0001
0002
0003
0004
0005
0006
0007
0008
0009 #define pr_fmt(fmt) "arch_timer: " fmt
0010
0011 #include <linux/init.h>
0012 #include <linux/kernel.h>
0013 #include <linux/device.h>
0014 #include <linux/smp.h>
0015 #include <linux/cpu.h>
0016 #include <linux/cpu_pm.h>
0017 #include <linux/clockchips.h>
0018 #include <linux/clocksource.h>
0019 #include <linux/clocksource_ids.h>
0020 #include <linux/interrupt.h>
0021 #include <linux/of_irq.h>
0022 #include <linux/of_address.h>
0023 #include <linux/io.h>
0024 #include <linux/slab.h>
0025 #include <linux/sched/clock.h>
0026 #include <linux/sched_clock.h>
0027 #include <linux/acpi.h>
0028 #include <linux/arm-smccc.h>
0029 #include <linux/ptp_kvm.h>
0030
0031 #include <asm/arch_timer.h>
0032 #include <asm/virt.h>
0033
0034 #include <clocksource/arm_arch_timer.h>
0035
0036 #define CNTTIDR 0x08
0037 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
0038
0039 #define CNTACR(n) (0x40 + ((n) * 4))
0040 #define CNTACR_RPCT BIT(0)
0041 #define CNTACR_RVCT BIT(1)
0042 #define CNTACR_RFRQ BIT(2)
0043 #define CNTACR_RVOFF BIT(3)
0044 #define CNTACR_RWVT BIT(4)
0045 #define CNTACR_RWPT BIT(5)
0046
0047 #define CNTVCT_LO 0x00
0048 #define CNTPCT_LO 0x08
0049 #define CNTFRQ 0x10
0050 #define CNTP_CVAL_LO 0x20
0051 #define CNTP_CTL 0x2c
0052 #define CNTV_CVAL_LO 0x30
0053 #define CNTV_CTL 0x3c
0054
0055
0056
0057
0058
0059 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
0060
0061 static unsigned arch_timers_present __initdata;
0062
0063 struct arch_timer {
0064 void __iomem *base;
0065 struct clock_event_device evt;
0066 };
0067
0068 static struct arch_timer *arch_timer_mem __ro_after_init;
0069
0070 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
0071
0072 static u32 arch_timer_rate __ro_after_init;
0073 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
0074
0075 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
0076 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
0077 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
0078 [ARCH_TIMER_VIRT_PPI] = "virt",
0079 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
0080 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
0081 };
0082
0083 static struct clock_event_device __percpu *arch_timer_evt;
0084
0085 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
0086 static bool arch_timer_c3stop __ro_after_init;
0087 static bool arch_timer_mem_use_virtual __ro_after_init;
0088 static bool arch_counter_suspend_stop __ro_after_init;
0089 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
0090 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
0091 #else
0092 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
0093 #endif
0094
0095 static cpumask_t evtstrm_available = CPU_MASK_NONE;
0096 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
0097
0098 static int __init early_evtstrm_cfg(char *buf)
0099 {
0100 return strtobool(buf, &evtstrm_enable);
0101 }
0102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112 static int arch_counter_get_width(void)
0113 {
0114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
0115
0116
0117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
0118 }
0119
0120
0121
0122
0123
0124 static __always_inline
0125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
0126 struct clock_event_device *clk)
0127 {
0128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
0129 struct arch_timer *timer = to_arch_timer(clk);
0130 switch (reg) {
0131 case ARCH_TIMER_REG_CTRL:
0132 writel_relaxed((u32)val, timer->base + CNTP_CTL);
0133 break;
0134 case ARCH_TIMER_REG_CVAL:
0135
0136
0137
0138
0139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
0140 break;
0141 default:
0142 BUILD_BUG();
0143 }
0144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
0145 struct arch_timer *timer = to_arch_timer(clk);
0146 switch (reg) {
0147 case ARCH_TIMER_REG_CTRL:
0148 writel_relaxed((u32)val, timer->base + CNTV_CTL);
0149 break;
0150 case ARCH_TIMER_REG_CVAL:
0151
0152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
0153 break;
0154 default:
0155 BUILD_BUG();
0156 }
0157 } else {
0158 arch_timer_reg_write_cp15(access, reg, val);
0159 }
0160 }
0161
0162 static __always_inline
0163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
0164 struct clock_event_device *clk)
0165 {
0166 u32 val;
0167
0168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
0169 struct arch_timer *timer = to_arch_timer(clk);
0170 switch (reg) {
0171 case ARCH_TIMER_REG_CTRL:
0172 val = readl_relaxed(timer->base + CNTP_CTL);
0173 break;
0174 default:
0175 BUILD_BUG();
0176 }
0177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
0178 struct arch_timer *timer = to_arch_timer(clk);
0179 switch (reg) {
0180 case ARCH_TIMER_REG_CTRL:
0181 val = readl_relaxed(timer->base + CNTV_CTL);
0182 break;
0183 default:
0184 BUILD_BUG();
0185 }
0186 } else {
0187 val = arch_timer_reg_read_cp15(access, reg);
0188 }
0189
0190 return val;
0191 }
0192
0193 static notrace u64 arch_counter_get_cntpct_stable(void)
0194 {
0195 return __arch_counter_get_cntpct_stable();
0196 }
0197
0198 static notrace u64 arch_counter_get_cntpct(void)
0199 {
0200 return __arch_counter_get_cntpct();
0201 }
0202
0203 static notrace u64 arch_counter_get_cntvct_stable(void)
0204 {
0205 return __arch_counter_get_cntvct_stable();
0206 }
0207
0208 static notrace u64 arch_counter_get_cntvct(void)
0209 {
0210 return __arch_counter_get_cntvct();
0211 }
0212
0213
0214
0215
0216
0217
0218
0219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
0220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
0221
0222 static u64 arch_counter_read(struct clocksource *cs)
0223 {
0224 return arch_timer_read_counter();
0225 }
0226
0227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
0228 {
0229 return arch_timer_read_counter();
0230 }
0231
0232 static struct clocksource clocksource_counter = {
0233 .name = "arch_sys_counter",
0234 .id = CSID_ARM_ARCH_COUNTER,
0235 .rating = 400,
0236 .read = arch_counter_read,
0237 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
0238 };
0239
0240 static struct cyclecounter cyclecounter __ro_after_init = {
0241 .read = arch_counter_read_cc,
0242 };
0243
0244 struct ate_acpi_oem_info {
0245 char oem_id[ACPI_OEM_ID_SIZE + 1];
0246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
0247 u32 oem_revision;
0248 };
0249
0250 #ifdef CONFIG_FSL_ERRATUM_A008585
0251
0252
0253
0254
0255 #define __fsl_a008585_read_reg(reg) ({ \
0256 u64 _old, _new; \
0257 int _retries = 200; \
0258 \
0259 do { \
0260 _old = read_sysreg(reg); \
0261 _new = read_sysreg(reg); \
0262 _retries--; \
0263 } while (unlikely(_old != _new) && _retries); \
0264 \
0265 WARN_ON_ONCE(!_retries); \
0266 _new; \
0267 })
0268
0269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
0270 {
0271 return __fsl_a008585_read_reg(cntpct_el0);
0272 }
0273
0274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
0275 {
0276 return __fsl_a008585_read_reg(cntvct_el0);
0277 }
0278 #endif
0279
0280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291 #define __hisi_161010101_read_reg(reg) ({ \
0292 u64 _old, _new; \
0293 int _retries = 50; \
0294 \
0295 do { \
0296 _old = read_sysreg(reg); \
0297 _new = read_sysreg(reg); \
0298 _retries--; \
0299 } while (unlikely((_new - _old) >> 5) && _retries); \
0300 \
0301 WARN_ON_ONCE(!_retries); \
0302 _new; \
0303 })
0304
0305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
0306 {
0307 return __hisi_161010101_read_reg(cntpct_el0);
0308 }
0309
0310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
0311 {
0312 return __hisi_161010101_read_reg(cntvct_el0);
0313 }
0314
0315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
0316
0317
0318
0319
0320 {
0321 .oem_id = "HISI ",
0322 .oem_table_id = "HIP05 ",
0323 .oem_revision = 0,
0324 },
0325 {
0326 .oem_id = "HISI ",
0327 .oem_table_id = "HIP06 ",
0328 .oem_revision = 0,
0329 },
0330 {
0331 .oem_id = "HISI ",
0332 .oem_table_id = "HIP07 ",
0333 .oem_revision = 0,
0334 },
0335 { },
0336 };
0337 #endif
0338
0339 #ifdef CONFIG_ARM64_ERRATUM_858921
0340 static u64 notrace arm64_858921_read_cntpct_el0(void)
0341 {
0342 u64 old, new;
0343
0344 old = read_sysreg(cntpct_el0);
0345 new = read_sysreg(cntpct_el0);
0346 return (((old ^ new) >> 32) & 1) ? old : new;
0347 }
0348
0349 static u64 notrace arm64_858921_read_cntvct_el0(void)
0350 {
0351 u64 old, new;
0352
0353 old = read_sysreg(cntvct_el0);
0354 new = read_sysreg(cntvct_el0);
0355 return (((old ^ new) >> 32) & 1) ? old : new;
0356 }
0357 #endif
0358
0359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
0360
0361
0362
0363
0364
0365
0366
0367 #define __sun50i_a64_read_reg(reg) ({ \
0368 u64 _val; \
0369 int _retries = 150; \
0370 \
0371 do { \
0372 _val = read_sysreg(reg); \
0373 _retries--; \
0374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
0375 \
0376 WARN_ON_ONCE(!_retries); \
0377 _val; \
0378 })
0379
0380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
0381 {
0382 return __sun50i_a64_read_reg(cntpct_el0);
0383 }
0384
0385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
0386 {
0387 return __sun50i_a64_read_reg(cntvct_el0);
0388 }
0389 #endif
0390
0391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
0392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
0393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
0394
0395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
0396
0397
0398
0399
0400
0401 static __always_inline
0402 void erratum_set_next_event_generic(const int access, unsigned long evt,
0403 struct clock_event_device *clk)
0404 {
0405 unsigned long ctrl;
0406 u64 cval;
0407
0408 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
0409 ctrl |= ARCH_TIMER_CTRL_ENABLE;
0410 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
0411
0412 if (access == ARCH_TIMER_PHYS_ACCESS) {
0413 cval = evt + arch_counter_get_cntpct_stable();
0414 write_sysreg(cval, cntp_cval_el0);
0415 } else {
0416 cval = evt + arch_counter_get_cntvct_stable();
0417 write_sysreg(cval, cntv_cval_el0);
0418 }
0419
0420 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
0421 }
0422
0423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
0424 struct clock_event_device *clk)
0425 {
0426 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
0427 return 0;
0428 }
0429
0430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
0431 struct clock_event_device *clk)
0432 {
0433 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
0434 return 0;
0435 }
0436
0437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
0438 #ifdef CONFIG_FSL_ERRATUM_A008585
0439 {
0440 .match_type = ate_match_dt,
0441 .id = "fsl,erratum-a008585",
0442 .desc = "Freescale erratum a005858",
0443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
0444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
0445 .set_next_event_phys = erratum_set_next_event_phys,
0446 .set_next_event_virt = erratum_set_next_event_virt,
0447 },
0448 #endif
0449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
0450 {
0451 .match_type = ate_match_dt,
0452 .id = "hisilicon,erratum-161010101",
0453 .desc = "HiSilicon erratum 161010101",
0454 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
0455 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
0456 .set_next_event_phys = erratum_set_next_event_phys,
0457 .set_next_event_virt = erratum_set_next_event_virt,
0458 },
0459 {
0460 .match_type = ate_match_acpi_oem_info,
0461 .id = hisi_161010101_oem_info,
0462 .desc = "HiSilicon erratum 161010101",
0463 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
0464 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
0465 .set_next_event_phys = erratum_set_next_event_phys,
0466 .set_next_event_virt = erratum_set_next_event_virt,
0467 },
0468 #endif
0469 #ifdef CONFIG_ARM64_ERRATUM_858921
0470 {
0471 .match_type = ate_match_local_cap_id,
0472 .id = (void *)ARM64_WORKAROUND_858921,
0473 .desc = "ARM erratum 858921",
0474 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
0475 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
0476 },
0477 #endif
0478 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
0479 {
0480 .match_type = ate_match_dt,
0481 .id = "allwinner,erratum-unknown1",
0482 .desc = "Allwinner erratum UNKNOWN1",
0483 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
0484 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
0485 .set_next_event_phys = erratum_set_next_event_phys,
0486 .set_next_event_virt = erratum_set_next_event_virt,
0487 },
0488 #endif
0489 #ifdef CONFIG_ARM64_ERRATUM_1418040
0490 {
0491 .match_type = ate_match_local_cap_id,
0492 .id = (void *)ARM64_WORKAROUND_1418040,
0493 .desc = "ARM erratum 1418040",
0494 .disable_compat_vdso = true,
0495 },
0496 #endif
0497 };
0498
0499 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
0500 const void *);
0501
0502 static
0503 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
0504 const void *arg)
0505 {
0506 const struct device_node *np = arg;
0507
0508 return of_property_read_bool(np, wa->id);
0509 }
0510
0511 static
0512 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
0513 const void *arg)
0514 {
0515 return this_cpu_has_cap((uintptr_t)wa->id);
0516 }
0517
0518
0519 static
0520 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
0521 const void *arg)
0522 {
0523 static const struct ate_acpi_oem_info empty_oem_info = {};
0524 const struct ate_acpi_oem_info *info = wa->id;
0525 const struct acpi_table_header *table = arg;
0526
0527
0528 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
0529 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
0530 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
0531 info->oem_revision == table->oem_revision)
0532 return true;
0533
0534 info++;
0535 }
0536
0537 return false;
0538 }
0539
0540 static const struct arch_timer_erratum_workaround *
0541 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
0542 ate_match_fn_t match_fn,
0543 void *arg)
0544 {
0545 int i;
0546
0547 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
0548 if (ool_workarounds[i].match_type != type)
0549 continue;
0550
0551 if (match_fn(&ool_workarounds[i], arg))
0552 return &ool_workarounds[i];
0553 }
0554
0555 return NULL;
0556 }
0557
0558 static
0559 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
0560 bool local)
0561 {
0562 int i;
0563
0564 if (local) {
0565 __this_cpu_write(timer_unstable_counter_workaround, wa);
0566 } else {
0567 for_each_possible_cpu(i)
0568 per_cpu(timer_unstable_counter_workaround, i) = wa;
0569 }
0570
0571 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
0572 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
0573
0574
0575
0576
0577
0578
0579
0580 if (wa->read_cntvct_el0) {
0581 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
0582 vdso_default = VDSO_CLOCKMODE_NONE;
0583 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
0584 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
0585 clocksource_counter.vdso_clock_mode = vdso_default;
0586 }
0587 }
0588
0589 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
0590 void *arg)
0591 {
0592 const struct arch_timer_erratum_workaround *wa, *__wa;
0593 ate_match_fn_t match_fn = NULL;
0594 bool local = false;
0595
0596 switch (type) {
0597 case ate_match_dt:
0598 match_fn = arch_timer_check_dt_erratum;
0599 break;
0600 case ate_match_local_cap_id:
0601 match_fn = arch_timer_check_local_cap_erratum;
0602 local = true;
0603 break;
0604 case ate_match_acpi_oem_info:
0605 match_fn = arch_timer_check_acpi_oem_erratum;
0606 break;
0607 default:
0608 WARN_ON(1);
0609 return;
0610 }
0611
0612 wa = arch_timer_iterate_errata(type, match_fn, arg);
0613 if (!wa)
0614 return;
0615
0616 __wa = __this_cpu_read(timer_unstable_counter_workaround);
0617 if (__wa && wa != __wa)
0618 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
0619 wa->desc, __wa->desc);
0620
0621 if (__wa)
0622 return;
0623
0624 arch_timer_enable_workaround(wa, local);
0625 pr_info("Enabling %s workaround for %s\n",
0626 local ? "local" : "global", wa->desc);
0627 }
0628
0629 static bool arch_timer_this_cpu_has_cntvct_wa(void)
0630 {
0631 return has_erratum_handler(read_cntvct_el0);
0632 }
0633
0634 static bool arch_timer_counter_has_wa(void)
0635 {
0636 return atomic_read(&timer_unstable_counter_workaround_in_use);
0637 }
0638 #else
0639 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
0640 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
0641 #define arch_timer_counter_has_wa() ({false;})
0642 #endif
0643
0644 static __always_inline irqreturn_t timer_handler(const int access,
0645 struct clock_event_device *evt)
0646 {
0647 unsigned long ctrl;
0648
0649 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
0650 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
0651 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
0652 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
0653 evt->event_handler(evt);
0654 return IRQ_HANDLED;
0655 }
0656
0657 return IRQ_NONE;
0658 }
0659
0660 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
0661 {
0662 struct clock_event_device *evt = dev_id;
0663
0664 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
0665 }
0666
0667 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
0668 {
0669 struct clock_event_device *evt = dev_id;
0670
0671 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
0672 }
0673
0674 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
0675 {
0676 struct clock_event_device *evt = dev_id;
0677
0678 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
0679 }
0680
0681 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
0682 {
0683 struct clock_event_device *evt = dev_id;
0684
0685 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
0686 }
0687
0688 static __always_inline int timer_shutdown(const int access,
0689 struct clock_event_device *clk)
0690 {
0691 unsigned long ctrl;
0692
0693 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
0694 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
0695 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
0696
0697 return 0;
0698 }
0699
0700 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
0701 {
0702 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
0703 }
0704
0705 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
0706 {
0707 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
0708 }
0709
0710 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
0711 {
0712 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
0713 }
0714
0715 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
0716 {
0717 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
0718 }
0719
0720 static __always_inline void set_next_event(const int access, unsigned long evt,
0721 struct clock_event_device *clk)
0722 {
0723 unsigned long ctrl;
0724 u64 cnt;
0725
0726 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
0727 ctrl |= ARCH_TIMER_CTRL_ENABLE;
0728 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
0729
0730 if (access == ARCH_TIMER_PHYS_ACCESS)
0731 cnt = __arch_counter_get_cntpct();
0732 else
0733 cnt = __arch_counter_get_cntvct();
0734
0735 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
0736 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
0737 }
0738
0739 static int arch_timer_set_next_event_virt(unsigned long evt,
0740 struct clock_event_device *clk)
0741 {
0742 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
0743 return 0;
0744 }
0745
0746 static int arch_timer_set_next_event_phys(unsigned long evt,
0747 struct clock_event_device *clk)
0748 {
0749 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
0750 return 0;
0751 }
0752
0753 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
0754 {
0755 u32 cnt_lo, cnt_hi, tmp_hi;
0756
0757 do {
0758 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
0759 cnt_lo = readl_relaxed(t->base + offset_lo);
0760 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
0761 } while (cnt_hi != tmp_hi);
0762
0763 return ((u64) cnt_hi << 32) | cnt_lo;
0764 }
0765
0766 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
0767 struct clock_event_device *clk)
0768 {
0769 struct arch_timer *timer = to_arch_timer(clk);
0770 unsigned long ctrl;
0771 u64 cnt;
0772
0773 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
0774 ctrl |= ARCH_TIMER_CTRL_ENABLE;
0775 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
0776
0777 if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
0778 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
0779 else
0780 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
0781
0782 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
0783 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
0784 }
0785
0786 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
0787 struct clock_event_device *clk)
0788 {
0789 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
0790 return 0;
0791 }
0792
0793 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
0794 struct clock_event_device *clk)
0795 {
0796 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
0797 return 0;
0798 }
0799
0800 static u64 __arch_timer_check_delta(void)
0801 {
0802 #ifdef CONFIG_ARM64
0803 const struct midr_range broken_cval_midrs[] = {
0804
0805
0806
0807
0808 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
0809 APM_CPU_PART_POTENZA)),
0810 {},
0811 };
0812
0813 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
0814 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits");
0815 return CLOCKSOURCE_MASK(32);
0816 }
0817 #endif
0818 return CLOCKSOURCE_MASK(arch_counter_get_width());
0819 }
0820
0821 static void __arch_timer_setup(unsigned type,
0822 struct clock_event_device *clk)
0823 {
0824 u64 max_delta;
0825
0826 clk->features = CLOCK_EVT_FEAT_ONESHOT;
0827
0828 if (type == ARCH_TIMER_TYPE_CP15) {
0829 typeof(clk->set_next_event) sne;
0830
0831 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
0832
0833 if (arch_timer_c3stop)
0834 clk->features |= CLOCK_EVT_FEAT_C3STOP;
0835 clk->name = "arch_sys_timer";
0836 clk->rating = 450;
0837 clk->cpumask = cpumask_of(smp_processor_id());
0838 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
0839 switch (arch_timer_uses_ppi) {
0840 case ARCH_TIMER_VIRT_PPI:
0841 clk->set_state_shutdown = arch_timer_shutdown_virt;
0842 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
0843 sne = erratum_handler(set_next_event_virt);
0844 break;
0845 case ARCH_TIMER_PHYS_SECURE_PPI:
0846 case ARCH_TIMER_PHYS_NONSECURE_PPI:
0847 case ARCH_TIMER_HYP_PPI:
0848 clk->set_state_shutdown = arch_timer_shutdown_phys;
0849 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
0850 sne = erratum_handler(set_next_event_phys);
0851 break;
0852 default:
0853 BUG();
0854 }
0855
0856 clk->set_next_event = sne;
0857 max_delta = __arch_timer_check_delta();
0858 } else {
0859 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
0860 clk->name = "arch_mem_timer";
0861 clk->rating = 400;
0862 clk->cpumask = cpu_possible_mask;
0863 if (arch_timer_mem_use_virtual) {
0864 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
0865 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
0866 clk->set_next_event =
0867 arch_timer_set_next_event_virt_mem;
0868 } else {
0869 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
0870 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
0871 clk->set_next_event =
0872 arch_timer_set_next_event_phys_mem;
0873 }
0874
0875 max_delta = CLOCKSOURCE_MASK(56);
0876 }
0877
0878 clk->set_state_shutdown(clk);
0879
0880 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
0881 }
0882
0883 static void arch_timer_evtstrm_enable(unsigned int divider)
0884 {
0885 u32 cntkctl = arch_timer_get_cntkctl();
0886
0887 #ifdef CONFIG_ARM64
0888
0889 if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
0890 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
0891 divider -= 8;
0892 }
0893 #endif
0894
0895 divider = min(divider, 15U);
0896 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
0897
0898 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
0899 | ARCH_TIMER_VIRT_EVT_EN;
0900 arch_timer_set_cntkctl(cntkctl);
0901 arch_timer_set_evtstrm_feature();
0902 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
0903 }
0904
0905 static void arch_timer_configure_evtstream(void)
0906 {
0907 int evt_stream_div, lsb;
0908
0909
0910
0911
0912
0913 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
0914
0915
0916
0917
0918
0919 lsb = fls(evt_stream_div) - 1;
0920 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
0921 lsb++;
0922
0923
0924 arch_timer_evtstrm_enable(max(0, lsb));
0925 }
0926
0927 static void arch_counter_set_user_access(void)
0928 {
0929 u32 cntkctl = arch_timer_get_cntkctl();
0930
0931
0932
0933 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
0934 | ARCH_TIMER_USR_VT_ACCESS_EN
0935 | ARCH_TIMER_USR_VCT_ACCESS_EN
0936 | ARCH_TIMER_VIRT_EVT_EN
0937 | ARCH_TIMER_USR_PCT_ACCESS_EN);
0938
0939
0940
0941
0942
0943
0944 if (arch_timer_this_cpu_has_cntvct_wa())
0945 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
0946 else
0947 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
0948
0949 arch_timer_set_cntkctl(cntkctl);
0950 }
0951
0952 static bool arch_timer_has_nonsecure_ppi(void)
0953 {
0954 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
0955 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
0956 }
0957
0958 static u32 check_ppi_trigger(int irq)
0959 {
0960 u32 flags = irq_get_trigger_type(irq);
0961
0962 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
0963 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
0964 pr_warn("WARNING: Please fix your firmware\n");
0965 flags = IRQF_TRIGGER_LOW;
0966 }
0967
0968 return flags;
0969 }
0970
0971 static int arch_timer_starting_cpu(unsigned int cpu)
0972 {
0973 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
0974 u32 flags;
0975
0976 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
0977
0978 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
0979 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
0980
0981 if (arch_timer_has_nonsecure_ppi()) {
0982 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
0983 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
0984 flags);
0985 }
0986
0987 arch_counter_set_user_access();
0988 if (evtstrm_enable)
0989 arch_timer_configure_evtstream();
0990
0991 return 0;
0992 }
0993
0994 static int validate_timer_rate(void)
0995 {
0996 if (!arch_timer_rate)
0997 return -EINVAL;
0998
0999
1000 WARN_ON(arch_timer_rate < 1000000);
1001
1002 return 0;
1003 }
1004
1005
1006
1007
1008
1009
1010 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1011 {
1012
1013 if (arch_timer_rate)
1014 return;
1015
1016 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1017 arch_timer_rate = rate;
1018
1019
1020 if (validate_timer_rate())
1021 pr_warn("frequency not available\n");
1022 }
1023
1024 static void __init arch_timer_banner(unsigned type)
1025 {
1026 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1027 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1028 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1029 " and " : "",
1030 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1031 (unsigned long)arch_timer_rate / 1000000,
1032 (unsigned long)(arch_timer_rate / 10000) % 100,
1033 type & ARCH_TIMER_TYPE_CP15 ?
1034 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1035 "",
1036 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1037 type & ARCH_TIMER_TYPE_MEM ?
1038 arch_timer_mem_use_virtual ? "virt" : "phys" :
1039 "");
1040 }
1041
1042 u32 arch_timer_get_rate(void)
1043 {
1044 return arch_timer_rate;
1045 }
1046
1047 bool arch_timer_evtstrm_available(void)
1048 {
1049
1050
1051
1052
1053
1054 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1055 }
1056
1057 static u64 arch_counter_get_cntvct_mem(void)
1058 {
1059 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1060 }
1061
1062 static struct arch_timer_kvm_info arch_timer_kvm_info;
1063
1064 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1065 {
1066 return &arch_timer_kvm_info;
1067 }
1068
1069 static void __init arch_counter_register(unsigned type)
1070 {
1071 u64 start_count;
1072 int width;
1073
1074
1075 if (type & ARCH_TIMER_TYPE_CP15) {
1076 u64 (*rd)(void);
1077
1078 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1079 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1080 if (arch_timer_counter_has_wa())
1081 rd = arch_counter_get_cntvct_stable;
1082 else
1083 rd = arch_counter_get_cntvct;
1084 } else {
1085 if (arch_timer_counter_has_wa())
1086 rd = arch_counter_get_cntpct_stable;
1087 else
1088 rd = arch_counter_get_cntpct;
1089 }
1090
1091 arch_timer_read_counter = rd;
1092 clocksource_counter.vdso_clock_mode = vdso_default;
1093 } else {
1094 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1095 }
1096
1097 width = arch_counter_get_width();
1098 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1099 cyclecounter.mask = CLOCKSOURCE_MASK(width);
1100
1101 if (!arch_counter_suspend_stop)
1102 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1103 start_count = arch_timer_read_counter();
1104 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1105 cyclecounter.mult = clocksource_counter.mult;
1106 cyclecounter.shift = clocksource_counter.shift;
1107 timecounter_init(&arch_timer_kvm_info.timecounter,
1108 &cyclecounter, start_count);
1109
1110 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1111 }
1112
1113 static void arch_timer_stop(struct clock_event_device *clk)
1114 {
1115 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1116
1117 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1118 if (arch_timer_has_nonsecure_ppi())
1119 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1120
1121 clk->set_state_shutdown(clk);
1122 }
1123
1124 static int arch_timer_dying_cpu(unsigned int cpu)
1125 {
1126 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1127
1128 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1129
1130 arch_timer_stop(clk);
1131 return 0;
1132 }
1133
1134 #ifdef CONFIG_CPU_PM
1135 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1136 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1137 unsigned long action, void *hcpu)
1138 {
1139 if (action == CPU_PM_ENTER) {
1140 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1141
1142 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1143 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1144 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1145
1146 if (arch_timer_have_evtstrm_feature())
1147 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1148 }
1149 return NOTIFY_OK;
1150 }
1151
1152 static struct notifier_block arch_timer_cpu_pm_notifier = {
1153 .notifier_call = arch_timer_cpu_pm_notify,
1154 };
1155
1156 static int __init arch_timer_cpu_pm_init(void)
1157 {
1158 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1159 }
1160
1161 static void __init arch_timer_cpu_pm_deinit(void)
1162 {
1163 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1164 }
1165
1166 #else
1167 static int __init arch_timer_cpu_pm_init(void)
1168 {
1169 return 0;
1170 }
1171
1172 static void __init arch_timer_cpu_pm_deinit(void)
1173 {
1174 }
1175 #endif
1176
1177 static int __init arch_timer_register(void)
1178 {
1179 int err;
1180 int ppi;
1181
1182 arch_timer_evt = alloc_percpu(struct clock_event_device);
1183 if (!arch_timer_evt) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
1187
1188 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1189 switch (arch_timer_uses_ppi) {
1190 case ARCH_TIMER_VIRT_PPI:
1191 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1192 "arch_timer", arch_timer_evt);
1193 break;
1194 case ARCH_TIMER_PHYS_SECURE_PPI:
1195 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1196 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1197 "arch_timer", arch_timer_evt);
1198 if (!err && arch_timer_has_nonsecure_ppi()) {
1199 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1200 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1201 "arch_timer", arch_timer_evt);
1202 if (err)
1203 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1204 arch_timer_evt);
1205 }
1206 break;
1207 case ARCH_TIMER_HYP_PPI:
1208 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1209 "arch_timer", arch_timer_evt);
1210 break;
1211 default:
1212 BUG();
1213 }
1214
1215 if (err) {
1216 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1217 goto out_free;
1218 }
1219
1220 err = arch_timer_cpu_pm_init();
1221 if (err)
1222 goto out_unreg_notify;
1223
1224
1225 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1226 "clockevents/arm/arch_timer:starting",
1227 arch_timer_starting_cpu, arch_timer_dying_cpu);
1228 if (err)
1229 goto out_unreg_cpupm;
1230 return 0;
1231
1232 out_unreg_cpupm:
1233 arch_timer_cpu_pm_deinit();
1234
1235 out_unreg_notify:
1236 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1237 if (arch_timer_has_nonsecure_ppi())
1238 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1239 arch_timer_evt);
1240
1241 out_free:
1242 free_percpu(arch_timer_evt);
1243 out:
1244 return err;
1245 }
1246
1247 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1248 {
1249 int ret;
1250 irq_handler_t func;
1251
1252 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1253 if (!arch_timer_mem)
1254 return -ENOMEM;
1255
1256 arch_timer_mem->base = base;
1257 arch_timer_mem->evt.irq = irq;
1258 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1259
1260 if (arch_timer_mem_use_virtual)
1261 func = arch_timer_handler_virt_mem;
1262 else
1263 func = arch_timer_handler_phys_mem;
1264
1265 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1266 if (ret) {
1267 pr_err("Failed to request mem timer irq\n");
1268 kfree(arch_timer_mem);
1269 arch_timer_mem = NULL;
1270 }
1271
1272 return ret;
1273 }
1274
1275 static const struct of_device_id arch_timer_of_match[] __initconst = {
1276 { .compatible = "arm,armv7-timer", },
1277 { .compatible = "arm,armv8-timer", },
1278 {},
1279 };
1280
1281 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1282 { .compatible = "arm,armv7-timer-mem", },
1283 {},
1284 };
1285
1286 static bool __init arch_timer_needs_of_probing(void)
1287 {
1288 struct device_node *dn;
1289 bool needs_probing = false;
1290 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1291
1292
1293 if ((arch_timers_present & mask) == mask)
1294 return false;
1295
1296
1297
1298
1299
1300 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1301 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1302 else
1303 dn = of_find_matching_node(NULL, arch_timer_of_match);
1304
1305 if (dn && of_device_is_available(dn))
1306 needs_probing = true;
1307
1308 of_node_put(dn);
1309
1310 return needs_probing;
1311 }
1312
1313 static int __init arch_timer_common_init(void)
1314 {
1315 arch_timer_banner(arch_timers_present);
1316 arch_counter_register(arch_timers_present);
1317 return arch_timer_arch_init();
1318 }
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1339 {
1340 if (is_kernel_in_hyp_mode())
1341 return ARCH_TIMER_HYP_PPI;
1342
1343 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1344 return ARCH_TIMER_VIRT_PPI;
1345
1346 if (IS_ENABLED(CONFIG_ARM64))
1347 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1348
1349 return ARCH_TIMER_PHYS_SECURE_PPI;
1350 }
1351
1352 static void __init arch_timer_populate_kvm_info(void)
1353 {
1354 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1355 if (is_kernel_in_hyp_mode())
1356 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1357 }
1358
1359 static int __init arch_timer_of_init(struct device_node *np)
1360 {
1361 int i, irq, ret;
1362 u32 rate;
1363 bool has_names;
1364
1365 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1366 pr_warn("multiple nodes in dt, skipping\n");
1367 return 0;
1368 }
1369
1370 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1371
1372 has_names = of_property_read_bool(np, "interrupt-names");
1373
1374 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1375 if (has_names)
1376 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1377 else
1378 irq = of_irq_get(np, i);
1379 if (irq > 0)
1380 arch_timer_ppi[i] = irq;
1381 }
1382
1383 arch_timer_populate_kvm_info();
1384
1385 rate = arch_timer_get_cntfrq();
1386 arch_timer_of_configure_rate(rate, np);
1387
1388 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1389
1390
1391 arch_timer_check_ool_workaround(ate_match_dt, np);
1392
1393
1394
1395
1396
1397 if (IS_ENABLED(CONFIG_ARM) &&
1398 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1399 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1400 else
1401 arch_timer_uses_ppi = arch_timer_select_ppi();
1402
1403 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1404 pr_err("No interrupt available, giving up\n");
1405 return -EINVAL;
1406 }
1407
1408
1409 arch_counter_suspend_stop = of_property_read_bool(np,
1410 "arm,no-tick-in-suspend");
1411
1412 ret = arch_timer_register();
1413 if (ret)
1414 return ret;
1415
1416 if (arch_timer_needs_of_probing())
1417 return 0;
1418
1419 return arch_timer_common_init();
1420 }
1421 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1422 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1423
1424 static u32 __init
1425 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1426 {
1427 void __iomem *base;
1428 u32 rate;
1429
1430 base = ioremap(frame->cntbase, frame->size);
1431 if (!base) {
1432 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1433 return 0;
1434 }
1435
1436 rate = readl_relaxed(base + CNTFRQ);
1437
1438 iounmap(base);
1439
1440 return rate;
1441 }
1442
1443 static struct arch_timer_mem_frame * __init
1444 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1445 {
1446 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1447 void __iomem *cntctlbase;
1448 u32 cnttidr;
1449 int i;
1450
1451 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1452 if (!cntctlbase) {
1453 pr_err("Can't map CNTCTLBase @ %pa\n",
1454 &timer_mem->cntctlbase);
1455 return NULL;
1456 }
1457
1458 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1459
1460
1461
1462
1463
1464 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1465 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1466 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1467
1468 frame = &timer_mem->frame[i];
1469 if (!frame->valid)
1470 continue;
1471
1472
1473 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1474 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1475
1476 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1477 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1478 best_frame = frame;
1479 arch_timer_mem_use_virtual = true;
1480 break;
1481 }
1482
1483 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1484 continue;
1485
1486 best_frame = frame;
1487 }
1488
1489 iounmap(cntctlbase);
1490
1491 return best_frame;
1492 }
1493
1494 static int __init
1495 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1496 {
1497 void __iomem *base;
1498 int ret, irq = 0;
1499
1500 if (arch_timer_mem_use_virtual)
1501 irq = frame->virt_irq;
1502 else
1503 irq = frame->phys_irq;
1504
1505 if (!irq) {
1506 pr_err("Frame missing %s irq.\n",
1507 arch_timer_mem_use_virtual ? "virt" : "phys");
1508 return -EINVAL;
1509 }
1510
1511 if (!request_mem_region(frame->cntbase, frame->size,
1512 "arch_mem_timer"))
1513 return -EBUSY;
1514
1515 base = ioremap(frame->cntbase, frame->size);
1516 if (!base) {
1517 pr_err("Can't map frame's registers\n");
1518 return -ENXIO;
1519 }
1520
1521 ret = arch_timer_mem_register(base, irq);
1522 if (ret) {
1523 iounmap(base);
1524 return ret;
1525 }
1526
1527 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1528
1529 return 0;
1530 }
1531
1532 static int __init arch_timer_mem_of_init(struct device_node *np)
1533 {
1534 struct arch_timer_mem *timer_mem;
1535 struct arch_timer_mem_frame *frame;
1536 struct device_node *frame_node;
1537 struct resource res;
1538 int ret = -EINVAL;
1539 u32 rate;
1540
1541 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1542 if (!timer_mem)
1543 return -ENOMEM;
1544
1545 if (of_address_to_resource(np, 0, &res))
1546 goto out;
1547 timer_mem->cntctlbase = res.start;
1548 timer_mem->size = resource_size(&res);
1549
1550 for_each_available_child_of_node(np, frame_node) {
1551 u32 n;
1552 struct arch_timer_mem_frame *frame;
1553
1554 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1555 pr_err(FW_BUG "Missing frame-number.\n");
1556 of_node_put(frame_node);
1557 goto out;
1558 }
1559 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1560 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1561 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1562 of_node_put(frame_node);
1563 goto out;
1564 }
1565 frame = &timer_mem->frame[n];
1566
1567 if (frame->valid) {
1568 pr_err(FW_BUG "Duplicated frame-number.\n");
1569 of_node_put(frame_node);
1570 goto out;
1571 }
1572
1573 if (of_address_to_resource(frame_node, 0, &res)) {
1574 of_node_put(frame_node);
1575 goto out;
1576 }
1577 frame->cntbase = res.start;
1578 frame->size = resource_size(&res);
1579
1580 frame->virt_irq = irq_of_parse_and_map(frame_node,
1581 ARCH_TIMER_VIRT_SPI);
1582 frame->phys_irq = irq_of_parse_and_map(frame_node,
1583 ARCH_TIMER_PHYS_SPI);
1584
1585 frame->valid = true;
1586 }
1587
1588 frame = arch_timer_mem_find_best_frame(timer_mem);
1589 if (!frame) {
1590 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1591 &timer_mem->cntctlbase);
1592 ret = -EINVAL;
1593 goto out;
1594 }
1595
1596 rate = arch_timer_mem_frame_get_cntfrq(frame);
1597 arch_timer_of_configure_rate(rate, np);
1598
1599 ret = arch_timer_mem_frame_register(frame);
1600 if (!ret && !arch_timer_needs_of_probing())
1601 ret = arch_timer_common_init();
1602 out:
1603 kfree(timer_mem);
1604 return ret;
1605 }
1606 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1607 arch_timer_mem_of_init);
1608
1609 #ifdef CONFIG_ACPI_GTDT
1610 static int __init
1611 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1612 {
1613 struct arch_timer_mem_frame *frame;
1614 u32 rate;
1615 int i;
1616
1617 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1618 frame = &timer_mem->frame[i];
1619
1620 if (!frame->valid)
1621 continue;
1622
1623 rate = arch_timer_mem_frame_get_cntfrq(frame);
1624 if (rate == arch_timer_rate)
1625 continue;
1626
1627 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1628 &frame->cntbase,
1629 (unsigned long)rate, (unsigned long)arch_timer_rate);
1630
1631 return -EINVAL;
1632 }
1633
1634 return 0;
1635 }
1636
1637 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1638 {
1639 struct arch_timer_mem *timers, *timer;
1640 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1641 int timer_count, i, ret = 0;
1642
1643 timers = kcalloc(platform_timer_count, sizeof(*timers),
1644 GFP_KERNEL);
1645 if (!timers)
1646 return -ENOMEM;
1647
1648 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1649 if (ret || !timer_count)
1650 goto out;
1651
1652
1653
1654
1655
1656 for (i = 0; i < timer_count; i++) {
1657 timer = &timers[i];
1658
1659 frame = arch_timer_mem_find_best_frame(timer);
1660 if (!best_frame)
1661 best_frame = frame;
1662
1663 ret = arch_timer_mem_verify_cntfrq(timer);
1664 if (ret) {
1665 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1666 goto out;
1667 }
1668
1669 if (!best_frame)
1670
1671
1672
1673
1674 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1675 &timer->cntctlbase);
1676 }
1677
1678 if (best_frame)
1679 ret = arch_timer_mem_frame_register(best_frame);
1680 out:
1681 kfree(timers);
1682 return ret;
1683 }
1684
1685
1686 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1687 {
1688 int ret, platform_timer_count;
1689
1690 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1691 pr_warn("already initialized, skipping\n");
1692 return -EINVAL;
1693 }
1694
1695 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1696
1697 ret = acpi_gtdt_init(table, &platform_timer_count);
1698 if (ret)
1699 return ret;
1700
1701 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1702 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1703
1704 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1705 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1706
1707 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1708 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1709
1710 arch_timer_populate_kvm_info();
1711
1712
1713
1714
1715
1716 arch_timer_rate = arch_timer_get_cntfrq();
1717 ret = validate_timer_rate();
1718 if (ret) {
1719 pr_err(FW_BUG "frequency not available.\n");
1720 return ret;
1721 }
1722
1723 arch_timer_uses_ppi = arch_timer_select_ppi();
1724 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1725 pr_err("No interrupt available, giving up\n");
1726 return -EINVAL;
1727 }
1728
1729
1730 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1731
1732
1733 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1734
1735 ret = arch_timer_register();
1736 if (ret)
1737 return ret;
1738
1739 if (platform_timer_count &&
1740 arch_timer_mem_acpi_init(platform_timer_count))
1741 pr_err("Failed to initialize memory-mapped timer.\n");
1742
1743 return arch_timer_common_init();
1744 }
1745 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1746 #endif
1747
1748 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1749 struct clocksource **cs)
1750 {
1751 struct arm_smccc_res hvc_res;
1752 u32 ptp_counter;
1753 ktime_t ktime;
1754
1755 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1756 return -EOPNOTSUPP;
1757
1758 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1759 ptp_counter = KVM_PTP_VIRT_COUNTER;
1760 else
1761 ptp_counter = KVM_PTP_PHYS_COUNTER;
1762
1763 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1764 ptp_counter, &hvc_res);
1765
1766 if ((int)(hvc_res.a0) < 0)
1767 return -EOPNOTSUPP;
1768
1769 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1770 *ts = ktime_to_timespec64(ktime);
1771 if (cycle)
1772 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1773 if (cs)
1774 *cs = &clocksource_counter;
1775
1776 return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);