Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * ipmi_si.c
0004  *
0005  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
0006  * BT).
0007  *
0008  * Author: MontaVista Software, Inc.
0009  *         Corey Minyard <minyard@mvista.com>
0010  *         source@mvista.com
0011  *
0012  * Copyright 2002 MontaVista Software Inc.
0013  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
0014  */
0015 
0016 /*
0017  * This file holds the "policy" for the interface to the SMI state
0018  * machine.  It does the configuration, handles timers and interrupts,
0019  * and drives the real SMI state machine.
0020  */
0021 
0022 #define pr_fmt(fmt) "ipmi_si: " fmt
0023 
0024 #include <linux/module.h>
0025 #include <linux/moduleparam.h>
0026 #include <linux/sched.h>
0027 #include <linux/seq_file.h>
0028 #include <linux/timer.h>
0029 #include <linux/errno.h>
0030 #include <linux/spinlock.h>
0031 #include <linux/slab.h>
0032 #include <linux/delay.h>
0033 #include <linux/list.h>
0034 #include <linux/notifier.h>
0035 #include <linux/mutex.h>
0036 #include <linux/kthread.h>
0037 #include <asm/irq.h>
0038 #include <linux/interrupt.h>
0039 #include <linux/rcupdate.h>
0040 #include <linux/ipmi.h>
0041 #include <linux/ipmi_smi.h>
0042 #include "ipmi_si.h"
0043 #include "ipmi_si_sm.h"
0044 #include <linux/string.h>
0045 #include <linux/ctype.h>
0046 
0047 /* Measure times between events in the driver. */
0048 #undef DEBUG_TIMING
0049 
0050 /* Call every 10 ms. */
0051 #define SI_TIMEOUT_TIME_USEC    10000
0052 #define SI_USEC_PER_JIFFY   (1000000/HZ)
0053 #define SI_TIMEOUT_JIFFIES  (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
0054 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
0055                       short timeout */
0056 
0057 enum si_intf_state {
0058     SI_NORMAL,
0059     SI_GETTING_FLAGS,
0060     SI_GETTING_EVENTS,
0061     SI_CLEARING_FLAGS,
0062     SI_GETTING_MESSAGES,
0063     SI_CHECKING_ENABLES,
0064     SI_SETTING_ENABLES
0065     /* FIXME - add watchdog stuff. */
0066 };
0067 
0068 /* Some BT-specific defines we need here. */
0069 #define IPMI_BT_INTMASK_REG     2
0070 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
0071 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
0072 
0073 /* 'invalid' to allow a firmware-specified interface to be disabled */
0074 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
0075 
0076 static bool initialized;
0077 
0078 /*
0079  * Indexes into stats[] in smi_info below.
0080  */
0081 enum si_stat_indexes {
0082     /*
0083      * Number of times the driver requested a timer while an operation
0084      * was in progress.
0085      */
0086     SI_STAT_short_timeouts = 0,
0087 
0088     /*
0089      * Number of times the driver requested a timer while nothing was in
0090      * progress.
0091      */
0092     SI_STAT_long_timeouts,
0093 
0094     /* Number of times the interface was idle while being polled. */
0095     SI_STAT_idles,
0096 
0097     /* Number of interrupts the driver handled. */
0098     SI_STAT_interrupts,
0099 
0100     /* Number of time the driver got an ATTN from the hardware. */
0101     SI_STAT_attentions,
0102 
0103     /* Number of times the driver requested flags from the hardware. */
0104     SI_STAT_flag_fetches,
0105 
0106     /* Number of times the hardware didn't follow the state machine. */
0107     SI_STAT_hosed_count,
0108 
0109     /* Number of completed messages. */
0110     SI_STAT_complete_transactions,
0111 
0112     /* Number of IPMI events received from the hardware. */
0113     SI_STAT_events,
0114 
0115     /* Number of watchdog pretimeouts. */
0116     SI_STAT_watchdog_pretimeouts,
0117 
0118     /* Number of asynchronous messages received. */
0119     SI_STAT_incoming_messages,
0120 
0121 
0122     /* This *must* remain last, add new values above this. */
0123     SI_NUM_STATS
0124 };
0125 
0126 struct smi_info {
0127     int                    si_num;
0128     struct ipmi_smi        *intf;
0129     struct si_sm_data      *si_sm;
0130     const struct si_sm_handlers *handlers;
0131     spinlock_t             si_lock;
0132     struct ipmi_smi_msg    *waiting_msg;
0133     struct ipmi_smi_msg    *curr_msg;
0134     enum si_intf_state     si_state;
0135 
0136     /*
0137      * Used to handle the various types of I/O that can occur with
0138      * IPMI
0139      */
0140     struct si_sm_io io;
0141 
0142     /*
0143      * Per-OEM handler, called from handle_flags().  Returns 1
0144      * when handle_flags() needs to be re-run or 0 indicating it
0145      * set si_state itself.
0146      */
0147     int (*oem_data_avail_handler)(struct smi_info *smi_info);
0148 
0149     /*
0150      * Flags from the last GET_MSG_FLAGS command, used when an ATTN
0151      * is set to hold the flags until we are done handling everything
0152      * from the flags.
0153      */
0154 #define RECEIVE_MSG_AVAIL   0x01
0155 #define EVENT_MSG_BUFFER_FULL   0x02
0156 #define WDT_PRE_TIMEOUT_INT 0x08
0157 #define OEM0_DATA_AVAIL     0x20
0158 #define OEM1_DATA_AVAIL     0x40
0159 #define OEM2_DATA_AVAIL     0x80
0160 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
0161                  OEM1_DATA_AVAIL | \
0162                  OEM2_DATA_AVAIL)
0163     unsigned char       msg_flags;
0164 
0165     /* Does the BMC have an event buffer? */
0166     bool            has_event_buffer;
0167 
0168     /*
0169      * If set to true, this will request events the next time the
0170      * state machine is idle.
0171      */
0172     atomic_t            req_events;
0173 
0174     /*
0175      * If true, run the state machine to completion on every send
0176      * call.  Generally used after a panic to make sure stuff goes
0177      * out.
0178      */
0179     bool                run_to_completion;
0180 
0181     /* The timer for this si. */
0182     struct timer_list   si_timer;
0183 
0184     /* This flag is set, if the timer can be set */
0185     bool            timer_can_start;
0186 
0187     /* This flag is set, if the timer is running (timer_pending() isn't enough) */
0188     bool            timer_running;
0189 
0190     /* The time (in jiffies) the last timeout occurred at. */
0191     unsigned long       last_timeout_jiffies;
0192 
0193     /* Are we waiting for the events, pretimeouts, received msgs? */
0194     atomic_t            need_watch;
0195 
0196     /*
0197      * The driver will disable interrupts when it gets into a
0198      * situation where it cannot handle messages due to lack of
0199      * memory.  Once that situation clears up, it will re-enable
0200      * interrupts.
0201      */
0202     bool interrupt_disabled;
0203 
0204     /*
0205      * Does the BMC support events?
0206      */
0207     bool supports_event_msg_buff;
0208 
0209     /*
0210      * Can we disable interrupts the global enables receive irq
0211      * bit?  There are currently two forms of brokenness, some
0212      * systems cannot disable the bit (which is technically within
0213      * the spec but a bad idea) and some systems have the bit
0214      * forced to zero even though interrupts work (which is
0215      * clearly outside the spec).  The next bool tells which form
0216      * of brokenness is present.
0217      */
0218     bool cannot_disable_irq;
0219 
0220     /*
0221      * Some systems are broken and cannot set the irq enable
0222      * bit, even if they support interrupts.
0223      */
0224     bool irq_enable_broken;
0225 
0226     /* Is the driver in maintenance mode? */
0227     bool in_maintenance_mode;
0228 
0229     /*
0230      * Did we get an attention that we did not handle?
0231      */
0232     bool got_attn;
0233 
0234     /* From the get device id response... */
0235     struct ipmi_device_id device_id;
0236 
0237     /* Have we added the device group to the device? */
0238     bool dev_group_added;
0239 
0240     /* Counters and things for the proc filesystem. */
0241     atomic_t stats[SI_NUM_STATS];
0242 
0243     struct task_struct *thread;
0244 
0245     struct list_head link;
0246 };
0247 
0248 #define smi_inc_stat(smi, stat) \
0249     atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
0250 #define smi_get_stat(smi, stat) \
0251     ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
0252 
0253 #define IPMI_MAX_INTFS 4
0254 static int force_kipmid[IPMI_MAX_INTFS];
0255 static int num_force_kipmid;
0256 
0257 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
0258 static int num_max_busy_us;
0259 
0260 static bool unload_when_empty = true;
0261 
0262 static int try_smi_init(struct smi_info *smi);
0263 static void cleanup_one_si(struct smi_info *smi_info);
0264 static void cleanup_ipmi_si(void);
0265 
0266 #ifdef DEBUG_TIMING
0267 void debug_timestamp(struct smi_info *smi_info, char *msg)
0268 {
0269     struct timespec64 t;
0270 
0271     ktime_get_ts64(&t);
0272     dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n",
0273         msg, t.tv_sec, t.tv_nsec);
0274 }
0275 #else
0276 #define debug_timestamp(smi_info, x)
0277 #endif
0278 
0279 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
0280 static int register_xaction_notifier(struct notifier_block *nb)
0281 {
0282     return atomic_notifier_chain_register(&xaction_notifier_list, nb);
0283 }
0284 
0285 static void deliver_recv_msg(struct smi_info *smi_info,
0286                  struct ipmi_smi_msg *msg)
0287 {
0288     /* Deliver the message to the upper layer. */
0289     ipmi_smi_msg_received(smi_info->intf, msg);
0290 }
0291 
0292 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
0293 {
0294     struct ipmi_smi_msg *msg = smi_info->curr_msg;
0295 
0296     if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
0297         cCode = IPMI_ERR_UNSPECIFIED;
0298     /* else use it as is */
0299 
0300     /* Make it a response */
0301     msg->rsp[0] = msg->data[0] | 4;
0302     msg->rsp[1] = msg->data[1];
0303     msg->rsp[2] = cCode;
0304     msg->rsp_size = 3;
0305 
0306     smi_info->curr_msg = NULL;
0307     deliver_recv_msg(smi_info, msg);
0308 }
0309 
0310 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
0311 {
0312     int              rv;
0313 
0314     if (!smi_info->waiting_msg) {
0315         smi_info->curr_msg = NULL;
0316         rv = SI_SM_IDLE;
0317     } else {
0318         int err;
0319 
0320         smi_info->curr_msg = smi_info->waiting_msg;
0321         smi_info->waiting_msg = NULL;
0322         debug_timestamp(smi_info, "Start2");
0323         err = atomic_notifier_call_chain(&xaction_notifier_list,
0324                 0, smi_info);
0325         if (err & NOTIFY_STOP_MASK) {
0326             rv = SI_SM_CALL_WITHOUT_DELAY;
0327             goto out;
0328         }
0329         err = smi_info->handlers->start_transaction(
0330             smi_info->si_sm,
0331             smi_info->curr_msg->data,
0332             smi_info->curr_msg->data_size);
0333         if (err)
0334             return_hosed_msg(smi_info, err);
0335 
0336         rv = SI_SM_CALL_WITHOUT_DELAY;
0337     }
0338 out:
0339     return rv;
0340 }
0341 
0342 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
0343 {
0344     if (!smi_info->timer_can_start)
0345         return;
0346     smi_info->last_timeout_jiffies = jiffies;
0347     mod_timer(&smi_info->si_timer, new_val);
0348     smi_info->timer_running = true;
0349 }
0350 
0351 /*
0352  * Start a new message and (re)start the timer and thread.
0353  */
0354 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
0355               unsigned int size)
0356 {
0357     smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
0358 
0359     if (smi_info->thread)
0360         wake_up_process(smi_info->thread);
0361 
0362     smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
0363 }
0364 
0365 static void start_check_enables(struct smi_info *smi_info)
0366 {
0367     unsigned char msg[2];
0368 
0369     msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
0370     msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
0371 
0372     start_new_msg(smi_info, msg, 2);
0373     smi_info->si_state = SI_CHECKING_ENABLES;
0374 }
0375 
0376 static void start_clear_flags(struct smi_info *smi_info)
0377 {
0378     unsigned char msg[3];
0379 
0380     /* Make sure the watchdog pre-timeout flag is not set at startup. */
0381     msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
0382     msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
0383     msg[2] = WDT_PRE_TIMEOUT_INT;
0384 
0385     start_new_msg(smi_info, msg, 3);
0386     smi_info->si_state = SI_CLEARING_FLAGS;
0387 }
0388 
0389 static void start_getting_msg_queue(struct smi_info *smi_info)
0390 {
0391     smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
0392     smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
0393     smi_info->curr_msg->data_size = 2;
0394 
0395     start_new_msg(smi_info, smi_info->curr_msg->data,
0396               smi_info->curr_msg->data_size);
0397     smi_info->si_state = SI_GETTING_MESSAGES;
0398 }
0399 
0400 static void start_getting_events(struct smi_info *smi_info)
0401 {
0402     smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
0403     smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
0404     smi_info->curr_msg->data_size = 2;
0405 
0406     start_new_msg(smi_info, smi_info->curr_msg->data,
0407               smi_info->curr_msg->data_size);
0408     smi_info->si_state = SI_GETTING_EVENTS;
0409 }
0410 
0411 /*
0412  * When we have a situtaion where we run out of memory and cannot
0413  * allocate messages, we just leave them in the BMC and run the system
0414  * polled until we can allocate some memory.  Once we have some
0415  * memory, we will re-enable the interrupt.
0416  *
0417  * Note that we cannot just use disable_irq(), since the interrupt may
0418  * be shared.
0419  */
0420 static inline bool disable_si_irq(struct smi_info *smi_info)
0421 {
0422     if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
0423         smi_info->interrupt_disabled = true;
0424         start_check_enables(smi_info);
0425         return true;
0426     }
0427     return false;
0428 }
0429 
0430 static inline bool enable_si_irq(struct smi_info *smi_info)
0431 {
0432     if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
0433         smi_info->interrupt_disabled = false;
0434         start_check_enables(smi_info);
0435         return true;
0436     }
0437     return false;
0438 }
0439 
0440 /*
0441  * Allocate a message.  If unable to allocate, start the interrupt
0442  * disable process and return NULL.  If able to allocate but
0443  * interrupts are disabled, free the message and return NULL after
0444  * starting the interrupt enable process.
0445  */
0446 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
0447 {
0448     struct ipmi_smi_msg *msg;
0449 
0450     msg = ipmi_alloc_smi_msg();
0451     if (!msg) {
0452         if (!disable_si_irq(smi_info))
0453             smi_info->si_state = SI_NORMAL;
0454     } else if (enable_si_irq(smi_info)) {
0455         ipmi_free_smi_msg(msg);
0456         msg = NULL;
0457     }
0458     return msg;
0459 }
0460 
0461 static void handle_flags(struct smi_info *smi_info)
0462 {
0463 retry:
0464     if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
0465         /* Watchdog pre-timeout */
0466         smi_inc_stat(smi_info, watchdog_pretimeouts);
0467 
0468         start_clear_flags(smi_info);
0469         smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
0470         ipmi_smi_watchdog_pretimeout(smi_info->intf);
0471     } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
0472         /* Messages available. */
0473         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
0474         if (!smi_info->curr_msg)
0475             return;
0476 
0477         start_getting_msg_queue(smi_info);
0478     } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
0479         /* Events available. */
0480         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
0481         if (!smi_info->curr_msg)
0482             return;
0483 
0484         start_getting_events(smi_info);
0485     } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
0486            smi_info->oem_data_avail_handler) {
0487         if (smi_info->oem_data_avail_handler(smi_info))
0488             goto retry;
0489     } else
0490         smi_info->si_state = SI_NORMAL;
0491 }
0492 
0493 /*
0494  * Global enables we care about.
0495  */
0496 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
0497                  IPMI_BMC_EVT_MSG_INTR)
0498 
0499 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
0500                  bool *irq_on)
0501 {
0502     u8 enables = 0;
0503 
0504     if (smi_info->supports_event_msg_buff)
0505         enables |= IPMI_BMC_EVT_MSG_BUFF;
0506 
0507     if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
0508          smi_info->cannot_disable_irq) &&
0509         !smi_info->irq_enable_broken)
0510         enables |= IPMI_BMC_RCV_MSG_INTR;
0511 
0512     if (smi_info->supports_event_msg_buff &&
0513         smi_info->io.irq && !smi_info->interrupt_disabled &&
0514         !smi_info->irq_enable_broken)
0515         enables |= IPMI_BMC_EVT_MSG_INTR;
0516 
0517     *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
0518 
0519     return enables;
0520 }
0521 
0522 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
0523 {
0524     u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
0525 
0526     irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
0527 
0528     if ((bool)irqstate == irq_on)
0529         return;
0530 
0531     if (irq_on)
0532         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
0533                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
0534     else
0535         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
0536 }
0537 
0538 static void handle_transaction_done(struct smi_info *smi_info)
0539 {
0540     struct ipmi_smi_msg *msg;
0541 
0542     debug_timestamp(smi_info, "Done");
0543     switch (smi_info->si_state) {
0544     case SI_NORMAL:
0545         if (!smi_info->curr_msg)
0546             break;
0547 
0548         smi_info->curr_msg->rsp_size
0549             = smi_info->handlers->get_result(
0550                 smi_info->si_sm,
0551                 smi_info->curr_msg->rsp,
0552                 IPMI_MAX_MSG_LENGTH);
0553 
0554         /*
0555          * Do this here becase deliver_recv_msg() releases the
0556          * lock, and a new message can be put in during the
0557          * time the lock is released.
0558          */
0559         msg = smi_info->curr_msg;
0560         smi_info->curr_msg = NULL;
0561         deliver_recv_msg(smi_info, msg);
0562         break;
0563 
0564     case SI_GETTING_FLAGS:
0565     {
0566         unsigned char msg[4];
0567         unsigned int  len;
0568 
0569         /* We got the flags from the SMI, now handle them. */
0570         len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
0571         if (msg[2] != 0) {
0572             /* Error fetching flags, just give up for now. */
0573             smi_info->si_state = SI_NORMAL;
0574         } else if (len < 4) {
0575             /*
0576              * Hmm, no flags.  That's technically illegal, but
0577              * don't use uninitialized data.
0578              */
0579             smi_info->si_state = SI_NORMAL;
0580         } else {
0581             smi_info->msg_flags = msg[3];
0582             handle_flags(smi_info);
0583         }
0584         break;
0585     }
0586 
0587     case SI_CLEARING_FLAGS:
0588     {
0589         unsigned char msg[3];
0590 
0591         /* We cleared the flags. */
0592         smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
0593         if (msg[2] != 0) {
0594             /* Error clearing flags */
0595             dev_warn_ratelimited(smi_info->io.dev,
0596                  "Error clearing flags: %2.2x\n", msg[2]);
0597         }
0598         smi_info->si_state = SI_NORMAL;
0599         break;
0600     }
0601 
0602     case SI_GETTING_EVENTS:
0603     {
0604         smi_info->curr_msg->rsp_size
0605             = smi_info->handlers->get_result(
0606                 smi_info->si_sm,
0607                 smi_info->curr_msg->rsp,
0608                 IPMI_MAX_MSG_LENGTH);
0609 
0610         /*
0611          * Do this here becase deliver_recv_msg() releases the
0612          * lock, and a new message can be put in during the
0613          * time the lock is released.
0614          */
0615         msg = smi_info->curr_msg;
0616         smi_info->curr_msg = NULL;
0617         if (msg->rsp[2] != 0) {
0618             /* Error getting event, probably done. */
0619             msg->done(msg);
0620 
0621             /* Take off the event flag. */
0622             smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
0623             handle_flags(smi_info);
0624         } else {
0625             smi_inc_stat(smi_info, events);
0626 
0627             /*
0628              * Do this before we deliver the message
0629              * because delivering the message releases the
0630              * lock and something else can mess with the
0631              * state.
0632              */
0633             handle_flags(smi_info);
0634 
0635             deliver_recv_msg(smi_info, msg);
0636         }
0637         break;
0638     }
0639 
0640     case SI_GETTING_MESSAGES:
0641     {
0642         smi_info->curr_msg->rsp_size
0643             = smi_info->handlers->get_result(
0644                 smi_info->si_sm,
0645                 smi_info->curr_msg->rsp,
0646                 IPMI_MAX_MSG_LENGTH);
0647 
0648         /*
0649          * Do this here becase deliver_recv_msg() releases the
0650          * lock, and a new message can be put in during the
0651          * time the lock is released.
0652          */
0653         msg = smi_info->curr_msg;
0654         smi_info->curr_msg = NULL;
0655         if (msg->rsp[2] != 0) {
0656             /* Error getting event, probably done. */
0657             msg->done(msg);
0658 
0659             /* Take off the msg flag. */
0660             smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
0661             handle_flags(smi_info);
0662         } else {
0663             smi_inc_stat(smi_info, incoming_messages);
0664 
0665             /*
0666              * Do this before we deliver the message
0667              * because delivering the message releases the
0668              * lock and something else can mess with the
0669              * state.
0670              */
0671             handle_flags(smi_info);
0672 
0673             deliver_recv_msg(smi_info, msg);
0674         }
0675         break;
0676     }
0677 
0678     case SI_CHECKING_ENABLES:
0679     {
0680         unsigned char msg[4];
0681         u8 enables;
0682         bool irq_on;
0683 
0684         /* We got the flags from the SMI, now handle them. */
0685         smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
0686         if (msg[2] != 0) {
0687             dev_warn_ratelimited(smi_info->io.dev,
0688                 "Couldn't get irq info: %x,\n"
0689                 "Maybe ok, but ipmi might run very slowly.\n",
0690                 msg[2]);
0691             smi_info->si_state = SI_NORMAL;
0692             break;
0693         }
0694         enables = current_global_enables(smi_info, 0, &irq_on);
0695         if (smi_info->io.si_type == SI_BT)
0696             /* BT has its own interrupt enable bit. */
0697             check_bt_irq(smi_info, irq_on);
0698         if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
0699             /* Enables are not correct, fix them. */
0700             msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
0701             msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
0702             msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
0703             smi_info->handlers->start_transaction(
0704                 smi_info->si_sm, msg, 3);
0705             smi_info->si_state = SI_SETTING_ENABLES;
0706         } else if (smi_info->supports_event_msg_buff) {
0707             smi_info->curr_msg = ipmi_alloc_smi_msg();
0708             if (!smi_info->curr_msg) {
0709                 smi_info->si_state = SI_NORMAL;
0710                 break;
0711             }
0712             start_getting_events(smi_info);
0713         } else {
0714             smi_info->si_state = SI_NORMAL;
0715         }
0716         break;
0717     }
0718 
0719     case SI_SETTING_ENABLES:
0720     {
0721         unsigned char msg[4];
0722 
0723         smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
0724         if (msg[2] != 0)
0725             dev_warn_ratelimited(smi_info->io.dev,
0726                  "Could not set the global enables: 0x%x.\n",
0727                  msg[2]);
0728 
0729         if (smi_info->supports_event_msg_buff) {
0730             smi_info->curr_msg = ipmi_alloc_smi_msg();
0731             if (!smi_info->curr_msg) {
0732                 smi_info->si_state = SI_NORMAL;
0733                 break;
0734             }
0735             start_getting_events(smi_info);
0736         } else {
0737             smi_info->si_state = SI_NORMAL;
0738         }
0739         break;
0740     }
0741     }
0742 }
0743 
0744 /*
0745  * Called on timeouts and events.  Timeouts should pass the elapsed
0746  * time, interrupts should pass in zero.  Must be called with
0747  * si_lock held and interrupts disabled.
0748  */
0749 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
0750                        int time)
0751 {
0752     enum si_sm_result si_sm_result;
0753 
0754 restart:
0755     /*
0756      * There used to be a loop here that waited a little while
0757      * (around 25us) before giving up.  That turned out to be
0758      * pointless, the minimum delays I was seeing were in the 300us
0759      * range, which is far too long to wait in an interrupt.  So
0760      * we just run until the state machine tells us something
0761      * happened or it needs a delay.
0762      */
0763     si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
0764     time = 0;
0765     while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
0766         si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
0767 
0768     if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
0769         smi_inc_stat(smi_info, complete_transactions);
0770 
0771         handle_transaction_done(smi_info);
0772         goto restart;
0773     } else if (si_sm_result == SI_SM_HOSED) {
0774         smi_inc_stat(smi_info, hosed_count);
0775 
0776         /*
0777          * Do the before return_hosed_msg, because that
0778          * releases the lock.
0779          */
0780         smi_info->si_state = SI_NORMAL;
0781         if (smi_info->curr_msg != NULL) {
0782             /*
0783              * If we were handling a user message, format
0784              * a response to send to the upper layer to
0785              * tell it about the error.
0786              */
0787             return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
0788         }
0789         goto restart;
0790     }
0791 
0792     /*
0793      * We prefer handling attn over new messages.  But don't do
0794      * this if there is not yet an upper layer to handle anything.
0795      */
0796     if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
0797         unsigned char msg[2];
0798 
0799         if (smi_info->si_state != SI_NORMAL) {
0800             /*
0801              * We got an ATTN, but we are doing something else.
0802              * Handle the ATTN later.
0803              */
0804             smi_info->got_attn = true;
0805         } else {
0806             smi_info->got_attn = false;
0807             smi_inc_stat(smi_info, attentions);
0808 
0809             /*
0810              * Got a attn, send down a get message flags to see
0811              * what's causing it.  It would be better to handle
0812              * this in the upper layer, but due to the way
0813              * interrupts work with the SMI, that's not really
0814              * possible.
0815              */
0816             msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
0817             msg[1] = IPMI_GET_MSG_FLAGS_CMD;
0818 
0819             start_new_msg(smi_info, msg, 2);
0820             smi_info->si_state = SI_GETTING_FLAGS;
0821             goto restart;
0822         }
0823     }
0824 
0825     /* If we are currently idle, try to start the next message. */
0826     if (si_sm_result == SI_SM_IDLE) {
0827         smi_inc_stat(smi_info, idles);
0828 
0829         si_sm_result = start_next_msg(smi_info);
0830         if (si_sm_result != SI_SM_IDLE)
0831             goto restart;
0832     }
0833 
0834     if ((si_sm_result == SI_SM_IDLE)
0835         && (atomic_read(&smi_info->req_events))) {
0836         /*
0837          * We are idle and the upper layer requested that I fetch
0838          * events, so do so.
0839          */
0840         atomic_set(&smi_info->req_events, 0);
0841 
0842         /*
0843          * Take this opportunity to check the interrupt and
0844          * message enable state for the BMC.  The BMC can be
0845          * asynchronously reset, and may thus get interrupts
0846          * disable and messages disabled.
0847          */
0848         if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
0849             start_check_enables(smi_info);
0850         } else {
0851             smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
0852             if (!smi_info->curr_msg)
0853                 goto out;
0854 
0855             start_getting_events(smi_info);
0856         }
0857         goto restart;
0858     }
0859 
0860     if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
0861         /* Ok it if fails, the timer will just go off. */
0862         if (del_timer(&smi_info->si_timer))
0863             smi_info->timer_running = false;
0864     }
0865 
0866 out:
0867     return si_sm_result;
0868 }
0869 
0870 static void check_start_timer_thread(struct smi_info *smi_info)
0871 {
0872     if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
0873         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
0874 
0875         if (smi_info->thread)
0876             wake_up_process(smi_info->thread);
0877 
0878         start_next_msg(smi_info);
0879         smi_event_handler(smi_info, 0);
0880     }
0881 }
0882 
0883 static void flush_messages(void *send_info)
0884 {
0885     struct smi_info *smi_info = send_info;
0886     enum si_sm_result result;
0887 
0888     /*
0889      * Currently, this function is called only in run-to-completion
0890      * mode.  This means we are single-threaded, no need for locks.
0891      */
0892     result = smi_event_handler(smi_info, 0);
0893     while (result != SI_SM_IDLE) {
0894         udelay(SI_SHORT_TIMEOUT_USEC);
0895         result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
0896     }
0897 }
0898 
0899 static void sender(void                *send_info,
0900            struct ipmi_smi_msg *msg)
0901 {
0902     struct smi_info   *smi_info = send_info;
0903     unsigned long     flags;
0904 
0905     debug_timestamp(smi_info, "Enqueue");
0906 
0907     if (smi_info->run_to_completion) {
0908         /*
0909          * If we are running to completion, start it.  Upper
0910          * layer will call flush_messages to clear it out.
0911          */
0912         smi_info->waiting_msg = msg;
0913         return;
0914     }
0915 
0916     spin_lock_irqsave(&smi_info->si_lock, flags);
0917     /*
0918      * The following two lines don't need to be under the lock for
0919      * the lock's sake, but they do need SMP memory barriers to
0920      * avoid getting things out of order.  We are already claiming
0921      * the lock, anyway, so just do it under the lock to avoid the
0922      * ordering problem.
0923      */
0924     BUG_ON(smi_info->waiting_msg);
0925     smi_info->waiting_msg = msg;
0926     check_start_timer_thread(smi_info);
0927     spin_unlock_irqrestore(&smi_info->si_lock, flags);
0928 }
0929 
0930 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
0931 {
0932     struct smi_info   *smi_info = send_info;
0933 
0934     smi_info->run_to_completion = i_run_to_completion;
0935     if (i_run_to_completion)
0936         flush_messages(smi_info);
0937 }
0938 
0939 /*
0940  * Use -1 as a special constant to tell that we are spinning in kipmid
0941  * looking for something and not delaying between checks
0942  */
0943 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
0944 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
0945                      const struct smi_info *smi_info,
0946                      ktime_t *busy_until)
0947 {
0948     unsigned int max_busy_us = 0;
0949 
0950     if (smi_info->si_num < num_max_busy_us)
0951         max_busy_us = kipmid_max_busy_us[smi_info->si_num];
0952     if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
0953         *busy_until = IPMI_TIME_NOT_BUSY;
0954     else if (*busy_until == IPMI_TIME_NOT_BUSY) {
0955         *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
0956     } else {
0957         if (unlikely(ktime_get() > *busy_until)) {
0958             *busy_until = IPMI_TIME_NOT_BUSY;
0959             return false;
0960         }
0961     }
0962     return true;
0963 }
0964 
0965 
0966 /*
0967  * A busy-waiting loop for speeding up IPMI operation.
0968  *
0969  * Lousy hardware makes this hard.  This is only enabled for systems
0970  * that are not BT and do not have interrupts.  It starts spinning
0971  * when an operation is complete or until max_busy tells it to stop
0972  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
0973  * Documentation/driver-api/ipmi.rst for details.
0974  */
0975 static int ipmi_thread(void *data)
0976 {
0977     struct smi_info *smi_info = data;
0978     unsigned long flags;
0979     enum si_sm_result smi_result;
0980     ktime_t busy_until = IPMI_TIME_NOT_BUSY;
0981 
0982     set_user_nice(current, MAX_NICE);
0983     while (!kthread_should_stop()) {
0984         int busy_wait;
0985 
0986         spin_lock_irqsave(&(smi_info->si_lock), flags);
0987         smi_result = smi_event_handler(smi_info, 0);
0988 
0989         /*
0990          * If the driver is doing something, there is a possible
0991          * race with the timer.  If the timer handler see idle,
0992          * and the thread here sees something else, the timer
0993          * handler won't restart the timer even though it is
0994          * required.  So start it here if necessary.
0995          */
0996         if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
0997             smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
0998 
0999         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1000         busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1001                           &busy_until);
1002         if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1003             ; /* do nothing */
1004         } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1005             /*
1006              * In maintenance mode we run as fast as
1007              * possible to allow firmware updates to
1008              * complete as fast as possible, but normally
1009              * don't bang on the scheduler.
1010              */
1011             if (smi_info->in_maintenance_mode)
1012                 schedule();
1013             else
1014                 usleep_range(100, 200);
1015         } else if (smi_result == SI_SM_IDLE) {
1016             if (atomic_read(&smi_info->need_watch)) {
1017                 schedule_timeout_interruptible(100);
1018             } else {
1019                 /* Wait to be woken up when we are needed. */
1020                 __set_current_state(TASK_INTERRUPTIBLE);
1021                 schedule();
1022             }
1023         } else {
1024             schedule_timeout_interruptible(1);
1025         }
1026     }
1027     return 0;
1028 }
1029 
1030 
1031 static void poll(void *send_info)
1032 {
1033     struct smi_info *smi_info = send_info;
1034     unsigned long flags = 0;
1035     bool run_to_completion = smi_info->run_to_completion;
1036 
1037     /*
1038      * Make sure there is some delay in the poll loop so we can
1039      * drive time forward and timeout things.
1040      */
1041     udelay(10);
1042     if (!run_to_completion)
1043         spin_lock_irqsave(&smi_info->si_lock, flags);
1044     smi_event_handler(smi_info, 10);
1045     if (!run_to_completion)
1046         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1047 }
1048 
1049 static void request_events(void *send_info)
1050 {
1051     struct smi_info *smi_info = send_info;
1052 
1053     if (!smi_info->has_event_buffer)
1054         return;
1055 
1056     atomic_set(&smi_info->req_events, 1);
1057 }
1058 
1059 static void set_need_watch(void *send_info, unsigned int watch_mask)
1060 {
1061     struct smi_info *smi_info = send_info;
1062     unsigned long flags;
1063     int enable;
1064 
1065     enable = !!watch_mask;
1066 
1067     atomic_set(&smi_info->need_watch, enable);
1068     spin_lock_irqsave(&smi_info->si_lock, flags);
1069     check_start_timer_thread(smi_info);
1070     spin_unlock_irqrestore(&smi_info->si_lock, flags);
1071 }
1072 
1073 static void smi_timeout(struct timer_list *t)
1074 {
1075     struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1076     enum si_sm_result smi_result;
1077     unsigned long     flags;
1078     unsigned long     jiffies_now;
1079     long              time_diff;
1080     long          timeout;
1081 
1082     spin_lock_irqsave(&(smi_info->si_lock), flags);
1083     debug_timestamp(smi_info, "Timer");
1084 
1085     jiffies_now = jiffies;
1086     time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1087              * SI_USEC_PER_JIFFY);
1088     smi_result = smi_event_handler(smi_info, time_diff);
1089 
1090     if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1091         /* Running with interrupts, only do long timeouts. */
1092         timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093         smi_inc_stat(smi_info, long_timeouts);
1094         goto do_mod_timer;
1095     }
1096 
1097     /*
1098      * If the state machine asks for a short delay, then shorten
1099      * the timer timeout.
1100      */
1101     if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102         smi_inc_stat(smi_info, short_timeouts);
1103         timeout = jiffies + 1;
1104     } else {
1105         smi_inc_stat(smi_info, long_timeouts);
1106         timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107     }
1108 
1109 do_mod_timer:
1110     if (smi_result != SI_SM_IDLE)
1111         smi_mod_timer(smi_info, timeout);
1112     else
1113         smi_info->timer_running = false;
1114     spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115 }
1116 
1117 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1118 {
1119     struct smi_info *smi_info = data;
1120     unsigned long   flags;
1121 
1122     if (smi_info->io.si_type == SI_BT)
1123         /* We need to clear the IRQ flag for the BT interface. */
1124         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1125                      IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1126                      | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1127 
1128     spin_lock_irqsave(&(smi_info->si_lock), flags);
1129 
1130     smi_inc_stat(smi_info, interrupts);
1131 
1132     debug_timestamp(smi_info, "Interrupt");
1133 
1134     smi_event_handler(smi_info, 0);
1135     spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1136     return IRQ_HANDLED;
1137 }
1138 
1139 static int smi_start_processing(void            *send_info,
1140                 struct ipmi_smi *intf)
1141 {
1142     struct smi_info *new_smi = send_info;
1143     int             enable = 0;
1144 
1145     new_smi->intf = intf;
1146 
1147     /* Set up the timer that drives the interface. */
1148     timer_setup(&new_smi->si_timer, smi_timeout, 0);
1149     new_smi->timer_can_start = true;
1150     smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1151 
1152     /* Try to claim any interrupts. */
1153     if (new_smi->io.irq_setup) {
1154         new_smi->io.irq_handler_data = new_smi;
1155         new_smi->io.irq_setup(&new_smi->io);
1156     }
1157 
1158     /*
1159      * Check if the user forcefully enabled the daemon.
1160      */
1161     if (new_smi->si_num < num_force_kipmid)
1162         enable = force_kipmid[new_smi->si_num];
1163     /*
1164      * The BT interface is efficient enough to not need a thread,
1165      * and there is no need for a thread if we have interrupts.
1166      */
1167     else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1168         enable = 1;
1169 
1170     if (enable) {
1171         new_smi->thread = kthread_run(ipmi_thread, new_smi,
1172                           "kipmi%d", new_smi->si_num);
1173         if (IS_ERR(new_smi->thread)) {
1174             dev_notice(new_smi->io.dev,
1175                    "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1176                    PTR_ERR(new_smi->thread));
1177             new_smi->thread = NULL;
1178         }
1179     }
1180 
1181     return 0;
1182 }
1183 
1184 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1185 {
1186     struct smi_info *smi = send_info;
1187 
1188     data->addr_src = smi->io.addr_source;
1189     data->dev = smi->io.dev;
1190     data->addr_info = smi->io.addr_info;
1191     get_device(smi->io.dev);
1192 
1193     return 0;
1194 }
1195 
1196 static void set_maintenance_mode(void *send_info, bool enable)
1197 {
1198     struct smi_info   *smi_info = send_info;
1199 
1200     if (!enable)
1201         atomic_set(&smi_info->req_events, 0);
1202     smi_info->in_maintenance_mode = enable;
1203 }
1204 
1205 static void shutdown_smi(void *send_info);
1206 static const struct ipmi_smi_handlers handlers = {
1207     .owner                  = THIS_MODULE,
1208     .start_processing       = smi_start_processing,
1209     .shutdown               = shutdown_smi,
1210     .get_smi_info       = get_smi_info,
1211     .sender         = sender,
1212     .request_events     = request_events,
1213     .set_need_watch     = set_need_watch,
1214     .set_maintenance_mode   = set_maintenance_mode,
1215     .set_run_to_completion  = set_run_to_completion,
1216     .flush_messages     = flush_messages,
1217     .poll           = poll,
1218 };
1219 
1220 static LIST_HEAD(smi_infos);
1221 static DEFINE_MUTEX(smi_infos_lock);
1222 static int smi_num; /* Used to sequence the SMIs */
1223 
1224 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1225 
1226 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1227 MODULE_PARM_DESC(force_kipmid,
1228          "Force the kipmi daemon to be enabled (1) or disabled(0).  Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1229 module_param(unload_when_empty, bool, 0);
1230 MODULE_PARM_DESC(unload_when_empty,
1231          "Unload the module if no interfaces are specified or found, default is 1.  Setting to 0 is useful for hot add of devices using hotmod.");
1232 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1233 MODULE_PARM_DESC(kipmid_max_busy_us,
1234          "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1235 
1236 void ipmi_irq_finish_setup(struct si_sm_io *io)
1237 {
1238     if (io->si_type == SI_BT)
1239         /* Enable the interrupt in the BT interface. */
1240         io->outputb(io, IPMI_BT_INTMASK_REG,
1241                 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1242 }
1243 
1244 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1245 {
1246     if (io->si_type == SI_BT)
1247         /* Disable the interrupt in the BT interface. */
1248         io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1249 }
1250 
1251 static void std_irq_cleanup(struct si_sm_io *io)
1252 {
1253     ipmi_irq_start_cleanup(io);
1254     free_irq(io->irq, io->irq_handler_data);
1255 }
1256 
1257 int ipmi_std_irq_setup(struct si_sm_io *io)
1258 {
1259     int rv;
1260 
1261     if (!io->irq)
1262         return 0;
1263 
1264     rv = request_irq(io->irq,
1265              ipmi_si_irq_handler,
1266              IRQF_SHARED,
1267              SI_DEVICE_NAME,
1268              io->irq_handler_data);
1269     if (rv) {
1270         dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1271              SI_DEVICE_NAME, io->irq);
1272         io->irq = 0;
1273     } else {
1274         io->irq_cleanup = std_irq_cleanup;
1275         ipmi_irq_finish_setup(io);
1276         dev_info(io->dev, "Using irq %d\n", io->irq);
1277     }
1278 
1279     return rv;
1280 }
1281 
1282 static int wait_for_msg_done(struct smi_info *smi_info)
1283 {
1284     enum si_sm_result     smi_result;
1285 
1286     smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1287     for (;;) {
1288         if (smi_result == SI_SM_CALL_WITH_DELAY ||
1289             smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1290             schedule_timeout_uninterruptible(1);
1291             smi_result = smi_info->handlers->event(
1292                 smi_info->si_sm, jiffies_to_usecs(1));
1293         } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1294             smi_result = smi_info->handlers->event(
1295                 smi_info->si_sm, 0);
1296         } else
1297             break;
1298     }
1299     if (smi_result == SI_SM_HOSED)
1300         /*
1301          * We couldn't get the state machine to run, so whatever's at
1302          * the port is probably not an IPMI SMI interface.
1303          */
1304         return -ENODEV;
1305 
1306     return 0;
1307 }
1308 
1309 static int try_get_dev_id(struct smi_info *smi_info)
1310 {
1311     unsigned char         msg[2];
1312     unsigned char         *resp;
1313     unsigned long         resp_len;
1314     int                   rv = 0;
1315     unsigned int          retry_count = 0;
1316 
1317     resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1318     if (!resp)
1319         return -ENOMEM;
1320 
1321     /*
1322      * Do a Get Device ID command, since it comes back with some
1323      * useful info.
1324      */
1325     msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1326     msg[1] = IPMI_GET_DEVICE_ID_CMD;
1327 
1328 retry:
1329     smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1330 
1331     rv = wait_for_msg_done(smi_info);
1332     if (rv)
1333         goto out;
1334 
1335     resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1336                           resp, IPMI_MAX_MSG_LENGTH);
1337 
1338     /* Check and record info from the get device id, in case we need it. */
1339     rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1340             resp + 2, resp_len - 2, &smi_info->device_id);
1341     if (rv) {
1342         /* record completion code */
1343         unsigned char cc = *(resp + 2);
1344 
1345         if (cc != IPMI_CC_NO_ERROR &&
1346             ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1347             dev_warn_ratelimited(smi_info->io.dev,
1348                 "BMC returned 0x%2.2x, retry get bmc device id\n",
1349                 cc);
1350             goto retry;
1351         }
1352     }
1353 
1354 out:
1355     kfree(resp);
1356     return rv;
1357 }
1358 
1359 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1360 {
1361     unsigned char         msg[3];
1362     unsigned char         *resp;
1363     unsigned long         resp_len;
1364     int                   rv;
1365 
1366     resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1367     if (!resp)
1368         return -ENOMEM;
1369 
1370     msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1371     msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1372     smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1373 
1374     rv = wait_for_msg_done(smi_info);
1375     if (rv) {
1376         dev_warn(smi_info->io.dev,
1377              "Error getting response from get global enables command: %d\n",
1378              rv);
1379         goto out;
1380     }
1381 
1382     resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1383                           resp, IPMI_MAX_MSG_LENGTH);
1384 
1385     if (resp_len < 4 ||
1386             resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1387             resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1388             resp[2] != 0) {
1389         dev_warn(smi_info->io.dev,
1390              "Invalid return from get global enables command: %ld %x %x %x\n",
1391              resp_len, resp[0], resp[1], resp[2]);
1392         rv = -EINVAL;
1393         goto out;
1394     } else {
1395         *enables = resp[3];
1396     }
1397 
1398 out:
1399     kfree(resp);
1400     return rv;
1401 }
1402 
1403 /*
1404  * Returns 1 if it gets an error from the command.
1405  */
1406 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1407 {
1408     unsigned char         msg[3];
1409     unsigned char         *resp;
1410     unsigned long         resp_len;
1411     int                   rv;
1412 
1413     resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1414     if (!resp)
1415         return -ENOMEM;
1416 
1417     msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1418     msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1419     msg[2] = enables;
1420     smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1421 
1422     rv = wait_for_msg_done(smi_info);
1423     if (rv) {
1424         dev_warn(smi_info->io.dev,
1425              "Error getting response from set global enables command: %d\n",
1426              rv);
1427         goto out;
1428     }
1429 
1430     resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1431                           resp, IPMI_MAX_MSG_LENGTH);
1432 
1433     if (resp_len < 3 ||
1434             resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1435             resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1436         dev_warn(smi_info->io.dev,
1437              "Invalid return from set global enables command: %ld %x %x\n",
1438              resp_len, resp[0], resp[1]);
1439         rv = -EINVAL;
1440         goto out;
1441     }
1442 
1443     if (resp[2] != 0)
1444         rv = 1;
1445 
1446 out:
1447     kfree(resp);
1448     return rv;
1449 }
1450 
1451 /*
1452  * Some BMCs do not support clearing the receive irq bit in the global
1453  * enables (even if they don't support interrupts on the BMC).  Check
1454  * for this and handle it properly.
1455  */
1456 static void check_clr_rcv_irq(struct smi_info *smi_info)
1457 {
1458     u8 enables = 0;
1459     int rv;
1460 
1461     rv = get_global_enables(smi_info, &enables);
1462     if (!rv) {
1463         if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1464             /* Already clear, should work ok. */
1465             return;
1466 
1467         enables &= ~IPMI_BMC_RCV_MSG_INTR;
1468         rv = set_global_enables(smi_info, enables);
1469     }
1470 
1471     if (rv < 0) {
1472         dev_err(smi_info->io.dev,
1473             "Cannot check clearing the rcv irq: %d\n", rv);
1474         return;
1475     }
1476 
1477     if (rv) {
1478         /*
1479          * An error when setting the event buffer bit means
1480          * clearing the bit is not supported.
1481          */
1482         dev_warn(smi_info->io.dev,
1483              "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1484         smi_info->cannot_disable_irq = true;
1485     }
1486 }
1487 
1488 /*
1489  * Some BMCs do not support setting the interrupt bits in the global
1490  * enables even if they support interrupts.  Clearly bad, but we can
1491  * compensate.
1492  */
1493 static void check_set_rcv_irq(struct smi_info *smi_info)
1494 {
1495     u8 enables = 0;
1496     int rv;
1497 
1498     if (!smi_info->io.irq)
1499         return;
1500 
1501     rv = get_global_enables(smi_info, &enables);
1502     if (!rv) {
1503         enables |= IPMI_BMC_RCV_MSG_INTR;
1504         rv = set_global_enables(smi_info, enables);
1505     }
1506 
1507     if (rv < 0) {
1508         dev_err(smi_info->io.dev,
1509             "Cannot check setting the rcv irq: %d\n", rv);
1510         return;
1511     }
1512 
1513     if (rv) {
1514         /*
1515          * An error when setting the event buffer bit means
1516          * setting the bit is not supported.
1517          */
1518         dev_warn(smi_info->io.dev,
1519              "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1520         smi_info->cannot_disable_irq = true;
1521         smi_info->irq_enable_broken = true;
1522     }
1523 }
1524 
1525 static int try_enable_event_buffer(struct smi_info *smi_info)
1526 {
1527     unsigned char         msg[3];
1528     unsigned char         *resp;
1529     unsigned long         resp_len;
1530     int                   rv = 0;
1531 
1532     resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1533     if (!resp)
1534         return -ENOMEM;
1535 
1536     msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1537     msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1538     smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1539 
1540     rv = wait_for_msg_done(smi_info);
1541     if (rv) {
1542         pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1543         goto out;
1544     }
1545 
1546     resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1547                           resp, IPMI_MAX_MSG_LENGTH);
1548 
1549     if (resp_len < 4 ||
1550             resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1551             resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1552             resp[2] != 0) {
1553         pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1554         rv = -EINVAL;
1555         goto out;
1556     }
1557 
1558     if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1559         /* buffer is already enabled, nothing to do. */
1560         smi_info->supports_event_msg_buff = true;
1561         goto out;
1562     }
1563 
1564     msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1565     msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1566     msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1567     smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1568 
1569     rv = wait_for_msg_done(smi_info);
1570     if (rv) {
1571         pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1572         goto out;
1573     }
1574 
1575     resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1576                           resp, IPMI_MAX_MSG_LENGTH);
1577 
1578     if (resp_len < 3 ||
1579             resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1580             resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1581         pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1582         rv = -EINVAL;
1583         goto out;
1584     }
1585 
1586     if (resp[2] != 0)
1587         /*
1588          * An error when setting the event buffer bit means
1589          * that the event buffer is not supported.
1590          */
1591         rv = -ENOENT;
1592     else
1593         smi_info->supports_event_msg_buff = true;
1594 
1595 out:
1596     kfree(resp);
1597     return rv;
1598 }
1599 
1600 #define IPMI_SI_ATTR(name) \
1601 static ssize_t name##_show(struct device *dev,          \
1602                struct device_attribute *attr,       \
1603                char *buf)                   \
1604 {                                   \
1605     struct smi_info *smi_info = dev_get_drvdata(dev);       \
1606                                     \
1607     return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name));   \
1608 }                                   \
1609 static DEVICE_ATTR_RO(name)
1610 
1611 static ssize_t type_show(struct device *dev,
1612              struct device_attribute *attr,
1613              char *buf)
1614 {
1615     struct smi_info *smi_info = dev_get_drvdata(dev);
1616 
1617     return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_type]);
1618 }
1619 static DEVICE_ATTR_RO(type);
1620 
1621 static ssize_t interrupts_enabled_show(struct device *dev,
1622                        struct device_attribute *attr,
1623                        char *buf)
1624 {
1625     struct smi_info *smi_info = dev_get_drvdata(dev);
1626     int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1627 
1628     return sysfs_emit(buf, "%d\n", enabled);
1629 }
1630 static DEVICE_ATTR_RO(interrupts_enabled);
1631 
1632 IPMI_SI_ATTR(short_timeouts);
1633 IPMI_SI_ATTR(long_timeouts);
1634 IPMI_SI_ATTR(idles);
1635 IPMI_SI_ATTR(interrupts);
1636 IPMI_SI_ATTR(attentions);
1637 IPMI_SI_ATTR(flag_fetches);
1638 IPMI_SI_ATTR(hosed_count);
1639 IPMI_SI_ATTR(complete_transactions);
1640 IPMI_SI_ATTR(events);
1641 IPMI_SI_ATTR(watchdog_pretimeouts);
1642 IPMI_SI_ATTR(incoming_messages);
1643 
1644 static ssize_t params_show(struct device *dev,
1645                struct device_attribute *attr,
1646                char *buf)
1647 {
1648     struct smi_info *smi_info = dev_get_drvdata(dev);
1649 
1650     return sysfs_emit(buf,
1651             "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1652             si_to_str[smi_info->io.si_type],
1653             addr_space_to_str[smi_info->io.addr_space],
1654             smi_info->io.addr_data,
1655             smi_info->io.regspacing,
1656             smi_info->io.regsize,
1657             smi_info->io.regshift,
1658             smi_info->io.irq,
1659             smi_info->io.slave_addr);
1660 }
1661 static DEVICE_ATTR_RO(params);
1662 
1663 static struct attribute *ipmi_si_dev_attrs[] = {
1664     &dev_attr_type.attr,
1665     &dev_attr_interrupts_enabled.attr,
1666     &dev_attr_short_timeouts.attr,
1667     &dev_attr_long_timeouts.attr,
1668     &dev_attr_idles.attr,
1669     &dev_attr_interrupts.attr,
1670     &dev_attr_attentions.attr,
1671     &dev_attr_flag_fetches.attr,
1672     &dev_attr_hosed_count.attr,
1673     &dev_attr_complete_transactions.attr,
1674     &dev_attr_events.attr,
1675     &dev_attr_watchdog_pretimeouts.attr,
1676     &dev_attr_incoming_messages.attr,
1677     &dev_attr_params.attr,
1678     NULL
1679 };
1680 
1681 static const struct attribute_group ipmi_si_dev_attr_group = {
1682     .attrs      = ipmi_si_dev_attrs,
1683 };
1684 
1685 /*
1686  * oem_data_avail_to_receive_msg_avail
1687  * @info - smi_info structure with msg_flags set
1688  *
1689  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1690  * Returns 1 indicating need to re-run handle_flags().
1691  */
1692 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1693 {
1694     smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1695                    RECEIVE_MSG_AVAIL);
1696     return 1;
1697 }
1698 
1699 /*
1700  * setup_dell_poweredge_oem_data_handler
1701  * @info - smi_info.device_id must be populated
1702  *
1703  * Systems that match, but have firmware version < 1.40 may assert
1704  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1705  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1706  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1707  * as RECEIVE_MSG_AVAIL instead.
1708  *
1709  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1710  * assert the OEM[012] bits, and if it did, the driver would have to
1711  * change to handle that properly, we don't actually check for the
1712  * firmware version.
1713  * Device ID = 0x20                BMC on PowerEdge 8G servers
1714  * Device Revision = 0x80
1715  * Firmware Revision1 = 0x01       BMC version 1.40
1716  * Firmware Revision2 = 0x40       BCD encoded
1717  * IPMI Version = 0x51             IPMI 1.5
1718  * Manufacturer ID = A2 02 00      Dell IANA
1719  *
1720  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1721  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1722  *
1723  */
1724 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1725 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1726 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1727 #define DELL_IANA_MFR_ID 0x0002a2
1728 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1729 {
1730     struct ipmi_device_id *id = &smi_info->device_id;
1731     if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1732         if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1733             id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1734             id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1735             smi_info->oem_data_avail_handler =
1736                 oem_data_avail_to_receive_msg_avail;
1737         } else if (ipmi_version_major(id) < 1 ||
1738                (ipmi_version_major(id) == 1 &&
1739                 ipmi_version_minor(id) < 5)) {
1740             smi_info->oem_data_avail_handler =
1741                 oem_data_avail_to_receive_msg_avail;
1742         }
1743     }
1744 }
1745 
1746 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1747 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1748 {
1749     struct ipmi_smi_msg *msg = smi_info->curr_msg;
1750 
1751     /* Make it a response */
1752     msg->rsp[0] = msg->data[0] | 4;
1753     msg->rsp[1] = msg->data[1];
1754     msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1755     msg->rsp_size = 3;
1756     smi_info->curr_msg = NULL;
1757     deliver_recv_msg(smi_info, msg);
1758 }
1759 
1760 /*
1761  * dell_poweredge_bt_xaction_handler
1762  * @info - smi_info.device_id must be populated
1763  *
1764  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1765  * not respond to a Get SDR command if the length of the data
1766  * requested is exactly 0x3A, which leads to command timeouts and no
1767  * data returned.  This intercepts such commands, and causes userspace
1768  * callers to try again with a different-sized buffer, which succeeds.
1769  */
1770 
1771 #define STORAGE_NETFN 0x0A
1772 #define STORAGE_CMD_GET_SDR 0x23
1773 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1774                          unsigned long unused,
1775                          void *in)
1776 {
1777     struct smi_info *smi_info = in;
1778     unsigned char *data = smi_info->curr_msg->data;
1779     unsigned int size   = smi_info->curr_msg->data_size;
1780     if (size >= 8 &&
1781         (data[0]>>2) == STORAGE_NETFN &&
1782         data[1] == STORAGE_CMD_GET_SDR &&
1783         data[7] == 0x3A) {
1784         return_hosed_msg_badsize(smi_info);
1785         return NOTIFY_STOP;
1786     }
1787     return NOTIFY_DONE;
1788 }
1789 
1790 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1791     .notifier_call  = dell_poweredge_bt_xaction_handler,
1792 };
1793 
1794 /*
1795  * setup_dell_poweredge_bt_xaction_handler
1796  * @info - smi_info.device_id must be filled in already
1797  *
1798  * Fills in smi_info.device_id.start_transaction_pre_hook
1799  * when we know what function to use there.
1800  */
1801 static void
1802 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1803 {
1804     struct ipmi_device_id *id = &smi_info->device_id;
1805     if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1806         smi_info->io.si_type == SI_BT)
1807         register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1808 }
1809 
1810 /*
1811  * setup_oem_data_handler
1812  * @info - smi_info.device_id must be filled in already
1813  *
1814  * Fills in smi_info.device_id.oem_data_available_handler
1815  * when we know what function to use there.
1816  */
1817 
1818 static void setup_oem_data_handler(struct smi_info *smi_info)
1819 {
1820     setup_dell_poweredge_oem_data_handler(smi_info);
1821 }
1822 
1823 static void setup_xaction_handlers(struct smi_info *smi_info)
1824 {
1825     setup_dell_poweredge_bt_xaction_handler(smi_info);
1826 }
1827 
1828 static void check_for_broken_irqs(struct smi_info *smi_info)
1829 {
1830     check_clr_rcv_irq(smi_info);
1831     check_set_rcv_irq(smi_info);
1832 }
1833 
1834 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1835 {
1836     if (smi_info->thread != NULL) {
1837         kthread_stop(smi_info->thread);
1838         smi_info->thread = NULL;
1839     }
1840 
1841     smi_info->timer_can_start = false;
1842     del_timer_sync(&smi_info->si_timer);
1843 }
1844 
1845 static struct smi_info *find_dup_si(struct smi_info *info)
1846 {
1847     struct smi_info *e;
1848 
1849     list_for_each_entry(e, &smi_infos, link) {
1850         if (e->io.addr_space != info->io.addr_space)
1851             continue;
1852         if (e->io.addr_data == info->io.addr_data) {
1853             /*
1854              * This is a cheap hack, ACPI doesn't have a defined
1855              * slave address but SMBIOS does.  Pick it up from
1856              * any source that has it available.
1857              */
1858             if (info->io.slave_addr && !e->io.slave_addr)
1859                 e->io.slave_addr = info->io.slave_addr;
1860             return e;
1861         }
1862     }
1863 
1864     return NULL;
1865 }
1866 
1867 int ipmi_si_add_smi(struct si_sm_io *io)
1868 {
1869     int rv = 0;
1870     struct smi_info *new_smi, *dup;
1871 
1872     /*
1873      * If the user gave us a hard-coded device at the same
1874      * address, they presumably want us to use it and not what is
1875      * in the firmware.
1876      */
1877     if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1878         ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1879         dev_info(io->dev,
1880              "Hard-coded device at this address already exists");
1881         return -ENODEV;
1882     }
1883 
1884     if (!io->io_setup) {
1885         if (io->addr_space == IPMI_IO_ADDR_SPACE) {
1886             io->io_setup = ipmi_si_port_setup;
1887         } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1888             io->io_setup = ipmi_si_mem_setup;
1889         } else {
1890             return -EINVAL;
1891         }
1892     }
1893 
1894     new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1895     if (!new_smi)
1896         return -ENOMEM;
1897     spin_lock_init(&new_smi->si_lock);
1898 
1899     new_smi->io = *io;
1900 
1901     mutex_lock(&smi_infos_lock);
1902     dup = find_dup_si(new_smi);
1903     if (dup) {
1904         if (new_smi->io.addr_source == SI_ACPI &&
1905             dup->io.addr_source == SI_SMBIOS) {
1906             /* We prefer ACPI over SMBIOS. */
1907             dev_info(dup->io.dev,
1908                  "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1909                  si_to_str[new_smi->io.si_type]);
1910             cleanup_one_si(dup);
1911         } else {
1912             dev_info(new_smi->io.dev,
1913                  "%s-specified %s state machine: duplicate\n",
1914                  ipmi_addr_src_to_str(new_smi->io.addr_source),
1915                  si_to_str[new_smi->io.si_type]);
1916             rv = -EBUSY;
1917             kfree(new_smi);
1918             goto out_err;
1919         }
1920     }
1921 
1922     pr_info("Adding %s-specified %s state machine\n",
1923         ipmi_addr_src_to_str(new_smi->io.addr_source),
1924         si_to_str[new_smi->io.si_type]);
1925 
1926     list_add_tail(&new_smi->link, &smi_infos);
1927 
1928     if (initialized)
1929         rv = try_smi_init(new_smi);
1930 out_err:
1931     mutex_unlock(&smi_infos_lock);
1932     return rv;
1933 }
1934 
1935 /*
1936  * Try to start up an interface.  Must be called with smi_infos_lock
1937  * held, primarily to keep smi_num consistent, we only one to do these
1938  * one at a time.
1939  */
1940 static int try_smi_init(struct smi_info *new_smi)
1941 {
1942     int rv = 0;
1943     int i;
1944 
1945     pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1946         ipmi_addr_src_to_str(new_smi->io.addr_source),
1947         si_to_str[new_smi->io.si_type],
1948         addr_space_to_str[new_smi->io.addr_space],
1949         new_smi->io.addr_data,
1950         new_smi->io.slave_addr, new_smi->io.irq);
1951 
1952     switch (new_smi->io.si_type) {
1953     case SI_KCS:
1954         new_smi->handlers = &kcs_smi_handlers;
1955         break;
1956 
1957     case SI_SMIC:
1958         new_smi->handlers = &smic_smi_handlers;
1959         break;
1960 
1961     case SI_BT:
1962         new_smi->handlers = &bt_smi_handlers;
1963         break;
1964 
1965     default:
1966         /* No support for anything else yet. */
1967         rv = -EIO;
1968         goto out_err;
1969     }
1970 
1971     new_smi->si_num = smi_num;
1972 
1973     /* Do this early so it's available for logs. */
1974     if (!new_smi->io.dev) {
1975         pr_err("IPMI interface added with no device\n");
1976         rv = -EIO;
1977         goto out_err;
1978     }
1979 
1980     /* Allocate the state machine's data and initialize it. */
1981     new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1982     if (!new_smi->si_sm) {
1983         rv = -ENOMEM;
1984         goto out_err;
1985     }
1986     new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1987                                &new_smi->io);
1988 
1989     /* Now that we know the I/O size, we can set up the I/O. */
1990     rv = new_smi->io.io_setup(&new_smi->io);
1991     if (rv) {
1992         dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1993         goto out_err;
1994     }
1995 
1996     /* Do low-level detection first. */
1997     if (new_smi->handlers->detect(new_smi->si_sm)) {
1998         if (new_smi->io.addr_source)
1999             dev_err(new_smi->io.dev,
2000                 "Interface detection failed\n");
2001         rv = -ENODEV;
2002         goto out_err;
2003     }
2004 
2005     /*
2006      * Attempt a get device id command.  If it fails, we probably
2007      * don't have a BMC here.
2008      */
2009     rv = try_get_dev_id(new_smi);
2010     if (rv) {
2011         if (new_smi->io.addr_source)
2012             dev_err(new_smi->io.dev,
2013                    "There appears to be no BMC at this location\n");
2014         goto out_err;
2015     }
2016 
2017     setup_oem_data_handler(new_smi);
2018     setup_xaction_handlers(new_smi);
2019     check_for_broken_irqs(new_smi);
2020 
2021     new_smi->waiting_msg = NULL;
2022     new_smi->curr_msg = NULL;
2023     atomic_set(&new_smi->req_events, 0);
2024     new_smi->run_to_completion = false;
2025     for (i = 0; i < SI_NUM_STATS; i++)
2026         atomic_set(&new_smi->stats[i], 0);
2027 
2028     new_smi->interrupt_disabled = true;
2029     atomic_set(&new_smi->need_watch, 0);
2030 
2031     rv = try_enable_event_buffer(new_smi);
2032     if (rv == 0)
2033         new_smi->has_event_buffer = true;
2034 
2035     /*
2036      * Start clearing the flags before we enable interrupts or the
2037      * timer to avoid racing with the timer.
2038      */
2039     start_clear_flags(new_smi);
2040 
2041     /*
2042      * IRQ is defined to be set when non-zero.  req_events will
2043      * cause a global flags check that will enable interrupts.
2044      */
2045     if (new_smi->io.irq) {
2046         new_smi->interrupt_disabled = false;
2047         atomic_set(&new_smi->req_events, 1);
2048     }
2049 
2050     dev_set_drvdata(new_smi->io.dev, new_smi);
2051     rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2052     if (rv) {
2053         dev_err(new_smi->io.dev,
2054             "Unable to add device attributes: error %d\n",
2055             rv);
2056         goto out_err;
2057     }
2058     new_smi->dev_group_added = true;
2059 
2060     rv = ipmi_register_smi(&handlers,
2061                    new_smi,
2062                    new_smi->io.dev,
2063                    new_smi->io.slave_addr);
2064     if (rv) {
2065         dev_err(new_smi->io.dev,
2066             "Unable to register device: error %d\n",
2067             rv);
2068         goto out_err;
2069     }
2070 
2071     /* Don't increment till we know we have succeeded. */
2072     smi_num++;
2073 
2074     dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2075          si_to_str[new_smi->io.si_type]);
2076 
2077     WARN_ON(new_smi->io.dev->init_name != NULL);
2078 
2079  out_err:
2080     if (rv && new_smi->io.io_cleanup) {
2081         new_smi->io.io_cleanup(&new_smi->io);
2082         new_smi->io.io_cleanup = NULL;
2083     }
2084 
2085     return rv;
2086 }
2087 
2088 static int __init init_ipmi_si(void)
2089 {
2090     struct smi_info *e;
2091     enum ipmi_addr_src type = SI_INVALID;
2092 
2093     if (initialized)
2094         return 0;
2095 
2096     ipmi_hardcode_init();
2097 
2098     pr_info("IPMI System Interface driver\n");
2099 
2100     ipmi_si_platform_init();
2101 
2102     ipmi_si_pci_init();
2103 
2104     ipmi_si_parisc_init();
2105 
2106     /* We prefer devices with interrupts, but in the case of a machine
2107        with multiple BMCs we assume that there will be several instances
2108        of a given type so if we succeed in registering a type then also
2109        try to register everything else of the same type */
2110     mutex_lock(&smi_infos_lock);
2111     list_for_each_entry(e, &smi_infos, link) {
2112         /* Try to register a device if it has an IRQ and we either
2113            haven't successfully registered a device yet or this
2114            device has the same type as one we successfully registered */
2115         if (e->io.irq && (!type || e->io.addr_source == type)) {
2116             if (!try_smi_init(e)) {
2117                 type = e->io.addr_source;
2118             }
2119         }
2120     }
2121 
2122     /* type will only have been set if we successfully registered an si */
2123     if (type)
2124         goto skip_fallback_noirq;
2125 
2126     /* Fall back to the preferred device */
2127 
2128     list_for_each_entry(e, &smi_infos, link) {
2129         if (!e->io.irq && (!type || e->io.addr_source == type)) {
2130             if (!try_smi_init(e)) {
2131                 type = e->io.addr_source;
2132             }
2133         }
2134     }
2135 
2136 skip_fallback_noirq:
2137     initialized = true;
2138     mutex_unlock(&smi_infos_lock);
2139 
2140     if (type)
2141         return 0;
2142 
2143     mutex_lock(&smi_infos_lock);
2144     if (unload_when_empty && list_empty(&smi_infos)) {
2145         mutex_unlock(&smi_infos_lock);
2146         cleanup_ipmi_si();
2147         pr_warn("Unable to find any System Interface(s)\n");
2148         return -ENODEV;
2149     } else {
2150         mutex_unlock(&smi_infos_lock);
2151         return 0;
2152     }
2153 }
2154 module_init(init_ipmi_si);
2155 
2156 static void shutdown_smi(void *send_info)
2157 {
2158     struct smi_info *smi_info = send_info;
2159 
2160     if (smi_info->dev_group_added) {
2161         device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2162         smi_info->dev_group_added = false;
2163     }
2164     if (smi_info->io.dev)
2165         dev_set_drvdata(smi_info->io.dev, NULL);
2166 
2167     /*
2168      * Make sure that interrupts, the timer and the thread are
2169      * stopped and will not run again.
2170      */
2171     smi_info->interrupt_disabled = true;
2172     if (smi_info->io.irq_cleanup) {
2173         smi_info->io.irq_cleanup(&smi_info->io);
2174         smi_info->io.irq_cleanup = NULL;
2175     }
2176     stop_timer_and_thread(smi_info);
2177 
2178     /*
2179      * Wait until we know that we are out of any interrupt
2180      * handlers might have been running before we freed the
2181      * interrupt.
2182      */
2183     synchronize_rcu();
2184 
2185     /*
2186      * Timeouts are stopped, now make sure the interrupts are off
2187      * in the BMC.  Note that timers and CPU interrupts are off,
2188      * so no need for locks.
2189      */
2190     while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2191         poll(smi_info);
2192         schedule_timeout_uninterruptible(1);
2193     }
2194     if (smi_info->handlers)
2195         disable_si_irq(smi_info);
2196     while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2197         poll(smi_info);
2198         schedule_timeout_uninterruptible(1);
2199     }
2200     if (smi_info->handlers)
2201         smi_info->handlers->cleanup(smi_info->si_sm);
2202 
2203     if (smi_info->io.io_cleanup) {
2204         smi_info->io.io_cleanup(&smi_info->io);
2205         smi_info->io.io_cleanup = NULL;
2206     }
2207 
2208     kfree(smi_info->si_sm);
2209     smi_info->si_sm = NULL;
2210 
2211     smi_info->intf = NULL;
2212 }
2213 
2214 /*
2215  * Must be called with smi_infos_lock held, to serialize the
2216  * smi_info->intf check.
2217  */
2218 static void cleanup_one_si(struct smi_info *smi_info)
2219 {
2220     if (!smi_info)
2221         return;
2222 
2223     list_del(&smi_info->link);
2224     ipmi_unregister_smi(smi_info->intf);
2225     kfree(smi_info);
2226 }
2227 
2228 void ipmi_si_remove_by_dev(struct device *dev)
2229 {
2230     struct smi_info *e;
2231 
2232     mutex_lock(&smi_infos_lock);
2233     list_for_each_entry(e, &smi_infos, link) {
2234         if (e->io.dev == dev) {
2235             cleanup_one_si(e);
2236             break;
2237         }
2238     }
2239     mutex_unlock(&smi_infos_lock);
2240 }
2241 
2242 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2243                       unsigned long addr)
2244 {
2245     /* remove */
2246     struct smi_info *e, *tmp_e;
2247     struct device *dev = NULL;
2248 
2249     mutex_lock(&smi_infos_lock);
2250     list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2251         if (e->io.addr_space != addr_space)
2252             continue;
2253         if (e->io.si_type != si_type)
2254             continue;
2255         if (e->io.addr_data == addr) {
2256             dev = get_device(e->io.dev);
2257             cleanup_one_si(e);
2258         }
2259     }
2260     mutex_unlock(&smi_infos_lock);
2261 
2262     return dev;
2263 }
2264 
2265 static void cleanup_ipmi_si(void)
2266 {
2267     struct smi_info *e, *tmp_e;
2268 
2269     if (!initialized)
2270         return;
2271 
2272     ipmi_si_pci_shutdown();
2273 
2274     ipmi_si_parisc_shutdown();
2275 
2276     ipmi_si_platform_shutdown();
2277 
2278     mutex_lock(&smi_infos_lock);
2279     list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2280         cleanup_one_si(e);
2281     mutex_unlock(&smi_infos_lock);
2282 
2283     ipmi_si_hardcode_exit();
2284     ipmi_si_hotmod_exit();
2285 }
2286 module_exit(cleanup_ipmi_si);
2287 
2288 MODULE_ALIAS("platform:dmi-ipmi-si");
2289 MODULE_LICENSE("GPL");
2290 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2291 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");