Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) STMicroelectronics 2022 - All Rights Reserved
0004  * Author: Gabriel Fernandez <gabriel.fernandez@foss.st.com> for STMicroelectronics.
0005  */
0006 
0007 #include <linux/clk.h>
0008 #include <linux/delay.h>
0009 #include <linux/device.h>
0010 #include <linux/err.h>
0011 #include <linux/io.h>
0012 #include <linux/of.h>
0013 #include <linux/of_address.h>
0014 #include <linux/slab.h>
0015 #include <linux/spinlock.h>
0016 
0017 #include "clk-stm32-core.h"
0018 #include "reset-stm32.h"
0019 
0020 static DEFINE_SPINLOCK(rlock);
0021 
0022 static int stm32_rcc_clock_init(struct device *dev,
0023                 const struct of_device_id *match,
0024                 void __iomem *base)
0025 {
0026     const struct stm32_rcc_match_data *data = match->data;
0027     struct clk_hw_onecell_data *clk_data = data->hw_clks;
0028     struct device_node *np = dev_of_node(dev);
0029     struct clk_hw **hws;
0030     int n, max_binding;
0031 
0032     max_binding =  data->maxbinding;
0033 
0034     clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, max_binding), GFP_KERNEL);
0035     if (!clk_data)
0036         return -ENOMEM;
0037 
0038     clk_data->num = max_binding;
0039 
0040     hws = clk_data->hws;
0041 
0042     for (n = 0; n < max_binding; n++)
0043         hws[n] = ERR_PTR(-ENOENT);
0044 
0045     for (n = 0; n < data->num_clocks; n++) {
0046         const struct clock_config *cfg_clock = &data->tab_clocks[n];
0047         struct clk_hw *hw = ERR_PTR(-ENOENT);
0048 
0049         if (data->check_security &&
0050             data->check_security(base, cfg_clock))
0051             continue;
0052 
0053         if (cfg_clock->func)
0054             hw = (*cfg_clock->func)(dev, data, base, &rlock,
0055                         cfg_clock);
0056 
0057         if (IS_ERR(hw)) {
0058             dev_err(dev, "Can't register clk %d: %ld\n", n,
0059                 PTR_ERR(hw));
0060             return PTR_ERR(hw);
0061         }
0062 
0063         if (cfg_clock->id != NO_ID)
0064             hws[cfg_clock->id] = hw;
0065     }
0066 
0067     return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
0068 }
0069 
0070 int stm32_rcc_init(struct device *dev, const struct of_device_id *match_data,
0071            void __iomem *base)
0072 {
0073     const struct of_device_id *match;
0074     int err;
0075 
0076     match = of_match_node(match_data, dev_of_node(dev));
0077     if (!match) {
0078         dev_err(dev, "match data not found\n");
0079         return -ENODEV;
0080     }
0081 
0082     /* RCC Reset Configuration */
0083     err = stm32_rcc_reset_init(dev, match, base);
0084     if (err) {
0085         pr_err("stm32 reset failed to initialize\n");
0086         return err;
0087     }
0088 
0089     /* RCC Clock Configuration */
0090     err = stm32_rcc_clock_init(dev, match, base);
0091     if (err) {
0092         pr_err("stm32 clock failed to initialize\n");
0093         return err;
0094     }
0095 
0096     return 0;
0097 }
0098 
0099 static u8 stm32_mux_get_parent(void __iomem *base,
0100                    struct clk_stm32_clock_data *data,
0101                    u16 mux_id)
0102 {
0103     const struct stm32_mux_cfg *mux = &data->muxes[mux_id];
0104     u32 mask = BIT(mux->width) - 1;
0105     u32 val;
0106 
0107     val = readl(base + mux->offset) >> mux->shift;
0108     val &= mask;
0109 
0110     return val;
0111 }
0112 
0113 static int stm32_mux_set_parent(void __iomem *base,
0114                 struct clk_stm32_clock_data *data,
0115                 u16 mux_id, u8 index)
0116 {
0117     const struct stm32_mux_cfg *mux = &data->muxes[mux_id];
0118 
0119     u32 mask = BIT(mux->width) - 1;
0120     u32 reg = readl(base + mux->offset);
0121     u32 val = index << mux->shift;
0122 
0123     reg &= ~(mask << mux->shift);
0124     reg |= val;
0125 
0126     writel(reg, base + mux->offset);
0127 
0128     return 0;
0129 }
0130 
0131 static void stm32_gate_endisable(void __iomem *base,
0132                  struct clk_stm32_clock_data *data,
0133                  u16 gate_id, int enable)
0134 {
0135     const struct stm32_gate_cfg *gate = &data->gates[gate_id];
0136     void __iomem *addr = base + gate->offset;
0137 
0138     if (enable) {
0139         if (data->gate_cpt[gate_id]++ > 0)
0140             return;
0141 
0142         if (gate->set_clr != 0)
0143             writel(BIT(gate->bit_idx), addr);
0144         else
0145             writel(readl(addr) | BIT(gate->bit_idx), addr);
0146     } else {
0147         if (--data->gate_cpt[gate_id] > 0)
0148             return;
0149 
0150         if (gate->set_clr != 0)
0151             writel(BIT(gate->bit_idx), addr + gate->set_clr);
0152         else
0153             writel(readl(addr) & ~BIT(gate->bit_idx), addr);
0154     }
0155 }
0156 
0157 static void stm32_gate_disable_unused(void __iomem *base,
0158                       struct clk_stm32_clock_data *data,
0159                       u16 gate_id)
0160 {
0161     const struct stm32_gate_cfg *gate = &data->gates[gate_id];
0162     void __iomem *addr = base + gate->offset;
0163 
0164     if (data->gate_cpt[gate_id] > 0)
0165         return;
0166 
0167     if (gate->set_clr != 0)
0168         writel(BIT(gate->bit_idx), addr + gate->set_clr);
0169     else
0170         writel(readl(addr) & ~BIT(gate->bit_idx), addr);
0171 }
0172 
0173 static int stm32_gate_is_enabled(void __iomem *base,
0174                  struct clk_stm32_clock_data *data,
0175                  u16 gate_id)
0176 {
0177     const struct stm32_gate_cfg *gate = &data->gates[gate_id];
0178 
0179     return (readl(base + gate->offset) & BIT(gate->bit_idx)) != 0;
0180 }
0181 
0182 static unsigned int _get_table_div(const struct clk_div_table *table,
0183                    unsigned int val)
0184 {
0185     const struct clk_div_table *clkt;
0186 
0187     for (clkt = table; clkt->div; clkt++)
0188         if (clkt->val == val)
0189             return clkt->div;
0190     return 0;
0191 }
0192 
0193 static unsigned int _get_div(const struct clk_div_table *table,
0194                  unsigned int val, unsigned long flags, u8 width)
0195 {
0196     if (flags & CLK_DIVIDER_ONE_BASED)
0197         return val;
0198     if (flags & CLK_DIVIDER_POWER_OF_TWO)
0199         return 1 << val;
0200     if (table)
0201         return _get_table_div(table, val);
0202     return val + 1;
0203 }
0204 
0205 static unsigned long stm32_divider_get_rate(void __iomem *base,
0206                         struct clk_stm32_clock_data *data,
0207                         u16 div_id,
0208                         unsigned long parent_rate)
0209 {
0210     const struct stm32_div_cfg *divider = &data->dividers[div_id];
0211     unsigned int val;
0212     unsigned int div;
0213 
0214     val =  readl(base + divider->offset) >> divider->shift;
0215     val &= clk_div_mask(divider->width);
0216     div = _get_div(divider->table, val, divider->flags, divider->width);
0217 
0218     if (!div) {
0219         WARN(!(divider->flags & CLK_DIVIDER_ALLOW_ZERO),
0220              "%d: Zero divisor and CLK_DIVIDER_ALLOW_ZERO not set\n",
0221              div_id);
0222         return parent_rate;
0223     }
0224 
0225     return DIV_ROUND_UP_ULL((u64)parent_rate, div);
0226 }
0227 
0228 static int stm32_divider_set_rate(void __iomem *base,
0229                   struct clk_stm32_clock_data *data,
0230                   u16 div_id, unsigned long rate,
0231                   unsigned long parent_rate)
0232 {
0233     const struct stm32_div_cfg *divider = &data->dividers[div_id];
0234     int value;
0235     u32 val;
0236 
0237     value = divider_get_val(rate, parent_rate, divider->table,
0238                 divider->width, divider->flags);
0239     if (value < 0)
0240         return value;
0241 
0242     if (divider->flags & CLK_DIVIDER_HIWORD_MASK) {
0243         val = clk_div_mask(divider->width) << (divider->shift + 16);
0244     } else {
0245         val = readl(base + divider->offset);
0246         val &= ~(clk_div_mask(divider->width) << divider->shift);
0247     }
0248 
0249     val |= (u32)value << divider->shift;
0250 
0251     writel(val, base + divider->offset);
0252 
0253     return 0;
0254 }
0255 
0256 static u8 clk_stm32_mux_get_parent(struct clk_hw *hw)
0257 {
0258     struct clk_stm32_mux *mux = to_clk_stm32_mux(hw);
0259 
0260     return stm32_mux_get_parent(mux->base, mux->clock_data, mux->mux_id);
0261 }
0262 
0263 static int clk_stm32_mux_set_parent(struct clk_hw *hw, u8 index)
0264 {
0265     struct clk_stm32_mux *mux = to_clk_stm32_mux(hw);
0266     unsigned long flags = 0;
0267 
0268     spin_lock_irqsave(mux->lock, flags);
0269 
0270     stm32_mux_set_parent(mux->base, mux->clock_data, mux->mux_id, index);
0271 
0272     spin_unlock_irqrestore(mux->lock, flags);
0273 
0274     return 0;
0275 }
0276 
0277 const struct clk_ops clk_stm32_mux_ops = {
0278     .get_parent = clk_stm32_mux_get_parent,
0279     .set_parent = clk_stm32_mux_set_parent,
0280 };
0281 
0282 static void clk_stm32_gate_endisable(struct clk_hw *hw, int enable)
0283 {
0284     struct clk_stm32_gate *gate = to_clk_stm32_gate(hw);
0285     unsigned long flags = 0;
0286 
0287     spin_lock_irqsave(gate->lock, flags);
0288 
0289     stm32_gate_endisable(gate->base, gate->clock_data, gate->gate_id, enable);
0290 
0291     spin_unlock_irqrestore(gate->lock, flags);
0292 }
0293 
0294 static int clk_stm32_gate_enable(struct clk_hw *hw)
0295 {
0296     clk_stm32_gate_endisable(hw, 1);
0297 
0298     return 0;
0299 }
0300 
0301 static void clk_stm32_gate_disable(struct clk_hw *hw)
0302 {
0303     clk_stm32_gate_endisable(hw, 0);
0304 }
0305 
0306 static int clk_stm32_gate_is_enabled(struct clk_hw *hw)
0307 {
0308     struct clk_stm32_gate *gate = to_clk_stm32_gate(hw);
0309 
0310     return stm32_gate_is_enabled(gate->base, gate->clock_data, gate->gate_id);
0311 }
0312 
0313 static void clk_stm32_gate_disable_unused(struct clk_hw *hw)
0314 {
0315     struct clk_stm32_gate *gate = to_clk_stm32_gate(hw);
0316     unsigned long flags = 0;
0317 
0318     spin_lock_irqsave(gate->lock, flags);
0319 
0320     stm32_gate_disable_unused(gate->base, gate->clock_data, gate->gate_id);
0321 
0322     spin_unlock_irqrestore(gate->lock, flags);
0323 }
0324 
0325 const struct clk_ops clk_stm32_gate_ops = {
0326     .enable     = clk_stm32_gate_enable,
0327     .disable    = clk_stm32_gate_disable,
0328     .is_enabled = clk_stm32_gate_is_enabled,
0329     .disable_unused = clk_stm32_gate_disable_unused,
0330 };
0331 
0332 static int clk_stm32_divider_set_rate(struct clk_hw *hw, unsigned long rate,
0333                       unsigned long parent_rate)
0334 {
0335     struct clk_stm32_div *div = to_clk_stm32_divider(hw);
0336     unsigned long flags = 0;
0337     int ret;
0338 
0339     if (div->div_id == NO_STM32_DIV)
0340         return rate;
0341 
0342     spin_lock_irqsave(div->lock, flags);
0343 
0344     ret = stm32_divider_set_rate(div->base, div->clock_data, div->div_id, rate, parent_rate);
0345 
0346     spin_unlock_irqrestore(div->lock, flags);
0347 
0348     return ret;
0349 }
0350 
0351 static long clk_stm32_divider_round_rate(struct clk_hw *hw, unsigned long rate,
0352                      unsigned long *prate)
0353 {
0354     struct clk_stm32_div *div = to_clk_stm32_divider(hw);
0355     const struct stm32_div_cfg *divider;
0356 
0357     if (div->div_id == NO_STM32_DIV)
0358         return rate;
0359 
0360     divider = &div->clock_data->dividers[div->div_id];
0361 
0362     /* if read only, just return current value */
0363     if (divider->flags & CLK_DIVIDER_READ_ONLY) {
0364         u32 val;
0365 
0366         val =  readl(div->base + divider->offset) >> divider->shift;
0367         val &= clk_div_mask(divider->width);
0368 
0369         return divider_ro_round_rate(hw, rate, prate, divider->table,
0370                 divider->width, divider->flags,
0371                 val);
0372     }
0373 
0374     return divider_round_rate_parent(hw, clk_hw_get_parent(hw),
0375                      rate, prate, divider->table,
0376                      divider->width, divider->flags);
0377 }
0378 
0379 static unsigned long clk_stm32_divider_recalc_rate(struct clk_hw *hw,
0380                            unsigned long parent_rate)
0381 {
0382     struct clk_stm32_div *div = to_clk_stm32_divider(hw);
0383 
0384     if (div->div_id == NO_STM32_DIV)
0385         return parent_rate;
0386 
0387     return stm32_divider_get_rate(div->base, div->clock_data, div->div_id, parent_rate);
0388 }
0389 
0390 const struct clk_ops clk_stm32_divider_ops = {
0391     .recalc_rate    = clk_stm32_divider_recalc_rate,
0392     .round_rate = clk_stm32_divider_round_rate,
0393     .set_rate   = clk_stm32_divider_set_rate,
0394 };
0395 
0396 static int clk_stm32_composite_set_rate(struct clk_hw *hw, unsigned long rate,
0397                     unsigned long parent_rate)
0398 {
0399     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0400     unsigned long flags = 0;
0401     int ret;
0402 
0403     if (composite->div_id == NO_STM32_DIV)
0404         return rate;
0405 
0406     spin_lock_irqsave(composite->lock, flags);
0407 
0408     ret = stm32_divider_set_rate(composite->base, composite->clock_data,
0409                      composite->div_id, rate, parent_rate);
0410 
0411     spin_unlock_irqrestore(composite->lock, flags);
0412 
0413     return ret;
0414 }
0415 
0416 static unsigned long clk_stm32_composite_recalc_rate(struct clk_hw *hw,
0417                              unsigned long parent_rate)
0418 {
0419     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0420 
0421     if (composite->div_id == NO_STM32_DIV)
0422         return parent_rate;
0423 
0424     return stm32_divider_get_rate(composite->base, composite->clock_data,
0425                       composite->div_id, parent_rate);
0426 }
0427 
0428 static long clk_stm32_composite_round_rate(struct clk_hw *hw, unsigned long rate,
0429                        unsigned long *prate)
0430 {
0431     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0432 
0433     const struct stm32_div_cfg *divider;
0434 
0435     if (composite->div_id == NO_STM32_DIV)
0436         return rate;
0437 
0438     divider = &composite->clock_data->dividers[composite->div_id];
0439 
0440     /* if read only, just return current value */
0441     if (divider->flags & CLK_DIVIDER_READ_ONLY) {
0442         u32 val;
0443 
0444         val =  readl(composite->base + divider->offset) >> divider->shift;
0445         val &= clk_div_mask(divider->width);
0446 
0447         return divider_ro_round_rate(hw, rate, prate, divider->table,
0448                 divider->width, divider->flags,
0449                 val);
0450     }
0451 
0452     return divider_round_rate_parent(hw, clk_hw_get_parent(hw),
0453                      rate, prate, divider->table,
0454                      divider->width, divider->flags);
0455 }
0456 
0457 static u8 clk_stm32_composite_get_parent(struct clk_hw *hw)
0458 {
0459     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0460 
0461     return stm32_mux_get_parent(composite->base, composite->clock_data, composite->mux_id);
0462 }
0463 
0464 static int clk_stm32_composite_set_parent(struct clk_hw *hw, u8 index)
0465 {
0466     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0467     unsigned long flags = 0;
0468 
0469     spin_lock_irqsave(composite->lock, flags);
0470 
0471     stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, index);
0472 
0473     spin_unlock_irqrestore(composite->lock, flags);
0474 
0475     if (composite->clock_data->is_multi_mux) {
0476         struct clk_hw *other_mux_hw = composite->clock_data->is_multi_mux(hw);
0477 
0478         if (other_mux_hw) {
0479             struct clk_hw *hwp = clk_hw_get_parent_by_index(hw, index);
0480 
0481             clk_hw_reparent(other_mux_hw, hwp);
0482         }
0483     }
0484 
0485     return 0;
0486 }
0487 
0488 static int clk_stm32_composite_is_enabled(struct clk_hw *hw)
0489 {
0490     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0491 
0492     if (composite->gate_id == NO_STM32_GATE)
0493         return (__clk_get_enable_count(hw->clk) > 0);
0494 
0495     return stm32_gate_is_enabled(composite->base, composite->clock_data, composite->gate_id);
0496 }
0497 
0498 #define MUX_SAFE_POSITION 0
0499 
0500 static int clk_stm32_has_safe_mux(struct clk_hw *hw)
0501 {
0502     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0503     const struct stm32_mux_cfg *mux = &composite->clock_data->muxes[composite->mux_id];
0504 
0505     return !!(mux->flags & MUX_SAFE);
0506 }
0507 
0508 static void clk_stm32_set_safe_position_mux(struct clk_hw *hw)
0509 {
0510     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0511 
0512     if (!clk_stm32_composite_is_enabled(hw)) {
0513         unsigned long flags = 0;
0514 
0515         if (composite->clock_data->is_multi_mux) {
0516             struct clk_hw *other_mux_hw = NULL;
0517 
0518             other_mux_hw = composite->clock_data->is_multi_mux(hw);
0519 
0520             if (!other_mux_hw || clk_stm32_composite_is_enabled(other_mux_hw))
0521                 return;
0522         }
0523 
0524         spin_lock_irqsave(composite->lock, flags);
0525 
0526         stm32_mux_set_parent(composite->base, composite->clock_data,
0527                      composite->mux_id, MUX_SAFE_POSITION);
0528 
0529         spin_unlock_irqrestore(composite->lock, flags);
0530     }
0531 }
0532 
0533 static void clk_stm32_safe_restore_position_mux(struct clk_hw *hw)
0534 {
0535     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0536     int sel = clk_hw_get_parent_index(hw);
0537     unsigned long flags = 0;
0538 
0539     spin_lock_irqsave(composite->lock, flags);
0540 
0541     stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, sel);
0542 
0543     spin_unlock_irqrestore(composite->lock, flags);
0544 }
0545 
0546 static void clk_stm32_composite_gate_endisable(struct clk_hw *hw, int enable)
0547 {
0548     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0549     unsigned long flags = 0;
0550 
0551     spin_lock_irqsave(composite->lock, flags);
0552 
0553     stm32_gate_endisable(composite->base, composite->clock_data, composite->gate_id, enable);
0554 
0555     spin_unlock_irqrestore(composite->lock, flags);
0556 }
0557 
0558 static int clk_stm32_composite_gate_enable(struct clk_hw *hw)
0559 {
0560     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0561 
0562     if (composite->gate_id == NO_STM32_GATE)
0563         return 0;
0564 
0565     clk_stm32_composite_gate_endisable(hw, 1);
0566 
0567     if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw))
0568         clk_stm32_safe_restore_position_mux(hw);
0569 
0570     return 0;
0571 }
0572 
0573 static void clk_stm32_composite_gate_disable(struct clk_hw *hw)
0574 {
0575     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0576 
0577     if (composite->gate_id == NO_STM32_GATE)
0578         return;
0579 
0580     clk_stm32_composite_gate_endisable(hw, 0);
0581 
0582     if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw))
0583         clk_stm32_set_safe_position_mux(hw);
0584 }
0585 
0586 static void clk_stm32_composite_disable_unused(struct clk_hw *hw)
0587 {
0588     struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
0589     unsigned long flags = 0;
0590 
0591     if (composite->gate_id == NO_STM32_GATE)
0592         return;
0593 
0594     spin_lock_irqsave(composite->lock, flags);
0595 
0596     stm32_gate_disable_unused(composite->base, composite->clock_data, composite->gate_id);
0597 
0598     spin_unlock_irqrestore(composite->lock, flags);
0599 }
0600 
0601 const struct clk_ops clk_stm32_composite_ops = {
0602     .set_rate   = clk_stm32_composite_set_rate,
0603     .recalc_rate    = clk_stm32_composite_recalc_rate,
0604     .round_rate = clk_stm32_composite_round_rate,
0605     .get_parent = clk_stm32_composite_get_parent,
0606     .set_parent = clk_stm32_composite_set_parent,
0607     .enable     = clk_stm32_composite_gate_enable,
0608     .disable    = clk_stm32_composite_gate_disable,
0609     .is_enabled = clk_stm32_composite_is_enabled,
0610     .disable_unused = clk_stm32_composite_disable_unused,
0611 };
0612 
0613 struct clk_hw *clk_stm32_mux_register(struct device *dev,
0614                       const struct stm32_rcc_match_data *data,
0615                       void __iomem *base,
0616                       spinlock_t *lock,
0617                       const struct clock_config *cfg)
0618 {
0619     struct clk_stm32_mux *mux = cfg->clock_cfg;
0620     struct clk_hw *hw = &mux->hw;
0621     int err;
0622 
0623     mux->base = base;
0624     mux->lock = lock;
0625     mux->clock_data = data->clock_data;
0626 
0627     err = clk_hw_register(dev, hw);
0628     if (err)
0629         return ERR_PTR(err);
0630 
0631     return hw;
0632 }
0633 
0634 struct clk_hw *clk_stm32_gate_register(struct device *dev,
0635                        const struct stm32_rcc_match_data *data,
0636                        void __iomem *base,
0637                        spinlock_t *lock,
0638                        const struct clock_config *cfg)
0639 {
0640     struct clk_stm32_gate *gate = cfg->clock_cfg;
0641     struct clk_hw *hw = &gate->hw;
0642     int err;
0643 
0644     gate->base = base;
0645     gate->lock = lock;
0646     gate->clock_data = data->clock_data;
0647 
0648     err = clk_hw_register(dev, hw);
0649     if (err)
0650         return ERR_PTR(err);
0651 
0652     return hw;
0653 }
0654 
0655 struct clk_hw *clk_stm32_div_register(struct device *dev,
0656                       const struct stm32_rcc_match_data *data,
0657                       void __iomem *base,
0658                       spinlock_t *lock,
0659                       const struct clock_config *cfg)
0660 {
0661     struct clk_stm32_div *div = cfg->clock_cfg;
0662     struct clk_hw *hw = &div->hw;
0663     int err;
0664 
0665     div->base = base;
0666     div->lock = lock;
0667     div->clock_data = data->clock_data;
0668 
0669     err = clk_hw_register(dev, hw);
0670     if (err)
0671         return ERR_PTR(err);
0672 
0673     return hw;
0674 }
0675 
0676 struct clk_hw *clk_stm32_composite_register(struct device *dev,
0677                         const struct stm32_rcc_match_data *data,
0678                         void __iomem *base,
0679                         spinlock_t *lock,
0680                         const struct clock_config *cfg)
0681 {
0682     struct clk_stm32_composite *composite = cfg->clock_cfg;
0683     struct clk_hw *hw = &composite->hw;
0684     int err;
0685 
0686     composite->base = base;
0687     composite->lock = lock;
0688     composite->clock_data = data->clock_data;
0689 
0690     err = clk_hw_register(dev, hw);
0691     if (err)
0692         return ERR_PTR(err);
0693 
0694     return hw;
0695 }