0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022 #define pr_fmt(fmt) "ipmi_si: " fmt
0023
0024 #include <linux/module.h>
0025 #include <linux/moduleparam.h>
0026 #include <linux/sched.h>
0027 #include <linux/seq_file.h>
0028 #include <linux/timer.h>
0029 #include <linux/errno.h>
0030 #include <linux/spinlock.h>
0031 #include <linux/slab.h>
0032 #include <linux/delay.h>
0033 #include <linux/list.h>
0034 #include <linux/notifier.h>
0035 #include <linux/mutex.h>
0036 #include <linux/kthread.h>
0037 #include <asm/irq.h>
0038 #include <linux/interrupt.h>
0039 #include <linux/rcupdate.h>
0040 #include <linux/ipmi.h>
0041 #include <linux/ipmi_smi.h>
0042 #include "ipmi_si.h"
0043 #include "ipmi_si_sm.h"
0044 #include <linux/string.h>
0045 #include <linux/ctype.h>
0046
0047
0048 #undef DEBUG_TIMING
0049
0050
0051 #define SI_TIMEOUT_TIME_USEC 10000
0052 #define SI_USEC_PER_JIFFY (1000000/HZ)
0053 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
0054 #define SI_SHORT_TIMEOUT_USEC 250
0055
0056
0057 enum si_intf_state {
0058 SI_NORMAL,
0059 SI_GETTING_FLAGS,
0060 SI_GETTING_EVENTS,
0061 SI_CLEARING_FLAGS,
0062 SI_GETTING_MESSAGES,
0063 SI_CHECKING_ENABLES,
0064 SI_SETTING_ENABLES
0065
0066 };
0067
0068
0069 #define IPMI_BT_INTMASK_REG 2
0070 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
0071 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
0072
0073
0074 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
0075
0076 static bool initialized;
0077
0078
0079
0080
0081 enum si_stat_indexes {
0082
0083
0084
0085
0086 SI_STAT_short_timeouts = 0,
0087
0088
0089
0090
0091
0092 SI_STAT_long_timeouts,
0093
0094
0095 SI_STAT_idles,
0096
0097
0098 SI_STAT_interrupts,
0099
0100
0101 SI_STAT_attentions,
0102
0103
0104 SI_STAT_flag_fetches,
0105
0106
0107 SI_STAT_hosed_count,
0108
0109
0110 SI_STAT_complete_transactions,
0111
0112
0113 SI_STAT_events,
0114
0115
0116 SI_STAT_watchdog_pretimeouts,
0117
0118
0119 SI_STAT_incoming_messages,
0120
0121
0122
0123 SI_NUM_STATS
0124 };
0125
0126 struct smi_info {
0127 int si_num;
0128 struct ipmi_smi *intf;
0129 struct si_sm_data *si_sm;
0130 const struct si_sm_handlers *handlers;
0131 spinlock_t si_lock;
0132 struct ipmi_smi_msg *waiting_msg;
0133 struct ipmi_smi_msg *curr_msg;
0134 enum si_intf_state si_state;
0135
0136
0137
0138
0139
0140 struct si_sm_io io;
0141
0142
0143
0144
0145
0146
0147 int (*oem_data_avail_handler)(struct smi_info *smi_info);
0148
0149
0150
0151
0152
0153
0154 #define RECEIVE_MSG_AVAIL 0x01
0155 #define EVENT_MSG_BUFFER_FULL 0x02
0156 #define WDT_PRE_TIMEOUT_INT 0x08
0157 #define OEM0_DATA_AVAIL 0x20
0158 #define OEM1_DATA_AVAIL 0x40
0159 #define OEM2_DATA_AVAIL 0x80
0160 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
0161 OEM1_DATA_AVAIL | \
0162 OEM2_DATA_AVAIL)
0163 unsigned char msg_flags;
0164
0165
0166 bool has_event_buffer;
0167
0168
0169
0170
0171
0172 atomic_t req_events;
0173
0174
0175
0176
0177
0178
0179 bool run_to_completion;
0180
0181
0182 struct timer_list si_timer;
0183
0184
0185 bool timer_can_start;
0186
0187
0188 bool timer_running;
0189
0190
0191 unsigned long last_timeout_jiffies;
0192
0193
0194 atomic_t need_watch;
0195
0196
0197
0198
0199
0200
0201
0202 bool interrupt_disabled;
0203
0204
0205
0206
0207 bool supports_event_msg_buff;
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218 bool cannot_disable_irq;
0219
0220
0221
0222
0223
0224 bool irq_enable_broken;
0225
0226
0227 bool in_maintenance_mode;
0228
0229
0230
0231
0232 bool got_attn;
0233
0234
0235 struct ipmi_device_id device_id;
0236
0237
0238 bool dev_group_added;
0239
0240
0241 atomic_t stats[SI_NUM_STATS];
0242
0243 struct task_struct *thread;
0244
0245 struct list_head link;
0246 };
0247
0248 #define smi_inc_stat(smi, stat) \
0249 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
0250 #define smi_get_stat(smi, stat) \
0251 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
0252
0253 #define IPMI_MAX_INTFS 4
0254 static int force_kipmid[IPMI_MAX_INTFS];
0255 static int num_force_kipmid;
0256
0257 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
0258 static int num_max_busy_us;
0259
0260 static bool unload_when_empty = true;
0261
0262 static int try_smi_init(struct smi_info *smi);
0263 static void cleanup_one_si(struct smi_info *smi_info);
0264 static void cleanup_ipmi_si(void);
0265
0266 #ifdef DEBUG_TIMING
0267 void debug_timestamp(struct smi_info *smi_info, char *msg)
0268 {
0269 struct timespec64 t;
0270
0271 ktime_get_ts64(&t);
0272 dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n",
0273 msg, t.tv_sec, t.tv_nsec);
0274 }
0275 #else
0276 #define debug_timestamp(smi_info, x)
0277 #endif
0278
0279 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
0280 static int register_xaction_notifier(struct notifier_block *nb)
0281 {
0282 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
0283 }
0284
0285 static void deliver_recv_msg(struct smi_info *smi_info,
0286 struct ipmi_smi_msg *msg)
0287 {
0288
0289 ipmi_smi_msg_received(smi_info->intf, msg);
0290 }
0291
0292 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
0293 {
0294 struct ipmi_smi_msg *msg = smi_info->curr_msg;
0295
0296 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
0297 cCode = IPMI_ERR_UNSPECIFIED;
0298
0299
0300
0301 msg->rsp[0] = msg->data[0] | 4;
0302 msg->rsp[1] = msg->data[1];
0303 msg->rsp[2] = cCode;
0304 msg->rsp_size = 3;
0305
0306 smi_info->curr_msg = NULL;
0307 deliver_recv_msg(smi_info, msg);
0308 }
0309
0310 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
0311 {
0312 int rv;
0313
0314 if (!smi_info->waiting_msg) {
0315 smi_info->curr_msg = NULL;
0316 rv = SI_SM_IDLE;
0317 } else {
0318 int err;
0319
0320 smi_info->curr_msg = smi_info->waiting_msg;
0321 smi_info->waiting_msg = NULL;
0322 debug_timestamp(smi_info, "Start2");
0323 err = atomic_notifier_call_chain(&xaction_notifier_list,
0324 0, smi_info);
0325 if (err & NOTIFY_STOP_MASK) {
0326 rv = SI_SM_CALL_WITHOUT_DELAY;
0327 goto out;
0328 }
0329 err = smi_info->handlers->start_transaction(
0330 smi_info->si_sm,
0331 smi_info->curr_msg->data,
0332 smi_info->curr_msg->data_size);
0333 if (err)
0334 return_hosed_msg(smi_info, err);
0335
0336 rv = SI_SM_CALL_WITHOUT_DELAY;
0337 }
0338 out:
0339 return rv;
0340 }
0341
0342 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
0343 {
0344 if (!smi_info->timer_can_start)
0345 return;
0346 smi_info->last_timeout_jiffies = jiffies;
0347 mod_timer(&smi_info->si_timer, new_val);
0348 smi_info->timer_running = true;
0349 }
0350
0351
0352
0353
0354 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
0355 unsigned int size)
0356 {
0357 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
0358
0359 if (smi_info->thread)
0360 wake_up_process(smi_info->thread);
0361
0362 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
0363 }
0364
0365 static void start_check_enables(struct smi_info *smi_info)
0366 {
0367 unsigned char msg[2];
0368
0369 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
0370 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
0371
0372 start_new_msg(smi_info, msg, 2);
0373 smi_info->si_state = SI_CHECKING_ENABLES;
0374 }
0375
0376 static void start_clear_flags(struct smi_info *smi_info)
0377 {
0378 unsigned char msg[3];
0379
0380
0381 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
0382 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
0383 msg[2] = WDT_PRE_TIMEOUT_INT;
0384
0385 start_new_msg(smi_info, msg, 3);
0386 smi_info->si_state = SI_CLEARING_FLAGS;
0387 }
0388
0389 static void start_getting_msg_queue(struct smi_info *smi_info)
0390 {
0391 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
0392 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
0393 smi_info->curr_msg->data_size = 2;
0394
0395 start_new_msg(smi_info, smi_info->curr_msg->data,
0396 smi_info->curr_msg->data_size);
0397 smi_info->si_state = SI_GETTING_MESSAGES;
0398 }
0399
0400 static void start_getting_events(struct smi_info *smi_info)
0401 {
0402 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
0403 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
0404 smi_info->curr_msg->data_size = 2;
0405
0406 start_new_msg(smi_info, smi_info->curr_msg->data,
0407 smi_info->curr_msg->data_size);
0408 smi_info->si_state = SI_GETTING_EVENTS;
0409 }
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420 static inline bool disable_si_irq(struct smi_info *smi_info)
0421 {
0422 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
0423 smi_info->interrupt_disabled = true;
0424 start_check_enables(smi_info);
0425 return true;
0426 }
0427 return false;
0428 }
0429
0430 static inline bool enable_si_irq(struct smi_info *smi_info)
0431 {
0432 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
0433 smi_info->interrupt_disabled = false;
0434 start_check_enables(smi_info);
0435 return true;
0436 }
0437 return false;
0438 }
0439
0440
0441
0442
0443
0444
0445
0446 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
0447 {
0448 struct ipmi_smi_msg *msg;
0449
0450 msg = ipmi_alloc_smi_msg();
0451 if (!msg) {
0452 if (!disable_si_irq(smi_info))
0453 smi_info->si_state = SI_NORMAL;
0454 } else if (enable_si_irq(smi_info)) {
0455 ipmi_free_smi_msg(msg);
0456 msg = NULL;
0457 }
0458 return msg;
0459 }
0460
0461 static void handle_flags(struct smi_info *smi_info)
0462 {
0463 retry:
0464 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
0465
0466 smi_inc_stat(smi_info, watchdog_pretimeouts);
0467
0468 start_clear_flags(smi_info);
0469 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
0470 ipmi_smi_watchdog_pretimeout(smi_info->intf);
0471 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
0472
0473 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
0474 if (!smi_info->curr_msg)
0475 return;
0476
0477 start_getting_msg_queue(smi_info);
0478 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
0479
0480 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
0481 if (!smi_info->curr_msg)
0482 return;
0483
0484 start_getting_events(smi_info);
0485 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
0486 smi_info->oem_data_avail_handler) {
0487 if (smi_info->oem_data_avail_handler(smi_info))
0488 goto retry;
0489 } else
0490 smi_info->si_state = SI_NORMAL;
0491 }
0492
0493
0494
0495
0496 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
0497 IPMI_BMC_EVT_MSG_INTR)
0498
0499 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
0500 bool *irq_on)
0501 {
0502 u8 enables = 0;
0503
0504 if (smi_info->supports_event_msg_buff)
0505 enables |= IPMI_BMC_EVT_MSG_BUFF;
0506
0507 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
0508 smi_info->cannot_disable_irq) &&
0509 !smi_info->irq_enable_broken)
0510 enables |= IPMI_BMC_RCV_MSG_INTR;
0511
0512 if (smi_info->supports_event_msg_buff &&
0513 smi_info->io.irq && !smi_info->interrupt_disabled &&
0514 !smi_info->irq_enable_broken)
0515 enables |= IPMI_BMC_EVT_MSG_INTR;
0516
0517 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
0518
0519 return enables;
0520 }
0521
0522 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
0523 {
0524 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
0525
0526 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
0527
0528 if ((bool)irqstate == irq_on)
0529 return;
0530
0531 if (irq_on)
0532 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
0533 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
0534 else
0535 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
0536 }
0537
0538 static void handle_transaction_done(struct smi_info *smi_info)
0539 {
0540 struct ipmi_smi_msg *msg;
0541
0542 debug_timestamp(smi_info, "Done");
0543 switch (smi_info->si_state) {
0544 case SI_NORMAL:
0545 if (!smi_info->curr_msg)
0546 break;
0547
0548 smi_info->curr_msg->rsp_size
0549 = smi_info->handlers->get_result(
0550 smi_info->si_sm,
0551 smi_info->curr_msg->rsp,
0552 IPMI_MAX_MSG_LENGTH);
0553
0554
0555
0556
0557
0558
0559 msg = smi_info->curr_msg;
0560 smi_info->curr_msg = NULL;
0561 deliver_recv_msg(smi_info, msg);
0562 break;
0563
0564 case SI_GETTING_FLAGS:
0565 {
0566 unsigned char msg[4];
0567 unsigned int len;
0568
0569
0570 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
0571 if (msg[2] != 0) {
0572
0573 smi_info->si_state = SI_NORMAL;
0574 } else if (len < 4) {
0575
0576
0577
0578
0579 smi_info->si_state = SI_NORMAL;
0580 } else {
0581 smi_info->msg_flags = msg[3];
0582 handle_flags(smi_info);
0583 }
0584 break;
0585 }
0586
0587 case SI_CLEARING_FLAGS:
0588 {
0589 unsigned char msg[3];
0590
0591
0592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
0593 if (msg[2] != 0) {
0594
0595 dev_warn_ratelimited(smi_info->io.dev,
0596 "Error clearing flags: %2.2x\n", msg[2]);
0597 }
0598 smi_info->si_state = SI_NORMAL;
0599 break;
0600 }
0601
0602 case SI_GETTING_EVENTS:
0603 {
0604 smi_info->curr_msg->rsp_size
0605 = smi_info->handlers->get_result(
0606 smi_info->si_sm,
0607 smi_info->curr_msg->rsp,
0608 IPMI_MAX_MSG_LENGTH);
0609
0610
0611
0612
0613
0614
0615 msg = smi_info->curr_msg;
0616 smi_info->curr_msg = NULL;
0617 if (msg->rsp[2] != 0) {
0618
0619 msg->done(msg);
0620
0621
0622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
0623 handle_flags(smi_info);
0624 } else {
0625 smi_inc_stat(smi_info, events);
0626
0627
0628
0629
0630
0631
0632
0633 handle_flags(smi_info);
0634
0635 deliver_recv_msg(smi_info, msg);
0636 }
0637 break;
0638 }
0639
0640 case SI_GETTING_MESSAGES:
0641 {
0642 smi_info->curr_msg->rsp_size
0643 = smi_info->handlers->get_result(
0644 smi_info->si_sm,
0645 smi_info->curr_msg->rsp,
0646 IPMI_MAX_MSG_LENGTH);
0647
0648
0649
0650
0651
0652
0653 msg = smi_info->curr_msg;
0654 smi_info->curr_msg = NULL;
0655 if (msg->rsp[2] != 0) {
0656
0657 msg->done(msg);
0658
0659
0660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
0661 handle_flags(smi_info);
0662 } else {
0663 smi_inc_stat(smi_info, incoming_messages);
0664
0665
0666
0667
0668
0669
0670
0671 handle_flags(smi_info);
0672
0673 deliver_recv_msg(smi_info, msg);
0674 }
0675 break;
0676 }
0677
0678 case SI_CHECKING_ENABLES:
0679 {
0680 unsigned char msg[4];
0681 u8 enables;
0682 bool irq_on;
0683
0684
0685 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
0686 if (msg[2] != 0) {
0687 dev_warn_ratelimited(smi_info->io.dev,
0688 "Couldn't get irq info: %x,\n"
0689 "Maybe ok, but ipmi might run very slowly.\n",
0690 msg[2]);
0691 smi_info->si_state = SI_NORMAL;
0692 break;
0693 }
0694 enables = current_global_enables(smi_info, 0, &irq_on);
0695 if (smi_info->io.si_type == SI_BT)
0696
0697 check_bt_irq(smi_info, irq_on);
0698 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
0699
0700 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
0701 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
0702 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
0703 smi_info->handlers->start_transaction(
0704 smi_info->si_sm, msg, 3);
0705 smi_info->si_state = SI_SETTING_ENABLES;
0706 } else if (smi_info->supports_event_msg_buff) {
0707 smi_info->curr_msg = ipmi_alloc_smi_msg();
0708 if (!smi_info->curr_msg) {
0709 smi_info->si_state = SI_NORMAL;
0710 break;
0711 }
0712 start_getting_events(smi_info);
0713 } else {
0714 smi_info->si_state = SI_NORMAL;
0715 }
0716 break;
0717 }
0718
0719 case SI_SETTING_ENABLES:
0720 {
0721 unsigned char msg[4];
0722
0723 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
0724 if (msg[2] != 0)
0725 dev_warn_ratelimited(smi_info->io.dev,
0726 "Could not set the global enables: 0x%x.\n",
0727 msg[2]);
0728
0729 if (smi_info->supports_event_msg_buff) {
0730 smi_info->curr_msg = ipmi_alloc_smi_msg();
0731 if (!smi_info->curr_msg) {
0732 smi_info->si_state = SI_NORMAL;
0733 break;
0734 }
0735 start_getting_events(smi_info);
0736 } else {
0737 smi_info->si_state = SI_NORMAL;
0738 }
0739 break;
0740 }
0741 }
0742 }
0743
0744
0745
0746
0747
0748
0749 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
0750 int time)
0751 {
0752 enum si_sm_result si_sm_result;
0753
0754 restart:
0755
0756
0757
0758
0759
0760
0761
0762
0763 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
0764 time = 0;
0765 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
0766 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
0767
0768 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
0769 smi_inc_stat(smi_info, complete_transactions);
0770
0771 handle_transaction_done(smi_info);
0772 goto restart;
0773 } else if (si_sm_result == SI_SM_HOSED) {
0774 smi_inc_stat(smi_info, hosed_count);
0775
0776
0777
0778
0779
0780 smi_info->si_state = SI_NORMAL;
0781 if (smi_info->curr_msg != NULL) {
0782
0783
0784
0785
0786
0787 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
0788 }
0789 goto restart;
0790 }
0791
0792
0793
0794
0795
0796 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
0797 unsigned char msg[2];
0798
0799 if (smi_info->si_state != SI_NORMAL) {
0800
0801
0802
0803
0804 smi_info->got_attn = true;
0805 } else {
0806 smi_info->got_attn = false;
0807 smi_inc_stat(smi_info, attentions);
0808
0809
0810
0811
0812
0813
0814
0815
0816 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
0817 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
0818
0819 start_new_msg(smi_info, msg, 2);
0820 smi_info->si_state = SI_GETTING_FLAGS;
0821 goto restart;
0822 }
0823 }
0824
0825
0826 if (si_sm_result == SI_SM_IDLE) {
0827 smi_inc_stat(smi_info, idles);
0828
0829 si_sm_result = start_next_msg(smi_info);
0830 if (si_sm_result != SI_SM_IDLE)
0831 goto restart;
0832 }
0833
0834 if ((si_sm_result == SI_SM_IDLE)
0835 && (atomic_read(&smi_info->req_events))) {
0836
0837
0838
0839
0840 atomic_set(&smi_info->req_events, 0);
0841
0842
0843
0844
0845
0846
0847
0848 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
0849 start_check_enables(smi_info);
0850 } else {
0851 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
0852 if (!smi_info->curr_msg)
0853 goto out;
0854
0855 start_getting_events(smi_info);
0856 }
0857 goto restart;
0858 }
0859
0860 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
0861
0862 if (del_timer(&smi_info->si_timer))
0863 smi_info->timer_running = false;
0864 }
0865
0866 out:
0867 return si_sm_result;
0868 }
0869
0870 static void check_start_timer_thread(struct smi_info *smi_info)
0871 {
0872 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
0873 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
0874
0875 if (smi_info->thread)
0876 wake_up_process(smi_info->thread);
0877
0878 start_next_msg(smi_info);
0879 smi_event_handler(smi_info, 0);
0880 }
0881 }
0882
0883 static void flush_messages(void *send_info)
0884 {
0885 struct smi_info *smi_info = send_info;
0886 enum si_sm_result result;
0887
0888
0889
0890
0891
0892 result = smi_event_handler(smi_info, 0);
0893 while (result != SI_SM_IDLE) {
0894 udelay(SI_SHORT_TIMEOUT_USEC);
0895 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
0896 }
0897 }
0898
0899 static void sender(void *send_info,
0900 struct ipmi_smi_msg *msg)
0901 {
0902 struct smi_info *smi_info = send_info;
0903 unsigned long flags;
0904
0905 debug_timestamp(smi_info, "Enqueue");
0906
0907 if (smi_info->run_to_completion) {
0908
0909
0910
0911
0912 smi_info->waiting_msg = msg;
0913 return;
0914 }
0915
0916 spin_lock_irqsave(&smi_info->si_lock, flags);
0917
0918
0919
0920
0921
0922
0923
0924 BUG_ON(smi_info->waiting_msg);
0925 smi_info->waiting_msg = msg;
0926 check_start_timer_thread(smi_info);
0927 spin_unlock_irqrestore(&smi_info->si_lock, flags);
0928 }
0929
0930 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
0931 {
0932 struct smi_info *smi_info = send_info;
0933
0934 smi_info->run_to_completion = i_run_to_completion;
0935 if (i_run_to_completion)
0936 flush_messages(smi_info);
0937 }
0938
0939
0940
0941
0942
0943 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
0944 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
0945 const struct smi_info *smi_info,
0946 ktime_t *busy_until)
0947 {
0948 unsigned int max_busy_us = 0;
0949
0950 if (smi_info->si_num < num_max_busy_us)
0951 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
0952 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
0953 *busy_until = IPMI_TIME_NOT_BUSY;
0954 else if (*busy_until == IPMI_TIME_NOT_BUSY) {
0955 *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
0956 } else {
0957 if (unlikely(ktime_get() > *busy_until)) {
0958 *busy_until = IPMI_TIME_NOT_BUSY;
0959 return false;
0960 }
0961 }
0962 return true;
0963 }
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975 static int ipmi_thread(void *data)
0976 {
0977 struct smi_info *smi_info = data;
0978 unsigned long flags;
0979 enum si_sm_result smi_result;
0980 ktime_t busy_until = IPMI_TIME_NOT_BUSY;
0981
0982 set_user_nice(current, MAX_NICE);
0983 while (!kthread_should_stop()) {
0984 int busy_wait;
0985
0986 spin_lock_irqsave(&(smi_info->si_lock), flags);
0987 smi_result = smi_event_handler(smi_info, 0);
0988
0989
0990
0991
0992
0993
0994
0995
0996 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
0997 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
0998
0999 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1000 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1001 &busy_until);
1002 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1003 ;
1004 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1005
1006
1007
1008
1009
1010
1011 if (smi_info->in_maintenance_mode)
1012 schedule();
1013 else
1014 usleep_range(100, 200);
1015 } else if (smi_result == SI_SM_IDLE) {
1016 if (atomic_read(&smi_info->need_watch)) {
1017 schedule_timeout_interruptible(100);
1018 } else {
1019
1020 __set_current_state(TASK_INTERRUPTIBLE);
1021 schedule();
1022 }
1023 } else {
1024 schedule_timeout_interruptible(1);
1025 }
1026 }
1027 return 0;
1028 }
1029
1030
1031 static void poll(void *send_info)
1032 {
1033 struct smi_info *smi_info = send_info;
1034 unsigned long flags = 0;
1035 bool run_to_completion = smi_info->run_to_completion;
1036
1037
1038
1039
1040
1041 udelay(10);
1042 if (!run_to_completion)
1043 spin_lock_irqsave(&smi_info->si_lock, flags);
1044 smi_event_handler(smi_info, 10);
1045 if (!run_to_completion)
1046 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1047 }
1048
1049 static void request_events(void *send_info)
1050 {
1051 struct smi_info *smi_info = send_info;
1052
1053 if (!smi_info->has_event_buffer)
1054 return;
1055
1056 atomic_set(&smi_info->req_events, 1);
1057 }
1058
1059 static void set_need_watch(void *send_info, unsigned int watch_mask)
1060 {
1061 struct smi_info *smi_info = send_info;
1062 unsigned long flags;
1063 int enable;
1064
1065 enable = !!watch_mask;
1066
1067 atomic_set(&smi_info->need_watch, enable);
1068 spin_lock_irqsave(&smi_info->si_lock, flags);
1069 check_start_timer_thread(smi_info);
1070 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1071 }
1072
1073 static void smi_timeout(struct timer_list *t)
1074 {
1075 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1076 enum si_sm_result smi_result;
1077 unsigned long flags;
1078 unsigned long jiffies_now;
1079 long time_diff;
1080 long timeout;
1081
1082 spin_lock_irqsave(&(smi_info->si_lock), flags);
1083 debug_timestamp(smi_info, "Timer");
1084
1085 jiffies_now = jiffies;
1086 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1087 * SI_USEC_PER_JIFFY);
1088 smi_result = smi_event_handler(smi_info, time_diff);
1089
1090 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1091
1092 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093 smi_inc_stat(smi_info, long_timeouts);
1094 goto do_mod_timer;
1095 }
1096
1097
1098
1099
1100
1101 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102 smi_inc_stat(smi_info, short_timeouts);
1103 timeout = jiffies + 1;
1104 } else {
1105 smi_inc_stat(smi_info, long_timeouts);
1106 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107 }
1108
1109 do_mod_timer:
1110 if (smi_result != SI_SM_IDLE)
1111 smi_mod_timer(smi_info, timeout);
1112 else
1113 smi_info->timer_running = false;
1114 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115 }
1116
1117 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1118 {
1119 struct smi_info *smi_info = data;
1120 unsigned long flags;
1121
1122 if (smi_info->io.si_type == SI_BT)
1123
1124 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1125 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1126 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1127
1128 spin_lock_irqsave(&(smi_info->si_lock), flags);
1129
1130 smi_inc_stat(smi_info, interrupts);
1131
1132 debug_timestamp(smi_info, "Interrupt");
1133
1134 smi_event_handler(smi_info, 0);
1135 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1136 return IRQ_HANDLED;
1137 }
1138
1139 static int smi_start_processing(void *send_info,
1140 struct ipmi_smi *intf)
1141 {
1142 struct smi_info *new_smi = send_info;
1143 int enable = 0;
1144
1145 new_smi->intf = intf;
1146
1147
1148 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1149 new_smi->timer_can_start = true;
1150 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1151
1152
1153 if (new_smi->io.irq_setup) {
1154 new_smi->io.irq_handler_data = new_smi;
1155 new_smi->io.irq_setup(&new_smi->io);
1156 }
1157
1158
1159
1160
1161 if (new_smi->si_num < num_force_kipmid)
1162 enable = force_kipmid[new_smi->si_num];
1163
1164
1165
1166
1167 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1168 enable = 1;
1169
1170 if (enable) {
1171 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1172 "kipmi%d", new_smi->si_num);
1173 if (IS_ERR(new_smi->thread)) {
1174 dev_notice(new_smi->io.dev,
1175 "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1176 PTR_ERR(new_smi->thread));
1177 new_smi->thread = NULL;
1178 }
1179 }
1180
1181 return 0;
1182 }
1183
1184 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1185 {
1186 struct smi_info *smi = send_info;
1187
1188 data->addr_src = smi->io.addr_source;
1189 data->dev = smi->io.dev;
1190 data->addr_info = smi->io.addr_info;
1191 get_device(smi->io.dev);
1192
1193 return 0;
1194 }
1195
1196 static void set_maintenance_mode(void *send_info, bool enable)
1197 {
1198 struct smi_info *smi_info = send_info;
1199
1200 if (!enable)
1201 atomic_set(&smi_info->req_events, 0);
1202 smi_info->in_maintenance_mode = enable;
1203 }
1204
1205 static void shutdown_smi(void *send_info);
1206 static const struct ipmi_smi_handlers handlers = {
1207 .owner = THIS_MODULE,
1208 .start_processing = smi_start_processing,
1209 .shutdown = shutdown_smi,
1210 .get_smi_info = get_smi_info,
1211 .sender = sender,
1212 .request_events = request_events,
1213 .set_need_watch = set_need_watch,
1214 .set_maintenance_mode = set_maintenance_mode,
1215 .set_run_to_completion = set_run_to_completion,
1216 .flush_messages = flush_messages,
1217 .poll = poll,
1218 };
1219
1220 static LIST_HEAD(smi_infos);
1221 static DEFINE_MUTEX(smi_infos_lock);
1222 static int smi_num;
1223
1224 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1225
1226 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1227 MODULE_PARM_DESC(force_kipmid,
1228 "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1229 module_param(unload_when_empty, bool, 0);
1230 MODULE_PARM_DESC(unload_when_empty,
1231 "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod.");
1232 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1233 MODULE_PARM_DESC(kipmid_max_busy_us,
1234 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1235
1236 void ipmi_irq_finish_setup(struct si_sm_io *io)
1237 {
1238 if (io->si_type == SI_BT)
1239
1240 io->outputb(io, IPMI_BT_INTMASK_REG,
1241 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1242 }
1243
1244 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1245 {
1246 if (io->si_type == SI_BT)
1247
1248 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1249 }
1250
1251 static void std_irq_cleanup(struct si_sm_io *io)
1252 {
1253 ipmi_irq_start_cleanup(io);
1254 free_irq(io->irq, io->irq_handler_data);
1255 }
1256
1257 int ipmi_std_irq_setup(struct si_sm_io *io)
1258 {
1259 int rv;
1260
1261 if (!io->irq)
1262 return 0;
1263
1264 rv = request_irq(io->irq,
1265 ipmi_si_irq_handler,
1266 IRQF_SHARED,
1267 SI_DEVICE_NAME,
1268 io->irq_handler_data);
1269 if (rv) {
1270 dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1271 SI_DEVICE_NAME, io->irq);
1272 io->irq = 0;
1273 } else {
1274 io->irq_cleanup = std_irq_cleanup;
1275 ipmi_irq_finish_setup(io);
1276 dev_info(io->dev, "Using irq %d\n", io->irq);
1277 }
1278
1279 return rv;
1280 }
1281
1282 static int wait_for_msg_done(struct smi_info *smi_info)
1283 {
1284 enum si_sm_result smi_result;
1285
1286 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1287 for (;;) {
1288 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1289 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1290 schedule_timeout_uninterruptible(1);
1291 smi_result = smi_info->handlers->event(
1292 smi_info->si_sm, jiffies_to_usecs(1));
1293 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1294 smi_result = smi_info->handlers->event(
1295 smi_info->si_sm, 0);
1296 } else
1297 break;
1298 }
1299 if (smi_result == SI_SM_HOSED)
1300
1301
1302
1303
1304 return -ENODEV;
1305
1306 return 0;
1307 }
1308
1309 static int try_get_dev_id(struct smi_info *smi_info)
1310 {
1311 unsigned char msg[2];
1312 unsigned char *resp;
1313 unsigned long resp_len;
1314 int rv = 0;
1315 unsigned int retry_count = 0;
1316
1317 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1318 if (!resp)
1319 return -ENOMEM;
1320
1321
1322
1323
1324
1325 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1326 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1327
1328 retry:
1329 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1330
1331 rv = wait_for_msg_done(smi_info);
1332 if (rv)
1333 goto out;
1334
1335 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1336 resp, IPMI_MAX_MSG_LENGTH);
1337
1338
1339 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1340 resp + 2, resp_len - 2, &smi_info->device_id);
1341 if (rv) {
1342
1343 unsigned char cc = *(resp + 2);
1344
1345 if (cc != IPMI_CC_NO_ERROR &&
1346 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1347 dev_warn_ratelimited(smi_info->io.dev,
1348 "BMC returned 0x%2.2x, retry get bmc device id\n",
1349 cc);
1350 goto retry;
1351 }
1352 }
1353
1354 out:
1355 kfree(resp);
1356 return rv;
1357 }
1358
1359 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1360 {
1361 unsigned char msg[3];
1362 unsigned char *resp;
1363 unsigned long resp_len;
1364 int rv;
1365
1366 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1367 if (!resp)
1368 return -ENOMEM;
1369
1370 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1371 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1372 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1373
1374 rv = wait_for_msg_done(smi_info);
1375 if (rv) {
1376 dev_warn(smi_info->io.dev,
1377 "Error getting response from get global enables command: %d\n",
1378 rv);
1379 goto out;
1380 }
1381
1382 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1383 resp, IPMI_MAX_MSG_LENGTH);
1384
1385 if (resp_len < 4 ||
1386 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1387 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1388 resp[2] != 0) {
1389 dev_warn(smi_info->io.dev,
1390 "Invalid return from get global enables command: %ld %x %x %x\n",
1391 resp_len, resp[0], resp[1], resp[2]);
1392 rv = -EINVAL;
1393 goto out;
1394 } else {
1395 *enables = resp[3];
1396 }
1397
1398 out:
1399 kfree(resp);
1400 return rv;
1401 }
1402
1403
1404
1405
1406 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1407 {
1408 unsigned char msg[3];
1409 unsigned char *resp;
1410 unsigned long resp_len;
1411 int rv;
1412
1413 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1414 if (!resp)
1415 return -ENOMEM;
1416
1417 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1418 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1419 msg[2] = enables;
1420 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1421
1422 rv = wait_for_msg_done(smi_info);
1423 if (rv) {
1424 dev_warn(smi_info->io.dev,
1425 "Error getting response from set global enables command: %d\n",
1426 rv);
1427 goto out;
1428 }
1429
1430 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1431 resp, IPMI_MAX_MSG_LENGTH);
1432
1433 if (resp_len < 3 ||
1434 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1435 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1436 dev_warn(smi_info->io.dev,
1437 "Invalid return from set global enables command: %ld %x %x\n",
1438 resp_len, resp[0], resp[1]);
1439 rv = -EINVAL;
1440 goto out;
1441 }
1442
1443 if (resp[2] != 0)
1444 rv = 1;
1445
1446 out:
1447 kfree(resp);
1448 return rv;
1449 }
1450
1451
1452
1453
1454
1455
1456 static void check_clr_rcv_irq(struct smi_info *smi_info)
1457 {
1458 u8 enables = 0;
1459 int rv;
1460
1461 rv = get_global_enables(smi_info, &enables);
1462 if (!rv) {
1463 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1464
1465 return;
1466
1467 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1468 rv = set_global_enables(smi_info, enables);
1469 }
1470
1471 if (rv < 0) {
1472 dev_err(smi_info->io.dev,
1473 "Cannot check clearing the rcv irq: %d\n", rv);
1474 return;
1475 }
1476
1477 if (rv) {
1478
1479
1480
1481
1482 dev_warn(smi_info->io.dev,
1483 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1484 smi_info->cannot_disable_irq = true;
1485 }
1486 }
1487
1488
1489
1490
1491
1492
1493 static void check_set_rcv_irq(struct smi_info *smi_info)
1494 {
1495 u8 enables = 0;
1496 int rv;
1497
1498 if (!smi_info->io.irq)
1499 return;
1500
1501 rv = get_global_enables(smi_info, &enables);
1502 if (!rv) {
1503 enables |= IPMI_BMC_RCV_MSG_INTR;
1504 rv = set_global_enables(smi_info, enables);
1505 }
1506
1507 if (rv < 0) {
1508 dev_err(smi_info->io.dev,
1509 "Cannot check setting the rcv irq: %d\n", rv);
1510 return;
1511 }
1512
1513 if (rv) {
1514
1515
1516
1517
1518 dev_warn(smi_info->io.dev,
1519 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1520 smi_info->cannot_disable_irq = true;
1521 smi_info->irq_enable_broken = true;
1522 }
1523 }
1524
1525 static int try_enable_event_buffer(struct smi_info *smi_info)
1526 {
1527 unsigned char msg[3];
1528 unsigned char *resp;
1529 unsigned long resp_len;
1530 int rv = 0;
1531
1532 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1533 if (!resp)
1534 return -ENOMEM;
1535
1536 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1537 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1538 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1539
1540 rv = wait_for_msg_done(smi_info);
1541 if (rv) {
1542 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1543 goto out;
1544 }
1545
1546 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1547 resp, IPMI_MAX_MSG_LENGTH);
1548
1549 if (resp_len < 4 ||
1550 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1551 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1552 resp[2] != 0) {
1553 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1554 rv = -EINVAL;
1555 goto out;
1556 }
1557
1558 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1559
1560 smi_info->supports_event_msg_buff = true;
1561 goto out;
1562 }
1563
1564 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1565 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1566 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1567 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1568
1569 rv = wait_for_msg_done(smi_info);
1570 if (rv) {
1571 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1572 goto out;
1573 }
1574
1575 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1576 resp, IPMI_MAX_MSG_LENGTH);
1577
1578 if (resp_len < 3 ||
1579 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1580 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1581 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1582 rv = -EINVAL;
1583 goto out;
1584 }
1585
1586 if (resp[2] != 0)
1587
1588
1589
1590
1591 rv = -ENOENT;
1592 else
1593 smi_info->supports_event_msg_buff = true;
1594
1595 out:
1596 kfree(resp);
1597 return rv;
1598 }
1599
1600 #define IPMI_SI_ATTR(name) \
1601 static ssize_t name##_show(struct device *dev, \
1602 struct device_attribute *attr, \
1603 char *buf) \
1604 { \
1605 struct smi_info *smi_info = dev_get_drvdata(dev); \
1606 \
1607 return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name)); \
1608 } \
1609 static DEVICE_ATTR_RO(name)
1610
1611 static ssize_t type_show(struct device *dev,
1612 struct device_attribute *attr,
1613 char *buf)
1614 {
1615 struct smi_info *smi_info = dev_get_drvdata(dev);
1616
1617 return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_type]);
1618 }
1619 static DEVICE_ATTR_RO(type);
1620
1621 static ssize_t interrupts_enabled_show(struct device *dev,
1622 struct device_attribute *attr,
1623 char *buf)
1624 {
1625 struct smi_info *smi_info = dev_get_drvdata(dev);
1626 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1627
1628 return sysfs_emit(buf, "%d\n", enabled);
1629 }
1630 static DEVICE_ATTR_RO(interrupts_enabled);
1631
1632 IPMI_SI_ATTR(short_timeouts);
1633 IPMI_SI_ATTR(long_timeouts);
1634 IPMI_SI_ATTR(idles);
1635 IPMI_SI_ATTR(interrupts);
1636 IPMI_SI_ATTR(attentions);
1637 IPMI_SI_ATTR(flag_fetches);
1638 IPMI_SI_ATTR(hosed_count);
1639 IPMI_SI_ATTR(complete_transactions);
1640 IPMI_SI_ATTR(events);
1641 IPMI_SI_ATTR(watchdog_pretimeouts);
1642 IPMI_SI_ATTR(incoming_messages);
1643
1644 static ssize_t params_show(struct device *dev,
1645 struct device_attribute *attr,
1646 char *buf)
1647 {
1648 struct smi_info *smi_info = dev_get_drvdata(dev);
1649
1650 return sysfs_emit(buf,
1651 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1652 si_to_str[smi_info->io.si_type],
1653 addr_space_to_str[smi_info->io.addr_space],
1654 smi_info->io.addr_data,
1655 smi_info->io.regspacing,
1656 smi_info->io.regsize,
1657 smi_info->io.regshift,
1658 smi_info->io.irq,
1659 smi_info->io.slave_addr);
1660 }
1661 static DEVICE_ATTR_RO(params);
1662
1663 static struct attribute *ipmi_si_dev_attrs[] = {
1664 &dev_attr_type.attr,
1665 &dev_attr_interrupts_enabled.attr,
1666 &dev_attr_short_timeouts.attr,
1667 &dev_attr_long_timeouts.attr,
1668 &dev_attr_idles.attr,
1669 &dev_attr_interrupts.attr,
1670 &dev_attr_attentions.attr,
1671 &dev_attr_flag_fetches.attr,
1672 &dev_attr_hosed_count.attr,
1673 &dev_attr_complete_transactions.attr,
1674 &dev_attr_events.attr,
1675 &dev_attr_watchdog_pretimeouts.attr,
1676 &dev_attr_incoming_messages.attr,
1677 &dev_attr_params.attr,
1678 NULL
1679 };
1680
1681 static const struct attribute_group ipmi_si_dev_attr_group = {
1682 .attrs = ipmi_si_dev_attrs,
1683 };
1684
1685
1686
1687
1688
1689
1690
1691
1692 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1693 {
1694 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1695 RECEIVE_MSG_AVAIL);
1696 return 1;
1697 }
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1725 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1726 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1727 #define DELL_IANA_MFR_ID 0x0002a2
1728 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1729 {
1730 struct ipmi_device_id *id = &smi_info->device_id;
1731 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1732 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1733 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1734 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1735 smi_info->oem_data_avail_handler =
1736 oem_data_avail_to_receive_msg_avail;
1737 } else if (ipmi_version_major(id) < 1 ||
1738 (ipmi_version_major(id) == 1 &&
1739 ipmi_version_minor(id) < 5)) {
1740 smi_info->oem_data_avail_handler =
1741 oem_data_avail_to_receive_msg_avail;
1742 }
1743 }
1744 }
1745
1746 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1747 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1748 {
1749 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1750
1751
1752 msg->rsp[0] = msg->data[0] | 4;
1753 msg->rsp[1] = msg->data[1];
1754 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1755 msg->rsp_size = 3;
1756 smi_info->curr_msg = NULL;
1757 deliver_recv_msg(smi_info, msg);
1758 }
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771 #define STORAGE_NETFN 0x0A
1772 #define STORAGE_CMD_GET_SDR 0x23
1773 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1774 unsigned long unused,
1775 void *in)
1776 {
1777 struct smi_info *smi_info = in;
1778 unsigned char *data = smi_info->curr_msg->data;
1779 unsigned int size = smi_info->curr_msg->data_size;
1780 if (size >= 8 &&
1781 (data[0]>>2) == STORAGE_NETFN &&
1782 data[1] == STORAGE_CMD_GET_SDR &&
1783 data[7] == 0x3A) {
1784 return_hosed_msg_badsize(smi_info);
1785 return NOTIFY_STOP;
1786 }
1787 return NOTIFY_DONE;
1788 }
1789
1790 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1791 .notifier_call = dell_poweredge_bt_xaction_handler,
1792 };
1793
1794
1795
1796
1797
1798
1799
1800
1801 static void
1802 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1803 {
1804 struct ipmi_device_id *id = &smi_info->device_id;
1805 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1806 smi_info->io.si_type == SI_BT)
1807 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1808 }
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818 static void setup_oem_data_handler(struct smi_info *smi_info)
1819 {
1820 setup_dell_poweredge_oem_data_handler(smi_info);
1821 }
1822
1823 static void setup_xaction_handlers(struct smi_info *smi_info)
1824 {
1825 setup_dell_poweredge_bt_xaction_handler(smi_info);
1826 }
1827
1828 static void check_for_broken_irqs(struct smi_info *smi_info)
1829 {
1830 check_clr_rcv_irq(smi_info);
1831 check_set_rcv_irq(smi_info);
1832 }
1833
1834 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1835 {
1836 if (smi_info->thread != NULL) {
1837 kthread_stop(smi_info->thread);
1838 smi_info->thread = NULL;
1839 }
1840
1841 smi_info->timer_can_start = false;
1842 del_timer_sync(&smi_info->si_timer);
1843 }
1844
1845 static struct smi_info *find_dup_si(struct smi_info *info)
1846 {
1847 struct smi_info *e;
1848
1849 list_for_each_entry(e, &smi_infos, link) {
1850 if (e->io.addr_space != info->io.addr_space)
1851 continue;
1852 if (e->io.addr_data == info->io.addr_data) {
1853
1854
1855
1856
1857
1858 if (info->io.slave_addr && !e->io.slave_addr)
1859 e->io.slave_addr = info->io.slave_addr;
1860 return e;
1861 }
1862 }
1863
1864 return NULL;
1865 }
1866
1867 int ipmi_si_add_smi(struct si_sm_io *io)
1868 {
1869 int rv = 0;
1870 struct smi_info *new_smi, *dup;
1871
1872
1873
1874
1875
1876
1877 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1878 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1879 dev_info(io->dev,
1880 "Hard-coded device at this address already exists");
1881 return -ENODEV;
1882 }
1883
1884 if (!io->io_setup) {
1885 if (io->addr_space == IPMI_IO_ADDR_SPACE) {
1886 io->io_setup = ipmi_si_port_setup;
1887 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1888 io->io_setup = ipmi_si_mem_setup;
1889 } else {
1890 return -EINVAL;
1891 }
1892 }
1893
1894 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1895 if (!new_smi)
1896 return -ENOMEM;
1897 spin_lock_init(&new_smi->si_lock);
1898
1899 new_smi->io = *io;
1900
1901 mutex_lock(&smi_infos_lock);
1902 dup = find_dup_si(new_smi);
1903 if (dup) {
1904 if (new_smi->io.addr_source == SI_ACPI &&
1905 dup->io.addr_source == SI_SMBIOS) {
1906
1907 dev_info(dup->io.dev,
1908 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1909 si_to_str[new_smi->io.si_type]);
1910 cleanup_one_si(dup);
1911 } else {
1912 dev_info(new_smi->io.dev,
1913 "%s-specified %s state machine: duplicate\n",
1914 ipmi_addr_src_to_str(new_smi->io.addr_source),
1915 si_to_str[new_smi->io.si_type]);
1916 rv = -EBUSY;
1917 kfree(new_smi);
1918 goto out_err;
1919 }
1920 }
1921
1922 pr_info("Adding %s-specified %s state machine\n",
1923 ipmi_addr_src_to_str(new_smi->io.addr_source),
1924 si_to_str[new_smi->io.si_type]);
1925
1926 list_add_tail(&new_smi->link, &smi_infos);
1927
1928 if (initialized)
1929 rv = try_smi_init(new_smi);
1930 out_err:
1931 mutex_unlock(&smi_infos_lock);
1932 return rv;
1933 }
1934
1935
1936
1937
1938
1939
1940 static int try_smi_init(struct smi_info *new_smi)
1941 {
1942 int rv = 0;
1943 int i;
1944
1945 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1946 ipmi_addr_src_to_str(new_smi->io.addr_source),
1947 si_to_str[new_smi->io.si_type],
1948 addr_space_to_str[new_smi->io.addr_space],
1949 new_smi->io.addr_data,
1950 new_smi->io.slave_addr, new_smi->io.irq);
1951
1952 switch (new_smi->io.si_type) {
1953 case SI_KCS:
1954 new_smi->handlers = &kcs_smi_handlers;
1955 break;
1956
1957 case SI_SMIC:
1958 new_smi->handlers = &smic_smi_handlers;
1959 break;
1960
1961 case SI_BT:
1962 new_smi->handlers = &bt_smi_handlers;
1963 break;
1964
1965 default:
1966
1967 rv = -EIO;
1968 goto out_err;
1969 }
1970
1971 new_smi->si_num = smi_num;
1972
1973
1974 if (!new_smi->io.dev) {
1975 pr_err("IPMI interface added with no device\n");
1976 rv = -EIO;
1977 goto out_err;
1978 }
1979
1980
1981 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1982 if (!new_smi->si_sm) {
1983 rv = -ENOMEM;
1984 goto out_err;
1985 }
1986 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1987 &new_smi->io);
1988
1989
1990 rv = new_smi->io.io_setup(&new_smi->io);
1991 if (rv) {
1992 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1993 goto out_err;
1994 }
1995
1996
1997 if (new_smi->handlers->detect(new_smi->si_sm)) {
1998 if (new_smi->io.addr_source)
1999 dev_err(new_smi->io.dev,
2000 "Interface detection failed\n");
2001 rv = -ENODEV;
2002 goto out_err;
2003 }
2004
2005
2006
2007
2008
2009 rv = try_get_dev_id(new_smi);
2010 if (rv) {
2011 if (new_smi->io.addr_source)
2012 dev_err(new_smi->io.dev,
2013 "There appears to be no BMC at this location\n");
2014 goto out_err;
2015 }
2016
2017 setup_oem_data_handler(new_smi);
2018 setup_xaction_handlers(new_smi);
2019 check_for_broken_irqs(new_smi);
2020
2021 new_smi->waiting_msg = NULL;
2022 new_smi->curr_msg = NULL;
2023 atomic_set(&new_smi->req_events, 0);
2024 new_smi->run_to_completion = false;
2025 for (i = 0; i < SI_NUM_STATS; i++)
2026 atomic_set(&new_smi->stats[i], 0);
2027
2028 new_smi->interrupt_disabled = true;
2029 atomic_set(&new_smi->need_watch, 0);
2030
2031 rv = try_enable_event_buffer(new_smi);
2032 if (rv == 0)
2033 new_smi->has_event_buffer = true;
2034
2035
2036
2037
2038
2039 start_clear_flags(new_smi);
2040
2041
2042
2043
2044
2045 if (new_smi->io.irq) {
2046 new_smi->interrupt_disabled = false;
2047 atomic_set(&new_smi->req_events, 1);
2048 }
2049
2050 dev_set_drvdata(new_smi->io.dev, new_smi);
2051 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2052 if (rv) {
2053 dev_err(new_smi->io.dev,
2054 "Unable to add device attributes: error %d\n",
2055 rv);
2056 goto out_err;
2057 }
2058 new_smi->dev_group_added = true;
2059
2060 rv = ipmi_register_smi(&handlers,
2061 new_smi,
2062 new_smi->io.dev,
2063 new_smi->io.slave_addr);
2064 if (rv) {
2065 dev_err(new_smi->io.dev,
2066 "Unable to register device: error %d\n",
2067 rv);
2068 goto out_err;
2069 }
2070
2071
2072 smi_num++;
2073
2074 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2075 si_to_str[new_smi->io.si_type]);
2076
2077 WARN_ON(new_smi->io.dev->init_name != NULL);
2078
2079 out_err:
2080 if (rv && new_smi->io.io_cleanup) {
2081 new_smi->io.io_cleanup(&new_smi->io);
2082 new_smi->io.io_cleanup = NULL;
2083 }
2084
2085 return rv;
2086 }
2087
2088 static int __init init_ipmi_si(void)
2089 {
2090 struct smi_info *e;
2091 enum ipmi_addr_src type = SI_INVALID;
2092
2093 if (initialized)
2094 return 0;
2095
2096 ipmi_hardcode_init();
2097
2098 pr_info("IPMI System Interface driver\n");
2099
2100 ipmi_si_platform_init();
2101
2102 ipmi_si_pci_init();
2103
2104 ipmi_si_parisc_init();
2105
2106
2107
2108
2109
2110 mutex_lock(&smi_infos_lock);
2111 list_for_each_entry(e, &smi_infos, link) {
2112
2113
2114
2115 if (e->io.irq && (!type || e->io.addr_source == type)) {
2116 if (!try_smi_init(e)) {
2117 type = e->io.addr_source;
2118 }
2119 }
2120 }
2121
2122
2123 if (type)
2124 goto skip_fallback_noirq;
2125
2126
2127
2128 list_for_each_entry(e, &smi_infos, link) {
2129 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2130 if (!try_smi_init(e)) {
2131 type = e->io.addr_source;
2132 }
2133 }
2134 }
2135
2136 skip_fallback_noirq:
2137 initialized = true;
2138 mutex_unlock(&smi_infos_lock);
2139
2140 if (type)
2141 return 0;
2142
2143 mutex_lock(&smi_infos_lock);
2144 if (unload_when_empty && list_empty(&smi_infos)) {
2145 mutex_unlock(&smi_infos_lock);
2146 cleanup_ipmi_si();
2147 pr_warn("Unable to find any System Interface(s)\n");
2148 return -ENODEV;
2149 } else {
2150 mutex_unlock(&smi_infos_lock);
2151 return 0;
2152 }
2153 }
2154 module_init(init_ipmi_si);
2155
2156 static void shutdown_smi(void *send_info)
2157 {
2158 struct smi_info *smi_info = send_info;
2159
2160 if (smi_info->dev_group_added) {
2161 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2162 smi_info->dev_group_added = false;
2163 }
2164 if (smi_info->io.dev)
2165 dev_set_drvdata(smi_info->io.dev, NULL);
2166
2167
2168
2169
2170
2171 smi_info->interrupt_disabled = true;
2172 if (smi_info->io.irq_cleanup) {
2173 smi_info->io.irq_cleanup(&smi_info->io);
2174 smi_info->io.irq_cleanup = NULL;
2175 }
2176 stop_timer_and_thread(smi_info);
2177
2178
2179
2180
2181
2182
2183 synchronize_rcu();
2184
2185
2186
2187
2188
2189
2190 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2191 poll(smi_info);
2192 schedule_timeout_uninterruptible(1);
2193 }
2194 if (smi_info->handlers)
2195 disable_si_irq(smi_info);
2196 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2197 poll(smi_info);
2198 schedule_timeout_uninterruptible(1);
2199 }
2200 if (smi_info->handlers)
2201 smi_info->handlers->cleanup(smi_info->si_sm);
2202
2203 if (smi_info->io.io_cleanup) {
2204 smi_info->io.io_cleanup(&smi_info->io);
2205 smi_info->io.io_cleanup = NULL;
2206 }
2207
2208 kfree(smi_info->si_sm);
2209 smi_info->si_sm = NULL;
2210
2211 smi_info->intf = NULL;
2212 }
2213
2214
2215
2216
2217
2218 static void cleanup_one_si(struct smi_info *smi_info)
2219 {
2220 if (!smi_info)
2221 return;
2222
2223 list_del(&smi_info->link);
2224 ipmi_unregister_smi(smi_info->intf);
2225 kfree(smi_info);
2226 }
2227
2228 void ipmi_si_remove_by_dev(struct device *dev)
2229 {
2230 struct smi_info *e;
2231
2232 mutex_lock(&smi_infos_lock);
2233 list_for_each_entry(e, &smi_infos, link) {
2234 if (e->io.dev == dev) {
2235 cleanup_one_si(e);
2236 break;
2237 }
2238 }
2239 mutex_unlock(&smi_infos_lock);
2240 }
2241
2242 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2243 unsigned long addr)
2244 {
2245
2246 struct smi_info *e, *tmp_e;
2247 struct device *dev = NULL;
2248
2249 mutex_lock(&smi_infos_lock);
2250 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2251 if (e->io.addr_space != addr_space)
2252 continue;
2253 if (e->io.si_type != si_type)
2254 continue;
2255 if (e->io.addr_data == addr) {
2256 dev = get_device(e->io.dev);
2257 cleanup_one_si(e);
2258 }
2259 }
2260 mutex_unlock(&smi_infos_lock);
2261
2262 return dev;
2263 }
2264
2265 static void cleanup_ipmi_si(void)
2266 {
2267 struct smi_info *e, *tmp_e;
2268
2269 if (!initialized)
2270 return;
2271
2272 ipmi_si_pci_shutdown();
2273
2274 ipmi_si_parisc_shutdown();
2275
2276 ipmi_si_platform_shutdown();
2277
2278 mutex_lock(&smi_infos_lock);
2279 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2280 cleanup_one_si(e);
2281 mutex_unlock(&smi_infos_lock);
2282
2283 ipmi_si_hardcode_exit();
2284 ipmi_si_hotmod_exit();
2285 }
2286 module_exit(cleanup_ipmi_si);
2287
2288 MODULE_ALIAS("platform:dmi-ipmi-si");
2289 MODULE_LICENSE("GPL");
2290 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2291 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");