0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013 #include <linux/clk.h>
0014 #include <linux/clk-provider.h>
0015 #include <linux/delay.h>
0016 #include <linux/module.h>
0017 #include <linux/i2c.h>
0018 #include <linux/regmap.h>
0019 #include <linux/regulator/consumer.h>
0020 #include <linux/slab.h>
0021 #include <linux/gcd.h>
0022
0023
0024
0025
0026
0027
0028 enum {
0029 CDCE913,
0030 CDCE925,
0031 CDCE937,
0032 CDCE949,
0033 };
0034
0035 struct clk_cdce925_chip_info {
0036 int num_plls;
0037 int num_outputs;
0038 };
0039
0040 static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
0041 [CDCE913] = { .num_plls = 1, .num_outputs = 3 },
0042 [CDCE925] = { .num_plls = 2, .num_outputs = 5 },
0043 [CDCE937] = { .num_plls = 3, .num_outputs = 7 },
0044 [CDCE949] = { .num_plls = 4, .num_outputs = 9 },
0045 };
0046
0047 #define MAX_NUMBER_OF_PLLS 4
0048 #define MAX_NUMBER_OF_OUTPUTS 9
0049
0050 #define CDCE925_REG_GLOBAL1 0x01
0051 #define CDCE925_REG_Y1SPIPDIVH 0x02
0052 #define CDCE925_REG_PDIVL 0x03
0053 #define CDCE925_REG_XCSEL 0x05
0054
0055 #define CDCE925_OFFSET_PLL 0x10
0056
0057 #define CDCE925_PLL_MUX_OUTPUTS 0x14
0058 #define CDCE925_PLL_MULDIV 0x18
0059
0060 #define CDCE925_PLL_FREQUENCY_MIN 80000000ul
0061 #define CDCE925_PLL_FREQUENCY_MAX 230000000ul
0062 struct clk_cdce925_chip;
0063
0064 struct clk_cdce925_output {
0065 struct clk_hw hw;
0066 struct clk_cdce925_chip *chip;
0067 u8 index;
0068 u16 pdiv;
0069 };
0070 #define to_clk_cdce925_output(_hw) \
0071 container_of(_hw, struct clk_cdce925_output, hw)
0072
0073 struct clk_cdce925_pll {
0074 struct clk_hw hw;
0075 struct clk_cdce925_chip *chip;
0076 u8 index;
0077 u16 m;
0078 u16 n;
0079 };
0080 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
0081
0082 struct clk_cdce925_chip {
0083 struct regmap *regmap;
0084 struct i2c_client *i2c_client;
0085 const struct clk_cdce925_chip_info *chip_info;
0086 struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
0087 struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
0088 };
0089
0090
0091
0092 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
0093 u16 n, u16 m)
0094 {
0095 if ((!m || !n) || (m == n))
0096 return parent_rate;
0097 return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
0098 }
0099
0100 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
0101 unsigned long parent_rate)
0102 {
0103
0104 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
0105
0106 return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
0107 }
0108
0109 static void cdce925_pll_find_rate(unsigned long rate,
0110 unsigned long parent_rate, u16 *n, u16 *m)
0111 {
0112 unsigned long un;
0113 unsigned long um;
0114 unsigned long g;
0115
0116 if (rate <= parent_rate) {
0117
0118 rate = parent_rate;
0119 *n = 0;
0120 *m = 0;
0121 } else {
0122
0123 if (rate < CDCE925_PLL_FREQUENCY_MIN)
0124 rate = CDCE925_PLL_FREQUENCY_MIN;
0125 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
0126 rate = CDCE925_PLL_FREQUENCY_MAX;
0127
0128 g = gcd(rate, parent_rate);
0129 um = parent_rate / g;
0130 un = rate / g;
0131
0132 while ((un > 4095) || (um > 511)) {
0133 un >>= 1;
0134 um >>= 1;
0135 }
0136 if (un == 0)
0137 un = 1;
0138 if (um == 0)
0139 um = 1;
0140
0141 *n = un;
0142 *m = um;
0143 }
0144 }
0145
0146 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
0147 unsigned long *parent_rate)
0148 {
0149 u16 n, m;
0150
0151 cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
0152 return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
0153 }
0154
0155 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
0156 unsigned long parent_rate)
0157 {
0158 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
0159
0160 if (!rate || (rate == parent_rate)) {
0161 data->m = 0;
0162 data->n = 0;
0163 return 0;
0164 }
0165
0166 if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
0167 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
0168 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
0169 return -EINVAL;
0170 }
0171
0172 if (rate < parent_rate) {
0173 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
0174 rate, parent_rate);
0175 return -EINVAL;
0176 }
0177
0178 cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
0179 return 0;
0180 }
0181
0182
0183
0184 static u8 cdce925_pll_calc_p(u16 n, u16 m)
0185 {
0186 u8 p;
0187 u16 r = n / m;
0188
0189 if (r >= 16)
0190 return 0;
0191 p = 4;
0192 while (r > 1) {
0193 r >>= 1;
0194 --p;
0195 }
0196 return p;
0197 }
0198
0199
0200 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
0201 {
0202 struct clk *parent = clk_get_parent(hw->clk);
0203 unsigned long rate = clk_get_rate(parent);
0204
0205 rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
0206 if (rate >= 175000000)
0207 return 0x3;
0208 if (rate >= 150000000)
0209 return 0x02;
0210 if (rate >= 125000000)
0211 return 0x01;
0212 return 0x00;
0213 }
0214
0215
0216
0217 static int cdce925_pll_prepare(struct clk_hw *hw)
0218 {
0219 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
0220 u16 n = data->n;
0221 u16 m = data->m;
0222 u16 r;
0223 u8 q;
0224 u8 p;
0225 u16 nn;
0226 u8 pll[4];
0227 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
0228 unsigned i;
0229
0230 if ((!m || !n) || (m == n)) {
0231
0232 regmap_update_bits(data->chip->regmap,
0233 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
0234 } else {
0235
0236
0237 p = cdce925_pll_calc_p(n, m);
0238
0239 nn = n * BIT(p);
0240
0241 q = nn / m;
0242 if ((q < 16) || (q > 63)) {
0243 pr_debug("%s invalid q=%d\n", __func__, q);
0244 return -EINVAL;
0245 }
0246 r = nn - (m*q);
0247 if (r > 511) {
0248 pr_debug("%s invalid r=%d\n", __func__, r);
0249 return -EINVAL;
0250 }
0251 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
0252 n, m, p, q, r);
0253
0254 pll[0] = n >> 4;
0255 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
0256 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
0257 pll[3] = ((q & 0x07) << 5) | (p << 2) |
0258 cdce925_pll_calc_range_bits(hw, n, m);
0259
0260 for (i = 0; i < ARRAY_SIZE(pll); ++i)
0261 regmap_write(data->chip->regmap,
0262 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
0263
0264 regmap_update_bits(data->chip->regmap,
0265 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
0266 }
0267
0268 return 0;
0269 }
0270
0271 static void cdce925_pll_unprepare(struct clk_hw *hw)
0272 {
0273 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
0274 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
0275
0276 regmap_update_bits(data->chip->regmap,
0277 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
0278 }
0279
0280 static const struct clk_ops cdce925_pll_ops = {
0281 .prepare = cdce925_pll_prepare,
0282 .unprepare = cdce925_pll_unprepare,
0283 .recalc_rate = cdce925_pll_recalc_rate,
0284 .round_rate = cdce925_pll_round_rate,
0285 .set_rate = cdce925_pll_set_rate,
0286 };
0287
0288
0289 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
0290 {
0291 switch (data->index) {
0292 case 0:
0293 regmap_update_bits(data->chip->regmap,
0294 CDCE925_REG_Y1SPIPDIVH,
0295 0x03, (pdiv >> 8) & 0x03);
0296 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
0297 break;
0298 case 1:
0299 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
0300 break;
0301 case 2:
0302 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
0303 break;
0304 case 3:
0305 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
0306 break;
0307 case 4:
0308 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
0309 break;
0310 case 5:
0311 regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
0312 break;
0313 case 6:
0314 regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
0315 break;
0316 case 7:
0317 regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
0318 break;
0319 case 8:
0320 regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
0321 break;
0322 }
0323 }
0324
0325 static void cdce925_clk_activate(struct clk_cdce925_output *data)
0326 {
0327 switch (data->index) {
0328 case 0:
0329 regmap_update_bits(data->chip->regmap,
0330 CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
0331 break;
0332 case 1:
0333 case 2:
0334 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
0335 break;
0336 case 3:
0337 case 4:
0338 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
0339 break;
0340 case 5:
0341 case 6:
0342 regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
0343 break;
0344 case 7:
0345 case 8:
0346 regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
0347 break;
0348 }
0349 }
0350
0351 static int cdce925_clk_prepare(struct clk_hw *hw)
0352 {
0353 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
0354
0355 cdce925_clk_set_pdiv(data, data->pdiv);
0356 cdce925_clk_activate(data);
0357 return 0;
0358 }
0359
0360 static void cdce925_clk_unprepare(struct clk_hw *hw)
0361 {
0362 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
0363
0364
0365 cdce925_clk_set_pdiv(data, 0);
0366 }
0367
0368 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
0369 unsigned long parent_rate)
0370 {
0371 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
0372
0373 if (data->pdiv)
0374 return parent_rate / data->pdiv;
0375 return 0;
0376 }
0377
0378 static u16 cdce925_calc_divider(unsigned long rate,
0379 unsigned long parent_rate)
0380 {
0381 unsigned long divider;
0382
0383 if (!rate)
0384 return 0;
0385 if (rate >= parent_rate)
0386 return 1;
0387
0388 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
0389 if (divider > 0x7F)
0390 divider = 0x7F;
0391
0392 return (u16)divider;
0393 }
0394
0395 static unsigned long cdce925_clk_best_parent_rate(
0396 struct clk_hw *hw, unsigned long rate)
0397 {
0398 struct clk *pll = clk_get_parent(hw->clk);
0399 struct clk *root = clk_get_parent(pll);
0400 unsigned long root_rate = clk_get_rate(root);
0401 unsigned long best_rate_error = rate;
0402 u16 pdiv_min;
0403 u16 pdiv_max;
0404 u16 pdiv_best;
0405 u16 pdiv_now;
0406
0407 if (root_rate % rate == 0)
0408 return root_rate;
0409
0410 pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
0411 pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
0412
0413 if (pdiv_min > pdiv_max)
0414 return 0;
0415
0416 pdiv_best = pdiv_min;
0417 for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
0418 unsigned long target_rate = rate * pdiv_now;
0419 long pll_rate = clk_round_rate(pll, target_rate);
0420 unsigned long actual_rate;
0421 unsigned long rate_error;
0422
0423 if (pll_rate <= 0)
0424 continue;
0425 actual_rate = pll_rate / pdiv_now;
0426 rate_error = abs((long)actual_rate - (long)rate);
0427 if (rate_error < best_rate_error) {
0428 pdiv_best = pdiv_now;
0429 best_rate_error = rate_error;
0430 }
0431
0432
0433 }
0434
0435 return rate * pdiv_best;
0436 }
0437
0438 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
0439 unsigned long *parent_rate)
0440 {
0441 unsigned long l_parent_rate = *parent_rate;
0442 u16 divider = cdce925_calc_divider(rate, l_parent_rate);
0443
0444 if (l_parent_rate / divider != rate) {
0445 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
0446 divider = cdce925_calc_divider(rate, l_parent_rate);
0447 *parent_rate = l_parent_rate;
0448 }
0449
0450 if (divider)
0451 return (long)(l_parent_rate / divider);
0452 return 0;
0453 }
0454
0455 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
0456 unsigned long parent_rate)
0457 {
0458 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
0459
0460 data->pdiv = cdce925_calc_divider(rate, parent_rate);
0461
0462 return 0;
0463 }
0464
0465 static const struct clk_ops cdce925_clk_ops = {
0466 .prepare = cdce925_clk_prepare,
0467 .unprepare = cdce925_clk_unprepare,
0468 .recalc_rate = cdce925_clk_recalc_rate,
0469 .round_rate = cdce925_clk_round_rate,
0470 .set_rate = cdce925_clk_set_rate,
0471 };
0472
0473
0474 static u16 cdce925_y1_calc_divider(unsigned long rate,
0475 unsigned long parent_rate)
0476 {
0477 unsigned long divider;
0478
0479 if (!rate)
0480 return 0;
0481 if (rate >= parent_rate)
0482 return 1;
0483
0484 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
0485 if (divider > 0x3FF)
0486 divider = 0x3FF;
0487
0488 return (u16)divider;
0489 }
0490
0491 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
0492 unsigned long *parent_rate)
0493 {
0494 unsigned long l_parent_rate = *parent_rate;
0495 u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
0496
0497 if (divider)
0498 return (long)(l_parent_rate / divider);
0499 return 0;
0500 }
0501
0502 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
0503 unsigned long parent_rate)
0504 {
0505 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
0506
0507 data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
0508
0509 return 0;
0510 }
0511
0512 static const struct clk_ops cdce925_clk_y1_ops = {
0513 .prepare = cdce925_clk_prepare,
0514 .unprepare = cdce925_clk_unprepare,
0515 .recalc_rate = cdce925_clk_recalc_rate,
0516 .round_rate = cdce925_clk_y1_round_rate,
0517 .set_rate = cdce925_clk_y1_set_rate,
0518 };
0519
0520 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
0521 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
0522
0523 static int cdce925_regmap_i2c_write(
0524 void *context, const void *data, size_t count)
0525 {
0526 struct device *dev = context;
0527 struct i2c_client *i2c = to_i2c_client(dev);
0528 int ret;
0529 u8 reg_data[2];
0530
0531 if (count != 2)
0532 return -ENOTSUPP;
0533
0534
0535 reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
0536 reg_data[1] = ((u8 *)data)[1];
0537
0538 dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
0539 reg_data[0], reg_data[1]);
0540
0541 ret = i2c_master_send(i2c, reg_data, count);
0542 if (likely(ret == count))
0543 return 0;
0544 else if (ret < 0)
0545 return ret;
0546 else
0547 return -EIO;
0548 }
0549
0550 static int cdce925_regmap_i2c_read(void *context,
0551 const void *reg, size_t reg_size, void *val, size_t val_size)
0552 {
0553 struct device *dev = context;
0554 struct i2c_client *i2c = to_i2c_client(dev);
0555 struct i2c_msg xfer[2];
0556 int ret;
0557 u8 reg_data[2];
0558
0559 if (reg_size != 1)
0560 return -ENOTSUPP;
0561
0562 xfer[0].addr = i2c->addr;
0563 xfer[0].flags = 0;
0564 xfer[0].buf = reg_data;
0565 if (val_size == 1) {
0566 reg_data[0] =
0567 CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
0568 xfer[0].len = 1;
0569 } else {
0570 reg_data[0] =
0571 CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
0572 reg_data[1] = val_size;
0573 xfer[0].len = 2;
0574 }
0575
0576 xfer[1].addr = i2c->addr;
0577 xfer[1].flags = I2C_M_RD;
0578 xfer[1].len = val_size;
0579 xfer[1].buf = val;
0580
0581 ret = i2c_transfer(i2c->adapter, xfer, 2);
0582 if (likely(ret == 2)) {
0583 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
0584 reg_size, val_size, reg_data[0], *((u8 *)val));
0585 return 0;
0586 } else if (ret < 0)
0587 return ret;
0588 else
0589 return -EIO;
0590 }
0591
0592 static struct clk_hw *
0593 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
0594 {
0595 struct clk_cdce925_chip *data = _data;
0596 unsigned int idx = clkspec->args[0];
0597
0598 if (idx >= ARRAY_SIZE(data->clk)) {
0599 pr_err("%s: invalid index %u\n", __func__, idx);
0600 return ERR_PTR(-EINVAL);
0601 }
0602
0603 return &data->clk[idx].hw;
0604 }
0605
0606 static void cdce925_regulator_disable(void *regulator)
0607 {
0608 regulator_disable(regulator);
0609 }
0610
0611 static int cdce925_regulator_enable(struct device *dev, const char *name)
0612 {
0613 struct regulator *regulator;
0614 int err;
0615
0616 regulator = devm_regulator_get(dev, name);
0617 if (IS_ERR(regulator))
0618 return PTR_ERR(regulator);
0619
0620 err = regulator_enable(regulator);
0621 if (err) {
0622 dev_err(dev, "Failed to enable %s: %d\n", name, err);
0623 return err;
0624 }
0625
0626 return devm_add_action_or_reset(dev, cdce925_regulator_disable,
0627 regulator);
0628 }
0629
0630
0631
0632 static struct regmap_bus regmap_cdce925_bus = {
0633 .write = cdce925_regmap_i2c_write,
0634 .read = cdce925_regmap_i2c_read,
0635 };
0636
0637 static const struct i2c_device_id cdce925_id[] = {
0638 { "cdce913", CDCE913 },
0639 { "cdce925", CDCE925 },
0640 { "cdce937", CDCE937 },
0641 { "cdce949", CDCE949 },
0642 { }
0643 };
0644 MODULE_DEVICE_TABLE(i2c, cdce925_id);
0645
0646 static int cdce925_probe(struct i2c_client *client)
0647 {
0648 struct clk_cdce925_chip *data;
0649 struct device_node *node = client->dev.of_node;
0650 const struct i2c_device_id *id = i2c_match_id(cdce925_id, client);
0651 const char *parent_name;
0652 const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
0653 struct clk_init_data init;
0654 u32 value;
0655 int i;
0656 int err;
0657 struct device_node *np_output;
0658 char child_name[6];
0659 struct regmap_config config = {
0660 .name = "configuration0",
0661 .reg_bits = 8,
0662 .val_bits = 8,
0663 .cache_type = REGCACHE_RBTREE,
0664 };
0665
0666 dev_dbg(&client->dev, "%s\n", __func__);
0667
0668 err = cdce925_regulator_enable(&client->dev, "vdd");
0669 if (err)
0670 return err;
0671
0672 err = cdce925_regulator_enable(&client->dev, "vddout");
0673 if (err)
0674 return err;
0675
0676 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
0677 if (!data)
0678 return -ENOMEM;
0679
0680 data->i2c_client = client;
0681 data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
0682 config.max_register = CDCE925_OFFSET_PLL +
0683 data->chip_info->num_plls * 0x10 - 1;
0684 data->regmap = devm_regmap_init(&client->dev, ®map_cdce925_bus,
0685 &client->dev, &config);
0686 if (IS_ERR(data->regmap)) {
0687 dev_err(&client->dev, "failed to allocate register map\n");
0688 return PTR_ERR(data->regmap);
0689 }
0690 i2c_set_clientdata(client, data);
0691
0692 parent_name = of_clk_get_parent_name(node, 0);
0693 if (!parent_name) {
0694 dev_err(&client->dev, "missing parent clock\n");
0695 return -ENODEV;
0696 }
0697 dev_dbg(&client->dev, "parent is: %s\n", parent_name);
0698
0699 if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
0700 regmap_write(data->regmap,
0701 CDCE925_REG_XCSEL, (value << 3) & 0xF8);
0702
0703 regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
0704
0705
0706 regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
0707
0708 init.ops = &cdce925_pll_ops;
0709 init.flags = 0;
0710 init.parent_names = &parent_name;
0711 init.num_parents = 1;
0712
0713
0714 for (i = 0; i < data->chip_info->num_plls; ++i) {
0715 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
0716 client->dev.of_node, i);
0717 init.name = pll_clk_name[i];
0718 data->pll[i].chip = data;
0719 data->pll[i].hw.init = &init;
0720 data->pll[i].index = i;
0721 err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
0722 if (err) {
0723 dev_err(&client->dev, "Failed register PLL %d\n", i);
0724 goto error;
0725 }
0726 sprintf(child_name, "PLL%d", i+1);
0727 np_output = of_get_child_by_name(node, child_name);
0728 if (!np_output)
0729 continue;
0730 if (!of_property_read_u32(np_output,
0731 "clock-frequency", &value)) {
0732 err = clk_set_rate(data->pll[i].hw.clk, value);
0733 if (err)
0734 dev_err(&client->dev,
0735 "unable to set PLL frequency %ud\n",
0736 value);
0737 }
0738 if (!of_property_read_u32(np_output,
0739 "spread-spectrum", &value)) {
0740 u8 flag = of_property_read_bool(np_output,
0741 "spread-spectrum-center") ? 0x80 : 0x00;
0742 regmap_update_bits(data->regmap,
0743 0x16 + (i*CDCE925_OFFSET_PLL),
0744 0x80, flag);
0745 regmap_update_bits(data->regmap,
0746 0x12 + (i*CDCE925_OFFSET_PLL),
0747 0x07, value & 0x07);
0748 }
0749 of_node_put(np_output);
0750 }
0751
0752
0753 init.ops = &cdce925_clk_y1_ops;
0754 init.flags = 0;
0755 init.num_parents = 1;
0756 init.parent_names = &parent_name;
0757 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
0758 data->clk[0].chip = data;
0759 data->clk[0].hw.init = &init;
0760 data->clk[0].index = 0;
0761 data->clk[0].pdiv = 1;
0762 err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
0763 kfree(init.name);
0764 if (err) {
0765 dev_err(&client->dev, "clock registration Y1 failed\n");
0766 goto error;
0767 }
0768
0769
0770 init.ops = &cdce925_clk_ops;
0771 init.flags = CLK_SET_RATE_PARENT;
0772 init.num_parents = 1;
0773 for (i = 1; i < data->chip_info->num_outputs; ++i) {
0774 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
0775 client->dev.of_node, i+1);
0776 data->clk[i].chip = data;
0777 data->clk[i].hw.init = &init;
0778 data->clk[i].index = i;
0779 data->clk[i].pdiv = 1;
0780 switch (i) {
0781 case 1:
0782 case 2:
0783
0784 init.parent_names = &pll_clk_name[0];
0785 break;
0786 case 3:
0787 case 4:
0788
0789 init.parent_names = &pll_clk_name[1];
0790 break;
0791 case 5:
0792 case 6:
0793
0794 init.parent_names = &pll_clk_name[2];
0795 break;
0796 case 7:
0797 case 8:
0798
0799 init.parent_names = &pll_clk_name[3];
0800 break;
0801 }
0802 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
0803 kfree(init.name);
0804 if (err) {
0805 dev_err(&client->dev, "clock registration failed\n");
0806 goto error;
0807 }
0808 }
0809
0810
0811 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
0812 data);
0813 if (err)
0814 dev_err(&client->dev, "unable to add OF clock provider\n");
0815
0816 err = 0;
0817
0818 error:
0819 for (i = 0; i < data->chip_info->num_plls; ++i)
0820
0821 kfree(pll_clk_name[i]);
0822
0823 return err;
0824 }
0825
0826 static const struct of_device_id clk_cdce925_of_match[] = {
0827 { .compatible = "ti,cdce913" },
0828 { .compatible = "ti,cdce925" },
0829 { .compatible = "ti,cdce937" },
0830 { .compatible = "ti,cdce949" },
0831 { },
0832 };
0833 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
0834
0835 static struct i2c_driver cdce925_driver = {
0836 .driver = {
0837 .name = "cdce925",
0838 .of_match_table = of_match_ptr(clk_cdce925_of_match),
0839 },
0840 .probe_new = cdce925_probe,
0841 .id_table = cdce925_id,
0842 };
0843 module_i2c_driver(cdce925_driver);
0844
0845 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
0846 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
0847 MODULE_LICENSE("GPL");