Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
0004  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
0005  *
0006  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
0007  */
0008 
0009 #include <linux/clk.h>
0010 #include <linux/clk-provider.h>
0011 #include <linux/clk/clk-conf.h>
0012 #include <linux/module.h>
0013 #include <linux/mutex.h>
0014 #include <linux/spinlock.h>
0015 #include <linux/err.h>
0016 #include <linux/list.h>
0017 #include <linux/slab.h>
0018 #include <linux/of.h>
0019 #include <linux/device.h>
0020 #include <linux/init.h>
0021 #include <linux/pm_runtime.h>
0022 #include <linux/sched.h>
0023 #include <linux/clkdev.h>
0024 
0025 #include "clk.h"
0026 
0027 static DEFINE_SPINLOCK(enable_lock);
0028 static DEFINE_MUTEX(prepare_lock);
0029 
0030 static struct task_struct *prepare_owner;
0031 static struct task_struct *enable_owner;
0032 
0033 static int prepare_refcnt;
0034 static int enable_refcnt;
0035 
0036 static HLIST_HEAD(clk_root_list);
0037 static HLIST_HEAD(clk_orphan_list);
0038 static LIST_HEAD(clk_notifier_list);
0039 
0040 static const struct hlist_head *all_lists[] = {
0041     &clk_root_list,
0042     &clk_orphan_list,
0043     NULL,
0044 };
0045 
0046 /***    private data structures    ***/
0047 
0048 struct clk_parent_map {
0049     const struct clk_hw *hw;
0050     struct clk_core     *core;
0051     const char      *fw_name;
0052     const char      *name;
0053     int         index;
0054 };
0055 
0056 struct clk_core {
0057     const char      *name;
0058     const struct clk_ops    *ops;
0059     struct clk_hw       *hw;
0060     struct module       *owner;
0061     struct device       *dev;
0062     struct device_node  *of_node;
0063     struct clk_core     *parent;
0064     struct clk_parent_map   *parents;
0065     u8          num_parents;
0066     u8          new_parent_index;
0067     unsigned long       rate;
0068     unsigned long       req_rate;
0069     unsigned long       new_rate;
0070     struct clk_core     *new_parent;
0071     struct clk_core     *new_child;
0072     unsigned long       flags;
0073     bool            orphan;
0074     bool            rpm_enabled;
0075     unsigned int        enable_count;
0076     unsigned int        prepare_count;
0077     unsigned int        protect_count;
0078     unsigned long       min_rate;
0079     unsigned long       max_rate;
0080     unsigned long       accuracy;
0081     int         phase;
0082     struct clk_duty     duty;
0083     struct hlist_head   children;
0084     struct hlist_node   child_node;
0085     struct hlist_head   clks;
0086     unsigned int        notifier_count;
0087 #ifdef CONFIG_DEBUG_FS
0088     struct dentry       *dentry;
0089     struct hlist_node   debug_node;
0090 #endif
0091     struct kref     ref;
0092 };
0093 
0094 #define CREATE_TRACE_POINTS
0095 #include <trace/events/clk.h>
0096 
0097 struct clk {
0098     struct clk_core *core;
0099     struct device *dev;
0100     const char *dev_id;
0101     const char *con_id;
0102     unsigned long min_rate;
0103     unsigned long max_rate;
0104     unsigned int exclusive_count;
0105     struct hlist_node clks_node;
0106 };
0107 
0108 /***           runtime pm          ***/
0109 static int clk_pm_runtime_get(struct clk_core *core)
0110 {
0111     if (!core->rpm_enabled)
0112         return 0;
0113 
0114     return pm_runtime_resume_and_get(core->dev);
0115 }
0116 
0117 static void clk_pm_runtime_put(struct clk_core *core)
0118 {
0119     if (!core->rpm_enabled)
0120         return;
0121 
0122     pm_runtime_put_sync(core->dev);
0123 }
0124 
0125 /***           locking             ***/
0126 static void clk_prepare_lock(void)
0127 {
0128     if (!mutex_trylock(&prepare_lock)) {
0129         if (prepare_owner == current) {
0130             prepare_refcnt++;
0131             return;
0132         }
0133         mutex_lock(&prepare_lock);
0134     }
0135     WARN_ON_ONCE(prepare_owner != NULL);
0136     WARN_ON_ONCE(prepare_refcnt != 0);
0137     prepare_owner = current;
0138     prepare_refcnt = 1;
0139 }
0140 
0141 static void clk_prepare_unlock(void)
0142 {
0143     WARN_ON_ONCE(prepare_owner != current);
0144     WARN_ON_ONCE(prepare_refcnt == 0);
0145 
0146     if (--prepare_refcnt)
0147         return;
0148     prepare_owner = NULL;
0149     mutex_unlock(&prepare_lock);
0150 }
0151 
0152 static unsigned long clk_enable_lock(void)
0153     __acquires(enable_lock)
0154 {
0155     unsigned long flags;
0156 
0157     /*
0158      * On UP systems, spin_trylock_irqsave() always returns true, even if
0159      * we already hold the lock. So, in that case, we rely only on
0160      * reference counting.
0161      */
0162     if (!IS_ENABLED(CONFIG_SMP) ||
0163         !spin_trylock_irqsave(&enable_lock, flags)) {
0164         if (enable_owner == current) {
0165             enable_refcnt++;
0166             __acquire(enable_lock);
0167             if (!IS_ENABLED(CONFIG_SMP))
0168                 local_save_flags(flags);
0169             return flags;
0170         }
0171         spin_lock_irqsave(&enable_lock, flags);
0172     }
0173     WARN_ON_ONCE(enable_owner != NULL);
0174     WARN_ON_ONCE(enable_refcnt != 0);
0175     enable_owner = current;
0176     enable_refcnt = 1;
0177     return flags;
0178 }
0179 
0180 static void clk_enable_unlock(unsigned long flags)
0181     __releases(enable_lock)
0182 {
0183     WARN_ON_ONCE(enable_owner != current);
0184     WARN_ON_ONCE(enable_refcnt == 0);
0185 
0186     if (--enable_refcnt) {
0187         __release(enable_lock);
0188         return;
0189     }
0190     enable_owner = NULL;
0191     spin_unlock_irqrestore(&enable_lock, flags);
0192 }
0193 
0194 static bool clk_core_rate_is_protected(struct clk_core *core)
0195 {
0196     return core->protect_count;
0197 }
0198 
0199 static bool clk_core_is_prepared(struct clk_core *core)
0200 {
0201     bool ret = false;
0202 
0203     /*
0204      * .is_prepared is optional for clocks that can prepare
0205      * fall back to software usage counter if it is missing
0206      */
0207     if (!core->ops->is_prepared)
0208         return core->prepare_count;
0209 
0210     if (!clk_pm_runtime_get(core)) {
0211         ret = core->ops->is_prepared(core->hw);
0212         clk_pm_runtime_put(core);
0213     }
0214 
0215     return ret;
0216 }
0217 
0218 static bool clk_core_is_enabled(struct clk_core *core)
0219 {
0220     bool ret = false;
0221 
0222     /*
0223      * .is_enabled is only mandatory for clocks that gate
0224      * fall back to software usage counter if .is_enabled is missing
0225      */
0226     if (!core->ops->is_enabled)
0227         return core->enable_count;
0228 
0229     /*
0230      * Check if clock controller's device is runtime active before
0231      * calling .is_enabled callback. If not, assume that clock is
0232      * disabled, because we might be called from atomic context, from
0233      * which pm_runtime_get() is not allowed.
0234      * This function is called mainly from clk_disable_unused_subtree,
0235      * which ensures proper runtime pm activation of controller before
0236      * taking enable spinlock, but the below check is needed if one tries
0237      * to call it from other places.
0238      */
0239     if (core->rpm_enabled) {
0240         pm_runtime_get_noresume(core->dev);
0241         if (!pm_runtime_active(core->dev)) {
0242             ret = false;
0243             goto done;
0244         }
0245     }
0246 
0247     ret = core->ops->is_enabled(core->hw);
0248 done:
0249     if (core->rpm_enabled)
0250         pm_runtime_put(core->dev);
0251 
0252     return ret;
0253 }
0254 
0255 /***    helper functions   ***/
0256 
0257 const char *__clk_get_name(const struct clk *clk)
0258 {
0259     return !clk ? NULL : clk->core->name;
0260 }
0261 EXPORT_SYMBOL_GPL(__clk_get_name);
0262 
0263 const char *clk_hw_get_name(const struct clk_hw *hw)
0264 {
0265     return hw->core->name;
0266 }
0267 EXPORT_SYMBOL_GPL(clk_hw_get_name);
0268 
0269 struct clk_hw *__clk_get_hw(struct clk *clk)
0270 {
0271     return !clk ? NULL : clk->core->hw;
0272 }
0273 EXPORT_SYMBOL_GPL(__clk_get_hw);
0274 
0275 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
0276 {
0277     return hw->core->num_parents;
0278 }
0279 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
0280 
0281 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
0282 {
0283     return hw->core->parent ? hw->core->parent->hw : NULL;
0284 }
0285 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
0286 
0287 static struct clk_core *__clk_lookup_subtree(const char *name,
0288                          struct clk_core *core)
0289 {
0290     struct clk_core *child;
0291     struct clk_core *ret;
0292 
0293     if (!strcmp(core->name, name))
0294         return core;
0295 
0296     hlist_for_each_entry(child, &core->children, child_node) {
0297         ret = __clk_lookup_subtree(name, child);
0298         if (ret)
0299             return ret;
0300     }
0301 
0302     return NULL;
0303 }
0304 
0305 static struct clk_core *clk_core_lookup(const char *name)
0306 {
0307     struct clk_core *root_clk;
0308     struct clk_core *ret;
0309 
0310     if (!name)
0311         return NULL;
0312 
0313     /* search the 'proper' clk tree first */
0314     hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
0315         ret = __clk_lookup_subtree(name, root_clk);
0316         if (ret)
0317             return ret;
0318     }
0319 
0320     /* if not found, then search the orphan tree */
0321     hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
0322         ret = __clk_lookup_subtree(name, root_clk);
0323         if (ret)
0324             return ret;
0325     }
0326 
0327     return NULL;
0328 }
0329 
0330 #ifdef CONFIG_OF
0331 static int of_parse_clkspec(const struct device_node *np, int index,
0332                 const char *name, struct of_phandle_args *out_args);
0333 static struct clk_hw *
0334 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
0335 #else
0336 static inline int of_parse_clkspec(const struct device_node *np, int index,
0337                    const char *name,
0338                    struct of_phandle_args *out_args)
0339 {
0340     return -ENOENT;
0341 }
0342 static inline struct clk_hw *
0343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
0344 {
0345     return ERR_PTR(-ENOENT);
0346 }
0347 #endif
0348 
0349 /**
0350  * clk_core_get - Find the clk_core parent of a clk
0351  * @core: clk to find parent of
0352  * @p_index: parent index to search for
0353  *
0354  * This is the preferred method for clk providers to find the parent of a
0355  * clk when that parent is external to the clk controller. The parent_names
0356  * array is indexed and treated as a local name matching a string in the device
0357  * node's 'clock-names' property or as the 'con_id' matching the device's
0358  * dev_name() in a clk_lookup. This allows clk providers to use their own
0359  * namespace instead of looking for a globally unique parent string.
0360  *
0361  * For example the following DT snippet would allow a clock registered by the
0362  * clock-controller@c001 that has a clk_init_data::parent_data array
0363  * with 'xtal' in the 'name' member to find the clock provided by the
0364  * clock-controller@f00abcd without needing to get the globally unique name of
0365  * the xtal clk.
0366  *
0367  *      parent: clock-controller@f00abcd {
0368  *              reg = <0xf00abcd 0xabcd>;
0369  *              #clock-cells = <0>;
0370  *      };
0371  *
0372  *      clock-controller@c001 {
0373  *              reg = <0xc001 0xf00d>;
0374  *              clocks = <&parent>;
0375  *              clock-names = "xtal";
0376  *              #clock-cells = <1>;
0377  *      };
0378  *
0379  * Returns: -ENOENT when the provider can't be found or the clk doesn't
0380  * exist in the provider or the name can't be found in the DT node or
0381  * in a clkdev lookup. NULL when the provider knows about the clk but it
0382  * isn't provided on this system.
0383  * A valid clk_core pointer when the clk can be found in the provider.
0384  */
0385 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
0386 {
0387     const char *name = core->parents[p_index].fw_name;
0388     int index = core->parents[p_index].index;
0389     struct clk_hw *hw = ERR_PTR(-ENOENT);
0390     struct device *dev = core->dev;
0391     const char *dev_id = dev ? dev_name(dev) : NULL;
0392     struct device_node *np = core->of_node;
0393     struct of_phandle_args clkspec;
0394 
0395     if (np && (name || index >= 0) &&
0396         !of_parse_clkspec(np, index, name, &clkspec)) {
0397         hw = of_clk_get_hw_from_clkspec(&clkspec);
0398         of_node_put(clkspec.np);
0399     } else if (name) {
0400         /*
0401          * If the DT search above couldn't find the provider fallback to
0402          * looking up via clkdev based clk_lookups.
0403          */
0404         hw = clk_find_hw(dev_id, name);
0405     }
0406 
0407     if (IS_ERR(hw))
0408         return ERR_CAST(hw);
0409 
0410     return hw->core;
0411 }
0412 
0413 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
0414 {
0415     struct clk_parent_map *entry = &core->parents[index];
0416     struct clk_core *parent;
0417 
0418     if (entry->hw) {
0419         parent = entry->hw->core;
0420     } else {
0421         parent = clk_core_get(core, index);
0422         if (PTR_ERR(parent) == -ENOENT && entry->name)
0423             parent = clk_core_lookup(entry->name);
0424     }
0425 
0426     /*
0427      * We have a direct reference but it isn't registered yet?
0428      * Orphan it and let clk_reparent() update the orphan status
0429      * when the parent is registered.
0430      */
0431     if (!parent)
0432         parent = ERR_PTR(-EPROBE_DEFER);
0433 
0434     /* Only cache it if it's not an error */
0435     if (!IS_ERR(parent))
0436         entry->core = parent;
0437 }
0438 
0439 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
0440                              u8 index)
0441 {
0442     if (!core || index >= core->num_parents || !core->parents)
0443         return NULL;
0444 
0445     if (!core->parents[index].core)
0446         clk_core_fill_parent_index(core, index);
0447 
0448     return core->parents[index].core;
0449 }
0450 
0451 struct clk_hw *
0452 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
0453 {
0454     struct clk_core *parent;
0455 
0456     parent = clk_core_get_parent_by_index(hw->core, index);
0457 
0458     return !parent ? NULL : parent->hw;
0459 }
0460 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
0461 
0462 unsigned int __clk_get_enable_count(struct clk *clk)
0463 {
0464     return !clk ? 0 : clk->core->enable_count;
0465 }
0466 
0467 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
0468 {
0469     if (!core)
0470         return 0;
0471 
0472     if (!core->num_parents || core->parent)
0473         return core->rate;
0474 
0475     /*
0476      * Clk must have a parent because num_parents > 0 but the parent isn't
0477      * known yet. Best to return 0 as the rate of this clk until we can
0478      * properly recalc the rate based on the parent's rate.
0479      */
0480     return 0;
0481 }
0482 
0483 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
0484 {
0485     return clk_core_get_rate_nolock(hw->core);
0486 }
0487 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
0488 
0489 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
0490 {
0491     if (!core)
0492         return 0;
0493 
0494     return core->accuracy;
0495 }
0496 
0497 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
0498 {
0499     return hw->core->flags;
0500 }
0501 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
0502 
0503 bool clk_hw_is_prepared(const struct clk_hw *hw)
0504 {
0505     return clk_core_is_prepared(hw->core);
0506 }
0507 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
0508 
0509 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
0510 {
0511     return clk_core_rate_is_protected(hw->core);
0512 }
0513 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
0514 
0515 bool clk_hw_is_enabled(const struct clk_hw *hw)
0516 {
0517     return clk_core_is_enabled(hw->core);
0518 }
0519 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
0520 
0521 bool __clk_is_enabled(struct clk *clk)
0522 {
0523     if (!clk)
0524         return false;
0525 
0526     return clk_core_is_enabled(clk->core);
0527 }
0528 EXPORT_SYMBOL_GPL(__clk_is_enabled);
0529 
0530 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
0531                unsigned long best, unsigned long flags)
0532 {
0533     if (flags & CLK_MUX_ROUND_CLOSEST)
0534         return abs(now - rate) < abs(best - rate);
0535 
0536     return now <= rate && now > best;
0537 }
0538 
0539 int clk_mux_determine_rate_flags(struct clk_hw *hw,
0540                  struct clk_rate_request *req,
0541                  unsigned long flags)
0542 {
0543     struct clk_core *core = hw->core, *parent, *best_parent = NULL;
0544     int i, num_parents, ret;
0545     unsigned long best = 0;
0546     struct clk_rate_request parent_req = *req;
0547 
0548     /* if NO_REPARENT flag set, pass through to current parent */
0549     if (core->flags & CLK_SET_RATE_NO_REPARENT) {
0550         parent = core->parent;
0551         if (core->flags & CLK_SET_RATE_PARENT) {
0552             ret = __clk_determine_rate(parent ? parent->hw : NULL,
0553                            &parent_req);
0554             if (ret)
0555                 return ret;
0556 
0557             best = parent_req.rate;
0558         } else if (parent) {
0559             best = clk_core_get_rate_nolock(parent);
0560         } else {
0561             best = clk_core_get_rate_nolock(core);
0562         }
0563 
0564         goto out;
0565     }
0566 
0567     /* find the parent that can provide the fastest rate <= rate */
0568     num_parents = core->num_parents;
0569     for (i = 0; i < num_parents; i++) {
0570         parent = clk_core_get_parent_by_index(core, i);
0571         if (!parent)
0572             continue;
0573 
0574         if (core->flags & CLK_SET_RATE_PARENT) {
0575             parent_req = *req;
0576             ret = __clk_determine_rate(parent->hw, &parent_req);
0577             if (ret)
0578                 continue;
0579         } else {
0580             parent_req.rate = clk_core_get_rate_nolock(parent);
0581         }
0582 
0583         if (mux_is_better_rate(req->rate, parent_req.rate,
0584                        best, flags)) {
0585             best_parent = parent;
0586             best = parent_req.rate;
0587         }
0588     }
0589 
0590     if (!best_parent)
0591         return -EINVAL;
0592 
0593 out:
0594     if (best_parent)
0595         req->best_parent_hw = best_parent->hw;
0596     req->best_parent_rate = best;
0597     req->rate = best;
0598 
0599     return 0;
0600 }
0601 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
0602 
0603 struct clk *__clk_lookup(const char *name)
0604 {
0605     struct clk_core *core = clk_core_lookup(name);
0606 
0607     return !core ? NULL : core->hw->clk;
0608 }
0609 
0610 static void clk_core_get_boundaries(struct clk_core *core,
0611                     unsigned long *min_rate,
0612                     unsigned long *max_rate)
0613 {
0614     struct clk *clk_user;
0615 
0616     lockdep_assert_held(&prepare_lock);
0617 
0618     *min_rate = core->min_rate;
0619     *max_rate = core->max_rate;
0620 
0621     hlist_for_each_entry(clk_user, &core->clks, clks_node)
0622         *min_rate = max(*min_rate, clk_user->min_rate);
0623 
0624     hlist_for_each_entry(clk_user, &core->clks, clks_node)
0625         *max_rate = min(*max_rate, clk_user->max_rate);
0626 }
0627 
0628 static bool clk_core_check_boundaries(struct clk_core *core,
0629                       unsigned long min_rate,
0630                       unsigned long max_rate)
0631 {
0632     struct clk *user;
0633 
0634     lockdep_assert_held(&prepare_lock);
0635 
0636     if (min_rate > core->max_rate || max_rate < core->min_rate)
0637         return false;
0638 
0639     hlist_for_each_entry(user, &core->clks, clks_node)
0640         if (min_rate > user->max_rate || max_rate < user->min_rate)
0641             return false;
0642 
0643     return true;
0644 }
0645 
0646 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
0647                unsigned long max_rate)
0648 {
0649     hw->core->min_rate = min_rate;
0650     hw->core->max_rate = max_rate;
0651 }
0652 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
0653 
0654 /*
0655  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
0656  * @hw: mux type clk to determine rate on
0657  * @req: rate request, also used to return preferred parent and frequencies
0658  *
0659  * Helper for finding best parent to provide a given frequency. This can be used
0660  * directly as a determine_rate callback (e.g. for a mux), or from a more
0661  * complex clock that may combine a mux with other operations.
0662  *
0663  * Returns: 0 on success, -EERROR value on error
0664  */
0665 int __clk_mux_determine_rate(struct clk_hw *hw,
0666                  struct clk_rate_request *req)
0667 {
0668     return clk_mux_determine_rate_flags(hw, req, 0);
0669 }
0670 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
0671 
0672 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
0673                      struct clk_rate_request *req)
0674 {
0675     return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
0676 }
0677 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
0678 
0679 /***        clk api        ***/
0680 
0681 static void clk_core_rate_unprotect(struct clk_core *core)
0682 {
0683     lockdep_assert_held(&prepare_lock);
0684 
0685     if (!core)
0686         return;
0687 
0688     if (WARN(core->protect_count == 0,
0689         "%s already unprotected\n", core->name))
0690         return;
0691 
0692     if (--core->protect_count > 0)
0693         return;
0694 
0695     clk_core_rate_unprotect(core->parent);
0696 }
0697 
0698 static int clk_core_rate_nuke_protect(struct clk_core *core)
0699 {
0700     int ret;
0701 
0702     lockdep_assert_held(&prepare_lock);
0703 
0704     if (!core)
0705         return -EINVAL;
0706 
0707     if (core->protect_count == 0)
0708         return 0;
0709 
0710     ret = core->protect_count;
0711     core->protect_count = 1;
0712     clk_core_rate_unprotect(core);
0713 
0714     return ret;
0715 }
0716 
0717 /**
0718  * clk_rate_exclusive_put - release exclusivity over clock rate control
0719  * @clk: the clk over which the exclusivity is released
0720  *
0721  * clk_rate_exclusive_put() completes a critical section during which a clock
0722  * consumer cannot tolerate any other consumer making any operation on the
0723  * clock which could result in a rate change or rate glitch. Exclusive clocks
0724  * cannot have their rate changed, either directly or indirectly due to changes
0725  * further up the parent chain of clocks. As a result, clocks up parent chain
0726  * also get under exclusive control of the calling consumer.
0727  *
0728  * If exlusivity is claimed more than once on clock, even by the same consumer,
0729  * the rate effectively gets locked as exclusivity can't be preempted.
0730  *
0731  * Calls to clk_rate_exclusive_put() must be balanced with calls to
0732  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
0733  * error status.
0734  */
0735 void clk_rate_exclusive_put(struct clk *clk)
0736 {
0737     if (!clk)
0738         return;
0739 
0740     clk_prepare_lock();
0741 
0742     /*
0743      * if there is something wrong with this consumer protect count, stop
0744      * here before messing with the provider
0745      */
0746     if (WARN_ON(clk->exclusive_count <= 0))
0747         goto out;
0748 
0749     clk_core_rate_unprotect(clk->core);
0750     clk->exclusive_count--;
0751 out:
0752     clk_prepare_unlock();
0753 }
0754 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
0755 
0756 static void clk_core_rate_protect(struct clk_core *core)
0757 {
0758     lockdep_assert_held(&prepare_lock);
0759 
0760     if (!core)
0761         return;
0762 
0763     if (core->protect_count == 0)
0764         clk_core_rate_protect(core->parent);
0765 
0766     core->protect_count++;
0767 }
0768 
0769 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
0770 {
0771     lockdep_assert_held(&prepare_lock);
0772 
0773     if (!core)
0774         return;
0775 
0776     if (count == 0)
0777         return;
0778 
0779     clk_core_rate_protect(core);
0780     core->protect_count = count;
0781 }
0782 
0783 /**
0784  * clk_rate_exclusive_get - get exclusivity over the clk rate control
0785  * @clk: the clk over which the exclusity of rate control is requested
0786  *
0787  * clk_rate_exclusive_get() begins a critical section during which a clock
0788  * consumer cannot tolerate any other consumer making any operation on the
0789  * clock which could result in a rate change or rate glitch. Exclusive clocks
0790  * cannot have their rate changed, either directly or indirectly due to changes
0791  * further up the parent chain of clocks. As a result, clocks up parent chain
0792  * also get under exclusive control of the calling consumer.
0793  *
0794  * If exlusivity is claimed more than once on clock, even by the same consumer,
0795  * the rate effectively gets locked as exclusivity can't be preempted.
0796  *
0797  * Calls to clk_rate_exclusive_get() should be balanced with calls to
0798  * clk_rate_exclusive_put(). Calls to this function may sleep.
0799  * Returns 0 on success, -EERROR otherwise
0800  */
0801 int clk_rate_exclusive_get(struct clk *clk)
0802 {
0803     if (!clk)
0804         return 0;
0805 
0806     clk_prepare_lock();
0807     clk_core_rate_protect(clk->core);
0808     clk->exclusive_count++;
0809     clk_prepare_unlock();
0810 
0811     return 0;
0812 }
0813 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
0814 
0815 static void clk_core_unprepare(struct clk_core *core)
0816 {
0817     lockdep_assert_held(&prepare_lock);
0818 
0819     if (!core)
0820         return;
0821 
0822     if (WARN(core->prepare_count == 0,
0823         "%s already unprepared\n", core->name))
0824         return;
0825 
0826     if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
0827         "Unpreparing critical %s\n", core->name))
0828         return;
0829 
0830     if (core->flags & CLK_SET_RATE_GATE)
0831         clk_core_rate_unprotect(core);
0832 
0833     if (--core->prepare_count > 0)
0834         return;
0835 
0836     WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
0837 
0838     trace_clk_unprepare(core);
0839 
0840     if (core->ops->unprepare)
0841         core->ops->unprepare(core->hw);
0842 
0843     trace_clk_unprepare_complete(core);
0844     clk_core_unprepare(core->parent);
0845     clk_pm_runtime_put(core);
0846 }
0847 
0848 static void clk_core_unprepare_lock(struct clk_core *core)
0849 {
0850     clk_prepare_lock();
0851     clk_core_unprepare(core);
0852     clk_prepare_unlock();
0853 }
0854 
0855 /**
0856  * clk_unprepare - undo preparation of a clock source
0857  * @clk: the clk being unprepared
0858  *
0859  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
0860  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
0861  * if the operation may sleep.  One example is a clk which is accessed over
0862  * I2c.  In the complex case a clk gate operation may require a fast and a slow
0863  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
0864  * exclusive.  In fact clk_disable must be called before clk_unprepare.
0865  */
0866 void clk_unprepare(struct clk *clk)
0867 {
0868     if (IS_ERR_OR_NULL(clk))
0869         return;
0870 
0871     clk_core_unprepare_lock(clk->core);
0872 }
0873 EXPORT_SYMBOL_GPL(clk_unprepare);
0874 
0875 static int clk_core_prepare(struct clk_core *core)
0876 {
0877     int ret = 0;
0878 
0879     lockdep_assert_held(&prepare_lock);
0880 
0881     if (!core)
0882         return 0;
0883 
0884     if (core->prepare_count == 0) {
0885         ret = clk_pm_runtime_get(core);
0886         if (ret)
0887             return ret;
0888 
0889         ret = clk_core_prepare(core->parent);
0890         if (ret)
0891             goto runtime_put;
0892 
0893         trace_clk_prepare(core);
0894 
0895         if (core->ops->prepare)
0896             ret = core->ops->prepare(core->hw);
0897 
0898         trace_clk_prepare_complete(core);
0899 
0900         if (ret)
0901             goto unprepare;
0902     }
0903 
0904     core->prepare_count++;
0905 
0906     /*
0907      * CLK_SET_RATE_GATE is a special case of clock protection
0908      * Instead of a consumer claiming exclusive rate control, it is
0909      * actually the provider which prevents any consumer from making any
0910      * operation which could result in a rate change or rate glitch while
0911      * the clock is prepared.
0912      */
0913     if (core->flags & CLK_SET_RATE_GATE)
0914         clk_core_rate_protect(core);
0915 
0916     return 0;
0917 unprepare:
0918     clk_core_unprepare(core->parent);
0919 runtime_put:
0920     clk_pm_runtime_put(core);
0921     return ret;
0922 }
0923 
0924 static int clk_core_prepare_lock(struct clk_core *core)
0925 {
0926     int ret;
0927 
0928     clk_prepare_lock();
0929     ret = clk_core_prepare(core);
0930     clk_prepare_unlock();
0931 
0932     return ret;
0933 }
0934 
0935 /**
0936  * clk_prepare - prepare a clock source
0937  * @clk: the clk being prepared
0938  *
0939  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
0940  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
0941  * operation may sleep.  One example is a clk which is accessed over I2c.  In
0942  * the complex case a clk ungate operation may require a fast and a slow part.
0943  * It is this reason that clk_prepare and clk_enable are not mutually
0944  * exclusive.  In fact clk_prepare must be called before clk_enable.
0945  * Returns 0 on success, -EERROR otherwise.
0946  */
0947 int clk_prepare(struct clk *clk)
0948 {
0949     if (!clk)
0950         return 0;
0951 
0952     return clk_core_prepare_lock(clk->core);
0953 }
0954 EXPORT_SYMBOL_GPL(clk_prepare);
0955 
0956 static void clk_core_disable(struct clk_core *core)
0957 {
0958     lockdep_assert_held(&enable_lock);
0959 
0960     if (!core)
0961         return;
0962 
0963     if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
0964         return;
0965 
0966     if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
0967         "Disabling critical %s\n", core->name))
0968         return;
0969 
0970     if (--core->enable_count > 0)
0971         return;
0972 
0973     trace_clk_disable_rcuidle(core);
0974 
0975     if (core->ops->disable)
0976         core->ops->disable(core->hw);
0977 
0978     trace_clk_disable_complete_rcuidle(core);
0979 
0980     clk_core_disable(core->parent);
0981 }
0982 
0983 static void clk_core_disable_lock(struct clk_core *core)
0984 {
0985     unsigned long flags;
0986 
0987     flags = clk_enable_lock();
0988     clk_core_disable(core);
0989     clk_enable_unlock(flags);
0990 }
0991 
0992 /**
0993  * clk_disable - gate a clock
0994  * @clk: the clk being gated
0995  *
0996  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
0997  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
0998  * clk if the operation is fast and will never sleep.  One example is a
0999  * SoC-internal clk which is controlled via simple register writes.  In the
1000  * complex case a clk gate operation may require a fast and a slow part.  It is
1001  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1002  * In fact clk_disable must be called before clk_unprepare.
1003  */
1004 void clk_disable(struct clk *clk)
1005 {
1006     if (IS_ERR_OR_NULL(clk))
1007         return;
1008 
1009     clk_core_disable_lock(clk->core);
1010 }
1011 EXPORT_SYMBOL_GPL(clk_disable);
1012 
1013 static int clk_core_enable(struct clk_core *core)
1014 {
1015     int ret = 0;
1016 
1017     lockdep_assert_held(&enable_lock);
1018 
1019     if (!core)
1020         return 0;
1021 
1022     if (WARN(core->prepare_count == 0,
1023         "Enabling unprepared %s\n", core->name))
1024         return -ESHUTDOWN;
1025 
1026     if (core->enable_count == 0) {
1027         ret = clk_core_enable(core->parent);
1028 
1029         if (ret)
1030             return ret;
1031 
1032         trace_clk_enable_rcuidle(core);
1033 
1034         if (core->ops->enable)
1035             ret = core->ops->enable(core->hw);
1036 
1037         trace_clk_enable_complete_rcuidle(core);
1038 
1039         if (ret) {
1040             clk_core_disable(core->parent);
1041             return ret;
1042         }
1043     }
1044 
1045     core->enable_count++;
1046     return 0;
1047 }
1048 
1049 static int clk_core_enable_lock(struct clk_core *core)
1050 {
1051     unsigned long flags;
1052     int ret;
1053 
1054     flags = clk_enable_lock();
1055     ret = clk_core_enable(core);
1056     clk_enable_unlock(flags);
1057 
1058     return ret;
1059 }
1060 
1061 /**
1062  * clk_gate_restore_context - restore context for poweroff
1063  * @hw: the clk_hw pointer of clock whose state is to be restored
1064  *
1065  * The clock gate restore context function enables or disables
1066  * the gate clocks based on the enable_count. This is done in cases
1067  * where the clock context is lost and based on the enable_count
1068  * the clock either needs to be enabled/disabled. This
1069  * helps restore the state of gate clocks.
1070  */
1071 void clk_gate_restore_context(struct clk_hw *hw)
1072 {
1073     struct clk_core *core = hw->core;
1074 
1075     if (core->enable_count)
1076         core->ops->enable(hw);
1077     else
1078         core->ops->disable(hw);
1079 }
1080 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1081 
1082 static int clk_core_save_context(struct clk_core *core)
1083 {
1084     struct clk_core *child;
1085     int ret = 0;
1086 
1087     hlist_for_each_entry(child, &core->children, child_node) {
1088         ret = clk_core_save_context(child);
1089         if (ret < 0)
1090             return ret;
1091     }
1092 
1093     if (core->ops && core->ops->save_context)
1094         ret = core->ops->save_context(core->hw);
1095 
1096     return ret;
1097 }
1098 
1099 static void clk_core_restore_context(struct clk_core *core)
1100 {
1101     struct clk_core *child;
1102 
1103     if (core->ops && core->ops->restore_context)
1104         core->ops->restore_context(core->hw);
1105 
1106     hlist_for_each_entry(child, &core->children, child_node)
1107         clk_core_restore_context(child);
1108 }
1109 
1110 /**
1111  * clk_save_context - save clock context for poweroff
1112  *
1113  * Saves the context of the clock register for powerstates in which the
1114  * contents of the registers will be lost. Occurs deep within the suspend
1115  * code.  Returns 0 on success.
1116  */
1117 int clk_save_context(void)
1118 {
1119     struct clk_core *clk;
1120     int ret;
1121 
1122     hlist_for_each_entry(clk, &clk_root_list, child_node) {
1123         ret = clk_core_save_context(clk);
1124         if (ret < 0)
1125             return ret;
1126     }
1127 
1128     hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1129         ret = clk_core_save_context(clk);
1130         if (ret < 0)
1131             return ret;
1132     }
1133 
1134     return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(clk_save_context);
1137 
1138 /**
1139  * clk_restore_context - restore clock context after poweroff
1140  *
1141  * Restore the saved clock context upon resume.
1142  *
1143  */
1144 void clk_restore_context(void)
1145 {
1146     struct clk_core *core;
1147 
1148     hlist_for_each_entry(core, &clk_root_list, child_node)
1149         clk_core_restore_context(core);
1150 
1151     hlist_for_each_entry(core, &clk_orphan_list, child_node)
1152         clk_core_restore_context(core);
1153 }
1154 EXPORT_SYMBOL_GPL(clk_restore_context);
1155 
1156 /**
1157  * clk_enable - ungate a clock
1158  * @clk: the clk being ungated
1159  *
1160  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1161  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1162  * if the operation will never sleep.  One example is a SoC-internal clk which
1163  * is controlled via simple register writes.  In the complex case a clk ungate
1164  * operation may require a fast and a slow part.  It is this reason that
1165  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1166  * must be called before clk_enable.  Returns 0 on success, -EERROR
1167  * otherwise.
1168  */
1169 int clk_enable(struct clk *clk)
1170 {
1171     if (!clk)
1172         return 0;
1173 
1174     return clk_core_enable_lock(clk->core);
1175 }
1176 EXPORT_SYMBOL_GPL(clk_enable);
1177 
1178 /**
1179  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1180  * @clk: clock source
1181  *
1182  * Returns true if clk_prepare() implicitly enables the clock, effectively
1183  * making clk_enable()/clk_disable() no-ops, false otherwise.
1184  *
1185  * This is of interest mainly to power management code where actually
1186  * disabling the clock also requires unpreparing it to have any material
1187  * effect.
1188  *
1189  * Regardless of the value returned here, the caller must always invoke
1190  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1191  * to be right.
1192  */
1193 bool clk_is_enabled_when_prepared(struct clk *clk)
1194 {
1195     return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1196 }
1197 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1198 
1199 static int clk_core_prepare_enable(struct clk_core *core)
1200 {
1201     int ret;
1202 
1203     ret = clk_core_prepare_lock(core);
1204     if (ret)
1205         return ret;
1206 
1207     ret = clk_core_enable_lock(core);
1208     if (ret)
1209         clk_core_unprepare_lock(core);
1210 
1211     return ret;
1212 }
1213 
1214 static void clk_core_disable_unprepare(struct clk_core *core)
1215 {
1216     clk_core_disable_lock(core);
1217     clk_core_unprepare_lock(core);
1218 }
1219 
1220 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1221 {
1222     struct clk_core *child;
1223 
1224     lockdep_assert_held(&prepare_lock);
1225 
1226     hlist_for_each_entry(child, &core->children, child_node)
1227         clk_unprepare_unused_subtree(child);
1228 
1229     if (core->prepare_count)
1230         return;
1231 
1232     if (core->flags & CLK_IGNORE_UNUSED)
1233         return;
1234 
1235     if (clk_pm_runtime_get(core))
1236         return;
1237 
1238     if (clk_core_is_prepared(core)) {
1239         trace_clk_unprepare(core);
1240         if (core->ops->unprepare_unused)
1241             core->ops->unprepare_unused(core->hw);
1242         else if (core->ops->unprepare)
1243             core->ops->unprepare(core->hw);
1244         trace_clk_unprepare_complete(core);
1245     }
1246 
1247     clk_pm_runtime_put(core);
1248 }
1249 
1250 static void __init clk_disable_unused_subtree(struct clk_core *core)
1251 {
1252     struct clk_core *child;
1253     unsigned long flags;
1254 
1255     lockdep_assert_held(&prepare_lock);
1256 
1257     hlist_for_each_entry(child, &core->children, child_node)
1258         clk_disable_unused_subtree(child);
1259 
1260     if (core->flags & CLK_OPS_PARENT_ENABLE)
1261         clk_core_prepare_enable(core->parent);
1262 
1263     if (clk_pm_runtime_get(core))
1264         goto unprepare_out;
1265 
1266     flags = clk_enable_lock();
1267 
1268     if (core->enable_count)
1269         goto unlock_out;
1270 
1271     if (core->flags & CLK_IGNORE_UNUSED)
1272         goto unlock_out;
1273 
1274     /*
1275      * some gate clocks have special needs during the disable-unused
1276      * sequence.  call .disable_unused if available, otherwise fall
1277      * back to .disable
1278      */
1279     if (clk_core_is_enabled(core)) {
1280         trace_clk_disable(core);
1281         if (core->ops->disable_unused)
1282             core->ops->disable_unused(core->hw);
1283         else if (core->ops->disable)
1284             core->ops->disable(core->hw);
1285         trace_clk_disable_complete(core);
1286     }
1287 
1288 unlock_out:
1289     clk_enable_unlock(flags);
1290     clk_pm_runtime_put(core);
1291 unprepare_out:
1292     if (core->flags & CLK_OPS_PARENT_ENABLE)
1293         clk_core_disable_unprepare(core->parent);
1294 }
1295 
1296 static bool clk_ignore_unused __initdata;
1297 static int __init clk_ignore_unused_setup(char *__unused)
1298 {
1299     clk_ignore_unused = true;
1300     return 1;
1301 }
1302 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1303 
1304 static int __init clk_disable_unused(void)
1305 {
1306     struct clk_core *core;
1307 
1308     if (clk_ignore_unused) {
1309         pr_warn("clk: Not disabling unused clocks\n");
1310         return 0;
1311     }
1312 
1313     clk_prepare_lock();
1314 
1315     hlist_for_each_entry(core, &clk_root_list, child_node)
1316         clk_disable_unused_subtree(core);
1317 
1318     hlist_for_each_entry(core, &clk_orphan_list, child_node)
1319         clk_disable_unused_subtree(core);
1320 
1321     hlist_for_each_entry(core, &clk_root_list, child_node)
1322         clk_unprepare_unused_subtree(core);
1323 
1324     hlist_for_each_entry(core, &clk_orphan_list, child_node)
1325         clk_unprepare_unused_subtree(core);
1326 
1327     clk_prepare_unlock();
1328 
1329     return 0;
1330 }
1331 late_initcall_sync(clk_disable_unused);
1332 
1333 static int clk_core_determine_round_nolock(struct clk_core *core,
1334                        struct clk_rate_request *req)
1335 {
1336     long rate;
1337 
1338     lockdep_assert_held(&prepare_lock);
1339 
1340     if (!core)
1341         return 0;
1342 
1343     req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1344 
1345     /*
1346      * At this point, core protection will be disabled
1347      * - if the provider is not protected at all
1348      * - if the calling consumer is the only one which has exclusivity
1349      *   over the provider
1350      */
1351     if (clk_core_rate_is_protected(core)) {
1352         req->rate = core->rate;
1353     } else if (core->ops->determine_rate) {
1354         return core->ops->determine_rate(core->hw, req);
1355     } else if (core->ops->round_rate) {
1356         rate = core->ops->round_rate(core->hw, req->rate,
1357                          &req->best_parent_rate);
1358         if (rate < 0)
1359             return rate;
1360 
1361         req->rate = rate;
1362     } else {
1363         return -EINVAL;
1364     }
1365 
1366     return 0;
1367 }
1368 
1369 static void clk_core_init_rate_req(struct clk_core * const core,
1370                    struct clk_rate_request *req)
1371 {
1372     struct clk_core *parent;
1373 
1374     if (WARN_ON(!core || !req))
1375         return;
1376 
1377     parent = core->parent;
1378     if (parent) {
1379         req->best_parent_hw = parent->hw;
1380         req->best_parent_rate = parent->rate;
1381     } else {
1382         req->best_parent_hw = NULL;
1383         req->best_parent_rate = 0;
1384     }
1385 }
1386 
1387 static bool clk_core_can_round(struct clk_core * const core)
1388 {
1389     return core->ops->determine_rate || core->ops->round_rate;
1390 }
1391 
1392 static int clk_core_round_rate_nolock(struct clk_core *core,
1393                       struct clk_rate_request *req)
1394 {
1395     lockdep_assert_held(&prepare_lock);
1396 
1397     if (!core) {
1398         req->rate = 0;
1399         return 0;
1400     }
1401 
1402     clk_core_init_rate_req(core, req);
1403 
1404     if (clk_core_can_round(core))
1405         return clk_core_determine_round_nolock(core, req);
1406     else if (core->flags & CLK_SET_RATE_PARENT)
1407         return clk_core_round_rate_nolock(core->parent, req);
1408 
1409     req->rate = core->rate;
1410     return 0;
1411 }
1412 
1413 /**
1414  * __clk_determine_rate - get the closest rate actually supported by a clock
1415  * @hw: determine the rate of this clock
1416  * @req: target rate request
1417  *
1418  * Useful for clk_ops such as .set_rate and .determine_rate.
1419  */
1420 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1421 {
1422     if (!hw) {
1423         req->rate = 0;
1424         return 0;
1425     }
1426 
1427     return clk_core_round_rate_nolock(hw->core, req);
1428 }
1429 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1430 
1431 /**
1432  * clk_hw_round_rate() - round the given rate for a hw clk
1433  * @hw: the hw clk for which we are rounding a rate
1434  * @rate: the rate which is to be rounded
1435  *
1436  * Takes in a rate as input and rounds it to a rate that the clk can actually
1437  * use.
1438  *
1439  * Context: prepare_lock must be held.
1440  *          For clk providers to call from within clk_ops such as .round_rate,
1441  *          .determine_rate.
1442  *
1443  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1444  *         else returns the parent rate.
1445  */
1446 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1447 {
1448     int ret;
1449     struct clk_rate_request req;
1450 
1451     clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1452     req.rate = rate;
1453 
1454     ret = clk_core_round_rate_nolock(hw->core, &req);
1455     if (ret)
1456         return 0;
1457 
1458     return req.rate;
1459 }
1460 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1461 
1462 /**
1463  * clk_round_rate - round the given rate for a clk
1464  * @clk: the clk for which we are rounding a rate
1465  * @rate: the rate which is to be rounded
1466  *
1467  * Takes in a rate as input and rounds it to a rate that the clk can actually
1468  * use which is then returned.  If clk doesn't support round_rate operation
1469  * then the parent rate is returned.
1470  */
1471 long clk_round_rate(struct clk *clk, unsigned long rate)
1472 {
1473     struct clk_rate_request req;
1474     int ret;
1475 
1476     if (!clk)
1477         return 0;
1478 
1479     clk_prepare_lock();
1480 
1481     if (clk->exclusive_count)
1482         clk_core_rate_unprotect(clk->core);
1483 
1484     clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1485     req.rate = rate;
1486 
1487     ret = clk_core_round_rate_nolock(clk->core, &req);
1488 
1489     if (clk->exclusive_count)
1490         clk_core_rate_protect(clk->core);
1491 
1492     clk_prepare_unlock();
1493 
1494     if (ret)
1495         return ret;
1496 
1497     return req.rate;
1498 }
1499 EXPORT_SYMBOL_GPL(clk_round_rate);
1500 
1501 /**
1502  * __clk_notify - call clk notifier chain
1503  * @core: clk that is changing rate
1504  * @msg: clk notifier type (see include/linux/clk.h)
1505  * @old_rate: old clk rate
1506  * @new_rate: new clk rate
1507  *
1508  * Triggers a notifier call chain on the clk rate-change notification
1509  * for 'clk'.  Passes a pointer to the struct clk and the previous
1510  * and current rates to the notifier callback.  Intended to be called by
1511  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1512  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1513  * a driver returns that.
1514  */
1515 static int __clk_notify(struct clk_core *core, unsigned long msg,
1516         unsigned long old_rate, unsigned long new_rate)
1517 {
1518     struct clk_notifier *cn;
1519     struct clk_notifier_data cnd;
1520     int ret = NOTIFY_DONE;
1521 
1522     cnd.old_rate = old_rate;
1523     cnd.new_rate = new_rate;
1524 
1525     list_for_each_entry(cn, &clk_notifier_list, node) {
1526         if (cn->clk->core == core) {
1527             cnd.clk = cn->clk;
1528             ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1529                     &cnd);
1530             if (ret & NOTIFY_STOP_MASK)
1531                 return ret;
1532         }
1533     }
1534 
1535     return ret;
1536 }
1537 
1538 /**
1539  * __clk_recalc_accuracies
1540  * @core: first clk in the subtree
1541  *
1542  * Walks the subtree of clks starting with clk and recalculates accuracies as
1543  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1544  * callback then it is assumed that the clock will take on the accuracy of its
1545  * parent.
1546  */
1547 static void __clk_recalc_accuracies(struct clk_core *core)
1548 {
1549     unsigned long parent_accuracy = 0;
1550     struct clk_core *child;
1551 
1552     lockdep_assert_held(&prepare_lock);
1553 
1554     if (core->parent)
1555         parent_accuracy = core->parent->accuracy;
1556 
1557     if (core->ops->recalc_accuracy)
1558         core->accuracy = core->ops->recalc_accuracy(core->hw,
1559                               parent_accuracy);
1560     else
1561         core->accuracy = parent_accuracy;
1562 
1563     hlist_for_each_entry(child, &core->children, child_node)
1564         __clk_recalc_accuracies(child);
1565 }
1566 
1567 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1568 {
1569     if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1570         __clk_recalc_accuracies(core);
1571 
1572     return clk_core_get_accuracy_no_lock(core);
1573 }
1574 
1575 /**
1576  * clk_get_accuracy - return the accuracy of clk
1577  * @clk: the clk whose accuracy is being returned
1578  *
1579  * Simply returns the cached accuracy of the clk, unless
1580  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1581  * issued.
1582  * If clk is NULL then returns 0.
1583  */
1584 long clk_get_accuracy(struct clk *clk)
1585 {
1586     long accuracy;
1587 
1588     if (!clk)
1589         return 0;
1590 
1591     clk_prepare_lock();
1592     accuracy = clk_core_get_accuracy_recalc(clk->core);
1593     clk_prepare_unlock();
1594 
1595     return accuracy;
1596 }
1597 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1598 
1599 static unsigned long clk_recalc(struct clk_core *core,
1600                 unsigned long parent_rate)
1601 {
1602     unsigned long rate = parent_rate;
1603 
1604     if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1605         rate = core->ops->recalc_rate(core->hw, parent_rate);
1606         clk_pm_runtime_put(core);
1607     }
1608     return rate;
1609 }
1610 
1611 /**
1612  * __clk_recalc_rates
1613  * @core: first clk in the subtree
1614  * @msg: notification type (see include/linux/clk.h)
1615  *
1616  * Walks the subtree of clks starting with clk and recalculates rates as it
1617  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1618  * it is assumed that the clock will take on the rate of its parent.
1619  *
1620  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1621  * if necessary.
1622  */
1623 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1624 {
1625     unsigned long old_rate;
1626     unsigned long parent_rate = 0;
1627     struct clk_core *child;
1628 
1629     lockdep_assert_held(&prepare_lock);
1630 
1631     old_rate = core->rate;
1632 
1633     if (core->parent)
1634         parent_rate = core->parent->rate;
1635 
1636     core->rate = clk_recalc(core, parent_rate);
1637 
1638     /*
1639      * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1640      * & ABORT_RATE_CHANGE notifiers
1641      */
1642     if (core->notifier_count && msg)
1643         __clk_notify(core, msg, old_rate, core->rate);
1644 
1645     hlist_for_each_entry(child, &core->children, child_node)
1646         __clk_recalc_rates(child, msg);
1647 }
1648 
1649 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1650 {
1651     if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1652         __clk_recalc_rates(core, 0);
1653 
1654     return clk_core_get_rate_nolock(core);
1655 }
1656 
1657 /**
1658  * clk_get_rate - return the rate of clk
1659  * @clk: the clk whose rate is being returned
1660  *
1661  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1662  * is set, which means a recalc_rate will be issued.
1663  * If clk is NULL then returns 0.
1664  */
1665 unsigned long clk_get_rate(struct clk *clk)
1666 {
1667     unsigned long rate;
1668 
1669     if (!clk)
1670         return 0;
1671 
1672     clk_prepare_lock();
1673     rate = clk_core_get_rate_recalc(clk->core);
1674     clk_prepare_unlock();
1675 
1676     return rate;
1677 }
1678 EXPORT_SYMBOL_GPL(clk_get_rate);
1679 
1680 static int clk_fetch_parent_index(struct clk_core *core,
1681                   struct clk_core *parent)
1682 {
1683     int i;
1684 
1685     if (!parent)
1686         return -EINVAL;
1687 
1688     for (i = 0; i < core->num_parents; i++) {
1689         /* Found it first try! */
1690         if (core->parents[i].core == parent)
1691             return i;
1692 
1693         /* Something else is here, so keep looking */
1694         if (core->parents[i].core)
1695             continue;
1696 
1697         /* Maybe core hasn't been cached but the hw is all we know? */
1698         if (core->parents[i].hw) {
1699             if (core->parents[i].hw == parent->hw)
1700                 break;
1701 
1702             /* Didn't match, but we're expecting a clk_hw */
1703             continue;
1704         }
1705 
1706         /* Maybe it hasn't been cached (clk_set_parent() path) */
1707         if (parent == clk_core_get(core, i))
1708             break;
1709 
1710         /* Fallback to comparing globally unique names */
1711         if (core->parents[i].name &&
1712             !strcmp(parent->name, core->parents[i].name))
1713             break;
1714     }
1715 
1716     if (i == core->num_parents)
1717         return -EINVAL;
1718 
1719     core->parents[i].core = parent;
1720     return i;
1721 }
1722 
1723 /**
1724  * clk_hw_get_parent_index - return the index of the parent clock
1725  * @hw: clk_hw associated with the clk being consumed
1726  *
1727  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1728  * clock does not have a current parent.
1729  */
1730 int clk_hw_get_parent_index(struct clk_hw *hw)
1731 {
1732     struct clk_hw *parent = clk_hw_get_parent(hw);
1733 
1734     if (WARN_ON(parent == NULL))
1735         return -EINVAL;
1736 
1737     return clk_fetch_parent_index(hw->core, parent->core);
1738 }
1739 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1740 
1741 /*
1742  * Update the orphan status of @core and all its children.
1743  */
1744 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1745 {
1746     struct clk_core *child;
1747 
1748     core->orphan = is_orphan;
1749 
1750     hlist_for_each_entry(child, &core->children, child_node)
1751         clk_core_update_orphan_status(child, is_orphan);
1752 }
1753 
1754 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1755 {
1756     bool was_orphan = core->orphan;
1757 
1758     hlist_del(&core->child_node);
1759 
1760     if (new_parent) {
1761         bool becomes_orphan = new_parent->orphan;
1762 
1763         /* avoid duplicate POST_RATE_CHANGE notifications */
1764         if (new_parent->new_child == core)
1765             new_parent->new_child = NULL;
1766 
1767         hlist_add_head(&core->child_node, &new_parent->children);
1768 
1769         if (was_orphan != becomes_orphan)
1770             clk_core_update_orphan_status(core, becomes_orphan);
1771     } else {
1772         hlist_add_head(&core->child_node, &clk_orphan_list);
1773         if (!was_orphan)
1774             clk_core_update_orphan_status(core, true);
1775     }
1776 
1777     core->parent = new_parent;
1778 }
1779 
1780 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1781                        struct clk_core *parent)
1782 {
1783     unsigned long flags;
1784     struct clk_core *old_parent = core->parent;
1785 
1786     /*
1787      * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1788      *
1789      * 2. Migrate prepare state between parents and prevent race with
1790      * clk_enable().
1791      *
1792      * If the clock is not prepared, then a race with
1793      * clk_enable/disable() is impossible since we already have the
1794      * prepare lock (future calls to clk_enable() need to be preceded by
1795      * a clk_prepare()).
1796      *
1797      * If the clock is prepared, migrate the prepared state to the new
1798      * parent and also protect against a race with clk_enable() by
1799      * forcing the clock and the new parent on.  This ensures that all
1800      * future calls to clk_enable() are practically NOPs with respect to
1801      * hardware and software states.
1802      *
1803      * See also: Comment for clk_set_parent() below.
1804      */
1805 
1806     /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1807     if (core->flags & CLK_OPS_PARENT_ENABLE) {
1808         clk_core_prepare_enable(old_parent);
1809         clk_core_prepare_enable(parent);
1810     }
1811 
1812     /* migrate prepare count if > 0 */
1813     if (core->prepare_count) {
1814         clk_core_prepare_enable(parent);
1815         clk_core_enable_lock(core);
1816     }
1817 
1818     /* update the clk tree topology */
1819     flags = clk_enable_lock();
1820     clk_reparent(core, parent);
1821     clk_enable_unlock(flags);
1822 
1823     return old_parent;
1824 }
1825 
1826 static void __clk_set_parent_after(struct clk_core *core,
1827                    struct clk_core *parent,
1828                    struct clk_core *old_parent)
1829 {
1830     /*
1831      * Finish the migration of prepare state and undo the changes done
1832      * for preventing a race with clk_enable().
1833      */
1834     if (core->prepare_count) {
1835         clk_core_disable_lock(core);
1836         clk_core_disable_unprepare(old_parent);
1837     }
1838 
1839     /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1840     if (core->flags & CLK_OPS_PARENT_ENABLE) {
1841         clk_core_disable_unprepare(parent);
1842         clk_core_disable_unprepare(old_parent);
1843     }
1844 }
1845 
1846 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1847                 u8 p_index)
1848 {
1849     unsigned long flags;
1850     int ret = 0;
1851     struct clk_core *old_parent;
1852 
1853     old_parent = __clk_set_parent_before(core, parent);
1854 
1855     trace_clk_set_parent(core, parent);
1856 
1857     /* change clock input source */
1858     if (parent && core->ops->set_parent)
1859         ret = core->ops->set_parent(core->hw, p_index);
1860 
1861     trace_clk_set_parent_complete(core, parent);
1862 
1863     if (ret) {
1864         flags = clk_enable_lock();
1865         clk_reparent(core, old_parent);
1866         clk_enable_unlock(flags);
1867         __clk_set_parent_after(core, old_parent, parent);
1868 
1869         return ret;
1870     }
1871 
1872     __clk_set_parent_after(core, parent, old_parent);
1873 
1874     return 0;
1875 }
1876 
1877 /**
1878  * __clk_speculate_rates
1879  * @core: first clk in the subtree
1880  * @parent_rate: the "future" rate of clk's parent
1881  *
1882  * Walks the subtree of clks starting with clk, speculating rates as it
1883  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1884  *
1885  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1886  * pre-rate change notifications and returns early if no clks in the
1887  * subtree have subscribed to the notifications.  Note that if a clk does not
1888  * implement the .recalc_rate callback then it is assumed that the clock will
1889  * take on the rate of its parent.
1890  */
1891 static int __clk_speculate_rates(struct clk_core *core,
1892                  unsigned long parent_rate)
1893 {
1894     struct clk_core *child;
1895     unsigned long new_rate;
1896     int ret = NOTIFY_DONE;
1897 
1898     lockdep_assert_held(&prepare_lock);
1899 
1900     new_rate = clk_recalc(core, parent_rate);
1901 
1902     /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1903     if (core->notifier_count)
1904         ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1905 
1906     if (ret & NOTIFY_STOP_MASK) {
1907         pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1908                 __func__, core->name, ret);
1909         goto out;
1910     }
1911 
1912     hlist_for_each_entry(child, &core->children, child_node) {
1913         ret = __clk_speculate_rates(child, new_rate);
1914         if (ret & NOTIFY_STOP_MASK)
1915             break;
1916     }
1917 
1918 out:
1919     return ret;
1920 }
1921 
1922 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1923                  struct clk_core *new_parent, u8 p_index)
1924 {
1925     struct clk_core *child;
1926 
1927     core->new_rate = new_rate;
1928     core->new_parent = new_parent;
1929     core->new_parent_index = p_index;
1930     /* include clk in new parent's PRE_RATE_CHANGE notifications */
1931     core->new_child = NULL;
1932     if (new_parent && new_parent != core->parent)
1933         new_parent->new_child = core;
1934 
1935     hlist_for_each_entry(child, &core->children, child_node) {
1936         child->new_rate = clk_recalc(child, new_rate);
1937         clk_calc_subtree(child, child->new_rate, NULL, 0);
1938     }
1939 }
1940 
1941 /*
1942  * calculate the new rates returning the topmost clock that has to be
1943  * changed.
1944  */
1945 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1946                        unsigned long rate)
1947 {
1948     struct clk_core *top = core;
1949     struct clk_core *old_parent, *parent;
1950     unsigned long best_parent_rate = 0;
1951     unsigned long new_rate;
1952     unsigned long min_rate;
1953     unsigned long max_rate;
1954     int p_index = 0;
1955     long ret;
1956 
1957     /* sanity */
1958     if (IS_ERR_OR_NULL(core))
1959         return NULL;
1960 
1961     /* save parent rate, if it exists */
1962     parent = old_parent = core->parent;
1963     if (parent)
1964         best_parent_rate = parent->rate;
1965 
1966     clk_core_get_boundaries(core, &min_rate, &max_rate);
1967 
1968     /* find the closest rate and parent clk/rate */
1969     if (clk_core_can_round(core)) {
1970         struct clk_rate_request req;
1971 
1972         req.rate = rate;
1973         req.min_rate = min_rate;
1974         req.max_rate = max_rate;
1975 
1976         clk_core_init_rate_req(core, &req);
1977 
1978         ret = clk_core_determine_round_nolock(core, &req);
1979         if (ret < 0)
1980             return NULL;
1981 
1982         best_parent_rate = req.best_parent_rate;
1983         new_rate = req.rate;
1984         parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1985 
1986         if (new_rate < min_rate || new_rate > max_rate)
1987             return NULL;
1988     } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1989         /* pass-through clock without adjustable parent */
1990         core->new_rate = core->rate;
1991         return NULL;
1992     } else {
1993         /* pass-through clock with adjustable parent */
1994         top = clk_calc_new_rates(parent, rate);
1995         new_rate = parent->new_rate;
1996         goto out;
1997     }
1998 
1999     /* some clocks must be gated to change parent */
2000     if (parent != old_parent &&
2001         (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2002         pr_debug("%s: %s not gated but wants to reparent\n",
2003              __func__, core->name);
2004         return NULL;
2005     }
2006 
2007     /* try finding the new parent index */
2008     if (parent && core->num_parents > 1) {
2009         p_index = clk_fetch_parent_index(core, parent);
2010         if (p_index < 0) {
2011             pr_debug("%s: clk %s can not be parent of clk %s\n",
2012                  __func__, parent->name, core->name);
2013             return NULL;
2014         }
2015     }
2016 
2017     if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2018         best_parent_rate != parent->rate)
2019         top = clk_calc_new_rates(parent, best_parent_rate);
2020 
2021 out:
2022     clk_calc_subtree(core, new_rate, parent, p_index);
2023 
2024     return top;
2025 }
2026 
2027 /*
2028  * Notify about rate changes in a subtree. Always walk down the whole tree
2029  * so that in case of an error we can walk down the whole tree again and
2030  * abort the change.
2031  */
2032 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2033                           unsigned long event)
2034 {
2035     struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2036     int ret = NOTIFY_DONE;
2037 
2038     if (core->rate == core->new_rate)
2039         return NULL;
2040 
2041     if (core->notifier_count) {
2042         ret = __clk_notify(core, event, core->rate, core->new_rate);
2043         if (ret & NOTIFY_STOP_MASK)
2044             fail_clk = core;
2045     }
2046 
2047     hlist_for_each_entry(child, &core->children, child_node) {
2048         /* Skip children who will be reparented to another clock */
2049         if (child->new_parent && child->new_parent != core)
2050             continue;
2051         tmp_clk = clk_propagate_rate_change(child, event);
2052         if (tmp_clk)
2053             fail_clk = tmp_clk;
2054     }
2055 
2056     /* handle the new child who might not be in core->children yet */
2057     if (core->new_child) {
2058         tmp_clk = clk_propagate_rate_change(core->new_child, event);
2059         if (tmp_clk)
2060             fail_clk = tmp_clk;
2061     }
2062 
2063     return fail_clk;
2064 }
2065 
2066 /*
2067  * walk down a subtree and set the new rates notifying the rate
2068  * change on the way
2069  */
2070 static void clk_change_rate(struct clk_core *core)
2071 {
2072     struct clk_core *child;
2073     struct hlist_node *tmp;
2074     unsigned long old_rate;
2075     unsigned long best_parent_rate = 0;
2076     bool skip_set_rate = false;
2077     struct clk_core *old_parent;
2078     struct clk_core *parent = NULL;
2079 
2080     old_rate = core->rate;
2081 
2082     if (core->new_parent) {
2083         parent = core->new_parent;
2084         best_parent_rate = core->new_parent->rate;
2085     } else if (core->parent) {
2086         parent = core->parent;
2087         best_parent_rate = core->parent->rate;
2088     }
2089 
2090     if (clk_pm_runtime_get(core))
2091         return;
2092 
2093     if (core->flags & CLK_SET_RATE_UNGATE) {
2094         clk_core_prepare(core);
2095         clk_core_enable_lock(core);
2096     }
2097 
2098     if (core->new_parent && core->new_parent != core->parent) {
2099         old_parent = __clk_set_parent_before(core, core->new_parent);
2100         trace_clk_set_parent(core, core->new_parent);
2101 
2102         if (core->ops->set_rate_and_parent) {
2103             skip_set_rate = true;
2104             core->ops->set_rate_and_parent(core->hw, core->new_rate,
2105                     best_parent_rate,
2106                     core->new_parent_index);
2107         } else if (core->ops->set_parent) {
2108             core->ops->set_parent(core->hw, core->new_parent_index);
2109         }
2110 
2111         trace_clk_set_parent_complete(core, core->new_parent);
2112         __clk_set_parent_after(core, core->new_parent, old_parent);
2113     }
2114 
2115     if (core->flags & CLK_OPS_PARENT_ENABLE)
2116         clk_core_prepare_enable(parent);
2117 
2118     trace_clk_set_rate(core, core->new_rate);
2119 
2120     if (!skip_set_rate && core->ops->set_rate)
2121         core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2122 
2123     trace_clk_set_rate_complete(core, core->new_rate);
2124 
2125     core->rate = clk_recalc(core, best_parent_rate);
2126 
2127     if (core->flags & CLK_SET_RATE_UNGATE) {
2128         clk_core_disable_lock(core);
2129         clk_core_unprepare(core);
2130     }
2131 
2132     if (core->flags & CLK_OPS_PARENT_ENABLE)
2133         clk_core_disable_unprepare(parent);
2134 
2135     if (core->notifier_count && old_rate != core->rate)
2136         __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2137 
2138     if (core->flags & CLK_RECALC_NEW_RATES)
2139         (void)clk_calc_new_rates(core, core->new_rate);
2140 
2141     /*
2142      * Use safe iteration, as change_rate can actually swap parents
2143      * for certain clock types.
2144      */
2145     hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2146         /* Skip children who will be reparented to another clock */
2147         if (child->new_parent && child->new_parent != core)
2148             continue;
2149         clk_change_rate(child);
2150     }
2151 
2152     /* handle the new child who might not be in core->children yet */
2153     if (core->new_child)
2154         clk_change_rate(core->new_child);
2155 
2156     clk_pm_runtime_put(core);
2157 }
2158 
2159 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2160                              unsigned long req_rate)
2161 {
2162     int ret, cnt;
2163     struct clk_rate_request req;
2164 
2165     lockdep_assert_held(&prepare_lock);
2166 
2167     if (!core)
2168         return 0;
2169 
2170     /* simulate what the rate would be if it could be freely set */
2171     cnt = clk_core_rate_nuke_protect(core);
2172     if (cnt < 0)
2173         return cnt;
2174 
2175     clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2176     req.rate = req_rate;
2177 
2178     ret = clk_core_round_rate_nolock(core, &req);
2179 
2180     /* restore the protection */
2181     clk_core_rate_restore_protect(core, cnt);
2182 
2183     return ret ? 0 : req.rate;
2184 }
2185 
2186 static int clk_core_set_rate_nolock(struct clk_core *core,
2187                     unsigned long req_rate)
2188 {
2189     struct clk_core *top, *fail_clk;
2190     unsigned long rate;
2191     int ret = 0;
2192 
2193     if (!core)
2194         return 0;
2195 
2196     rate = clk_core_req_round_rate_nolock(core, req_rate);
2197 
2198     /* bail early if nothing to do */
2199     if (rate == clk_core_get_rate_nolock(core))
2200         return 0;
2201 
2202     /* fail on a direct rate set of a protected provider */
2203     if (clk_core_rate_is_protected(core))
2204         return -EBUSY;
2205 
2206     /* calculate new rates and get the topmost changed clock */
2207     top = clk_calc_new_rates(core, req_rate);
2208     if (!top)
2209         return -EINVAL;
2210 
2211     ret = clk_pm_runtime_get(core);
2212     if (ret)
2213         return ret;
2214 
2215     /* notify that we are about to change rates */
2216     fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2217     if (fail_clk) {
2218         pr_debug("%s: failed to set %s rate\n", __func__,
2219                 fail_clk->name);
2220         clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2221         ret = -EBUSY;
2222         goto err;
2223     }
2224 
2225     /* change the rates */
2226     clk_change_rate(top);
2227 
2228     core->req_rate = req_rate;
2229 err:
2230     clk_pm_runtime_put(core);
2231 
2232     return ret;
2233 }
2234 
2235 /**
2236  * clk_set_rate - specify a new rate for clk
2237  * @clk: the clk whose rate is being changed
2238  * @rate: the new rate for clk
2239  *
2240  * In the simplest case clk_set_rate will only adjust the rate of clk.
2241  *
2242  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2243  * propagate up to clk's parent; whether or not this happens depends on the
2244  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2245  * after calling .round_rate then upstream parent propagation is ignored.  If
2246  * *parent_rate comes back with a new rate for clk's parent then we propagate
2247  * up to clk's parent and set its rate.  Upward propagation will continue
2248  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2249  * .round_rate stops requesting changes to clk's parent_rate.
2250  *
2251  * Rate changes are accomplished via tree traversal that also recalculates the
2252  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2253  *
2254  * Returns 0 on success, -EERROR otherwise.
2255  */
2256 int clk_set_rate(struct clk *clk, unsigned long rate)
2257 {
2258     int ret;
2259 
2260     if (!clk)
2261         return 0;
2262 
2263     /* prevent racing with updates to the clock topology */
2264     clk_prepare_lock();
2265 
2266     if (clk->exclusive_count)
2267         clk_core_rate_unprotect(clk->core);
2268 
2269     ret = clk_core_set_rate_nolock(clk->core, rate);
2270 
2271     if (clk->exclusive_count)
2272         clk_core_rate_protect(clk->core);
2273 
2274     clk_prepare_unlock();
2275 
2276     return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(clk_set_rate);
2279 
2280 /**
2281  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2282  * @clk: the clk whose rate is being changed
2283  * @rate: the new rate for clk
2284  *
2285  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2286  * within a critical section
2287  *
2288  * This can be used initially to ensure that at least 1 consumer is
2289  * satisfied when several consumers are competing for exclusivity over the
2290  * same clock provider.
2291  *
2292  * The exclusivity is not applied if setting the rate failed.
2293  *
2294  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2295  * clk_rate_exclusive_put().
2296  *
2297  * Returns 0 on success, -EERROR otherwise.
2298  */
2299 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2300 {
2301     int ret;
2302 
2303     if (!clk)
2304         return 0;
2305 
2306     /* prevent racing with updates to the clock topology */
2307     clk_prepare_lock();
2308 
2309     /*
2310      * The temporary protection removal is not here, on purpose
2311      * This function is meant to be used instead of clk_rate_protect,
2312      * so before the consumer code path protect the clock provider
2313      */
2314 
2315     ret = clk_core_set_rate_nolock(clk->core, rate);
2316     if (!ret) {
2317         clk_core_rate_protect(clk->core);
2318         clk->exclusive_count++;
2319     }
2320 
2321     clk_prepare_unlock();
2322 
2323     return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2326 
2327 /**
2328  * clk_set_rate_range - set a rate range for a clock source
2329  * @clk: clock source
2330  * @min: desired minimum clock rate in Hz, inclusive
2331  * @max: desired maximum clock rate in Hz, inclusive
2332  *
2333  * Returns success (0) or negative errno.
2334  */
2335 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2336 {
2337     int ret = 0;
2338     unsigned long old_min, old_max, rate;
2339 
2340     if (!clk)
2341         return 0;
2342 
2343     trace_clk_set_rate_range(clk->core, min, max);
2344 
2345     if (min > max) {
2346         pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2347                __func__, clk->core->name, clk->dev_id, clk->con_id,
2348                min, max);
2349         return -EINVAL;
2350     }
2351 
2352     clk_prepare_lock();
2353 
2354     if (clk->exclusive_count)
2355         clk_core_rate_unprotect(clk->core);
2356 
2357     /* Save the current values in case we need to rollback the change */
2358     old_min = clk->min_rate;
2359     old_max = clk->max_rate;
2360     clk->min_rate = min;
2361     clk->max_rate = max;
2362 
2363     if (!clk_core_check_boundaries(clk->core, min, max)) {
2364         ret = -EINVAL;
2365         goto out;
2366     }
2367 
2368     /*
2369      * Since the boundaries have been changed, let's give the
2370      * opportunity to the provider to adjust the clock rate based on
2371      * the new boundaries.
2372      *
2373      * We also need to handle the case where the clock is currently
2374      * outside of the boundaries. Clamping the last requested rate
2375      * to the current minimum and maximum will also handle this.
2376      *
2377      * FIXME:
2378      * There is a catch. It may fail for the usual reason (clock
2379      * broken, clock protected, etc) but also because:
2380      * - round_rate() was not favorable and fell on the wrong
2381      *   side of the boundary
2382      * - the determine_rate() callback does not really check for
2383      *   this corner case when determining the rate
2384      */
2385     rate = clamp(clk->core->req_rate, min, max);
2386     ret = clk_core_set_rate_nolock(clk->core, rate);
2387     if (ret) {
2388         /* rollback the changes */
2389         clk->min_rate = old_min;
2390         clk->max_rate = old_max;
2391     }
2392 
2393 out:
2394     if (clk->exclusive_count)
2395         clk_core_rate_protect(clk->core);
2396 
2397     clk_prepare_unlock();
2398 
2399     return ret;
2400 }
2401 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2402 
2403 /**
2404  * clk_set_min_rate - set a minimum clock rate for a clock source
2405  * @clk: clock source
2406  * @rate: desired minimum clock rate in Hz, inclusive
2407  *
2408  * Returns success (0) or negative errno.
2409  */
2410 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2411 {
2412     if (!clk)
2413         return 0;
2414 
2415     trace_clk_set_min_rate(clk->core, rate);
2416 
2417     return clk_set_rate_range(clk, rate, clk->max_rate);
2418 }
2419 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2420 
2421 /**
2422  * clk_set_max_rate - set a maximum clock rate for a clock source
2423  * @clk: clock source
2424  * @rate: desired maximum clock rate in Hz, inclusive
2425  *
2426  * Returns success (0) or negative errno.
2427  */
2428 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2429 {
2430     if (!clk)
2431         return 0;
2432 
2433     trace_clk_set_max_rate(clk->core, rate);
2434 
2435     return clk_set_rate_range(clk, clk->min_rate, rate);
2436 }
2437 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2438 
2439 /**
2440  * clk_get_parent - return the parent of a clk
2441  * @clk: the clk whose parent gets returned
2442  *
2443  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2444  */
2445 struct clk *clk_get_parent(struct clk *clk)
2446 {
2447     struct clk *parent;
2448 
2449     if (!clk)
2450         return NULL;
2451 
2452     clk_prepare_lock();
2453     /* TODO: Create a per-user clk and change callers to call clk_put */
2454     parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2455     clk_prepare_unlock();
2456 
2457     return parent;
2458 }
2459 EXPORT_SYMBOL_GPL(clk_get_parent);
2460 
2461 static struct clk_core *__clk_init_parent(struct clk_core *core)
2462 {
2463     u8 index = 0;
2464 
2465     if (core->num_parents > 1 && core->ops->get_parent)
2466         index = core->ops->get_parent(core->hw);
2467 
2468     return clk_core_get_parent_by_index(core, index);
2469 }
2470 
2471 static void clk_core_reparent(struct clk_core *core,
2472                   struct clk_core *new_parent)
2473 {
2474     clk_reparent(core, new_parent);
2475     __clk_recalc_accuracies(core);
2476     __clk_recalc_rates(core, POST_RATE_CHANGE);
2477 }
2478 
2479 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2480 {
2481     if (!hw)
2482         return;
2483 
2484     clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2485 }
2486 
2487 /**
2488  * clk_has_parent - check if a clock is a possible parent for another
2489  * @clk: clock source
2490  * @parent: parent clock source
2491  *
2492  * This function can be used in drivers that need to check that a clock can be
2493  * the parent of another without actually changing the parent.
2494  *
2495  * Returns true if @parent is a possible parent for @clk, false otherwise.
2496  */
2497 bool clk_has_parent(struct clk *clk, struct clk *parent)
2498 {
2499     struct clk_core *core, *parent_core;
2500     int i;
2501 
2502     /* NULL clocks should be nops, so return success if either is NULL. */
2503     if (!clk || !parent)
2504         return true;
2505 
2506     core = clk->core;
2507     parent_core = parent->core;
2508 
2509     /* Optimize for the case where the parent is already the parent. */
2510     if (core->parent == parent_core)
2511         return true;
2512 
2513     for (i = 0; i < core->num_parents; i++)
2514         if (!strcmp(core->parents[i].name, parent_core->name))
2515             return true;
2516 
2517     return false;
2518 }
2519 EXPORT_SYMBOL_GPL(clk_has_parent);
2520 
2521 static int clk_core_set_parent_nolock(struct clk_core *core,
2522                       struct clk_core *parent)
2523 {
2524     int ret = 0;
2525     int p_index = 0;
2526     unsigned long p_rate = 0;
2527 
2528     lockdep_assert_held(&prepare_lock);
2529 
2530     if (!core)
2531         return 0;
2532 
2533     if (core->parent == parent)
2534         return 0;
2535 
2536     /* verify ops for multi-parent clks */
2537     if (core->num_parents > 1 && !core->ops->set_parent)
2538         return -EPERM;
2539 
2540     /* check that we are allowed to re-parent if the clock is in use */
2541     if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2542         return -EBUSY;
2543 
2544     if (clk_core_rate_is_protected(core))
2545         return -EBUSY;
2546 
2547     /* try finding the new parent index */
2548     if (parent) {
2549         p_index = clk_fetch_parent_index(core, parent);
2550         if (p_index < 0) {
2551             pr_debug("%s: clk %s can not be parent of clk %s\n",
2552                     __func__, parent->name, core->name);
2553             return p_index;
2554         }
2555         p_rate = parent->rate;
2556     }
2557 
2558     ret = clk_pm_runtime_get(core);
2559     if (ret)
2560         return ret;
2561 
2562     /* propagate PRE_RATE_CHANGE notifications */
2563     ret = __clk_speculate_rates(core, p_rate);
2564 
2565     /* abort if a driver objects */
2566     if (ret & NOTIFY_STOP_MASK)
2567         goto runtime_put;
2568 
2569     /* do the re-parent */
2570     ret = __clk_set_parent(core, parent, p_index);
2571 
2572     /* propagate rate an accuracy recalculation accordingly */
2573     if (ret) {
2574         __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2575     } else {
2576         __clk_recalc_rates(core, POST_RATE_CHANGE);
2577         __clk_recalc_accuracies(core);
2578     }
2579 
2580 runtime_put:
2581     clk_pm_runtime_put(core);
2582 
2583     return ret;
2584 }
2585 
2586 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2587 {
2588     return clk_core_set_parent_nolock(hw->core, parent->core);
2589 }
2590 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2591 
2592 /**
2593  * clk_set_parent - switch the parent of a mux clk
2594  * @clk: the mux clk whose input we are switching
2595  * @parent: the new input to clk
2596  *
2597  * Re-parent clk to use parent as its new input source.  If clk is in
2598  * prepared state, the clk will get enabled for the duration of this call. If
2599  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2600  * that, the reparenting is glitchy in hardware, etc), use the
2601  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2602  *
2603  * After successfully changing clk's parent clk_set_parent will update the
2604  * clk topology, sysfs topology and propagate rate recalculation via
2605  * __clk_recalc_rates.
2606  *
2607  * Returns 0 on success, -EERROR otherwise.
2608  */
2609 int clk_set_parent(struct clk *clk, struct clk *parent)
2610 {
2611     int ret;
2612 
2613     if (!clk)
2614         return 0;
2615 
2616     clk_prepare_lock();
2617 
2618     if (clk->exclusive_count)
2619         clk_core_rate_unprotect(clk->core);
2620 
2621     ret = clk_core_set_parent_nolock(clk->core,
2622                      parent ? parent->core : NULL);
2623 
2624     if (clk->exclusive_count)
2625         clk_core_rate_protect(clk->core);
2626 
2627     clk_prepare_unlock();
2628 
2629     return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(clk_set_parent);
2632 
2633 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2634 {
2635     int ret = -EINVAL;
2636 
2637     lockdep_assert_held(&prepare_lock);
2638 
2639     if (!core)
2640         return 0;
2641 
2642     if (clk_core_rate_is_protected(core))
2643         return -EBUSY;
2644 
2645     trace_clk_set_phase(core, degrees);
2646 
2647     if (core->ops->set_phase) {
2648         ret = core->ops->set_phase(core->hw, degrees);
2649         if (!ret)
2650             core->phase = degrees;
2651     }
2652 
2653     trace_clk_set_phase_complete(core, degrees);
2654 
2655     return ret;
2656 }
2657 
2658 /**
2659  * clk_set_phase - adjust the phase shift of a clock signal
2660  * @clk: clock signal source
2661  * @degrees: number of degrees the signal is shifted
2662  *
2663  * Shifts the phase of a clock signal by the specified
2664  * degrees. Returns 0 on success, -EERROR otherwise.
2665  *
2666  * This function makes no distinction about the input or reference
2667  * signal that we adjust the clock signal phase against. For example
2668  * phase locked-loop clock signal generators we may shift phase with
2669  * respect to feedback clock signal input, but for other cases the
2670  * clock phase may be shifted with respect to some other, unspecified
2671  * signal.
2672  *
2673  * Additionally the concept of phase shift does not propagate through
2674  * the clock tree hierarchy, which sets it apart from clock rates and
2675  * clock accuracy. A parent clock phase attribute does not have an
2676  * impact on the phase attribute of a child clock.
2677  */
2678 int clk_set_phase(struct clk *clk, int degrees)
2679 {
2680     int ret;
2681 
2682     if (!clk)
2683         return 0;
2684 
2685     /* sanity check degrees */
2686     degrees %= 360;
2687     if (degrees < 0)
2688         degrees += 360;
2689 
2690     clk_prepare_lock();
2691 
2692     if (clk->exclusive_count)
2693         clk_core_rate_unprotect(clk->core);
2694 
2695     ret = clk_core_set_phase_nolock(clk->core, degrees);
2696 
2697     if (clk->exclusive_count)
2698         clk_core_rate_protect(clk->core);
2699 
2700     clk_prepare_unlock();
2701 
2702     return ret;
2703 }
2704 EXPORT_SYMBOL_GPL(clk_set_phase);
2705 
2706 static int clk_core_get_phase(struct clk_core *core)
2707 {
2708     int ret;
2709 
2710     lockdep_assert_held(&prepare_lock);
2711     if (!core->ops->get_phase)
2712         return 0;
2713 
2714     /* Always try to update cached phase if possible */
2715     ret = core->ops->get_phase(core->hw);
2716     if (ret >= 0)
2717         core->phase = ret;
2718 
2719     return ret;
2720 }
2721 
2722 /**
2723  * clk_get_phase - return the phase shift of a clock signal
2724  * @clk: clock signal source
2725  *
2726  * Returns the phase shift of a clock node in degrees, otherwise returns
2727  * -EERROR.
2728  */
2729 int clk_get_phase(struct clk *clk)
2730 {
2731     int ret;
2732 
2733     if (!clk)
2734         return 0;
2735 
2736     clk_prepare_lock();
2737     ret = clk_core_get_phase(clk->core);
2738     clk_prepare_unlock();
2739 
2740     return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(clk_get_phase);
2743 
2744 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2745 {
2746     /* Assume a default value of 50% */
2747     core->duty.num = 1;
2748     core->duty.den = 2;
2749 }
2750 
2751 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2752 
2753 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2754 {
2755     struct clk_duty *duty = &core->duty;
2756     int ret = 0;
2757 
2758     if (!core->ops->get_duty_cycle)
2759         return clk_core_update_duty_cycle_parent_nolock(core);
2760 
2761     ret = core->ops->get_duty_cycle(core->hw, duty);
2762     if (ret)
2763         goto reset;
2764 
2765     /* Don't trust the clock provider too much */
2766     if (duty->den == 0 || duty->num > duty->den) {
2767         ret = -EINVAL;
2768         goto reset;
2769     }
2770 
2771     return 0;
2772 
2773 reset:
2774     clk_core_reset_duty_cycle_nolock(core);
2775     return ret;
2776 }
2777 
2778 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2779 {
2780     int ret = 0;
2781 
2782     if (core->parent &&
2783         core->flags & CLK_DUTY_CYCLE_PARENT) {
2784         ret = clk_core_update_duty_cycle_nolock(core->parent);
2785         memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2786     } else {
2787         clk_core_reset_duty_cycle_nolock(core);
2788     }
2789 
2790     return ret;
2791 }
2792 
2793 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2794                          struct clk_duty *duty);
2795 
2796 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2797                       struct clk_duty *duty)
2798 {
2799     int ret;
2800 
2801     lockdep_assert_held(&prepare_lock);
2802 
2803     if (clk_core_rate_is_protected(core))
2804         return -EBUSY;
2805 
2806     trace_clk_set_duty_cycle(core, duty);
2807 
2808     if (!core->ops->set_duty_cycle)
2809         return clk_core_set_duty_cycle_parent_nolock(core, duty);
2810 
2811     ret = core->ops->set_duty_cycle(core->hw, duty);
2812     if (!ret)
2813         memcpy(&core->duty, duty, sizeof(*duty));
2814 
2815     trace_clk_set_duty_cycle_complete(core, duty);
2816 
2817     return ret;
2818 }
2819 
2820 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2821                          struct clk_duty *duty)
2822 {
2823     int ret = 0;
2824 
2825     if (core->parent &&
2826         core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2827         ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2828         memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2829     }
2830 
2831     return ret;
2832 }
2833 
2834 /**
2835  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2836  * @clk: clock signal source
2837  * @num: numerator of the duty cycle ratio to be applied
2838  * @den: denominator of the duty cycle ratio to be applied
2839  *
2840  * Apply the duty cycle ratio if the ratio is valid and the clock can
2841  * perform this operation
2842  *
2843  * Returns (0) on success, a negative errno otherwise.
2844  */
2845 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2846 {
2847     int ret;
2848     struct clk_duty duty;
2849 
2850     if (!clk)
2851         return 0;
2852 
2853     /* sanity check the ratio */
2854     if (den == 0 || num > den)
2855         return -EINVAL;
2856 
2857     duty.num = num;
2858     duty.den = den;
2859 
2860     clk_prepare_lock();
2861 
2862     if (clk->exclusive_count)
2863         clk_core_rate_unprotect(clk->core);
2864 
2865     ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2866 
2867     if (clk->exclusive_count)
2868         clk_core_rate_protect(clk->core);
2869 
2870     clk_prepare_unlock();
2871 
2872     return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2875 
2876 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2877                       unsigned int scale)
2878 {
2879     struct clk_duty *duty = &core->duty;
2880     int ret;
2881 
2882     clk_prepare_lock();
2883 
2884     ret = clk_core_update_duty_cycle_nolock(core);
2885     if (!ret)
2886         ret = mult_frac(scale, duty->num, duty->den);
2887 
2888     clk_prepare_unlock();
2889 
2890     return ret;
2891 }
2892 
2893 /**
2894  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2895  * @clk: clock signal source
2896  * @scale: scaling factor to be applied to represent the ratio as an integer
2897  *
2898  * Returns the duty cycle ratio of a clock node multiplied by the provided
2899  * scaling factor, or negative errno on error.
2900  */
2901 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2902 {
2903     if (!clk)
2904         return 0;
2905 
2906     return clk_core_get_scaled_duty_cycle(clk->core, scale);
2907 }
2908 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2909 
2910 /**
2911  * clk_is_match - check if two clk's point to the same hardware clock
2912  * @p: clk compared against q
2913  * @q: clk compared against p
2914  *
2915  * Returns true if the two struct clk pointers both point to the same hardware
2916  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2917  * share the same struct clk_core object.
2918  *
2919  * Returns false otherwise. Note that two NULL clks are treated as matching.
2920  */
2921 bool clk_is_match(const struct clk *p, const struct clk *q)
2922 {
2923     /* trivial case: identical struct clk's or both NULL */
2924     if (p == q)
2925         return true;
2926 
2927     /* true if clk->core pointers match. Avoid dereferencing garbage */
2928     if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2929         if (p->core == q->core)
2930             return true;
2931 
2932     return false;
2933 }
2934 EXPORT_SYMBOL_GPL(clk_is_match);
2935 
2936 /***        debugfs support        ***/
2937 
2938 #ifdef CONFIG_DEBUG_FS
2939 #include <linux/debugfs.h>
2940 
2941 static struct dentry *rootdir;
2942 static int inited = 0;
2943 static DEFINE_MUTEX(clk_debug_lock);
2944 static HLIST_HEAD(clk_debug_list);
2945 
2946 static struct hlist_head *orphan_list[] = {
2947     &clk_orphan_list,
2948     NULL,
2949 };
2950 
2951 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2952                  int level)
2953 {
2954     int phase;
2955 
2956     seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2957            level * 3 + 1, "",
2958            30 - level * 3, c->name,
2959            c->enable_count, c->prepare_count, c->protect_count,
2960            clk_core_get_rate_recalc(c),
2961            clk_core_get_accuracy_recalc(c));
2962 
2963     phase = clk_core_get_phase(c);
2964     if (phase >= 0)
2965         seq_printf(s, "%5d", phase);
2966     else
2967         seq_puts(s, "-----");
2968 
2969     seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
2970 
2971     if (c->ops->is_enabled)
2972         seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
2973     else if (!c->ops->enable)
2974         seq_printf(s, " %9c\n", 'Y');
2975     else
2976         seq_printf(s, " %9c\n", '?');
2977 }
2978 
2979 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2980                      int level)
2981 {
2982     struct clk_core *child;
2983 
2984     clk_pm_runtime_get(c);
2985     clk_summary_show_one(s, c, level);
2986     clk_pm_runtime_put(c);
2987 
2988     hlist_for_each_entry(child, &c->children, child_node)
2989         clk_summary_show_subtree(s, child, level + 1);
2990 }
2991 
2992 static int clk_summary_show(struct seq_file *s, void *data)
2993 {
2994     struct clk_core *c;
2995     struct hlist_head **lists = (struct hlist_head **)s->private;
2996 
2997     seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
2998     seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
2999     seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3000 
3001     clk_prepare_lock();
3002 
3003     for (; *lists; lists++)
3004         hlist_for_each_entry(c, *lists, child_node)
3005             clk_summary_show_subtree(s, c, 0);
3006 
3007     clk_prepare_unlock();
3008 
3009     return 0;
3010 }
3011 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3012 
3013 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3014 {
3015     int phase;
3016     unsigned long min_rate, max_rate;
3017 
3018     clk_core_get_boundaries(c, &min_rate, &max_rate);
3019 
3020     /* This should be JSON format, i.e. elements separated with a comma */
3021     seq_printf(s, "\"%s\": { ", c->name);
3022     seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3023     seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3024     seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3025     seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3026     seq_printf(s, "\"min_rate\": %lu,", min_rate);
3027     seq_printf(s, "\"max_rate\": %lu,", max_rate);
3028     seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3029     phase = clk_core_get_phase(c);
3030     if (phase >= 0)
3031         seq_printf(s, "\"phase\": %d,", phase);
3032     seq_printf(s, "\"duty_cycle\": %u",
3033            clk_core_get_scaled_duty_cycle(c, 100000));
3034 }
3035 
3036 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3037 {
3038     struct clk_core *child;
3039 
3040     clk_dump_one(s, c, level);
3041 
3042     hlist_for_each_entry(child, &c->children, child_node) {
3043         seq_putc(s, ',');
3044         clk_dump_subtree(s, child, level + 1);
3045     }
3046 
3047     seq_putc(s, '}');
3048 }
3049 
3050 static int clk_dump_show(struct seq_file *s, void *data)
3051 {
3052     struct clk_core *c;
3053     bool first_node = true;
3054     struct hlist_head **lists = (struct hlist_head **)s->private;
3055 
3056     seq_putc(s, '{');
3057     clk_prepare_lock();
3058 
3059     for (; *lists; lists++) {
3060         hlist_for_each_entry(c, *lists, child_node) {
3061             if (!first_node)
3062                 seq_putc(s, ',');
3063             first_node = false;
3064             clk_dump_subtree(s, c, 0);
3065         }
3066     }
3067 
3068     clk_prepare_unlock();
3069 
3070     seq_puts(s, "}\n");
3071     return 0;
3072 }
3073 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3074 
3075 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3076 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3077 /*
3078  * This can be dangerous, therefore don't provide any real compile time
3079  * configuration option for this feature.
3080  * People who want to use this will need to modify the source code directly.
3081  */
3082 static int clk_rate_set(void *data, u64 val)
3083 {
3084     struct clk_core *core = data;
3085     int ret;
3086 
3087     clk_prepare_lock();
3088     ret = clk_core_set_rate_nolock(core, val);
3089     clk_prepare_unlock();
3090 
3091     return ret;
3092 }
3093 
3094 #define clk_rate_mode   0644
3095 
3096 static int clk_prepare_enable_set(void *data, u64 val)
3097 {
3098     struct clk_core *core = data;
3099     int ret = 0;
3100 
3101     if (val)
3102         ret = clk_prepare_enable(core->hw->clk);
3103     else
3104         clk_disable_unprepare(core->hw->clk);
3105 
3106     return ret;
3107 }
3108 
3109 static int clk_prepare_enable_get(void *data, u64 *val)
3110 {
3111     struct clk_core *core = data;
3112 
3113     *val = core->enable_count && core->prepare_count;
3114     return 0;
3115 }
3116 
3117 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3118              clk_prepare_enable_set, "%llu\n");
3119 
3120 #else
3121 #define clk_rate_set    NULL
3122 #define clk_rate_mode   0444
3123 #endif
3124 
3125 static int clk_rate_get(void *data, u64 *val)
3126 {
3127     struct clk_core *core = data;
3128 
3129     clk_prepare_lock();
3130     *val = clk_core_get_rate_recalc(core);
3131     clk_prepare_unlock();
3132 
3133     return 0;
3134 }
3135 
3136 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3137 
3138 static const struct {
3139     unsigned long flag;
3140     const char *name;
3141 } clk_flags[] = {
3142 #define ENTRY(f) { f, #f }
3143     ENTRY(CLK_SET_RATE_GATE),
3144     ENTRY(CLK_SET_PARENT_GATE),
3145     ENTRY(CLK_SET_RATE_PARENT),
3146     ENTRY(CLK_IGNORE_UNUSED),
3147     ENTRY(CLK_GET_RATE_NOCACHE),
3148     ENTRY(CLK_SET_RATE_NO_REPARENT),
3149     ENTRY(CLK_GET_ACCURACY_NOCACHE),
3150     ENTRY(CLK_RECALC_NEW_RATES),
3151     ENTRY(CLK_SET_RATE_UNGATE),
3152     ENTRY(CLK_IS_CRITICAL),
3153     ENTRY(CLK_OPS_PARENT_ENABLE),
3154     ENTRY(CLK_DUTY_CYCLE_PARENT),
3155 #undef ENTRY
3156 };
3157 
3158 static int clk_flags_show(struct seq_file *s, void *data)
3159 {
3160     struct clk_core *core = s->private;
3161     unsigned long flags = core->flags;
3162     unsigned int i;
3163 
3164     for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3165         if (flags & clk_flags[i].flag) {
3166             seq_printf(s, "%s\n", clk_flags[i].name);
3167             flags &= ~clk_flags[i].flag;
3168         }
3169     }
3170     if (flags) {
3171         /* Unknown flags */
3172         seq_printf(s, "0x%lx\n", flags);
3173     }
3174 
3175     return 0;
3176 }
3177 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3178 
3179 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3180                  unsigned int i, char terminator)
3181 {
3182     struct clk_core *parent;
3183 
3184     /*
3185      * Go through the following options to fetch a parent's name.
3186      *
3187      * 1. Fetch the registered parent clock and use its name
3188      * 2. Use the global (fallback) name if specified
3189      * 3. Use the local fw_name if provided
3190      * 4. Fetch parent clock's clock-output-name if DT index was set
3191      *
3192      * This may still fail in some cases, such as when the parent is
3193      * specified directly via a struct clk_hw pointer, but it isn't
3194      * registered (yet).
3195      */
3196     parent = clk_core_get_parent_by_index(core, i);
3197     if (parent)
3198         seq_puts(s, parent->name);
3199     else if (core->parents[i].name)
3200         seq_puts(s, core->parents[i].name);
3201     else if (core->parents[i].fw_name)
3202         seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3203     else if (core->parents[i].index >= 0)
3204         seq_puts(s,
3205              of_clk_get_parent_name(core->of_node,
3206                         core->parents[i].index));
3207     else
3208         seq_puts(s, "(missing)");
3209 
3210     seq_putc(s, terminator);
3211 }
3212 
3213 static int possible_parents_show(struct seq_file *s, void *data)
3214 {
3215     struct clk_core *core = s->private;
3216     int i;
3217 
3218     for (i = 0; i < core->num_parents - 1; i++)
3219         possible_parent_show(s, core, i, ' ');
3220 
3221     possible_parent_show(s, core, i, '\n');
3222 
3223     return 0;
3224 }
3225 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3226 
3227 static int current_parent_show(struct seq_file *s, void *data)
3228 {
3229     struct clk_core *core = s->private;
3230 
3231     if (core->parent)
3232         seq_printf(s, "%s\n", core->parent->name);
3233 
3234     return 0;
3235 }
3236 DEFINE_SHOW_ATTRIBUTE(current_parent);
3237 
3238 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3239 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3240                     size_t count, loff_t *ppos)
3241 {
3242     struct seq_file *s = file->private_data;
3243     struct clk_core *core = s->private;
3244     struct clk_core *parent;
3245     u8 idx;
3246     int err;
3247 
3248     err = kstrtou8_from_user(ubuf, count, 0, &idx);
3249     if (err < 0)
3250         return err;
3251 
3252     parent = clk_core_get_parent_by_index(core, idx);
3253     if (!parent)
3254         return -ENOENT;
3255 
3256     clk_prepare_lock();
3257     err = clk_core_set_parent_nolock(core, parent);
3258     clk_prepare_unlock();
3259     if (err)
3260         return err;
3261 
3262     return count;
3263 }
3264 
3265 static const struct file_operations current_parent_rw_fops = {
3266     .open       = current_parent_open,
3267     .write      = current_parent_write,
3268     .read       = seq_read,
3269     .llseek     = seq_lseek,
3270     .release    = single_release,
3271 };
3272 #endif
3273 
3274 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3275 {
3276     struct clk_core *core = s->private;
3277     struct clk_duty *duty = &core->duty;
3278 
3279     seq_printf(s, "%u/%u\n", duty->num, duty->den);
3280 
3281     return 0;
3282 }
3283 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3284 
3285 static int clk_min_rate_show(struct seq_file *s, void *data)
3286 {
3287     struct clk_core *core = s->private;
3288     unsigned long min_rate, max_rate;
3289 
3290     clk_prepare_lock();
3291     clk_core_get_boundaries(core, &min_rate, &max_rate);
3292     clk_prepare_unlock();
3293     seq_printf(s, "%lu\n", min_rate);
3294 
3295     return 0;
3296 }
3297 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3298 
3299 static int clk_max_rate_show(struct seq_file *s, void *data)
3300 {
3301     struct clk_core *core = s->private;
3302     unsigned long min_rate, max_rate;
3303 
3304     clk_prepare_lock();
3305     clk_core_get_boundaries(core, &min_rate, &max_rate);
3306     clk_prepare_unlock();
3307     seq_printf(s, "%lu\n", max_rate);
3308 
3309     return 0;
3310 }
3311 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3312 
3313 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3314 {
3315     struct dentry *root;
3316 
3317     if (!core || !pdentry)
3318         return;
3319 
3320     root = debugfs_create_dir(core->name, pdentry);
3321     core->dentry = root;
3322 
3323     debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3324                 &clk_rate_fops);
3325     debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3326     debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3327     debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3328     debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3329     debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3330     debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3331     debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3332     debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3333     debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3334     debugfs_create_file("clk_duty_cycle", 0444, root, core,
3335                 &clk_duty_cycle_fops);
3336 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3337     debugfs_create_file("clk_prepare_enable", 0644, root, core,
3338                 &clk_prepare_enable_fops);
3339 
3340     if (core->num_parents > 1)
3341         debugfs_create_file("clk_parent", 0644, root, core,
3342                     &current_parent_rw_fops);
3343     else
3344 #endif
3345     if (core->num_parents > 0)
3346         debugfs_create_file("clk_parent", 0444, root, core,
3347                     &current_parent_fops);
3348 
3349     if (core->num_parents > 1)
3350         debugfs_create_file("clk_possible_parents", 0444, root, core,
3351                     &possible_parents_fops);
3352 
3353     if (core->ops->debug_init)
3354         core->ops->debug_init(core->hw, core->dentry);
3355 }
3356 
3357 /**
3358  * clk_debug_register - add a clk node to the debugfs clk directory
3359  * @core: the clk being added to the debugfs clk directory
3360  *
3361  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3362  * initialized.  Otherwise it bails out early since the debugfs clk directory
3363  * will be created lazily by clk_debug_init as part of a late_initcall.
3364  */
3365 static void clk_debug_register(struct clk_core *core)
3366 {
3367     mutex_lock(&clk_debug_lock);
3368     hlist_add_head(&core->debug_node, &clk_debug_list);
3369     if (inited)
3370         clk_debug_create_one(core, rootdir);
3371     mutex_unlock(&clk_debug_lock);
3372 }
3373 
3374  /**
3375  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3376  * @core: the clk being removed from the debugfs clk directory
3377  *
3378  * Dynamically removes a clk and all its child nodes from the
3379  * debugfs clk directory if clk->dentry points to debugfs created by
3380  * clk_debug_register in __clk_core_init.
3381  */
3382 static void clk_debug_unregister(struct clk_core *core)
3383 {
3384     mutex_lock(&clk_debug_lock);
3385     hlist_del_init(&core->debug_node);
3386     debugfs_remove_recursive(core->dentry);
3387     core->dentry = NULL;
3388     mutex_unlock(&clk_debug_lock);
3389 }
3390 
3391 /**
3392  * clk_debug_init - lazily populate the debugfs clk directory
3393  *
3394  * clks are often initialized very early during boot before memory can be
3395  * dynamically allocated and well before debugfs is setup. This function
3396  * populates the debugfs clk directory once at boot-time when we know that
3397  * debugfs is setup. It should only be called once at boot-time, all other clks
3398  * added dynamically will be done so with clk_debug_register.
3399  */
3400 static int __init clk_debug_init(void)
3401 {
3402     struct clk_core *core;
3403 
3404 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3405     pr_warn("\n");
3406     pr_warn("********************************************************************\n");
3407     pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3408     pr_warn("**                                                                **\n");
3409     pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3410     pr_warn("**                                                                **\n");
3411     pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3412     pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3413     pr_warn("** to userspace, which may compromise security on your system.    **\n");
3414     pr_warn("**                                                                **\n");
3415     pr_warn("** If you see this message and you are not debugging the          **\n");
3416     pr_warn("** kernel, report this immediately to your vendor!                **\n");
3417     pr_warn("**                                                                **\n");
3418     pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3419     pr_warn("********************************************************************\n");
3420 #endif
3421 
3422     rootdir = debugfs_create_dir("clk", NULL);
3423 
3424     debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3425                 &clk_summary_fops);
3426     debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3427                 &clk_dump_fops);
3428     debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3429                 &clk_summary_fops);
3430     debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3431                 &clk_dump_fops);
3432 
3433     mutex_lock(&clk_debug_lock);
3434     hlist_for_each_entry(core, &clk_debug_list, debug_node)
3435         clk_debug_create_one(core, rootdir);
3436 
3437     inited = 1;
3438     mutex_unlock(&clk_debug_lock);
3439 
3440     return 0;
3441 }
3442 late_initcall(clk_debug_init);
3443 #else
3444 static inline void clk_debug_register(struct clk_core *core) { }
3445 static inline void clk_debug_unregister(struct clk_core *core)
3446 {
3447 }
3448 #endif
3449 
3450 static void clk_core_reparent_orphans_nolock(void)
3451 {
3452     struct clk_core *orphan;
3453     struct hlist_node *tmp2;
3454 
3455     /*
3456      * walk the list of orphan clocks and reparent any that newly finds a
3457      * parent.
3458      */
3459     hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3460         struct clk_core *parent = __clk_init_parent(orphan);
3461 
3462         /*
3463          * We need to use __clk_set_parent_before() and _after() to
3464          * to properly migrate any prepare/enable count of the orphan
3465          * clock. This is important for CLK_IS_CRITICAL clocks, which
3466          * are enabled during init but might not have a parent yet.
3467          */
3468         if (parent) {
3469             /* update the clk tree topology */
3470             __clk_set_parent_before(orphan, parent);
3471             __clk_set_parent_after(orphan, parent, NULL);
3472             __clk_recalc_accuracies(orphan);
3473             __clk_recalc_rates(orphan, 0);
3474 
3475             /*
3476              * __clk_init_parent() will set the initial req_rate to
3477              * 0 if the clock doesn't have clk_ops::recalc_rate and
3478              * is an orphan when it's registered.
3479              *
3480              * 'req_rate' is used by clk_set_rate_range() and
3481              * clk_put() to trigger a clk_set_rate() call whenever
3482              * the boundaries are modified. Let's make sure
3483              * 'req_rate' is set to something non-zero so that
3484              * clk_set_rate_range() doesn't drop the frequency.
3485              */
3486             orphan->req_rate = orphan->rate;
3487         }
3488     }
3489 }
3490 
3491 /**
3492  * __clk_core_init - initialize the data structures in a struct clk_core
3493  * @core:   clk_core being initialized
3494  *
3495  * Initializes the lists in struct clk_core, queries the hardware for the
3496  * parent and rate and sets them both.
3497  */
3498 static int __clk_core_init(struct clk_core *core)
3499 {
3500     int ret;
3501     struct clk_core *parent;
3502     unsigned long rate;
3503     int phase;
3504 
3505     clk_prepare_lock();
3506 
3507     /*
3508      * Set hw->core after grabbing the prepare_lock to synchronize with
3509      * callers of clk_core_fill_parent_index() where we treat hw->core
3510      * being NULL as the clk not being registered yet. This is crucial so
3511      * that clks aren't parented until their parent is fully registered.
3512      */
3513     core->hw->core = core;
3514 
3515     ret = clk_pm_runtime_get(core);
3516     if (ret)
3517         goto unlock;
3518 
3519     /* check to see if a clock with this name is already registered */
3520     if (clk_core_lookup(core->name)) {
3521         pr_debug("%s: clk %s already initialized\n",
3522                 __func__, core->name);
3523         ret = -EEXIST;
3524         goto out;
3525     }
3526 
3527     /* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3528     if (core->ops->set_rate &&
3529         !((core->ops->round_rate || core->ops->determine_rate) &&
3530           core->ops->recalc_rate)) {
3531         pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3532                __func__, core->name);
3533         ret = -EINVAL;
3534         goto out;
3535     }
3536 
3537     if (core->ops->set_parent && !core->ops->get_parent) {
3538         pr_err("%s: %s must implement .get_parent & .set_parent\n",
3539                __func__, core->name);
3540         ret = -EINVAL;
3541         goto out;
3542     }
3543 
3544     if (core->num_parents > 1 && !core->ops->get_parent) {
3545         pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3546                __func__, core->name);
3547         ret = -EINVAL;
3548         goto out;
3549     }
3550 
3551     if (core->ops->set_rate_and_parent &&
3552             !(core->ops->set_parent && core->ops->set_rate)) {
3553         pr_err("%s: %s must implement .set_parent & .set_rate\n",
3554                 __func__, core->name);
3555         ret = -EINVAL;
3556         goto out;
3557     }
3558 
3559     /*
3560      * optional platform-specific magic
3561      *
3562      * The .init callback is not used by any of the basic clock types, but
3563      * exists for weird hardware that must perform initialization magic for
3564      * CCF to get an accurate view of clock for any other callbacks. It may
3565      * also be used needs to perform dynamic allocations. Such allocation
3566      * must be freed in the terminate() callback.
3567      * This callback shall not be used to initialize the parameters state,
3568      * such as rate, parent, etc ...
3569      *
3570      * If it exist, this callback should called before any other callback of
3571      * the clock
3572      */
3573     if (core->ops->init) {
3574         ret = core->ops->init(core->hw);
3575         if (ret)
3576             goto out;
3577     }
3578 
3579     parent = core->parent = __clk_init_parent(core);
3580 
3581     /*
3582      * Populate core->parent if parent has already been clk_core_init'd. If
3583      * parent has not yet been clk_core_init'd then place clk in the orphan
3584      * list.  If clk doesn't have any parents then place it in the root
3585      * clk list.
3586      *
3587      * Every time a new clk is clk_init'd then we walk the list of orphan
3588      * clocks and re-parent any that are children of the clock currently
3589      * being clk_init'd.
3590      */
3591     if (parent) {
3592         hlist_add_head(&core->child_node, &parent->children);
3593         core->orphan = parent->orphan;
3594     } else if (!core->num_parents) {
3595         hlist_add_head(&core->child_node, &clk_root_list);
3596         core->orphan = false;
3597     } else {
3598         hlist_add_head(&core->child_node, &clk_orphan_list);
3599         core->orphan = true;
3600     }
3601 
3602     /*
3603      * Set clk's accuracy.  The preferred method is to use
3604      * .recalc_accuracy. For simple clocks and lazy developers the default
3605      * fallback is to use the parent's accuracy.  If a clock doesn't have a
3606      * parent (or is orphaned) then accuracy is set to zero (perfect
3607      * clock).
3608      */
3609     if (core->ops->recalc_accuracy)
3610         core->accuracy = core->ops->recalc_accuracy(core->hw,
3611                     clk_core_get_accuracy_no_lock(parent));
3612     else if (parent)
3613         core->accuracy = parent->accuracy;
3614     else
3615         core->accuracy = 0;
3616 
3617     /*
3618      * Set clk's phase by clk_core_get_phase() caching the phase.
3619      * Since a phase is by definition relative to its parent, just
3620      * query the current clock phase, or just assume it's in phase.
3621      */
3622     phase = clk_core_get_phase(core);
3623     if (phase < 0) {
3624         ret = phase;
3625         pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3626             core->name);
3627         goto out;
3628     }
3629 
3630     /*
3631      * Set clk's duty cycle.
3632      */
3633     clk_core_update_duty_cycle_nolock(core);
3634 
3635     /*
3636      * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3637      * simple clocks and lazy developers the default fallback is to use the
3638      * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3639      * then rate is set to zero.
3640      */
3641     if (core->ops->recalc_rate)
3642         rate = core->ops->recalc_rate(core->hw,
3643                 clk_core_get_rate_nolock(parent));
3644     else if (parent)
3645         rate = parent->rate;
3646     else
3647         rate = 0;
3648     core->rate = core->req_rate = rate;
3649 
3650     /*
3651      * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3652      * don't get accidentally disabled when walking the orphan tree and
3653      * reparenting clocks
3654      */
3655     if (core->flags & CLK_IS_CRITICAL) {
3656         ret = clk_core_prepare(core);
3657         if (ret) {
3658             pr_warn("%s: critical clk '%s' failed to prepare\n",
3659                    __func__, core->name);
3660             goto out;
3661         }
3662 
3663         ret = clk_core_enable_lock(core);
3664         if (ret) {
3665             pr_warn("%s: critical clk '%s' failed to enable\n",
3666                    __func__, core->name);
3667             clk_core_unprepare(core);
3668             goto out;
3669         }
3670     }
3671 
3672     clk_core_reparent_orphans_nolock();
3673 
3674 
3675     kref_init(&core->ref);
3676 out:
3677     clk_pm_runtime_put(core);
3678 unlock:
3679     if (ret) {
3680         hlist_del_init(&core->child_node);
3681         core->hw->core = NULL;
3682     }
3683 
3684     clk_prepare_unlock();
3685 
3686     if (!ret)
3687         clk_debug_register(core);
3688 
3689     return ret;
3690 }
3691 
3692 /**
3693  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3694  * @core: clk to add consumer to
3695  * @clk: consumer to link to a clk
3696  */
3697 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3698 {
3699     clk_prepare_lock();
3700     hlist_add_head(&clk->clks_node, &core->clks);
3701     clk_prepare_unlock();
3702 }
3703 
3704 /**
3705  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3706  * @clk: consumer to unlink
3707  */
3708 static void clk_core_unlink_consumer(struct clk *clk)
3709 {
3710     lockdep_assert_held(&prepare_lock);
3711     hlist_del(&clk->clks_node);
3712 }
3713 
3714 /**
3715  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3716  * @core: clk to allocate a consumer for
3717  * @dev_id: string describing device name
3718  * @con_id: connection ID string on device
3719  *
3720  * Returns: clk consumer left unlinked from the consumer list
3721  */
3722 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3723                  const char *con_id)
3724 {
3725     struct clk *clk;
3726 
3727     clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3728     if (!clk)
3729         return ERR_PTR(-ENOMEM);
3730 
3731     clk->core = core;
3732     clk->dev_id = dev_id;
3733     clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3734     clk->max_rate = ULONG_MAX;
3735 
3736     return clk;
3737 }
3738 
3739 /**
3740  * free_clk - Free a clk consumer
3741  * @clk: clk consumer to free
3742  *
3743  * Note, this assumes the clk has been unlinked from the clk_core consumer
3744  * list.
3745  */
3746 static void free_clk(struct clk *clk)
3747 {
3748     kfree_const(clk->con_id);
3749     kfree(clk);
3750 }
3751 
3752 /**
3753  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3754  * a clk_hw
3755  * @dev: clk consumer device
3756  * @hw: clk_hw associated with the clk being consumed
3757  * @dev_id: string describing device name
3758  * @con_id: connection ID string on device
3759  *
3760  * This is the main function used to create a clk pointer for use by clk
3761  * consumers. It connects a consumer to the clk_core and clk_hw structures
3762  * used by the framework and clk provider respectively.
3763  */
3764 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3765                   const char *dev_id, const char *con_id)
3766 {
3767     struct clk *clk;
3768     struct clk_core *core;
3769 
3770     /* This is to allow this function to be chained to others */
3771     if (IS_ERR_OR_NULL(hw))
3772         return ERR_CAST(hw);
3773 
3774     core = hw->core;
3775     clk = alloc_clk(core, dev_id, con_id);
3776     if (IS_ERR(clk))
3777         return clk;
3778     clk->dev = dev;
3779 
3780     if (!try_module_get(core->owner)) {
3781         free_clk(clk);
3782         return ERR_PTR(-ENOENT);
3783     }
3784 
3785     kref_get(&core->ref);
3786     clk_core_link_consumer(core, clk);
3787 
3788     return clk;
3789 }
3790 
3791 /**
3792  * clk_hw_get_clk - get clk consumer given an clk_hw
3793  * @hw: clk_hw associated with the clk being consumed
3794  * @con_id: connection ID string on device
3795  *
3796  * Returns: new clk consumer
3797  * This is the function to be used by providers which need
3798  * to get a consumer clk and act on the clock element
3799  * Calls to this function must be balanced with calls clk_put()
3800  */
3801 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3802 {
3803     struct device *dev = hw->core->dev;
3804     const char *name = dev ? dev_name(dev) : NULL;
3805 
3806     return clk_hw_create_clk(dev, hw, name, con_id);
3807 }
3808 EXPORT_SYMBOL(clk_hw_get_clk);
3809 
3810 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3811 {
3812     const char *dst;
3813 
3814     if (!src) {
3815         if (must_exist)
3816             return -EINVAL;
3817         return 0;
3818     }
3819 
3820     *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3821     if (!dst)
3822         return -ENOMEM;
3823 
3824     return 0;
3825 }
3826 
3827 static int clk_core_populate_parent_map(struct clk_core *core,
3828                     const struct clk_init_data *init)
3829 {
3830     u8 num_parents = init->num_parents;
3831     const char * const *parent_names = init->parent_names;
3832     const struct clk_hw **parent_hws = init->parent_hws;
3833     const struct clk_parent_data *parent_data = init->parent_data;
3834     int i, ret = 0;
3835     struct clk_parent_map *parents, *parent;
3836 
3837     if (!num_parents)
3838         return 0;
3839 
3840     /*
3841      * Avoid unnecessary string look-ups of clk_core's possible parents by
3842      * having a cache of names/clk_hw pointers to clk_core pointers.
3843      */
3844     parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3845     core->parents = parents;
3846     if (!parents)
3847         return -ENOMEM;
3848 
3849     /* Copy everything over because it might be __initdata */
3850     for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3851         parent->index = -1;
3852         if (parent_names) {
3853             /* throw a WARN if any entries are NULL */
3854             WARN(!parent_names[i],
3855                 "%s: invalid NULL in %s's .parent_names\n",
3856                 __func__, core->name);
3857             ret = clk_cpy_name(&parent->name, parent_names[i],
3858                        true);
3859         } else if (parent_data) {
3860             parent->hw = parent_data[i].hw;
3861             parent->index = parent_data[i].index;
3862             ret = clk_cpy_name(&parent->fw_name,
3863                        parent_data[i].fw_name, false);
3864             if (!ret)
3865                 ret = clk_cpy_name(&parent->name,
3866                            parent_data[i].name,
3867                            false);
3868         } else if (parent_hws) {
3869             parent->hw = parent_hws[i];
3870         } else {
3871             ret = -EINVAL;
3872             WARN(1, "Must specify parents if num_parents > 0\n");
3873         }
3874 
3875         if (ret) {
3876             do {
3877                 kfree_const(parents[i].name);
3878                 kfree_const(parents[i].fw_name);
3879             } while (--i >= 0);
3880             kfree(parents);
3881 
3882             return ret;
3883         }
3884     }
3885 
3886     return 0;
3887 }
3888 
3889 static void clk_core_free_parent_map(struct clk_core *core)
3890 {
3891     int i = core->num_parents;
3892 
3893     if (!core->num_parents)
3894         return;
3895 
3896     while (--i >= 0) {
3897         kfree_const(core->parents[i].name);
3898         kfree_const(core->parents[i].fw_name);
3899     }
3900 
3901     kfree(core->parents);
3902 }
3903 
3904 static struct clk *
3905 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3906 {
3907     int ret;
3908     struct clk_core *core;
3909     const struct clk_init_data *init = hw->init;
3910 
3911     /*
3912      * The init data is not supposed to be used outside of registration path.
3913      * Set it to NULL so that provider drivers can't use it either and so that
3914      * we catch use of hw->init early on in the core.
3915      */
3916     hw->init = NULL;
3917 
3918     core = kzalloc(sizeof(*core), GFP_KERNEL);
3919     if (!core) {
3920         ret = -ENOMEM;
3921         goto fail_out;
3922     }
3923 
3924     core->name = kstrdup_const(init->name, GFP_KERNEL);
3925     if (!core->name) {
3926         ret = -ENOMEM;
3927         goto fail_name;
3928     }
3929 
3930     if (WARN_ON(!init->ops)) {
3931         ret = -EINVAL;
3932         goto fail_ops;
3933     }
3934     core->ops = init->ops;
3935 
3936     if (dev && pm_runtime_enabled(dev))
3937         core->rpm_enabled = true;
3938     core->dev = dev;
3939     core->of_node = np;
3940     if (dev && dev->driver)
3941         core->owner = dev->driver->owner;
3942     core->hw = hw;
3943     core->flags = init->flags;
3944     core->num_parents = init->num_parents;
3945     core->min_rate = 0;
3946     core->max_rate = ULONG_MAX;
3947 
3948     ret = clk_core_populate_parent_map(core, init);
3949     if (ret)
3950         goto fail_parents;
3951 
3952     INIT_HLIST_HEAD(&core->clks);
3953 
3954     /*
3955      * Don't call clk_hw_create_clk() here because that would pin the
3956      * provider module to itself and prevent it from ever being removed.
3957      */
3958     hw->clk = alloc_clk(core, NULL, NULL);
3959     if (IS_ERR(hw->clk)) {
3960         ret = PTR_ERR(hw->clk);
3961         goto fail_create_clk;
3962     }
3963 
3964     clk_core_link_consumer(core, hw->clk);
3965 
3966     ret = __clk_core_init(core);
3967     if (!ret)
3968         return hw->clk;
3969 
3970     clk_prepare_lock();
3971     clk_core_unlink_consumer(hw->clk);
3972     clk_prepare_unlock();
3973 
3974     free_clk(hw->clk);
3975     hw->clk = NULL;
3976 
3977 fail_create_clk:
3978     clk_core_free_parent_map(core);
3979 fail_parents:
3980 fail_ops:
3981     kfree_const(core->name);
3982 fail_name:
3983     kfree(core);
3984 fail_out:
3985     return ERR_PTR(ret);
3986 }
3987 
3988 /**
3989  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3990  * @dev: Device to get device node of
3991  *
3992  * Return: device node pointer of @dev, or the device node pointer of
3993  * @dev->parent if dev doesn't have a device node, or NULL if neither
3994  * @dev or @dev->parent have a device node.
3995  */
3996 static struct device_node *dev_or_parent_of_node(struct device *dev)
3997 {
3998     struct device_node *np;
3999 
4000     if (!dev)
4001         return NULL;
4002 
4003     np = dev_of_node(dev);
4004     if (!np)
4005         np = dev_of_node(dev->parent);
4006 
4007     return np;
4008 }
4009 
4010 /**
4011  * clk_register - allocate a new clock, register it and return an opaque cookie
4012  * @dev: device that is registering this clock
4013  * @hw: link to hardware-specific clock data
4014  *
4015  * clk_register is the *deprecated* interface for populating the clock tree with
4016  * new clock nodes. Use clk_hw_register() instead.
4017  *
4018  * Returns: a pointer to the newly allocated struct clk which
4019  * cannot be dereferenced by driver code but may be used in conjunction with the
4020  * rest of the clock API.  In the event of an error clk_register will return an
4021  * error code; drivers must test for an error code after calling clk_register.
4022  */
4023 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4024 {
4025     return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4026 }
4027 EXPORT_SYMBOL_GPL(clk_register);
4028 
4029 /**
4030  * clk_hw_register - register a clk_hw and return an error code
4031  * @dev: device that is registering this clock
4032  * @hw: link to hardware-specific clock data
4033  *
4034  * clk_hw_register is the primary interface for populating the clock tree with
4035  * new clock nodes. It returns an integer equal to zero indicating success or
4036  * less than zero indicating failure. Drivers must test for an error code after
4037  * calling clk_hw_register().
4038  */
4039 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4040 {
4041     return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4042                    hw));
4043 }
4044 EXPORT_SYMBOL_GPL(clk_hw_register);
4045 
4046 /*
4047  * of_clk_hw_register - register a clk_hw and return an error code
4048  * @node: device_node of device that is registering this clock
4049  * @hw: link to hardware-specific clock data
4050  *
4051  * of_clk_hw_register() is the primary interface for populating the clock tree
4052  * with new clock nodes when a struct device is not available, but a struct
4053  * device_node is. It returns an integer equal to zero indicating success or
4054  * less than zero indicating failure. Drivers must test for an error code after
4055  * calling of_clk_hw_register().
4056  */
4057 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4058 {
4059     return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4060 }
4061 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4062 
4063 /* Free memory allocated for a clock. */
4064 static void __clk_release(struct kref *ref)
4065 {
4066     struct clk_core *core = container_of(ref, struct clk_core, ref);
4067 
4068     lockdep_assert_held(&prepare_lock);
4069 
4070     clk_core_free_parent_map(core);
4071     kfree_const(core->name);
4072     kfree(core);
4073 }
4074 
4075 /*
4076  * Empty clk_ops for unregistered clocks. These are used temporarily
4077  * after clk_unregister() was called on a clock and until last clock
4078  * consumer calls clk_put() and the struct clk object is freed.
4079  */
4080 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4081 {
4082     return -ENXIO;
4083 }
4084 
4085 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4086 {
4087     WARN_ON_ONCE(1);
4088 }
4089 
4090 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4091                     unsigned long parent_rate)
4092 {
4093     return -ENXIO;
4094 }
4095 
4096 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4097 {
4098     return -ENXIO;
4099 }
4100 
4101 static const struct clk_ops clk_nodrv_ops = {
4102     .enable     = clk_nodrv_prepare_enable,
4103     .disable    = clk_nodrv_disable_unprepare,
4104     .prepare    = clk_nodrv_prepare_enable,
4105     .unprepare  = clk_nodrv_disable_unprepare,
4106     .set_rate   = clk_nodrv_set_rate,
4107     .set_parent = clk_nodrv_set_parent,
4108 };
4109 
4110 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4111                         const struct clk_core *target)
4112 {
4113     int i;
4114     struct clk_core *child;
4115 
4116     for (i = 0; i < root->num_parents; i++)
4117         if (root->parents[i].core == target)
4118             root->parents[i].core = NULL;
4119 
4120     hlist_for_each_entry(child, &root->children, child_node)
4121         clk_core_evict_parent_cache_subtree(child, target);
4122 }
4123 
4124 /* Remove this clk from all parent caches */
4125 static void clk_core_evict_parent_cache(struct clk_core *core)
4126 {
4127     const struct hlist_head **lists;
4128     struct clk_core *root;
4129 
4130     lockdep_assert_held(&prepare_lock);
4131 
4132     for (lists = all_lists; *lists; lists++)
4133         hlist_for_each_entry(root, *lists, child_node)
4134             clk_core_evict_parent_cache_subtree(root, core);
4135 
4136 }
4137 
4138 /**
4139  * clk_unregister - unregister a currently registered clock
4140  * @clk: clock to unregister
4141  */
4142 void clk_unregister(struct clk *clk)
4143 {
4144     unsigned long flags;
4145     const struct clk_ops *ops;
4146 
4147     if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4148         return;
4149 
4150     clk_debug_unregister(clk->core);
4151 
4152     clk_prepare_lock();
4153 
4154     ops = clk->core->ops;
4155     if (ops == &clk_nodrv_ops) {
4156         pr_err("%s: unregistered clock: %s\n", __func__,
4157                clk->core->name);
4158         goto unlock;
4159     }
4160     /*
4161      * Assign empty clock ops for consumers that might still hold
4162      * a reference to this clock.
4163      */
4164     flags = clk_enable_lock();
4165     clk->core->ops = &clk_nodrv_ops;
4166     clk_enable_unlock(flags);
4167 
4168     if (ops->terminate)
4169         ops->terminate(clk->core->hw);
4170 
4171     if (!hlist_empty(&clk->core->children)) {
4172         struct clk_core *child;
4173         struct hlist_node *t;
4174 
4175         /* Reparent all children to the orphan list. */
4176         hlist_for_each_entry_safe(child, t, &clk->core->children,
4177                       child_node)
4178             clk_core_set_parent_nolock(child, NULL);
4179     }
4180 
4181     clk_core_evict_parent_cache(clk->core);
4182 
4183     hlist_del_init(&clk->core->child_node);
4184 
4185     if (clk->core->prepare_count)
4186         pr_warn("%s: unregistering prepared clock: %s\n",
4187                     __func__, clk->core->name);
4188 
4189     if (clk->core->protect_count)
4190         pr_warn("%s: unregistering protected clock: %s\n",
4191                     __func__, clk->core->name);
4192 
4193     kref_put(&clk->core->ref, __clk_release);
4194     free_clk(clk);
4195 unlock:
4196     clk_prepare_unlock();
4197 }
4198 EXPORT_SYMBOL_GPL(clk_unregister);
4199 
4200 /**
4201  * clk_hw_unregister - unregister a currently registered clk_hw
4202  * @hw: hardware-specific clock data to unregister
4203  */
4204 void clk_hw_unregister(struct clk_hw *hw)
4205 {
4206     clk_unregister(hw->clk);
4207 }
4208 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4209 
4210 static void devm_clk_unregister_cb(struct device *dev, void *res)
4211 {
4212     clk_unregister(*(struct clk **)res);
4213 }
4214 
4215 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4216 {
4217     clk_hw_unregister(*(struct clk_hw **)res);
4218 }
4219 
4220 /**
4221  * devm_clk_register - resource managed clk_register()
4222  * @dev: device that is registering this clock
4223  * @hw: link to hardware-specific clock data
4224  *
4225  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4226  *
4227  * Clocks returned from this function are automatically clk_unregister()ed on
4228  * driver detach. See clk_register() for more information.
4229  */
4230 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4231 {
4232     struct clk *clk;
4233     struct clk **clkp;
4234 
4235     clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4236     if (!clkp)
4237         return ERR_PTR(-ENOMEM);
4238 
4239     clk = clk_register(dev, hw);
4240     if (!IS_ERR(clk)) {
4241         *clkp = clk;
4242         devres_add(dev, clkp);
4243     } else {
4244         devres_free(clkp);
4245     }
4246 
4247     return clk;
4248 }
4249 EXPORT_SYMBOL_GPL(devm_clk_register);
4250 
4251 /**
4252  * devm_clk_hw_register - resource managed clk_hw_register()
4253  * @dev: device that is registering this clock
4254  * @hw: link to hardware-specific clock data
4255  *
4256  * Managed clk_hw_register(). Clocks registered by this function are
4257  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4258  * for more information.
4259  */
4260 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4261 {
4262     struct clk_hw **hwp;
4263     int ret;
4264 
4265     hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4266     if (!hwp)
4267         return -ENOMEM;
4268 
4269     ret = clk_hw_register(dev, hw);
4270     if (!ret) {
4271         *hwp = hw;
4272         devres_add(dev, hwp);
4273     } else {
4274         devres_free(hwp);
4275     }
4276 
4277     return ret;
4278 }
4279 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4280 
4281 static void devm_clk_release(struct device *dev, void *res)
4282 {
4283     clk_put(*(struct clk **)res);
4284 }
4285 
4286 /**
4287  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4288  * @dev: device that is registering this clock
4289  * @hw: clk_hw associated with the clk being consumed
4290  * @con_id: connection ID string on device
4291  *
4292  * Managed clk_hw_get_clk(). Clocks got with this function are
4293  * automatically clk_put() on driver detach. See clk_put()
4294  * for more information.
4295  */
4296 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4297                 const char *con_id)
4298 {
4299     struct clk *clk;
4300     struct clk **clkp;
4301 
4302     /* This should not happen because it would mean we have drivers
4303      * passing around clk_hw pointers instead of having the caller use
4304      * proper clk_get() style APIs
4305      */
4306     WARN_ON_ONCE(dev != hw->core->dev);
4307 
4308     clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4309     if (!clkp)
4310         return ERR_PTR(-ENOMEM);
4311 
4312     clk = clk_hw_get_clk(hw, con_id);
4313     if (!IS_ERR(clk)) {
4314         *clkp = clk;
4315         devres_add(dev, clkp);
4316     } else {
4317         devres_free(clkp);
4318     }
4319 
4320     return clk;
4321 }
4322 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4323 
4324 /*
4325  * clkdev helpers
4326  */
4327 
4328 void __clk_put(struct clk *clk)
4329 {
4330     struct module *owner;
4331 
4332     if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4333         return;
4334 
4335     clk_prepare_lock();
4336 
4337     /*
4338      * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4339      * given user should be balanced with calls to clk_rate_exclusive_put()
4340      * and by that same consumer
4341      */
4342     if (WARN_ON(clk->exclusive_count)) {
4343         /* We voiced our concern, let's sanitize the situation */
4344         clk->core->protect_count -= (clk->exclusive_count - 1);
4345         clk_core_rate_unprotect(clk->core);
4346         clk->exclusive_count = 0;
4347     }
4348 
4349     hlist_del(&clk->clks_node);
4350     if (clk->min_rate > clk->core->req_rate ||
4351         clk->max_rate < clk->core->req_rate)
4352         clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4353 
4354     owner = clk->core->owner;
4355     kref_put(&clk->core->ref, __clk_release);
4356 
4357     clk_prepare_unlock();
4358 
4359     module_put(owner);
4360 
4361     free_clk(clk);
4362 }
4363 
4364 /***        clk rate change notifiers        ***/
4365 
4366 /**
4367  * clk_notifier_register - add a clk rate change notifier
4368  * @clk: struct clk * to watch
4369  * @nb: struct notifier_block * with callback info
4370  *
4371  * Request notification when clk's rate changes.  This uses an SRCU
4372  * notifier because we want it to block and notifier unregistrations are
4373  * uncommon.  The callbacks associated with the notifier must not
4374  * re-enter into the clk framework by calling any top-level clk APIs;
4375  * this will cause a nested prepare_lock mutex.
4376  *
4377  * In all notification cases (pre, post and abort rate change) the original
4378  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4379  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4380  *
4381  * clk_notifier_register() must be called from non-atomic context.
4382  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4383  * allocation failure; otherwise, passes along the return value of
4384  * srcu_notifier_chain_register().
4385  */
4386 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4387 {
4388     struct clk_notifier *cn;
4389     int ret = -ENOMEM;
4390 
4391     if (!clk || !nb)
4392         return -EINVAL;
4393 
4394     clk_prepare_lock();
4395 
4396     /* search the list of notifiers for this clk */
4397     list_for_each_entry(cn, &clk_notifier_list, node)
4398         if (cn->clk == clk)
4399             goto found;
4400 
4401     /* if clk wasn't in the notifier list, allocate new clk_notifier */
4402     cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4403     if (!cn)
4404         goto out;
4405 
4406     cn->clk = clk;
4407     srcu_init_notifier_head(&cn->notifier_head);
4408 
4409     list_add(&cn->node, &clk_notifier_list);
4410 
4411 found:
4412     ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4413 
4414     clk->core->notifier_count++;
4415 
4416 out:
4417     clk_prepare_unlock();
4418 
4419     return ret;
4420 }
4421 EXPORT_SYMBOL_GPL(clk_notifier_register);
4422 
4423 /**
4424  * clk_notifier_unregister - remove a clk rate change notifier
4425  * @clk: struct clk *
4426  * @nb: struct notifier_block * with callback info
4427  *
4428  * Request no further notification for changes to 'clk' and frees memory
4429  * allocated in clk_notifier_register.
4430  *
4431  * Returns -EINVAL if called with null arguments; otherwise, passes
4432  * along the return value of srcu_notifier_chain_unregister().
4433  */
4434 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4435 {
4436     struct clk_notifier *cn;
4437     int ret = -ENOENT;
4438 
4439     if (!clk || !nb)
4440         return -EINVAL;
4441 
4442     clk_prepare_lock();
4443 
4444     list_for_each_entry(cn, &clk_notifier_list, node) {
4445         if (cn->clk == clk) {
4446             ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4447 
4448             clk->core->notifier_count--;
4449 
4450             /* XXX the notifier code should handle this better */
4451             if (!cn->notifier_head.head) {
4452                 srcu_cleanup_notifier_head(&cn->notifier_head);
4453                 list_del(&cn->node);
4454                 kfree(cn);
4455             }
4456             break;
4457         }
4458     }
4459 
4460     clk_prepare_unlock();
4461 
4462     return ret;
4463 }
4464 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4465 
4466 struct clk_notifier_devres {
4467     struct clk *clk;
4468     struct notifier_block *nb;
4469 };
4470 
4471 static void devm_clk_notifier_release(struct device *dev, void *res)
4472 {
4473     struct clk_notifier_devres *devres = res;
4474 
4475     clk_notifier_unregister(devres->clk, devres->nb);
4476 }
4477 
4478 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4479                    struct notifier_block *nb)
4480 {
4481     struct clk_notifier_devres *devres;
4482     int ret;
4483 
4484     devres = devres_alloc(devm_clk_notifier_release,
4485                   sizeof(*devres), GFP_KERNEL);
4486 
4487     if (!devres)
4488         return -ENOMEM;
4489 
4490     ret = clk_notifier_register(clk, nb);
4491     if (!ret) {
4492         devres->clk = clk;
4493         devres->nb = nb;
4494     } else {
4495         devres_free(devres);
4496     }
4497 
4498     return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4501 
4502 #ifdef CONFIG_OF
4503 static void clk_core_reparent_orphans(void)
4504 {
4505     clk_prepare_lock();
4506     clk_core_reparent_orphans_nolock();
4507     clk_prepare_unlock();
4508 }
4509 
4510 /**
4511  * struct of_clk_provider - Clock provider registration structure
4512  * @link: Entry in global list of clock providers
4513  * @node: Pointer to device tree node of clock provider
4514  * @get: Get clock callback.  Returns NULL or a struct clk for the
4515  *       given clock specifier
4516  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4517  *       struct clk_hw for the given clock specifier
4518  * @data: context pointer to be passed into @get callback
4519  */
4520 struct of_clk_provider {
4521     struct list_head link;
4522 
4523     struct device_node *node;
4524     struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4525     struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4526     void *data;
4527 };
4528 
4529 extern struct of_device_id __clk_of_table;
4530 static const struct of_device_id __clk_of_table_sentinel
4531     __used __section("__clk_of_table_end");
4532 
4533 static LIST_HEAD(of_clk_providers);
4534 static DEFINE_MUTEX(of_clk_mutex);
4535 
4536 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4537                      void *data)
4538 {
4539     return data;
4540 }
4541 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4542 
4543 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4544 {
4545     return data;
4546 }
4547 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4548 
4549 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4550 {
4551     struct clk_onecell_data *clk_data = data;
4552     unsigned int idx = clkspec->args[0];
4553 
4554     if (idx >= clk_data->clk_num) {
4555         pr_err("%s: invalid clock index %u\n", __func__, idx);
4556         return ERR_PTR(-EINVAL);
4557     }
4558 
4559     return clk_data->clks[idx];
4560 }
4561 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4562 
4563 struct clk_hw *
4564 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4565 {
4566     struct clk_hw_onecell_data *hw_data = data;
4567     unsigned int idx = clkspec->args[0];
4568 
4569     if (idx >= hw_data->num) {
4570         pr_err("%s: invalid index %u\n", __func__, idx);
4571         return ERR_PTR(-EINVAL);
4572     }
4573 
4574     return hw_data->hws[idx];
4575 }
4576 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4577 
4578 /**
4579  * of_clk_add_provider() - Register a clock provider for a node
4580  * @np: Device node pointer associated with clock provider
4581  * @clk_src_get: callback for decoding clock
4582  * @data: context pointer for @clk_src_get callback.
4583  *
4584  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4585  */
4586 int of_clk_add_provider(struct device_node *np,
4587             struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4588                            void *data),
4589             void *data)
4590 {
4591     struct of_clk_provider *cp;
4592     int ret;
4593 
4594     if (!np)
4595         return 0;
4596 
4597     cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4598     if (!cp)
4599         return -ENOMEM;
4600 
4601     cp->node = of_node_get(np);
4602     cp->data = data;
4603     cp->get = clk_src_get;
4604 
4605     mutex_lock(&of_clk_mutex);
4606     list_add(&cp->link, &of_clk_providers);
4607     mutex_unlock(&of_clk_mutex);
4608     pr_debug("Added clock from %pOF\n", np);
4609 
4610     clk_core_reparent_orphans();
4611 
4612     ret = of_clk_set_defaults(np, true);
4613     if (ret < 0)
4614         of_clk_del_provider(np);
4615 
4616     fwnode_dev_initialized(&np->fwnode, true);
4617 
4618     return ret;
4619 }
4620 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4621 
4622 /**
4623  * of_clk_add_hw_provider() - Register a clock provider for a node
4624  * @np: Device node pointer associated with clock provider
4625  * @get: callback for decoding clk_hw
4626  * @data: context pointer for @get callback.
4627  */
4628 int of_clk_add_hw_provider(struct device_node *np,
4629                struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4630                          void *data),
4631                void *data)
4632 {
4633     struct of_clk_provider *cp;
4634     int ret;
4635 
4636     if (!np)
4637         return 0;
4638 
4639     cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4640     if (!cp)
4641         return -ENOMEM;
4642 
4643     cp->node = of_node_get(np);
4644     cp->data = data;
4645     cp->get_hw = get;
4646 
4647     mutex_lock(&of_clk_mutex);
4648     list_add(&cp->link, &of_clk_providers);
4649     mutex_unlock(&of_clk_mutex);
4650     pr_debug("Added clk_hw provider from %pOF\n", np);
4651 
4652     clk_core_reparent_orphans();
4653 
4654     ret = of_clk_set_defaults(np, true);
4655     if (ret < 0)
4656         of_clk_del_provider(np);
4657 
4658     fwnode_dev_initialized(&np->fwnode, true);
4659 
4660     return ret;
4661 }
4662 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4663 
4664 static void devm_of_clk_release_provider(struct device *dev, void *res)
4665 {
4666     of_clk_del_provider(*(struct device_node **)res);
4667 }
4668 
4669 /*
4670  * We allow a child device to use its parent device as the clock provider node
4671  * for cases like MFD sub-devices where the child device driver wants to use
4672  * devm_*() APIs but not list the device in DT as a sub-node.
4673  */
4674 static struct device_node *get_clk_provider_node(struct device *dev)
4675 {
4676     struct device_node *np, *parent_np;
4677 
4678     np = dev->of_node;
4679     parent_np = dev->parent ? dev->parent->of_node : NULL;
4680 
4681     if (!of_find_property(np, "#clock-cells", NULL))
4682         if (of_find_property(parent_np, "#clock-cells", NULL))
4683             np = parent_np;
4684 
4685     return np;
4686 }
4687 
4688 /**
4689  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4690  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4691  * @get: callback for decoding clk_hw
4692  * @data: context pointer for @get callback
4693  *
4694  * Registers clock provider for given device's node. If the device has no DT
4695  * node or if the device node lacks of clock provider information (#clock-cells)
4696  * then the parent device's node is scanned for this information. If parent node
4697  * has the #clock-cells then it is used in registration. Provider is
4698  * automatically released at device exit.
4699  *
4700  * Return: 0 on success or an errno on failure.
4701  */
4702 int devm_of_clk_add_hw_provider(struct device *dev,
4703             struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4704                           void *data),
4705             void *data)
4706 {
4707     struct device_node **ptr, *np;
4708     int ret;
4709 
4710     ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4711                GFP_KERNEL);
4712     if (!ptr)
4713         return -ENOMEM;
4714 
4715     np = get_clk_provider_node(dev);
4716     ret = of_clk_add_hw_provider(np, get, data);
4717     if (!ret) {
4718         *ptr = np;
4719         devres_add(dev, ptr);
4720     } else {
4721         devres_free(ptr);
4722     }
4723 
4724     return ret;
4725 }
4726 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4727 
4728 /**
4729  * of_clk_del_provider() - Remove a previously registered clock provider
4730  * @np: Device node pointer associated with clock provider
4731  */
4732 void of_clk_del_provider(struct device_node *np)
4733 {
4734     struct of_clk_provider *cp;
4735 
4736     if (!np)
4737         return;
4738 
4739     mutex_lock(&of_clk_mutex);
4740     list_for_each_entry(cp, &of_clk_providers, link) {
4741         if (cp->node == np) {
4742             list_del(&cp->link);
4743             fwnode_dev_initialized(&np->fwnode, false);
4744             of_node_put(cp->node);
4745             kfree(cp);
4746             break;
4747         }
4748     }
4749     mutex_unlock(&of_clk_mutex);
4750 }
4751 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4752 
4753 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4754 {
4755     struct device_node **np = res;
4756 
4757     if (WARN_ON(!np || !*np))
4758         return 0;
4759 
4760     return *np == data;
4761 }
4762 
4763 /**
4764  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4765  * @dev: Device to whose lifetime the clock provider was bound
4766  */
4767 void devm_of_clk_del_provider(struct device *dev)
4768 {
4769     int ret;
4770     struct device_node *np = get_clk_provider_node(dev);
4771 
4772     ret = devres_release(dev, devm_of_clk_release_provider,
4773                  devm_clk_provider_match, np);
4774 
4775     WARN_ON(ret);
4776 }
4777 EXPORT_SYMBOL(devm_of_clk_del_provider);
4778 
4779 /**
4780  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4781  * @np: device node to parse clock specifier from
4782  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4783  * @name: clock name to find and parse. If name is NULL, the index is used
4784  * @out_args: Result of parsing the clock specifier
4785  *
4786  * Parses a device node's "clocks" and "clock-names" properties to find the
4787  * phandle and cells for the index or name that is desired. The resulting clock
4788  * specifier is placed into @out_args, or an errno is returned when there's a
4789  * parsing error. The @index argument is ignored if @name is non-NULL.
4790  *
4791  * Example:
4792  *
4793  * phandle1: clock-controller@1 {
4794  *  #clock-cells = <2>;
4795  * }
4796  *
4797  * phandle2: clock-controller@2 {
4798  *  #clock-cells = <1>;
4799  * }
4800  *
4801  * clock-consumer@3 {
4802  *  clocks = <&phandle1 1 2 &phandle2 3>;
4803  *  clock-names = "name1", "name2";
4804  * }
4805  *
4806  * To get a device_node for `clock-controller@2' node you may call this
4807  * function a few different ways:
4808  *
4809  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4810  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4811  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4812  *
4813  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4814  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4815  * the "clock-names" property of @np.
4816  */
4817 static int of_parse_clkspec(const struct device_node *np, int index,
4818                 const char *name, struct of_phandle_args *out_args)
4819 {
4820     int ret = -ENOENT;
4821 
4822     /* Walk up the tree of devices looking for a clock property that matches */
4823     while (np) {
4824         /*
4825          * For named clocks, first look up the name in the
4826          * "clock-names" property.  If it cannot be found, then index
4827          * will be an error code and of_parse_phandle_with_args() will
4828          * return -EINVAL.
4829          */
4830         if (name)
4831             index = of_property_match_string(np, "clock-names", name);
4832         ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4833                          index, out_args);
4834         if (!ret)
4835             break;
4836         if (name && index >= 0)
4837             break;
4838 
4839         /*
4840          * No matching clock found on this node.  If the parent node
4841          * has a "clock-ranges" property, then we can try one of its
4842          * clocks.
4843          */
4844         np = np->parent;
4845         if (np && !of_get_property(np, "clock-ranges", NULL))
4846             break;
4847         index = 0;
4848     }
4849 
4850     return ret;
4851 }
4852 
4853 static struct clk_hw *
4854 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4855                   struct of_phandle_args *clkspec)
4856 {
4857     struct clk *clk;
4858 
4859     if (provider->get_hw)
4860         return provider->get_hw(clkspec, provider->data);
4861 
4862     clk = provider->get(clkspec, provider->data);
4863     if (IS_ERR(clk))
4864         return ERR_CAST(clk);
4865     return __clk_get_hw(clk);
4866 }
4867 
4868 static struct clk_hw *
4869 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4870 {
4871     struct of_clk_provider *provider;
4872     struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4873 
4874     if (!clkspec)
4875         return ERR_PTR(-EINVAL);
4876 
4877     mutex_lock(&of_clk_mutex);
4878     list_for_each_entry(provider, &of_clk_providers, link) {
4879         if (provider->node == clkspec->np) {
4880             hw = __of_clk_get_hw_from_provider(provider, clkspec);
4881             if (!IS_ERR(hw))
4882                 break;
4883         }
4884     }
4885     mutex_unlock(&of_clk_mutex);
4886 
4887     return hw;
4888 }
4889 
4890 /**
4891  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4892  * @clkspec: pointer to a clock specifier data structure
4893  *
4894  * This function looks up a struct clk from the registered list of clock
4895  * providers, an input is a clock specifier data structure as returned
4896  * from the of_parse_phandle_with_args() function call.
4897  */
4898 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4899 {
4900     struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4901 
4902     return clk_hw_create_clk(NULL, hw, NULL, __func__);
4903 }
4904 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4905 
4906 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4907                  const char *con_id)
4908 {
4909     int ret;
4910     struct clk_hw *hw;
4911     struct of_phandle_args clkspec;
4912 
4913     ret = of_parse_clkspec(np, index, con_id, &clkspec);
4914     if (ret)
4915         return ERR_PTR(ret);
4916 
4917     hw = of_clk_get_hw_from_clkspec(&clkspec);
4918     of_node_put(clkspec.np);
4919 
4920     return hw;
4921 }
4922 
4923 static struct clk *__of_clk_get(struct device_node *np,
4924                 int index, const char *dev_id,
4925                 const char *con_id)
4926 {
4927     struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4928 
4929     return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4930 }
4931 
4932 struct clk *of_clk_get(struct device_node *np, int index)
4933 {
4934     return __of_clk_get(np, index, np->full_name, NULL);
4935 }
4936 EXPORT_SYMBOL(of_clk_get);
4937 
4938 /**
4939  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4940  * @np: pointer to clock consumer node
4941  * @name: name of consumer's clock input, or NULL for the first clock reference
4942  *
4943  * This function parses the clocks and clock-names properties,
4944  * and uses them to look up the struct clk from the registered list of clock
4945  * providers.
4946  */
4947 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4948 {
4949     if (!np)
4950         return ERR_PTR(-ENOENT);
4951 
4952     return __of_clk_get(np, 0, np->full_name, name);
4953 }
4954 EXPORT_SYMBOL(of_clk_get_by_name);
4955 
4956 /**
4957  * of_clk_get_parent_count() - Count the number of clocks a device node has
4958  * @np: device node to count
4959  *
4960  * Returns: The number of clocks that are possible parents of this node
4961  */
4962 unsigned int of_clk_get_parent_count(const struct device_node *np)
4963 {
4964     int count;
4965 
4966     count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4967     if (count < 0)
4968         return 0;
4969 
4970     return count;
4971 }
4972 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4973 
4974 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4975 {
4976     struct of_phandle_args clkspec;
4977     struct property *prop;
4978     const char *clk_name;
4979     const __be32 *vp;
4980     u32 pv;
4981     int rc;
4982     int count;
4983     struct clk *clk;
4984 
4985     rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4986                     &clkspec);
4987     if (rc)
4988         return NULL;
4989 
4990     index = clkspec.args_count ? clkspec.args[0] : 0;
4991     count = 0;
4992 
4993     /* if there is an indices property, use it to transfer the index
4994      * specified into an array offset for the clock-output-names property.
4995      */
4996     of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4997         if (index == pv) {
4998             index = count;
4999             break;
5000         }
5001         count++;
5002     }
5003     /* We went off the end of 'clock-indices' without finding it */
5004     if (prop && !vp)
5005         return NULL;
5006 
5007     if (of_property_read_string_index(clkspec.np, "clock-output-names",
5008                       index,
5009                       &clk_name) < 0) {
5010         /*
5011          * Best effort to get the name if the clock has been
5012          * registered with the framework. If the clock isn't
5013          * registered, we return the node name as the name of
5014          * the clock as long as #clock-cells = 0.
5015          */
5016         clk = of_clk_get_from_provider(&clkspec);
5017         if (IS_ERR(clk)) {
5018             if (clkspec.args_count == 0)
5019                 clk_name = clkspec.np->name;
5020             else
5021                 clk_name = NULL;
5022         } else {
5023             clk_name = __clk_get_name(clk);
5024             clk_put(clk);
5025         }
5026     }
5027 
5028 
5029     of_node_put(clkspec.np);
5030     return clk_name;
5031 }
5032 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5033 
5034 /**
5035  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5036  * number of parents
5037  * @np: Device node pointer associated with clock provider
5038  * @parents: pointer to char array that hold the parents' names
5039  * @size: size of the @parents array
5040  *
5041  * Return: number of parents for the clock node.
5042  */
5043 int of_clk_parent_fill(struct device_node *np, const char **parents,
5044                unsigned int size)
5045 {
5046     unsigned int i = 0;
5047 
5048     while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5049         i++;
5050 
5051     return i;
5052 }
5053 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5054 
5055 struct clock_provider {
5056     void (*clk_init_cb)(struct device_node *);
5057     struct device_node *np;
5058     struct list_head node;
5059 };
5060 
5061 /*
5062  * This function looks for a parent clock. If there is one, then it
5063  * checks that the provider for this parent clock was initialized, in
5064  * this case the parent clock will be ready.
5065  */
5066 static int parent_ready(struct device_node *np)
5067 {
5068     int i = 0;
5069 
5070     while (true) {
5071         struct clk *clk = of_clk_get(np, i);
5072 
5073         /* this parent is ready we can check the next one */
5074         if (!IS_ERR(clk)) {
5075             clk_put(clk);
5076             i++;
5077             continue;
5078         }
5079 
5080         /* at least one parent is not ready, we exit now */
5081         if (PTR_ERR(clk) == -EPROBE_DEFER)
5082             return 0;
5083 
5084         /*
5085          * Here we make assumption that the device tree is
5086          * written correctly. So an error means that there is
5087          * no more parent. As we didn't exit yet, then the
5088          * previous parent are ready. If there is no clock
5089          * parent, no need to wait for them, then we can
5090          * consider their absence as being ready
5091          */
5092         return 1;
5093     }
5094 }
5095 
5096 /**
5097  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5098  * @np: Device node pointer associated with clock provider
5099  * @index: clock index
5100  * @flags: pointer to top-level framework flags
5101  *
5102  * Detects if the clock-critical property exists and, if so, sets the
5103  * corresponding CLK_IS_CRITICAL flag.
5104  *
5105  * Do not use this function. It exists only for legacy Device Tree
5106  * bindings, such as the one-clock-per-node style that are outdated.
5107  * Those bindings typically put all clock data into .dts and the Linux
5108  * driver has no clock data, thus making it impossible to set this flag
5109  * correctly from the driver. Only those drivers may call
5110  * of_clk_detect_critical from their setup functions.
5111  *
5112  * Return: error code or zero on success
5113  */
5114 int of_clk_detect_critical(struct device_node *np, int index,
5115                unsigned long *flags)
5116 {
5117     struct property *prop;
5118     const __be32 *cur;
5119     uint32_t idx;
5120 
5121     if (!np || !flags)
5122         return -EINVAL;
5123 
5124     of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5125         if (index == idx)
5126             *flags |= CLK_IS_CRITICAL;
5127 
5128     return 0;
5129 }
5130 
5131 /**
5132  * of_clk_init() - Scan and init clock providers from the DT
5133  * @matches: array of compatible values and init functions for providers.
5134  *
5135  * This function scans the device tree for matching clock providers
5136  * and calls their initialization functions. It also does it by trying
5137  * to follow the dependencies.
5138  */
5139 void __init of_clk_init(const struct of_device_id *matches)
5140 {
5141     const struct of_device_id *match;
5142     struct device_node *np;
5143     struct clock_provider *clk_provider, *next;
5144     bool is_init_done;
5145     bool force = false;
5146     LIST_HEAD(clk_provider_list);
5147 
5148     if (!matches)
5149         matches = &__clk_of_table;
5150 
5151     /* First prepare the list of the clocks providers */
5152     for_each_matching_node_and_match(np, matches, &match) {
5153         struct clock_provider *parent;
5154 
5155         if (!of_device_is_available(np))
5156             continue;
5157 
5158         parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5159         if (!parent) {
5160             list_for_each_entry_safe(clk_provider, next,
5161                          &clk_provider_list, node) {
5162                 list_del(&clk_provider->node);
5163                 of_node_put(clk_provider->np);
5164                 kfree(clk_provider);
5165             }
5166             of_node_put(np);
5167             return;
5168         }
5169 
5170         parent->clk_init_cb = match->data;
5171         parent->np = of_node_get(np);
5172         list_add_tail(&parent->node, &clk_provider_list);
5173     }
5174 
5175     while (!list_empty(&clk_provider_list)) {
5176         is_init_done = false;
5177         list_for_each_entry_safe(clk_provider, next,
5178                     &clk_provider_list, node) {
5179             if (force || parent_ready(clk_provider->np)) {
5180 
5181                 /* Don't populate platform devices */
5182                 of_node_set_flag(clk_provider->np,
5183                          OF_POPULATED);
5184 
5185                 clk_provider->clk_init_cb(clk_provider->np);
5186                 of_clk_set_defaults(clk_provider->np, true);
5187 
5188                 list_del(&clk_provider->node);
5189                 of_node_put(clk_provider->np);
5190                 kfree(clk_provider);
5191                 is_init_done = true;
5192             }
5193         }
5194 
5195         /*
5196          * We didn't manage to initialize any of the
5197          * remaining providers during the last loop, so now we
5198          * initialize all the remaining ones unconditionally
5199          * in case the clock parent was not mandatory
5200          */
5201         if (!is_init_done)
5202             force = true;
5203     }
5204 }
5205 #endif