Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 
0003 #include <linux/clk.h>
0004 #include <linux/clk-provider.h>
0005 #include <linux/delay.h>
0006 #include <linux/err.h>
0007 #include <linux/io.h>
0008 #include <linux/math64.h>
0009 #include <linux/of.h>
0010 #include <linux/of_address.h>
0011 #include <linux/clk/ti.h>
0012 
0013 #include "clock.h"
0014 
0015 /* FAPLL Control Register PLL_CTRL */
0016 #define FAPLL_MAIN_MULT_N_SHIFT 16
0017 #define FAPLL_MAIN_DIV_P_SHIFT  8
0018 #define FAPLL_MAIN_LOCK     BIT(7)
0019 #define FAPLL_MAIN_PLLEN    BIT(3)
0020 #define FAPLL_MAIN_BP       BIT(2)
0021 #define FAPLL_MAIN_LOC_CTL  BIT(0)
0022 
0023 #define FAPLL_MAIN_MAX_MULT_N   0xffff
0024 #define FAPLL_MAIN_MAX_DIV_P    0xff
0025 #define FAPLL_MAIN_CLEAR_MASK   \
0026     ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
0027      (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
0028      FAPLL_MAIN_LOC_CTL)
0029 
0030 /* FAPLL powerdown register PWD */
0031 #define FAPLL_PWD_OFFSET    4
0032 
0033 #define MAX_FAPLL_OUTPUTS   7
0034 #define FAPLL_MAX_RETRIES   1000
0035 
0036 #define to_fapll(_hw)       container_of(_hw, struct fapll_data, hw)
0037 #define to_synth(_hw)       container_of(_hw, struct fapll_synth, hw)
0038 
0039 /* The bypass bit is inverted on the ddr_pll.. */
0040 #define fapll_is_ddr_pll(va)    (((u32)(va) & 0xffff) == 0x0440)
0041 
0042 /*
0043  * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
0044  * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
0045  */
0046 #define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c)
0047 #define is_audio_pll_clk1(va)   (((u32)(va) & 0xffff) == 0x04a8)
0048 
0049 /* Synthesizer divider register */
0050 #define SYNTH_LDMDIV1       BIT(8)
0051 
0052 /* Synthesizer frequency register */
0053 #define SYNTH_LDFREQ        BIT(31)
0054 
0055 #define SYNTH_PHASE_K       8
0056 #define SYNTH_MAX_INT_DIV   0xf
0057 #define SYNTH_MAX_DIV_M     0xff
0058 
0059 struct fapll_data {
0060     struct clk_hw hw;
0061     void __iomem *base;
0062     const char *name;
0063     struct clk *clk_ref;
0064     struct clk *clk_bypass;
0065     struct clk_onecell_data outputs;
0066     bool bypass_bit_inverted;
0067 };
0068 
0069 struct fapll_synth {
0070     struct clk_hw hw;
0071     struct fapll_data *fd;
0072     int index;
0073     void __iomem *freq;
0074     void __iomem *div;
0075     const char *name;
0076     struct clk *clk_pll;
0077 };
0078 
0079 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
0080 {
0081     u32 v = readl_relaxed(fd->base);
0082 
0083     if (fd->bypass_bit_inverted)
0084         return !(v & FAPLL_MAIN_BP);
0085     else
0086         return !!(v & FAPLL_MAIN_BP);
0087 }
0088 
0089 static void ti_fapll_set_bypass(struct fapll_data *fd)
0090 {
0091     u32 v = readl_relaxed(fd->base);
0092 
0093     if (fd->bypass_bit_inverted)
0094         v &= ~FAPLL_MAIN_BP;
0095     else
0096         v |= FAPLL_MAIN_BP;
0097     writel_relaxed(v, fd->base);
0098 }
0099 
0100 static void ti_fapll_clear_bypass(struct fapll_data *fd)
0101 {
0102     u32 v = readl_relaxed(fd->base);
0103 
0104     if (fd->bypass_bit_inverted)
0105         v |= FAPLL_MAIN_BP;
0106     else
0107         v &= ~FAPLL_MAIN_BP;
0108     writel_relaxed(v, fd->base);
0109 }
0110 
0111 static int ti_fapll_wait_lock(struct fapll_data *fd)
0112 {
0113     int retries = FAPLL_MAX_RETRIES;
0114     u32 v;
0115 
0116     while ((v = readl_relaxed(fd->base))) {
0117         if (v & FAPLL_MAIN_LOCK)
0118             return 0;
0119 
0120         if (retries-- <= 0)
0121             break;
0122 
0123         udelay(1);
0124     }
0125 
0126     pr_err("%s failed to lock\n", fd->name);
0127 
0128     return -ETIMEDOUT;
0129 }
0130 
0131 static int ti_fapll_enable(struct clk_hw *hw)
0132 {
0133     struct fapll_data *fd = to_fapll(hw);
0134     u32 v = readl_relaxed(fd->base);
0135 
0136     v |= FAPLL_MAIN_PLLEN;
0137     writel_relaxed(v, fd->base);
0138     ti_fapll_wait_lock(fd);
0139 
0140     return 0;
0141 }
0142 
0143 static void ti_fapll_disable(struct clk_hw *hw)
0144 {
0145     struct fapll_data *fd = to_fapll(hw);
0146     u32 v = readl_relaxed(fd->base);
0147 
0148     v &= ~FAPLL_MAIN_PLLEN;
0149     writel_relaxed(v, fd->base);
0150 }
0151 
0152 static int ti_fapll_is_enabled(struct clk_hw *hw)
0153 {
0154     struct fapll_data *fd = to_fapll(hw);
0155     u32 v = readl_relaxed(fd->base);
0156 
0157     return v & FAPLL_MAIN_PLLEN;
0158 }
0159 
0160 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
0161                       unsigned long parent_rate)
0162 {
0163     struct fapll_data *fd = to_fapll(hw);
0164     u32 fapll_n, fapll_p, v;
0165     u64 rate;
0166 
0167     if (ti_fapll_clock_is_bypass(fd))
0168         return parent_rate;
0169 
0170     rate = parent_rate;
0171 
0172     /* PLL pre-divider is P and multiplier is N */
0173     v = readl_relaxed(fd->base);
0174     fapll_p = (v >> 8) & 0xff;
0175     if (fapll_p)
0176         do_div(rate, fapll_p);
0177     fapll_n = v >> 16;
0178     if (fapll_n)
0179         rate *= fapll_n;
0180 
0181     return rate;
0182 }
0183 
0184 static u8 ti_fapll_get_parent(struct clk_hw *hw)
0185 {
0186     struct fapll_data *fd = to_fapll(hw);
0187 
0188     if (ti_fapll_clock_is_bypass(fd))
0189         return 1;
0190 
0191     return 0;
0192 }
0193 
0194 static int ti_fapll_set_div_mult(unsigned long rate,
0195                  unsigned long parent_rate,
0196                  u32 *pre_div_p, u32 *mult_n)
0197 {
0198     /*
0199      * So far no luck getting decent clock with PLL divider,
0200      * PLL does not seem to lock and the signal does not look
0201      * right. It seems the divider can only be used together
0202      * with the multiplier?
0203      */
0204     if (rate < parent_rate) {
0205         pr_warn("FAPLL main divider rates unsupported\n");
0206         return -EINVAL;
0207     }
0208 
0209     *mult_n = rate / parent_rate;
0210     if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
0211         return -EINVAL;
0212     *pre_div_p = 1;
0213 
0214     return 0;
0215 }
0216 
0217 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
0218                 unsigned long *parent_rate)
0219 {
0220     u32 pre_div_p, mult_n;
0221     int error;
0222 
0223     if (!rate)
0224         return -EINVAL;
0225 
0226     error = ti_fapll_set_div_mult(rate, *parent_rate,
0227                       &pre_div_p, &mult_n);
0228     if (error)
0229         return error;
0230 
0231     rate = *parent_rate / pre_div_p;
0232     rate *= mult_n;
0233 
0234     return rate;
0235 }
0236 
0237 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
0238                  unsigned long parent_rate)
0239 {
0240     struct fapll_data *fd = to_fapll(hw);
0241     u32 pre_div_p, mult_n, v;
0242     int error;
0243 
0244     if (!rate)
0245         return -EINVAL;
0246 
0247     error = ti_fapll_set_div_mult(rate, parent_rate,
0248                       &pre_div_p, &mult_n);
0249     if (error)
0250         return error;
0251 
0252     ti_fapll_set_bypass(fd);
0253     v = readl_relaxed(fd->base);
0254     v &= ~FAPLL_MAIN_CLEAR_MASK;
0255     v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
0256     v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
0257     writel_relaxed(v, fd->base);
0258     if (ti_fapll_is_enabled(hw))
0259         ti_fapll_wait_lock(fd);
0260     ti_fapll_clear_bypass(fd);
0261 
0262     return 0;
0263 }
0264 
0265 static const struct clk_ops ti_fapll_ops = {
0266     .enable = ti_fapll_enable,
0267     .disable = ti_fapll_disable,
0268     .is_enabled = ti_fapll_is_enabled,
0269     .recalc_rate = ti_fapll_recalc_rate,
0270     .get_parent = ti_fapll_get_parent,
0271     .round_rate = ti_fapll_round_rate,
0272     .set_rate = ti_fapll_set_rate,
0273 };
0274 
0275 static int ti_fapll_synth_enable(struct clk_hw *hw)
0276 {
0277     struct fapll_synth *synth = to_synth(hw);
0278     u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
0279 
0280     v &= ~(1 << synth->index);
0281     writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
0282 
0283     return 0;
0284 }
0285 
0286 static void ti_fapll_synth_disable(struct clk_hw *hw)
0287 {
0288     struct fapll_synth *synth = to_synth(hw);
0289     u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
0290 
0291     v |= 1 << synth->index;
0292     writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
0293 }
0294 
0295 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
0296 {
0297     struct fapll_synth *synth = to_synth(hw);
0298     u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
0299 
0300     return !(v & (1 << synth->index));
0301 }
0302 
0303 /*
0304  * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
0305  */
0306 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
0307                         unsigned long parent_rate)
0308 {
0309     struct fapll_synth *synth = to_synth(hw);
0310     u32 synth_div_m;
0311     u64 rate;
0312 
0313     /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
0314     if (!synth->div)
0315         return 32768;
0316 
0317     /*
0318      * PLL in bypass sets the synths in bypass mode too. The PLL rate
0319      * can be also be set to 27MHz, so we can't use parent_rate to
0320      * check for bypass mode.
0321      */
0322     if (ti_fapll_clock_is_bypass(synth->fd))
0323         return parent_rate;
0324 
0325     rate = parent_rate;
0326 
0327     /*
0328      * Synth frequency integer and fractional divider.
0329      * Note that the phase output K is 8, so the result needs
0330      * to be multiplied by SYNTH_PHASE_K.
0331      */
0332     if (synth->freq) {
0333         u32 v, synth_int_div, synth_frac_div, synth_div_freq;
0334 
0335         v = readl_relaxed(synth->freq);
0336         synth_int_div = (v >> 24) & 0xf;
0337         synth_frac_div = v & 0xffffff;
0338         synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
0339         rate *= 10000000;
0340         do_div(rate, synth_div_freq);
0341         rate *= SYNTH_PHASE_K;
0342     }
0343 
0344     /* Synth post-divider M */
0345     synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
0346 
0347     return DIV_ROUND_UP_ULL(rate, synth_div_m);
0348 }
0349 
0350 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
0351                           unsigned long parent_rate)
0352 {
0353     struct fapll_synth *synth = to_synth(hw);
0354     unsigned long current_rate, frac_rate;
0355     u32 post_div_m;
0356 
0357     current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
0358     post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
0359     frac_rate = current_rate * post_div_m;
0360 
0361     return frac_rate;
0362 }
0363 
0364 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
0365                     unsigned long rate,
0366                     unsigned long parent_rate)
0367 {
0368     u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
0369 
0370     post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
0371     post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
0372     if (post_div_m > SYNTH_MAX_DIV_M)
0373         return -EINVAL;
0374     if (!post_div_m)
0375         post_div_m = 1;
0376 
0377     for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
0378         synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
0379                          SYNTH_PHASE_K *
0380                          10000000,
0381                          rate * post_div_m);
0382         synth_frac_div = synth_int_div % 10000000;
0383         synth_int_div /= 10000000;
0384 
0385         if (synth_int_div <= SYNTH_MAX_INT_DIV)
0386             break;
0387     }
0388 
0389     if (synth_int_div > SYNTH_MAX_INT_DIV)
0390         return -EINVAL;
0391 
0392     v = readl_relaxed(synth->freq);
0393     v &= ~0x1fffffff;
0394     v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
0395     v |= (synth_frac_div & 0xffffff);
0396     v |= SYNTH_LDFREQ;
0397     writel_relaxed(v, synth->freq);
0398 
0399     return post_div_m;
0400 }
0401 
0402 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
0403                       unsigned long *parent_rate)
0404 {
0405     struct fapll_synth *synth = to_synth(hw);
0406     struct fapll_data *fd = synth->fd;
0407     unsigned long r;
0408 
0409     if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
0410         return -EINVAL;
0411 
0412     /* Only post divider m available with no fractional divider? */
0413     if (!synth->freq) {
0414         unsigned long frac_rate;
0415         u32 synth_post_div_m;
0416 
0417         frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
0418         synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
0419         r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
0420         goto out;
0421     }
0422 
0423     r = *parent_rate * SYNTH_PHASE_K;
0424     if (rate > r)
0425         goto out;
0426 
0427     r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
0428     if (rate < r)
0429         goto out;
0430 
0431     r = rate;
0432 out:
0433     return r;
0434 }
0435 
0436 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
0437                    unsigned long parent_rate)
0438 {
0439     struct fapll_synth *synth = to_synth(hw);
0440     struct fapll_data *fd = synth->fd;
0441     unsigned long frac_rate, post_rate = 0;
0442     u32 post_div_m = 0, v;
0443 
0444     if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
0445         return -EINVAL;
0446 
0447     /* Produce the rate with just post divider M? */
0448     frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
0449     if (frac_rate < rate) {
0450         if (!synth->freq)
0451             return -EINVAL;
0452     } else {
0453         post_div_m = DIV_ROUND_UP(frac_rate, rate);
0454         if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
0455             post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
0456         if (!synth->freq && !post_rate)
0457             return -EINVAL;
0458     }
0459 
0460     /* Need to recalculate the fractional divider? */
0461     if ((post_rate != rate) && synth->freq)
0462         post_div_m = ti_fapll_synth_set_frac_rate(synth,
0463                               rate,
0464                               parent_rate);
0465 
0466     v = readl_relaxed(synth->div);
0467     v &= ~SYNTH_MAX_DIV_M;
0468     v |= post_div_m;
0469     v |= SYNTH_LDMDIV1;
0470     writel_relaxed(v, synth->div);
0471 
0472     return 0;
0473 }
0474 
0475 static const struct clk_ops ti_fapll_synt_ops = {
0476     .enable = ti_fapll_synth_enable,
0477     .disable = ti_fapll_synth_disable,
0478     .is_enabled = ti_fapll_synth_is_enabled,
0479     .recalc_rate = ti_fapll_synth_recalc_rate,
0480     .round_rate = ti_fapll_synth_round_rate,
0481     .set_rate = ti_fapll_synth_set_rate,
0482 };
0483 
0484 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
0485                         void __iomem *freq,
0486                         void __iomem *div,
0487                         int index,
0488                         const char *name,
0489                         const char *parent,
0490                         struct clk *pll_clk)
0491 {
0492     struct clk_init_data *init;
0493     struct fapll_synth *synth;
0494     struct clk *clk = ERR_PTR(-ENOMEM);
0495 
0496     init = kzalloc(sizeof(*init), GFP_KERNEL);
0497     if (!init)
0498         return ERR_PTR(-ENOMEM);
0499 
0500     init->ops = &ti_fapll_synt_ops;
0501     init->name = name;
0502     init->parent_names = &parent;
0503     init->num_parents = 1;
0504 
0505     synth = kzalloc(sizeof(*synth), GFP_KERNEL);
0506     if (!synth)
0507         goto free;
0508 
0509     synth->fd = fd;
0510     synth->index = index;
0511     synth->freq = freq;
0512     synth->div = div;
0513     synth->name = name;
0514     synth->hw.init = init;
0515     synth->clk_pll = pll_clk;
0516 
0517     clk = clk_register(NULL, &synth->hw);
0518     if (IS_ERR(clk)) {
0519         pr_err("failed to register clock\n");
0520         goto free;
0521     }
0522 
0523     return clk;
0524 
0525 free:
0526     kfree(synth);
0527     kfree(init);
0528 
0529     return clk;
0530 }
0531 
0532 static void __init ti_fapll_setup(struct device_node *node)
0533 {
0534     struct fapll_data *fd;
0535     struct clk_init_data *init = NULL;
0536     const char *parent_name[2];
0537     struct clk *pll_clk;
0538     const char *name;
0539     int i;
0540 
0541     fd = kzalloc(sizeof(*fd), GFP_KERNEL);
0542     if (!fd)
0543         return;
0544 
0545     fd->outputs.clks = kzalloc(sizeof(struct clk *) *
0546                    MAX_FAPLL_OUTPUTS + 1,
0547                    GFP_KERNEL);
0548     if (!fd->outputs.clks)
0549         goto free;
0550 
0551     init = kzalloc(sizeof(*init), GFP_KERNEL);
0552     if (!init)
0553         goto free;
0554 
0555     init->ops = &ti_fapll_ops;
0556     name = ti_dt_clk_name(node);
0557     init->name = name;
0558 
0559     init->num_parents = of_clk_get_parent_count(node);
0560     if (init->num_parents != 2) {
0561         pr_err("%pOFn must have two parents\n", node);
0562         goto free;
0563     }
0564 
0565     of_clk_parent_fill(node, parent_name, 2);
0566     init->parent_names = parent_name;
0567 
0568     fd->clk_ref = of_clk_get(node, 0);
0569     if (IS_ERR(fd->clk_ref)) {
0570         pr_err("%pOFn could not get clk_ref\n", node);
0571         goto free;
0572     }
0573 
0574     fd->clk_bypass = of_clk_get(node, 1);
0575     if (IS_ERR(fd->clk_bypass)) {
0576         pr_err("%pOFn could not get clk_bypass\n", node);
0577         goto free;
0578     }
0579 
0580     fd->base = of_iomap(node, 0);
0581     if (!fd->base) {
0582         pr_err("%pOFn could not get IO base\n", node);
0583         goto free;
0584     }
0585 
0586     if (fapll_is_ddr_pll(fd->base))
0587         fd->bypass_bit_inverted = true;
0588 
0589     fd->name = name;
0590     fd->hw.init = init;
0591 
0592     /* Register the parent PLL */
0593     pll_clk = clk_register(NULL, &fd->hw);
0594     if (IS_ERR(pll_clk))
0595         goto unmap;
0596 
0597     fd->outputs.clks[0] = pll_clk;
0598     fd->outputs.clk_num++;
0599 
0600     /*
0601      * Set up the child synthesizers starting at index 1 as the
0602      * PLL output is at index 0. We need to check the clock-indices
0603      * for numbering in case there are holes in the synth mapping,
0604      * and then probe the synth register to see if it has a FREQ
0605      * register available.
0606      */
0607     for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
0608         const char *output_name;
0609         void __iomem *freq, *div;
0610         struct clk *synth_clk;
0611         int output_instance;
0612         u32 v;
0613 
0614         if (of_property_read_string_index(node, "clock-output-names",
0615                           i, &output_name))
0616             continue;
0617 
0618         if (of_property_read_u32_index(node, "clock-indices", i,
0619                            &output_instance))
0620             output_instance = i;
0621 
0622         freq = fd->base + (output_instance * 8);
0623         div = freq + 4;
0624 
0625         /* Check for hardwired audio_pll_clk1 */
0626         if (is_audio_pll_clk1(freq)) {
0627             freq = NULL;
0628             div = NULL;
0629         } else {
0630             /* Does the synthesizer have a FREQ register? */
0631             v = readl_relaxed(freq);
0632             if (!v)
0633                 freq = NULL;
0634         }
0635         synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
0636                          output_name, name, pll_clk);
0637         if (IS_ERR(synth_clk))
0638             continue;
0639 
0640         fd->outputs.clks[output_instance] = synth_clk;
0641         fd->outputs.clk_num++;
0642 
0643         clk_register_clkdev(synth_clk, output_name, NULL);
0644     }
0645 
0646     /* Register the child synthesizers as the FAPLL outputs */
0647     of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
0648     /* Add clock alias for the outputs */
0649 
0650     kfree(init);
0651 
0652     return;
0653 
0654 unmap:
0655     iounmap(fd->base);
0656 free:
0657     if (fd->clk_bypass)
0658         clk_put(fd->clk_bypass);
0659     if (fd->clk_ref)
0660         clk_put(fd->clk_ref);
0661     kfree(fd->outputs.clks);
0662     kfree(fd);
0663     kfree(init);
0664 }
0665 
0666 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);