      * in a timer expose the combination of feature we want.
1655      */
1656     for (i = 0; i < timer_count; i++) {
1657         timer = &timers[i];
1658 
1659         frame = arch_timer_mem_find_best_frame(timer);
1660         if (!best_frame)
1661             best_frame = frame;
1662 
1663         ret = arch_timer_mem_verify_cntfrq(timer);
1664         if (ret) {
1665             pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1666             goto out;
1667         }
1668 
1669         if (!best_frame) /* implies !frame */
1670             /*
1671              * Only complain about missing suitable frames if we
1672              * haven't already found one in a previous iteration.
1673              */
1674             pr_err("Unable to find a suitable frame in timer @ %pa\n",
1675                 &timer->cntctlbase);
1676     }
1677 
1678     if (best_frame)
1679         ret = arch_timer_mem_frame_register(best_frame);
1680 out:
1681     kfree(timers);
1682     return ret;
1683 }
1684 
1685 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1686 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1687 {
1688     int ret, platform_timer_count;
1689 
1690     if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1691         pr_warn("already initialized, skipping\n");
1692         return -EINVAL;
1693     }
1694 
1695     arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1696 
1697     ret = acpi_gtdt_init(table, &platform_timer_count);
1698     if (ret)
1699         return ret;
1700 
1701     arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1702         acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1703 
1704     arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1705         acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1706 
1707     arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1708         acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1709 
1710     arch_timer_populate_kvm_info();
1711 
1712     /*
1713      * When probing via ACPI, we have no mechanism to override the sysreg
1714      * CNTFRQ value. This *must* be correct.
1715      */
1716     arch_timer_rate = arch_timer_get_cntfrq();
1717     ret = validate_timer_rate();
1718     if (ret) {
1719         pr_err(FW_BUG "frequency not available.\n");
1720         return ret;
1721     }
1722 
1723     arch_timer_uses_ppi = arch_timer_select_ppi();
1724     if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1725         pr_err("No interrupt available, giving up\n");
1726         return -EINVAL;
1727     }
1728 
1729     /* Always-on capability */
1730     arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1731 
1732     /* Check for globally applicable workarounds */
1733     arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1734 
1735     ret = arch_timer_register();
1736     if (ret)
1737         return ret;
1738 
1739     if (platform_timer_count &&
1740         arch_timer_mem_acpi_init(platform_timer_count))
1741         pr_err("Failed to initialize memory-mapped timer.\n");
1742 
1743     return arch_timer_common_init();
1744 }
1745 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1746 #endif
1747 
1748 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1749                  struct clocksource **cs)
1750 {
1751     struct arm_smccc_res hvc_res;
1752     u32 ptp_counter;
1753     ktime_t ktime;
1754 
1755     if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1756         return -EOPNOTSUPP;
1757 
1758     if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1759         ptp_counter = KVM_PTP_VIRT_COUNTER;
1760     else
1761         ptp_counter = KVM_PTP_PHYS_COUNTER;
1762 
1763     arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1764                  ptp_counter, &hvc_res);
1765 
1766     if ((int)(hvc_res.a0) < 0)
1767         return -EOPNOTSUPP;
1768 
1769     ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1770     *ts = ktime_to_timespec64(ktime);
1771     if (cycle)
1772         *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1773     if (cs)
1774         *cs = &clocksource_counter;
1775 
1776     return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);