Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Freescale Management Complex (MC) bus driver
0004  *
0005  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
0006  * Copyright 2019-2020 NXP
0007  * Author: German Rivera <German.Rivera@freescale.com>
0008  *
0009  */
0010 
0011 #define pr_fmt(fmt) "fsl-mc: " fmt
0012 
0013 #include <linux/module.h>
0014 #include <linux/of_device.h>
0015 #include <linux/of_address.h>
0016 #include <linux/ioport.h>
0017 #include <linux/slab.h>
0018 #include <linux/limits.h>
0019 #include <linux/bitops.h>
0020 #include <linux/msi.h>
0021 #include <linux/dma-mapping.h>
0022 #include <linux/acpi.h>
0023 #include <linux/iommu.h>
0024 #include <linux/dma-map-ops.h>
0025 
0026 #include "fsl-mc-private.h"
0027 
0028 /*
0029  * Default DMA mask for devices on a fsl-mc bus
0030  */
0031 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL)
0032 
0033 static struct fsl_mc_version mc_version;
0034 
0035 /**
0036  * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
0037  * @root_mc_bus_dev: fsl-mc device representing the root DPRC
0038  * @num_translation_ranges: number of entries in addr_translation_ranges
0039  * @translation_ranges: array of bus to system address translation ranges
0040  * @fsl_mc_regs: base address of register bank
0041  */
0042 struct fsl_mc {
0043     struct fsl_mc_device *root_mc_bus_dev;
0044     u8 num_translation_ranges;
0045     struct fsl_mc_addr_translation_range *translation_ranges;
0046     void __iomem *fsl_mc_regs;
0047 };
0048 
0049 /**
0050  * struct fsl_mc_addr_translation_range - bus to system address translation
0051  * range
0052  * @mc_region_type: Type of MC region for the range being translated
0053  * @start_mc_offset: Start MC offset of the range being translated
0054  * @end_mc_offset: MC offset of the first byte after the range (last MC
0055  * offset of the range is end_mc_offset - 1)
0056  * @start_phys_addr: system physical address corresponding to start_mc_addr
0057  */
0058 struct fsl_mc_addr_translation_range {
0059     enum dprc_region_type mc_region_type;
0060     u64 start_mc_offset;
0061     u64 end_mc_offset;
0062     phys_addr_t start_phys_addr;
0063 };
0064 
0065 #define FSL_MC_GCR1 0x0
0066 #define GCR1_P1_STOP    BIT(31)
0067 #define GCR1_P2_STOP    BIT(30)
0068 
0069 #define FSL_MC_FAPR 0x28
0070 #define MC_FAPR_PL  BIT(18)
0071 #define MC_FAPR_BMT BIT(17)
0072 
0073 static phys_addr_t mc_portal_base_phys_addr;
0074 
0075 /**
0076  * fsl_mc_bus_match - device to driver matching callback
0077  * @dev: the fsl-mc device to match against
0078  * @drv: the device driver to search for matching fsl-mc object type
0079  * structures
0080  *
0081  * Returns 1 on success, 0 otherwise.
0082  */
0083 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv)
0084 {
0085     const struct fsl_mc_device_id *id;
0086     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0087     struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
0088     bool found = false;
0089 
0090     /* When driver_override is set, only bind to the matching driver */
0091     if (mc_dev->driver_override) {
0092         found = !strcmp(mc_dev->driver_override, mc_drv->driver.name);
0093         goto out;
0094     }
0095 
0096     if (!mc_drv->match_id_table)
0097         goto out;
0098 
0099     /*
0100      * If the object is not 'plugged' don't match.
0101      * Only exception is the root DPRC, which is a special case.
0102      */
0103     if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
0104         !fsl_mc_is_root_dprc(&mc_dev->dev))
0105         goto out;
0106 
0107     /*
0108      * Traverse the match_id table of the given driver, trying to find
0109      * a matching for the given device.
0110      */
0111     for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
0112         if (id->vendor == mc_dev->obj_desc.vendor &&
0113             strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
0114             found = true;
0115 
0116             break;
0117         }
0118     }
0119 
0120 out:
0121     dev_dbg(dev, "%smatched\n", found ? "" : "not ");
0122     return found;
0123 }
0124 
0125 /*
0126  * fsl_mc_bus_uevent - callback invoked when a device is added
0127  */
0128 static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env)
0129 {
0130     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0131 
0132     if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
0133                mc_dev->obj_desc.vendor,
0134                mc_dev->obj_desc.type))
0135         return -ENOMEM;
0136 
0137     return 0;
0138 }
0139 
0140 static int fsl_mc_dma_configure(struct device *dev)
0141 {
0142     struct device *dma_dev = dev;
0143     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0144     struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
0145     u32 input_id = mc_dev->icid;
0146     int ret;
0147 
0148     while (dev_is_fsl_mc(dma_dev))
0149         dma_dev = dma_dev->parent;
0150 
0151     if (dev_of_node(dma_dev))
0152         ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id);
0153     else
0154         ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id);
0155 
0156     if (!ret && !mc_drv->driver_managed_dma) {
0157         ret = iommu_device_use_default_domain(dev);
0158         if (ret)
0159             arch_teardown_dma_ops(dev);
0160     }
0161 
0162     return ret;
0163 }
0164 
0165 static void fsl_mc_dma_cleanup(struct device *dev)
0166 {
0167     struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
0168 
0169     if (!mc_drv->driver_managed_dma)
0170         iommu_device_unuse_default_domain(dev);
0171 }
0172 
0173 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
0174                  char *buf)
0175 {
0176     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0177 
0178     return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
0179                mc_dev->obj_desc.type);
0180 }
0181 static DEVICE_ATTR_RO(modalias);
0182 
0183 static ssize_t driver_override_store(struct device *dev,
0184                      struct device_attribute *attr,
0185                      const char *buf, size_t count)
0186 {
0187     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0188     int ret;
0189 
0190     if (WARN_ON(dev->bus != &fsl_mc_bus_type))
0191         return -EINVAL;
0192 
0193     ret = driver_set_override(dev, &mc_dev->driver_override, buf, count);
0194     if (ret)
0195         return ret;
0196 
0197     return count;
0198 }
0199 
0200 static ssize_t driver_override_show(struct device *dev,
0201                     struct device_attribute *attr, char *buf)
0202 {
0203     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0204 
0205     return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override);
0206 }
0207 static DEVICE_ATTR_RW(driver_override);
0208 
0209 static struct attribute *fsl_mc_dev_attrs[] = {
0210     &dev_attr_modalias.attr,
0211     &dev_attr_driver_override.attr,
0212     NULL,
0213 };
0214 
0215 ATTRIBUTE_GROUPS(fsl_mc_dev);
0216 
0217 static int scan_fsl_mc_bus(struct device *dev, void *data)
0218 {
0219     struct fsl_mc_device *root_mc_dev;
0220     struct fsl_mc_bus *root_mc_bus;
0221 
0222     if (!fsl_mc_is_root_dprc(dev))
0223         goto exit;
0224 
0225     root_mc_dev = to_fsl_mc_device(dev);
0226     root_mc_bus = to_fsl_mc_bus(root_mc_dev);
0227     mutex_lock(&root_mc_bus->scan_mutex);
0228     dprc_scan_objects(root_mc_dev, false);
0229     mutex_unlock(&root_mc_bus->scan_mutex);
0230 
0231 exit:
0232     return 0;
0233 }
0234 
0235 static ssize_t rescan_store(struct bus_type *bus,
0236                 const char *buf, size_t count)
0237 {
0238     unsigned long val;
0239 
0240     if (kstrtoul(buf, 0, &val) < 0)
0241         return -EINVAL;
0242 
0243     if (val)
0244         bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus);
0245 
0246     return count;
0247 }
0248 static BUS_ATTR_WO(rescan);
0249 
0250 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data)
0251 {
0252     struct fsl_mc_device *root_mc_dev;
0253     unsigned long val;
0254     char *buf = data;
0255 
0256     if (!fsl_mc_is_root_dprc(dev))
0257         goto exit;
0258 
0259     root_mc_dev = to_fsl_mc_device(dev);
0260 
0261     if (kstrtoul(buf, 0, &val) < 0)
0262         return -EINVAL;
0263 
0264     if (val)
0265         enable_dprc_irq(root_mc_dev);
0266     else
0267         disable_dprc_irq(root_mc_dev);
0268 
0269 exit:
0270     return 0;
0271 }
0272 
0273 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data)
0274 {
0275     struct fsl_mc_device *root_mc_dev;
0276     char *buf = data;
0277 
0278     if (!fsl_mc_is_root_dprc(dev))
0279         goto exit;
0280 
0281     root_mc_dev = to_fsl_mc_device(dev);
0282 
0283     sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev));
0284 exit:
0285     return 0;
0286 }
0287 
0288 static ssize_t autorescan_store(struct bus_type *bus,
0289                 const char *buf, size_t count)
0290 {
0291     bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan);
0292 
0293     return count;
0294 }
0295 
0296 static ssize_t autorescan_show(struct bus_type *bus, char *buf)
0297 {
0298     bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan);
0299     return strlen(buf);
0300 }
0301 
0302 static BUS_ATTR_RW(autorescan);
0303 
0304 static struct attribute *fsl_mc_bus_attrs[] = {
0305     &bus_attr_rescan.attr,
0306     &bus_attr_autorescan.attr,
0307     NULL,
0308 };
0309 
0310 ATTRIBUTE_GROUPS(fsl_mc_bus);
0311 
0312 struct bus_type fsl_mc_bus_type = {
0313     .name = "fsl-mc",
0314     .match = fsl_mc_bus_match,
0315     .uevent = fsl_mc_bus_uevent,
0316     .dma_configure  = fsl_mc_dma_configure,
0317     .dma_cleanup = fsl_mc_dma_cleanup,
0318     .dev_groups = fsl_mc_dev_groups,
0319     .bus_groups = fsl_mc_bus_groups,
0320 };
0321 EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
0322 
0323 struct device_type fsl_mc_bus_dprc_type = {
0324     .name = "fsl_mc_bus_dprc"
0325 };
0326 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type);
0327 
0328 struct device_type fsl_mc_bus_dpni_type = {
0329     .name = "fsl_mc_bus_dpni"
0330 };
0331 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type);
0332 
0333 struct device_type fsl_mc_bus_dpio_type = {
0334     .name = "fsl_mc_bus_dpio"
0335 };
0336 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type);
0337 
0338 struct device_type fsl_mc_bus_dpsw_type = {
0339     .name = "fsl_mc_bus_dpsw"
0340 };
0341 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type);
0342 
0343 struct device_type fsl_mc_bus_dpbp_type = {
0344     .name = "fsl_mc_bus_dpbp"
0345 };
0346 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type);
0347 
0348 struct device_type fsl_mc_bus_dpcon_type = {
0349     .name = "fsl_mc_bus_dpcon"
0350 };
0351 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type);
0352 
0353 struct device_type fsl_mc_bus_dpmcp_type = {
0354     .name = "fsl_mc_bus_dpmcp"
0355 };
0356 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type);
0357 
0358 struct device_type fsl_mc_bus_dpmac_type = {
0359     .name = "fsl_mc_bus_dpmac"
0360 };
0361 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type);
0362 
0363 struct device_type fsl_mc_bus_dprtc_type = {
0364     .name = "fsl_mc_bus_dprtc"
0365 };
0366 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type);
0367 
0368 struct device_type fsl_mc_bus_dpseci_type = {
0369     .name = "fsl_mc_bus_dpseci"
0370 };
0371 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type);
0372 
0373 struct device_type fsl_mc_bus_dpdmux_type = {
0374     .name = "fsl_mc_bus_dpdmux"
0375 };
0376 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type);
0377 
0378 struct device_type fsl_mc_bus_dpdcei_type = {
0379     .name = "fsl_mc_bus_dpdcei"
0380 };
0381 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type);
0382 
0383 struct device_type fsl_mc_bus_dpaiop_type = {
0384     .name = "fsl_mc_bus_dpaiop"
0385 };
0386 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type);
0387 
0388 struct device_type fsl_mc_bus_dpci_type = {
0389     .name = "fsl_mc_bus_dpci"
0390 };
0391 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type);
0392 
0393 struct device_type fsl_mc_bus_dpdmai_type = {
0394     .name = "fsl_mc_bus_dpdmai"
0395 };
0396 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type);
0397 
0398 struct device_type fsl_mc_bus_dpdbg_type = {
0399     .name = "fsl_mc_bus_dpdbg"
0400 };
0401 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type);
0402 
0403 static struct device_type *fsl_mc_get_device_type(const char *type)
0404 {
0405     static const struct {
0406         struct device_type *dev_type;
0407         const char *type;
0408     } dev_types[] = {
0409         { &fsl_mc_bus_dprc_type, "dprc" },
0410         { &fsl_mc_bus_dpni_type, "dpni" },
0411         { &fsl_mc_bus_dpio_type, "dpio" },
0412         { &fsl_mc_bus_dpsw_type, "dpsw" },
0413         { &fsl_mc_bus_dpbp_type, "dpbp" },
0414         { &fsl_mc_bus_dpcon_type, "dpcon" },
0415         { &fsl_mc_bus_dpmcp_type, "dpmcp" },
0416         { &fsl_mc_bus_dpmac_type, "dpmac" },
0417         { &fsl_mc_bus_dprtc_type, "dprtc" },
0418         { &fsl_mc_bus_dpseci_type, "dpseci" },
0419         { &fsl_mc_bus_dpdmux_type, "dpdmux" },
0420         { &fsl_mc_bus_dpdcei_type, "dpdcei" },
0421         { &fsl_mc_bus_dpaiop_type, "dpaiop" },
0422         { &fsl_mc_bus_dpci_type, "dpci" },
0423         { &fsl_mc_bus_dpdmai_type, "dpdmai" },
0424         { &fsl_mc_bus_dpdbg_type, "dpdbg" },
0425         { NULL, NULL }
0426     };
0427     int i;
0428 
0429     for (i = 0; dev_types[i].dev_type; i++)
0430         if (!strcmp(dev_types[i].type, type))
0431             return dev_types[i].dev_type;
0432 
0433     return NULL;
0434 }
0435 
0436 static int fsl_mc_driver_probe(struct device *dev)
0437 {
0438     struct fsl_mc_driver *mc_drv;
0439     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0440     int error;
0441 
0442     mc_drv = to_fsl_mc_driver(dev->driver);
0443 
0444     error = mc_drv->probe(mc_dev);
0445     if (error < 0) {
0446         if (error != -EPROBE_DEFER)
0447             dev_err(dev, "%s failed: %d\n", __func__, error);
0448         return error;
0449     }
0450 
0451     return 0;
0452 }
0453 
0454 static int fsl_mc_driver_remove(struct device *dev)
0455 {
0456     struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
0457     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0458     int error;
0459 
0460     error = mc_drv->remove(mc_dev);
0461     if (error < 0) {
0462         dev_err(dev, "%s failed: %d\n", __func__, error);
0463         return error;
0464     }
0465 
0466     return 0;
0467 }
0468 
0469 static void fsl_mc_driver_shutdown(struct device *dev)
0470 {
0471     struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
0472     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0473 
0474     mc_drv->shutdown(mc_dev);
0475 }
0476 
0477 /*
0478  * __fsl_mc_driver_register - registers a child device driver with the
0479  * MC bus
0480  *
0481  * This function is implicitly invoked from the registration function of
0482  * fsl_mc device drivers, which is generated by the
0483  * module_fsl_mc_driver() macro.
0484  */
0485 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
0486                  struct module *owner)
0487 {
0488     int error;
0489 
0490     mc_driver->driver.owner = owner;
0491     mc_driver->driver.bus = &fsl_mc_bus_type;
0492 
0493     if (mc_driver->probe)
0494         mc_driver->driver.probe = fsl_mc_driver_probe;
0495 
0496     if (mc_driver->remove)
0497         mc_driver->driver.remove = fsl_mc_driver_remove;
0498 
0499     if (mc_driver->shutdown)
0500         mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
0501 
0502     error = driver_register(&mc_driver->driver);
0503     if (error < 0) {
0504         pr_err("driver_register() failed for %s: %d\n",
0505                mc_driver->driver.name, error);
0506         return error;
0507     }
0508 
0509     return 0;
0510 }
0511 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
0512 
0513 /*
0514  * fsl_mc_driver_unregister - unregisters a device driver from the
0515  * MC bus
0516  */
0517 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
0518 {
0519     driver_unregister(&mc_driver->driver);
0520 }
0521 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
0522 
0523 /**
0524  * mc_get_version() - Retrieves the Management Complex firmware
0525  *          version information
0526  * @mc_io:      Pointer to opaque I/O object
0527  * @cmd_flags:      Command flags; one or more of 'MC_CMD_FLAG_'
0528  * @mc_ver_info:    Returned version information structure
0529  *
0530  * Return:  '0' on Success; Error code otherwise.
0531  */
0532 static int mc_get_version(struct fsl_mc_io *mc_io,
0533               u32 cmd_flags,
0534               struct fsl_mc_version *mc_ver_info)
0535 {
0536     struct fsl_mc_command cmd = { 0 };
0537     struct dpmng_rsp_get_version *rsp_params;
0538     int err;
0539 
0540     /* prepare command */
0541     cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
0542                       cmd_flags,
0543                       0);
0544 
0545     /* send command to mc*/
0546     err = mc_send_command(mc_io, &cmd);
0547     if (err)
0548         return err;
0549 
0550     /* retrieve response parameters */
0551     rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
0552     mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
0553     mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
0554     mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
0555 
0556     return 0;
0557 }
0558 
0559 /**
0560  * fsl_mc_get_version - function to retrieve the MC f/w version information
0561  *
0562  * Return:  mc version when called after fsl-mc-bus probe; NULL otherwise.
0563  */
0564 struct fsl_mc_version *fsl_mc_get_version(void)
0565 {
0566     if (mc_version.major)
0567         return &mc_version;
0568 
0569     return NULL;
0570 }
0571 EXPORT_SYMBOL_GPL(fsl_mc_get_version);
0572 
0573 /*
0574  * fsl_mc_get_root_dprc - function to traverse to the root dprc
0575  */
0576 void fsl_mc_get_root_dprc(struct device *dev,
0577              struct device **root_dprc_dev)
0578 {
0579     if (!dev) {
0580         *root_dprc_dev = NULL;
0581     } else if (!dev_is_fsl_mc(dev)) {
0582         *root_dprc_dev = NULL;
0583     } else {
0584         *root_dprc_dev = dev;
0585         while (dev_is_fsl_mc((*root_dprc_dev)->parent))
0586             *root_dprc_dev = (*root_dprc_dev)->parent;
0587     }
0588 }
0589 
0590 static int get_dprc_attr(struct fsl_mc_io *mc_io,
0591              int container_id, struct dprc_attributes *attr)
0592 {
0593     u16 dprc_handle;
0594     int error;
0595 
0596     error = dprc_open(mc_io, 0, container_id, &dprc_handle);
0597     if (error < 0) {
0598         dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
0599         return error;
0600     }
0601 
0602     memset(attr, 0, sizeof(struct dprc_attributes));
0603     error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
0604     if (error < 0) {
0605         dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
0606             error);
0607         goto common_cleanup;
0608     }
0609 
0610     error = 0;
0611 
0612 common_cleanup:
0613     (void)dprc_close(mc_io, 0, dprc_handle);
0614     return error;
0615 }
0616 
0617 static int get_dprc_icid(struct fsl_mc_io *mc_io,
0618              int container_id, u32 *icid)
0619 {
0620     struct dprc_attributes attr;
0621     int error;
0622 
0623     error = get_dprc_attr(mc_io, container_id, &attr);
0624     if (error == 0)
0625         *icid = attr.icid;
0626 
0627     return error;
0628 }
0629 
0630 static int translate_mc_addr(struct fsl_mc_device *mc_dev,
0631                  enum dprc_region_type mc_region_type,
0632                  u64 mc_offset, phys_addr_t *phys_addr)
0633 {
0634     int i;
0635     struct device *root_dprc_dev;
0636     struct fsl_mc *mc;
0637 
0638     fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
0639     mc = dev_get_drvdata(root_dprc_dev->parent);
0640 
0641     if (mc->num_translation_ranges == 0) {
0642         /*
0643          * Do identity mapping:
0644          */
0645         *phys_addr = mc_offset;
0646         return 0;
0647     }
0648 
0649     for (i = 0; i < mc->num_translation_ranges; i++) {
0650         struct fsl_mc_addr_translation_range *range =
0651             &mc->translation_ranges[i];
0652 
0653         if (mc_region_type == range->mc_region_type &&
0654             mc_offset >= range->start_mc_offset &&
0655             mc_offset < range->end_mc_offset) {
0656             *phys_addr = range->start_phys_addr +
0657                      (mc_offset - range->start_mc_offset);
0658             return 0;
0659         }
0660     }
0661 
0662     return -EFAULT;
0663 }
0664 
0665 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
0666                       struct fsl_mc_device *mc_bus_dev)
0667 {
0668     int i;
0669     int error;
0670     struct resource *regions;
0671     struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
0672     struct device *parent_dev = mc_dev->dev.parent;
0673     enum dprc_region_type mc_region_type;
0674 
0675     if (is_fsl_mc_bus_dprc(mc_dev) ||
0676         is_fsl_mc_bus_dpmcp(mc_dev)) {
0677         mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
0678     } else if (is_fsl_mc_bus_dpio(mc_dev)) {
0679         mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
0680     } else {
0681         /*
0682          * This function should not have been called for this MC object
0683          * type, as this object type is not supposed to have MMIO
0684          * regions
0685          */
0686         return -EINVAL;
0687     }
0688 
0689     regions = kmalloc_array(obj_desc->region_count,
0690                 sizeof(regions[0]), GFP_KERNEL);
0691     if (!regions)
0692         return -ENOMEM;
0693 
0694     for (i = 0; i < obj_desc->region_count; i++) {
0695         struct dprc_region_desc region_desc;
0696 
0697         error = dprc_get_obj_region(mc_bus_dev->mc_io,
0698                         0,
0699                         mc_bus_dev->mc_handle,
0700                         obj_desc->type,
0701                         obj_desc->id, i, &region_desc);
0702         if (error < 0) {
0703             dev_err(parent_dev,
0704                 "dprc_get_obj_region() failed: %d\n", error);
0705             goto error_cleanup_regions;
0706         }
0707         /*
0708          * Older MC only returned region offset and no base address
0709          * If base address is in the region_desc use it otherwise
0710          * revert to old mechanism
0711          */
0712         if (region_desc.base_address) {
0713             regions[i].start = region_desc.base_address +
0714                         region_desc.base_offset;
0715         } else {
0716             error = translate_mc_addr(mc_dev, mc_region_type,
0717                       region_desc.base_offset,
0718                       &regions[i].start);
0719 
0720             /*
0721              * Some versions of the MC firmware wrongly report
0722              * 0 for register base address of the DPMCP associated
0723              * with child DPRC objects thus rendering them unusable.
0724              * This is particularly troublesome in ACPI boot
0725              * scenarios where the legacy way of extracting this
0726              * base address from the device tree does not apply.
0727              * Given that DPMCPs share the same base address,
0728              * workaround this by using the base address extracted
0729              * from the root DPRC container.
0730              */
0731             if (is_fsl_mc_bus_dprc(mc_dev) &&
0732                 regions[i].start == region_desc.base_offset)
0733                 regions[i].start += mc_portal_base_phys_addr;
0734         }
0735 
0736         if (error < 0) {
0737             dev_err(parent_dev,
0738                 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
0739                 region_desc.base_offset,
0740                 obj_desc->type, obj_desc->id, i);
0741             goto error_cleanup_regions;
0742         }
0743 
0744         regions[i].end = regions[i].start + region_desc.size - 1;
0745         regions[i].name = "fsl-mc object MMIO region";
0746         regions[i].flags = region_desc.flags & IORESOURCE_BITS;
0747         regions[i].flags |= IORESOURCE_MEM;
0748     }
0749 
0750     mc_dev->regions = regions;
0751     return 0;
0752 
0753 error_cleanup_regions:
0754     kfree(regions);
0755     return error;
0756 }
0757 
0758 /*
0759  * fsl_mc_is_root_dprc - function to check if a given device is a root dprc
0760  */
0761 bool fsl_mc_is_root_dprc(struct device *dev)
0762 {
0763     struct device *root_dprc_dev;
0764 
0765     fsl_mc_get_root_dprc(dev, &root_dprc_dev);
0766     if (!root_dprc_dev)
0767         return false;
0768     return dev == root_dprc_dev;
0769 }
0770 
0771 static void fsl_mc_device_release(struct device *dev)
0772 {
0773     struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
0774 
0775     kfree(mc_dev->regions);
0776 
0777     if (is_fsl_mc_bus_dprc(mc_dev))
0778         kfree(to_fsl_mc_bus(mc_dev));
0779     else
0780         kfree(mc_dev);
0781 }
0782 
0783 /*
0784  * Add a newly discovered fsl-mc device to be visible in Linux
0785  */
0786 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
0787               struct fsl_mc_io *mc_io,
0788               struct device *parent_dev,
0789               struct fsl_mc_device **new_mc_dev)
0790 {
0791     int error;
0792     struct fsl_mc_device *mc_dev = NULL;
0793     struct fsl_mc_bus *mc_bus = NULL;
0794     struct fsl_mc_device *parent_mc_dev;
0795 
0796     if (dev_is_fsl_mc(parent_dev))
0797         parent_mc_dev = to_fsl_mc_device(parent_dev);
0798     else
0799         parent_mc_dev = NULL;
0800 
0801     if (strcmp(obj_desc->type, "dprc") == 0) {
0802         /*
0803          * Allocate an MC bus device object:
0804          */
0805         mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
0806         if (!mc_bus)
0807             return -ENOMEM;
0808 
0809         mutex_init(&mc_bus->scan_mutex);
0810         mc_dev = &mc_bus->mc_dev;
0811     } else {
0812         /*
0813          * Allocate a regular fsl_mc_device object:
0814          */
0815         mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
0816         if (!mc_dev)
0817             return -ENOMEM;
0818     }
0819 
0820     mc_dev->obj_desc = *obj_desc;
0821     mc_dev->mc_io = mc_io;
0822     device_initialize(&mc_dev->dev);
0823     mc_dev->dev.parent = parent_dev;
0824     mc_dev->dev.bus = &fsl_mc_bus_type;
0825     mc_dev->dev.release = fsl_mc_device_release;
0826     mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
0827     if (!mc_dev->dev.type) {
0828         error = -ENODEV;
0829         dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
0830         goto error_cleanup_dev;
0831     }
0832     dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
0833 
0834     if (strcmp(obj_desc->type, "dprc") == 0) {
0835         struct fsl_mc_io *mc_io2;
0836 
0837         mc_dev->flags |= FSL_MC_IS_DPRC;
0838 
0839         /*
0840          * To get the DPRC's ICID, we need to open the DPRC
0841          * in get_dprc_icid(). For child DPRCs, we do so using the
0842          * parent DPRC's MC portal instead of the child DPRC's MC
0843          * portal, in case the child DPRC is already opened with
0844          * its own portal (e.g., the DPRC used by AIOP).
0845          *
0846          * NOTE: There cannot be more than one active open for a
0847          * given MC object, using the same MC portal.
0848          */
0849         if (parent_mc_dev) {
0850             /*
0851              * device being added is a child DPRC device
0852              */
0853             mc_io2 = parent_mc_dev->mc_io;
0854         } else {
0855             /*
0856              * device being added is the root DPRC device
0857              */
0858             if (!mc_io) {
0859                 error = -EINVAL;
0860                 goto error_cleanup_dev;
0861             }
0862 
0863             mc_io2 = mc_io;
0864         }
0865 
0866         error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
0867         if (error < 0)
0868             goto error_cleanup_dev;
0869     } else {
0870         /*
0871          * A non-DPRC object has to be a child of a DPRC, use the
0872          * parent's ICID and interrupt domain.
0873          */
0874         mc_dev->icid = parent_mc_dev->icid;
0875         mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
0876         mc_dev->dev.dma_mask = &mc_dev->dma_mask;
0877         mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask;
0878         dev_set_msi_domain(&mc_dev->dev,
0879                    dev_get_msi_domain(&parent_mc_dev->dev));
0880     }
0881 
0882     /*
0883      * Get MMIO regions for the device from the MC:
0884      *
0885      * NOTE: the root DPRC is a special case as its MMIO region is
0886      * obtained from the device tree
0887      */
0888     if (parent_mc_dev && obj_desc->region_count != 0) {
0889         error = fsl_mc_device_get_mmio_regions(mc_dev,
0890                                parent_mc_dev);
0891         if (error < 0)
0892             goto error_cleanup_dev;
0893     }
0894 
0895     /*
0896      * The device-specific probe callback will get invoked by device_add()
0897      */
0898     error = device_add(&mc_dev->dev);
0899     if (error < 0) {
0900         dev_err(parent_dev,
0901             "device_add() failed for device %s: %d\n",
0902             dev_name(&mc_dev->dev), error);
0903         goto error_cleanup_dev;
0904     }
0905 
0906     dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
0907 
0908     *new_mc_dev = mc_dev;
0909     return 0;
0910 
0911 error_cleanup_dev:
0912     kfree(mc_dev->regions);
0913     kfree(mc_bus);
0914     kfree(mc_dev);
0915 
0916     return error;
0917 }
0918 EXPORT_SYMBOL_GPL(fsl_mc_device_add);
0919 
0920 static struct notifier_block fsl_mc_nb;
0921 
0922 /**
0923  * fsl_mc_device_remove - Remove an fsl-mc device from being visible to
0924  * Linux
0925  *
0926  * @mc_dev: Pointer to an fsl-mc device
0927  */
0928 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
0929 {
0930     kfree(mc_dev->driver_override);
0931     mc_dev->driver_override = NULL;
0932 
0933     /*
0934      * The device-specific remove callback will get invoked by device_del()
0935      */
0936     device_del(&mc_dev->dev);
0937     put_device(&mc_dev->dev);
0938 }
0939 EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
0940 
0941 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev,
0942                       u16 if_id)
0943 {
0944     struct fsl_mc_device *mc_bus_dev, *endpoint;
0945     struct fsl_mc_obj_desc endpoint_desc = {{ 0 }};
0946     struct dprc_endpoint endpoint1 = {{ 0 }};
0947     struct dprc_endpoint endpoint2 = {{ 0 }};
0948     int state, err;
0949 
0950     mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent);
0951     strcpy(endpoint1.type, mc_dev->obj_desc.type);
0952     endpoint1.id = mc_dev->obj_desc.id;
0953     endpoint1.if_id = if_id;
0954 
0955     err = dprc_get_connection(mc_bus_dev->mc_io, 0,
0956                   mc_bus_dev->mc_handle,
0957                   &endpoint1, &endpoint2,
0958                   &state);
0959 
0960     if (err == -ENOTCONN || state == -1)
0961         return ERR_PTR(-ENOTCONN);
0962 
0963     if (err < 0) {
0964         dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err);
0965         return ERR_PTR(err);
0966     }
0967 
0968     strcpy(endpoint_desc.type, endpoint2.type);
0969     endpoint_desc.id = endpoint2.id;
0970     endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
0971 
0972     /*
0973      * We know that the device has an endpoint because we verified by
0974      * interrogating the firmware. This is the case when the device was not
0975      * yet discovered by the fsl-mc bus, thus the lookup returned NULL.
0976      * Force a rescan of the devices in this container and retry the lookup.
0977      */
0978     if (!endpoint) {
0979         struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev);
0980 
0981         if (mutex_trylock(&mc_bus->scan_mutex)) {
0982             err = dprc_scan_objects(mc_bus_dev, true);
0983             mutex_unlock(&mc_bus->scan_mutex);
0984         }
0985 
0986         if (err < 0)
0987             return ERR_PTR(err);
0988     }
0989 
0990     endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
0991     /*
0992      * This means that the endpoint might reside in a different isolation
0993      * context (DPRC/container). Not much to do, so return a permssion
0994      * error.
0995      */
0996     if (!endpoint)
0997         return ERR_PTR(-EPERM);
0998 
0999     return endpoint;
1000 }
1001 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint);
1002 
1003 static int parse_mc_ranges(struct device *dev,
1004                int *paddr_cells,
1005                int *mc_addr_cells,
1006                int *mc_size_cells,
1007                const __be32 **ranges_start)
1008 {
1009     const __be32 *prop;
1010     int range_tuple_cell_count;
1011     int ranges_len;
1012     int tuple_len;
1013     struct device_node *mc_node = dev->of_node;
1014 
1015     *ranges_start = of_get_property(mc_node, "ranges", &ranges_len);
1016     if (!(*ranges_start) || !ranges_len) {
1017         dev_warn(dev,
1018              "missing or empty ranges property for device tree node '%pOFn'\n",
1019              mc_node);
1020         return 0;
1021     }
1022 
1023     *paddr_cells = of_n_addr_cells(mc_node);
1024 
1025     prop = of_get_property(mc_node, "#address-cells", NULL);
1026     if (prop)
1027         *mc_addr_cells = be32_to_cpup(prop);
1028     else
1029         *mc_addr_cells = *paddr_cells;
1030 
1031     prop = of_get_property(mc_node, "#size-cells", NULL);
1032     if (prop)
1033         *mc_size_cells = be32_to_cpup(prop);
1034     else
1035         *mc_size_cells = of_n_size_cells(mc_node);
1036 
1037     range_tuple_cell_count = *paddr_cells + *mc_addr_cells +
1038                  *mc_size_cells;
1039 
1040     tuple_len = range_tuple_cell_count * sizeof(__be32);
1041     if (ranges_len % tuple_len != 0) {
1042         dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node);
1043         return -EINVAL;
1044     }
1045 
1046     return ranges_len / tuple_len;
1047 }
1048 
1049 static int get_mc_addr_translation_ranges(struct device *dev,
1050                       struct fsl_mc_addr_translation_range
1051                         **ranges,
1052                       u8 *num_ranges)
1053 {
1054     int ret;
1055     int paddr_cells;
1056     int mc_addr_cells;
1057     int mc_size_cells;
1058     int i;
1059     const __be32 *ranges_start;
1060     const __be32 *cell;
1061 
1062     ret = parse_mc_ranges(dev,
1063                   &paddr_cells,
1064                   &mc_addr_cells,
1065                   &mc_size_cells,
1066                   &ranges_start);
1067     if (ret < 0)
1068         return ret;
1069 
1070     *num_ranges = ret;
1071     if (!ret) {
1072         /*
1073          * Missing or empty ranges property ("ranges;") for the
1074          * 'fsl,qoriq-mc' node. In this case, identity mapping
1075          * will be used.
1076          */
1077         *ranges = NULL;
1078         return 0;
1079     }
1080 
1081     *ranges = devm_kcalloc(dev, *num_ranges,
1082                    sizeof(struct fsl_mc_addr_translation_range),
1083                    GFP_KERNEL);
1084     if (!(*ranges))
1085         return -ENOMEM;
1086 
1087     cell = ranges_start;
1088     for (i = 0; i < *num_ranges; ++i) {
1089         struct fsl_mc_addr_translation_range *range = &(*ranges)[i];
1090 
1091         range->mc_region_type = of_read_number(cell, 1);
1092         range->start_mc_offset = of_read_number(cell + 1,
1093                             mc_addr_cells - 1);
1094         cell += mc_addr_cells;
1095         range->start_phys_addr = of_read_number(cell, paddr_cells);
1096         cell += paddr_cells;
1097         range->end_mc_offset = range->start_mc_offset +
1098                      of_read_number(cell, mc_size_cells);
1099 
1100         cell += mc_size_cells;
1101     }
1102 
1103     return 0;
1104 }
1105 
1106 /*
1107  * fsl_mc_bus_probe - callback invoked when the root MC bus is being
1108  * added
1109  */
1110 static int fsl_mc_bus_probe(struct platform_device *pdev)
1111 {
1112     struct fsl_mc_obj_desc obj_desc;
1113     int error;
1114     struct fsl_mc *mc;
1115     struct fsl_mc_device *mc_bus_dev = NULL;
1116     struct fsl_mc_io *mc_io = NULL;
1117     int container_id;
1118     phys_addr_t mc_portal_phys_addr;
1119     u32 mc_portal_size, mc_stream_id;
1120     struct resource *plat_res;
1121 
1122     mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
1123     if (!mc)
1124         return -ENOMEM;
1125 
1126     platform_set_drvdata(pdev, mc);
1127 
1128     plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1129     if (plat_res) {
1130         mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res);
1131         if (IS_ERR(mc->fsl_mc_regs))
1132             return PTR_ERR(mc->fsl_mc_regs);
1133     }
1134 
1135     if (mc->fsl_mc_regs) {
1136         if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) {
1137             mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR);
1138             /*
1139              * HW ORs the PL and BMT bit, places the result in bit
1140              * 14 of the StreamID and ORs in the ICID. Calculate it
1141              * accordingly.
1142              */
1143             mc_stream_id = (mc_stream_id & 0xffff) |
1144                 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ?
1145                     BIT(14) : 0);
1146             error = acpi_dma_configure_id(&pdev->dev,
1147                               DEV_DMA_COHERENT,
1148                               &mc_stream_id);
1149             if (error == -EPROBE_DEFER)
1150                 return error;
1151             if (error)
1152                 dev_warn(&pdev->dev,
1153                      "failed to configure dma: %d.\n",
1154                      error);
1155         }
1156 
1157         /*
1158          * Some bootloaders pause the MC firmware before booting the
1159          * kernel so that MC will not cause faults as soon as the
1160          * SMMU probes due to the fact that there's no configuration
1161          * in place for MC.
1162          * At this point MC should have all its SMMU setup done so make
1163          * sure it is resumed.
1164          */
1165         writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) &
1166                  (~(GCR1_P1_STOP | GCR1_P2_STOP)),
1167                mc->fsl_mc_regs + FSL_MC_GCR1);
1168     }
1169 
1170     /*
1171      * Get physical address of MC portal for the root DPRC:
1172      */
1173     plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1174     mc_portal_phys_addr = plat_res->start;
1175     mc_portal_size = resource_size(plat_res);
1176     mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff;
1177 
1178     error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
1179                  mc_portal_size, NULL,
1180                  FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
1181     if (error < 0)
1182         return error;
1183 
1184     error = mc_get_version(mc_io, 0, &mc_version);
1185     if (error != 0) {
1186         dev_err(&pdev->dev,
1187             "mc_get_version() failed with error %d\n", error);
1188         goto error_cleanup_mc_io;
1189     }
1190 
1191     dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
1192          mc_version.major, mc_version.minor, mc_version.revision);
1193 
1194     if (dev_of_node(&pdev->dev)) {
1195         error = get_mc_addr_translation_ranges(&pdev->dev,
1196                         &mc->translation_ranges,
1197                         &mc->num_translation_ranges);
1198         if (error < 0)
1199             goto error_cleanup_mc_io;
1200     }
1201 
1202     error = dprc_get_container_id(mc_io, 0, &container_id);
1203     if (error < 0) {
1204         dev_err(&pdev->dev,
1205             "dprc_get_container_id() failed: %d\n", error);
1206         goto error_cleanup_mc_io;
1207     }
1208 
1209     memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
1210     error = dprc_get_api_version(mc_io, 0,
1211                      &obj_desc.ver_major,
1212                      &obj_desc.ver_minor);
1213     if (error < 0)
1214         goto error_cleanup_mc_io;
1215 
1216     obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
1217     strcpy(obj_desc.type, "dprc");
1218     obj_desc.id = container_id;
1219     obj_desc.irq_count = 1;
1220     obj_desc.region_count = 0;
1221 
1222     error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
1223     if (error < 0)
1224         goto error_cleanup_mc_io;
1225 
1226     mc->root_mc_bus_dev = mc_bus_dev;
1227     mc_bus_dev->dev.fwnode = pdev->dev.fwnode;
1228     return 0;
1229 
1230 error_cleanup_mc_io:
1231     fsl_destroy_mc_io(mc_io);
1232     return error;
1233 }
1234 
1235 /*
1236  * fsl_mc_bus_remove - callback invoked when the root MC bus is being
1237  * removed
1238  */
1239 static int fsl_mc_bus_remove(struct platform_device *pdev)
1240 {
1241     struct fsl_mc *mc = platform_get_drvdata(pdev);
1242     struct fsl_mc_io *mc_io;
1243 
1244     if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev))
1245         return -EINVAL;
1246 
1247     mc_io = mc->root_mc_bus_dev->mc_io;
1248     fsl_mc_device_remove(mc->root_mc_bus_dev);
1249     fsl_destroy_mc_io(mc_io);
1250 
1251     bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb);
1252 
1253     if (mc->fsl_mc_regs) {
1254         /*
1255          * Pause the MC firmware so that it doesn't crash in certain
1256          * scenarios, such as kexec.
1257          */
1258         writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) |
1259                (GCR1_P1_STOP | GCR1_P2_STOP),
1260                mc->fsl_mc_regs + FSL_MC_GCR1);
1261     }
1262 
1263     return 0;
1264 }
1265 
1266 static void fsl_mc_bus_shutdown(struct platform_device *pdev)
1267 {
1268     fsl_mc_bus_remove(pdev);
1269 }
1270 
1271 static const struct of_device_id fsl_mc_bus_match_table[] = {
1272     {.compatible = "fsl,qoriq-mc",},
1273     {},
1274 };
1275 
1276 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
1277 
1278 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = {
1279     {"NXP0008", 0 },
1280     { }
1281 };
1282 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table);
1283 
1284 static struct platform_driver fsl_mc_bus_driver = {
1285     .driver = {
1286            .name = "fsl_mc_bus",
1287            .pm = NULL,
1288            .of_match_table = fsl_mc_bus_match_table,
1289            .acpi_match_table = fsl_mc_bus_acpi_match_table,
1290            },
1291     .probe = fsl_mc_bus_probe,
1292     .remove = fsl_mc_bus_remove,
1293     .shutdown = fsl_mc_bus_shutdown,
1294 };
1295 
1296 static int fsl_mc_bus_notifier(struct notifier_block *nb,
1297                    unsigned long action, void *data)
1298 {
1299     struct device *dev = data;
1300     struct resource *res;
1301     void __iomem *fsl_mc_regs;
1302 
1303     if (action != BUS_NOTIFY_ADD_DEVICE)
1304         return 0;
1305 
1306     if (!of_match_device(fsl_mc_bus_match_table, dev) &&
1307         !acpi_match_device(fsl_mc_bus_acpi_match_table, dev))
1308         return 0;
1309 
1310     res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1);
1311     if (!res)
1312         return 0;
1313 
1314     fsl_mc_regs = ioremap(res->start, resource_size(res));
1315     if (!fsl_mc_regs)
1316         return 0;
1317 
1318     /*
1319      * Make sure that the MC firmware is paused before the IOMMU setup for
1320      * it is done or otherwise the firmware will crash right after the SMMU
1321      * gets probed and enabled.
1322      */
1323     writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP),
1324            fsl_mc_regs + FSL_MC_GCR1);
1325     iounmap(fsl_mc_regs);
1326 
1327     return 0;
1328 }
1329 
1330 static struct notifier_block fsl_mc_nb = {
1331     .notifier_call = fsl_mc_bus_notifier,
1332 };
1333 
1334 static int __init fsl_mc_bus_driver_init(void)
1335 {
1336     int error;
1337 
1338     error = bus_register(&fsl_mc_bus_type);
1339     if (error < 0) {
1340         pr_err("bus type registration failed: %d\n", error);
1341         goto error_cleanup_cache;
1342     }
1343 
1344     error = platform_driver_register(&fsl_mc_bus_driver);
1345     if (error < 0) {
1346         pr_err("platform_driver_register() failed: %d\n", error);
1347         goto error_cleanup_bus;
1348     }
1349 
1350     error = dprc_driver_init();
1351     if (error < 0)
1352         goto error_cleanup_driver;
1353 
1354     error = fsl_mc_allocator_driver_init();
1355     if (error < 0)
1356         goto error_cleanup_dprc_driver;
1357 
1358     return bus_register_notifier(&platform_bus_type, &fsl_mc_nb);
1359 
1360 error_cleanup_dprc_driver:
1361     dprc_driver_exit();
1362 
1363 error_cleanup_driver:
1364     platform_driver_unregister(&fsl_mc_bus_driver);
1365 
1366 error_cleanup_bus:
1367     bus_unregister(&fsl_mc_bus_type);
1368 
1369 error_cleanup_cache:
1370     return error;
1371 }
1372 postcore_initcall(fsl_mc_bus_driver_init);