Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  Bluetooth Software UART Qualcomm protocol
0004  *
0005  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
0006  *  protocol extension to H4.
0007  *
0008  *  Copyright (C) 2007 Texas Instruments, Inc.
0009  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
0010  *
0011  *  Acknowledgements:
0012  *  This file is based on hci_ll.c, which was...
0013  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
0014  *  which was in turn based on hci_h4.c, which was written
0015  *  by Maxim Krasnyansky and Marcel Holtmann.
0016  */
0017 
0018 #include <linux/kernel.h>
0019 #include <linux/clk.h>
0020 #include <linux/completion.h>
0021 #include <linux/debugfs.h>
0022 #include <linux/delay.h>
0023 #include <linux/devcoredump.h>
0024 #include <linux/device.h>
0025 #include <linux/gpio/consumer.h>
0026 #include <linux/mod_devicetable.h>
0027 #include <linux/module.h>
0028 #include <linux/of_device.h>
0029 #include <linux/acpi.h>
0030 #include <linux/platform_device.h>
0031 #include <linux/regulator/consumer.h>
0032 #include <linux/serdev.h>
0033 #include <linux/mutex.h>
0034 #include <asm/unaligned.h>
0035 
0036 #include <net/bluetooth/bluetooth.h>
0037 #include <net/bluetooth/hci_core.h>
0038 
0039 #include "hci_uart.h"
0040 #include "btqca.h"
0041 
0042 /* HCI_IBS protocol messages */
0043 #define HCI_IBS_SLEEP_IND   0xFE
0044 #define HCI_IBS_WAKE_IND    0xFD
0045 #define HCI_IBS_WAKE_ACK    0xFC
0046 #define HCI_MAX_IBS_SIZE    10
0047 
0048 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100
0049 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS    200
0050 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000
0051 #define CMD_TRANS_TIMEOUT_MS        100
0052 #define MEMDUMP_TIMEOUT_MS      8000
0053 #define IBS_DISABLE_SSR_TIMEOUT_MS \
0054     (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
0055 #define FW_DOWNLOAD_TIMEOUT_MS      3000
0056 
0057 /* susclk rate */
0058 #define SUSCLK_RATE_32KHZ   32768
0059 
0060 /* Controller debug log header */
0061 #define QCA_DEBUG_HANDLE    0x2EDC
0062 
0063 /* max retry count when init fails */
0064 #define MAX_INIT_RETRIES 3
0065 
0066 /* Controller dump header */
0067 #define QCA_SSR_DUMP_HANDLE     0x0108
0068 #define QCA_DUMP_PACKET_SIZE        255
0069 #define QCA_LAST_SEQUENCE_NUM       0xFFFF
0070 #define QCA_CRASHBYTE_PACKET_LEN    1096
0071 #define QCA_MEMDUMP_BYTE        0xFB
0072 
0073 enum qca_flags {
0074     QCA_IBS_DISABLED,
0075     QCA_DROP_VENDOR_EVENT,
0076     QCA_SUSPENDING,
0077     QCA_MEMDUMP_COLLECTION,
0078     QCA_HW_ERROR_EVENT,
0079     QCA_SSR_TRIGGERED,
0080     QCA_BT_OFF,
0081     QCA_ROM_FW
0082 };
0083 
0084 enum qca_capabilities {
0085     QCA_CAP_WIDEBAND_SPEECH = BIT(0),
0086     QCA_CAP_VALID_LE_STATES = BIT(1),
0087 };
0088 
0089 /* HCI_IBS transmit side sleep protocol states */
0090 enum tx_ibs_states {
0091     HCI_IBS_TX_ASLEEP,
0092     HCI_IBS_TX_WAKING,
0093     HCI_IBS_TX_AWAKE,
0094 };
0095 
0096 /* HCI_IBS receive side sleep protocol states */
0097 enum rx_states {
0098     HCI_IBS_RX_ASLEEP,
0099     HCI_IBS_RX_AWAKE,
0100 };
0101 
0102 /* HCI_IBS transmit and receive side clock state vote */
0103 enum hci_ibs_clock_state_vote {
0104     HCI_IBS_VOTE_STATS_UPDATE,
0105     HCI_IBS_TX_VOTE_CLOCK_ON,
0106     HCI_IBS_TX_VOTE_CLOCK_OFF,
0107     HCI_IBS_RX_VOTE_CLOCK_ON,
0108     HCI_IBS_RX_VOTE_CLOCK_OFF,
0109 };
0110 
0111 /* Controller memory dump states */
0112 enum qca_memdump_states {
0113     QCA_MEMDUMP_IDLE,
0114     QCA_MEMDUMP_COLLECTING,
0115     QCA_MEMDUMP_COLLECTED,
0116     QCA_MEMDUMP_TIMEOUT,
0117 };
0118 
0119 struct qca_memdump_data {
0120     char *memdump_buf_head;
0121     char *memdump_buf_tail;
0122     u32 current_seq_no;
0123     u32 received_dump;
0124     u32 ram_dump_size;
0125 };
0126 
0127 struct qca_memdump_event_hdr {
0128     __u8    evt;
0129     __u8    plen;
0130     __u16   opcode;
0131     __u16   seq_no;
0132     __u8    reserved;
0133 } __packed;
0134 
0135 
0136 struct qca_dump_size {
0137     u32 dump_size;
0138 } __packed;
0139 
0140 struct qca_data {
0141     struct hci_uart *hu;
0142     struct sk_buff *rx_skb;
0143     struct sk_buff_head txq;
0144     struct sk_buff_head tx_wait_q;  /* HCI_IBS wait queue   */
0145     struct sk_buff_head rx_memdump_q;   /* Memdump wait queue   */
0146     spinlock_t hci_ibs_lock;    /* HCI_IBS state lock   */
0147     u8 tx_ibs_state;    /* HCI_IBS transmit side power state*/
0148     u8 rx_ibs_state;    /* HCI_IBS receive side power state */
0149     bool tx_vote;       /* Clock must be on for TX */
0150     bool rx_vote;       /* Clock must be on for RX */
0151     struct timer_list tx_idle_timer;
0152     u32 tx_idle_delay;
0153     struct timer_list wake_retrans_timer;
0154     u32 wake_retrans;
0155     struct workqueue_struct *workqueue;
0156     struct work_struct ws_awake_rx;
0157     struct work_struct ws_awake_device;
0158     struct work_struct ws_rx_vote_off;
0159     struct work_struct ws_tx_vote_off;
0160     struct work_struct ctrl_memdump_evt;
0161     struct delayed_work ctrl_memdump_timeout;
0162     struct qca_memdump_data *qca_memdump;
0163     unsigned long flags;
0164     struct completion drop_ev_comp;
0165     wait_queue_head_t suspend_wait_q;
0166     enum qca_memdump_states memdump_state;
0167     struct mutex hci_memdump_lock;
0168 
0169     /* For debugging purpose */
0170     u64 ibs_sent_wacks;
0171     u64 ibs_sent_slps;
0172     u64 ibs_sent_wakes;
0173     u64 ibs_recv_wacks;
0174     u64 ibs_recv_slps;
0175     u64 ibs_recv_wakes;
0176     u64 vote_last_jif;
0177     u32 vote_on_ms;
0178     u32 vote_off_ms;
0179     u64 tx_votes_on;
0180     u64 rx_votes_on;
0181     u64 tx_votes_off;
0182     u64 rx_votes_off;
0183     u64 votes_on;
0184     u64 votes_off;
0185 };
0186 
0187 enum qca_speed_type {
0188     QCA_INIT_SPEED = 1,
0189     QCA_OPER_SPEED
0190 };
0191 
0192 /*
0193  * Voltage regulator information required for configuring the
0194  * QCA Bluetooth chipset
0195  */
0196 struct qca_vreg {
0197     const char *name;
0198     unsigned int load_uA;
0199 };
0200 
0201 struct qca_device_data {
0202     enum qca_btsoc_type soc_type;
0203     struct qca_vreg *vregs;
0204     size_t num_vregs;
0205     uint32_t capabilities;
0206 };
0207 
0208 /*
0209  * Platform data for the QCA Bluetooth power driver.
0210  */
0211 struct qca_power {
0212     struct device *dev;
0213     struct regulator_bulk_data *vreg_bulk;
0214     int num_vregs;
0215     bool vregs_on;
0216 };
0217 
0218 struct qca_serdev {
0219     struct hci_uart  serdev_hu;
0220     struct gpio_desc *bt_en;
0221     struct gpio_desc *sw_ctrl;
0222     struct clk   *susclk;
0223     enum qca_btsoc_type btsoc_type;
0224     struct qca_power *bt_power;
0225     u32 init_speed;
0226     u32 oper_speed;
0227     const char *firmware_name;
0228 };
0229 
0230 static int qca_regulator_enable(struct qca_serdev *qcadev);
0231 static void qca_regulator_disable(struct qca_serdev *qcadev);
0232 static void qca_power_shutdown(struct hci_uart *hu);
0233 static int qca_power_off(struct hci_dev *hdev);
0234 static void qca_controller_memdump(struct work_struct *work);
0235 
0236 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
0237 {
0238     enum qca_btsoc_type soc_type;
0239 
0240     if (hu->serdev) {
0241         struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
0242 
0243         soc_type = qsd->btsoc_type;
0244     } else {
0245         soc_type = QCA_ROME;
0246     }
0247 
0248     return soc_type;
0249 }
0250 
0251 static const char *qca_get_firmware_name(struct hci_uart *hu)
0252 {
0253     if (hu->serdev) {
0254         struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
0255 
0256         return qsd->firmware_name;
0257     } else {
0258         return NULL;
0259     }
0260 }
0261 
0262 static void __serial_clock_on(struct tty_struct *tty)
0263 {
0264     /* TODO: Some chipset requires to enable UART clock on client
0265      * side to save power consumption or manual work is required.
0266      * Please put your code to control UART clock here if needed
0267      */
0268 }
0269 
0270 static void __serial_clock_off(struct tty_struct *tty)
0271 {
0272     /* TODO: Some chipset requires to disable UART clock on client
0273      * side to save power consumption or manual work is required.
0274      * Please put your code to control UART clock off here if needed
0275      */
0276 }
0277 
0278 /* serial_clock_vote needs to be called with the ibs lock held */
0279 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
0280 {
0281     struct qca_data *qca = hu->priv;
0282     unsigned int diff;
0283 
0284     bool old_vote = (qca->tx_vote | qca->rx_vote);
0285     bool new_vote;
0286 
0287     switch (vote) {
0288     case HCI_IBS_VOTE_STATS_UPDATE:
0289         diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
0290 
0291         if (old_vote)
0292             qca->vote_off_ms += diff;
0293         else
0294             qca->vote_on_ms += diff;
0295         return;
0296 
0297     case HCI_IBS_TX_VOTE_CLOCK_ON:
0298         qca->tx_vote = true;
0299         qca->tx_votes_on++;
0300         break;
0301 
0302     case HCI_IBS_RX_VOTE_CLOCK_ON:
0303         qca->rx_vote = true;
0304         qca->rx_votes_on++;
0305         break;
0306 
0307     case HCI_IBS_TX_VOTE_CLOCK_OFF:
0308         qca->tx_vote = false;
0309         qca->tx_votes_off++;
0310         break;
0311 
0312     case HCI_IBS_RX_VOTE_CLOCK_OFF:
0313         qca->rx_vote = false;
0314         qca->rx_votes_off++;
0315         break;
0316 
0317     default:
0318         BT_ERR("Voting irregularity");
0319         return;
0320     }
0321 
0322     new_vote = qca->rx_vote | qca->tx_vote;
0323 
0324     if (new_vote != old_vote) {
0325         if (new_vote)
0326             __serial_clock_on(hu->tty);
0327         else
0328             __serial_clock_off(hu->tty);
0329 
0330         BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
0331                vote ? "true" : "false");
0332 
0333         diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
0334 
0335         if (new_vote) {
0336             qca->votes_on++;
0337             qca->vote_off_ms += diff;
0338         } else {
0339             qca->votes_off++;
0340             qca->vote_on_ms += diff;
0341         }
0342         qca->vote_last_jif = jiffies;
0343     }
0344 }
0345 
0346 /* Builds and sends an HCI_IBS command packet.
0347  * These are very simple packets with only 1 cmd byte.
0348  */
0349 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
0350 {
0351     int err = 0;
0352     struct sk_buff *skb = NULL;
0353     struct qca_data *qca = hu->priv;
0354 
0355     BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
0356 
0357     skb = bt_skb_alloc(1, GFP_ATOMIC);
0358     if (!skb) {
0359         BT_ERR("Failed to allocate memory for HCI_IBS packet");
0360         return -ENOMEM;
0361     }
0362 
0363     /* Assign HCI_IBS type */
0364     skb_put_u8(skb, cmd);
0365 
0366     skb_queue_tail(&qca->txq, skb);
0367 
0368     return err;
0369 }
0370 
0371 static void qca_wq_awake_device(struct work_struct *work)
0372 {
0373     struct qca_data *qca = container_of(work, struct qca_data,
0374                         ws_awake_device);
0375     struct hci_uart *hu = qca->hu;
0376     unsigned long retrans_delay;
0377     unsigned long flags;
0378 
0379     BT_DBG("hu %p wq awake device", hu);
0380 
0381     /* Vote for serial clock */
0382     serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
0383 
0384     spin_lock_irqsave(&qca->hci_ibs_lock, flags);
0385 
0386     /* Send wake indication to device */
0387     if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
0388         BT_ERR("Failed to send WAKE to device");
0389 
0390     qca->ibs_sent_wakes++;
0391 
0392     /* Start retransmit timer */
0393     retrans_delay = msecs_to_jiffies(qca->wake_retrans);
0394     mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
0395 
0396     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0397 
0398     /* Actually send the packets */
0399     hci_uart_tx_wakeup(hu);
0400 }
0401 
0402 static void qca_wq_awake_rx(struct work_struct *work)
0403 {
0404     struct qca_data *qca = container_of(work, struct qca_data,
0405                         ws_awake_rx);
0406     struct hci_uart *hu = qca->hu;
0407     unsigned long flags;
0408 
0409     BT_DBG("hu %p wq awake rx", hu);
0410 
0411     serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
0412 
0413     spin_lock_irqsave(&qca->hci_ibs_lock, flags);
0414     qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
0415 
0416     /* Always acknowledge device wake up,
0417      * sending IBS message doesn't count as TX ON.
0418      */
0419     if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
0420         BT_ERR("Failed to acknowledge device wake up");
0421 
0422     qca->ibs_sent_wacks++;
0423 
0424     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0425 
0426     /* Actually send the packets */
0427     hci_uart_tx_wakeup(hu);
0428 }
0429 
0430 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
0431 {
0432     struct qca_data *qca = container_of(work, struct qca_data,
0433                         ws_rx_vote_off);
0434     struct hci_uart *hu = qca->hu;
0435 
0436     BT_DBG("hu %p rx clock vote off", hu);
0437 
0438     serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
0439 }
0440 
0441 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
0442 {
0443     struct qca_data *qca = container_of(work, struct qca_data,
0444                         ws_tx_vote_off);
0445     struct hci_uart *hu = qca->hu;
0446 
0447     BT_DBG("hu %p tx clock vote off", hu);
0448 
0449     /* Run HCI tx handling unlocked */
0450     hci_uart_tx_wakeup(hu);
0451 
0452     /* Now that message queued to tty driver, vote for tty clocks off.
0453      * It is up to the tty driver to pend the clocks off until tx done.
0454      */
0455     serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
0456 }
0457 
0458 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
0459 {
0460     struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
0461     struct hci_uart *hu = qca->hu;
0462     unsigned long flags;
0463 
0464     BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
0465 
0466     spin_lock_irqsave_nested(&qca->hci_ibs_lock,
0467                  flags, SINGLE_DEPTH_NESTING);
0468 
0469     switch (qca->tx_ibs_state) {
0470     case HCI_IBS_TX_AWAKE:
0471         /* TX_IDLE, go to SLEEP */
0472         if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
0473             BT_ERR("Failed to send SLEEP to device");
0474             break;
0475         }
0476         qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
0477         qca->ibs_sent_slps++;
0478         queue_work(qca->workqueue, &qca->ws_tx_vote_off);
0479         break;
0480 
0481     case HCI_IBS_TX_ASLEEP:
0482     case HCI_IBS_TX_WAKING:
0483     default:
0484         BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
0485         break;
0486     }
0487 
0488     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0489 }
0490 
0491 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
0492 {
0493     struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
0494     struct hci_uart *hu = qca->hu;
0495     unsigned long flags, retrans_delay;
0496     bool retransmit = false;
0497 
0498     BT_DBG("hu %p wake retransmit timeout in %d state",
0499         hu, qca->tx_ibs_state);
0500 
0501     spin_lock_irqsave_nested(&qca->hci_ibs_lock,
0502                  flags, SINGLE_DEPTH_NESTING);
0503 
0504     /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
0505     if (test_bit(QCA_SUSPENDING, &qca->flags)) {
0506         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0507         return;
0508     }
0509 
0510     switch (qca->tx_ibs_state) {
0511     case HCI_IBS_TX_WAKING:
0512         /* No WAKE_ACK, retransmit WAKE */
0513         retransmit = true;
0514         if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
0515             BT_ERR("Failed to acknowledge device wake up");
0516             break;
0517         }
0518         qca->ibs_sent_wakes++;
0519         retrans_delay = msecs_to_jiffies(qca->wake_retrans);
0520         mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
0521         break;
0522 
0523     case HCI_IBS_TX_ASLEEP:
0524     case HCI_IBS_TX_AWAKE:
0525     default:
0526         BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
0527         break;
0528     }
0529 
0530     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0531 
0532     if (retransmit)
0533         hci_uart_tx_wakeup(hu);
0534 }
0535 
0536 
0537 static void qca_controller_memdump_timeout(struct work_struct *work)
0538 {
0539     struct qca_data *qca = container_of(work, struct qca_data,
0540                     ctrl_memdump_timeout.work);
0541     struct hci_uart *hu = qca->hu;
0542 
0543     mutex_lock(&qca->hci_memdump_lock);
0544     if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
0545         qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
0546         if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
0547             /* Inject hw error event to reset the device
0548              * and driver.
0549              */
0550             hci_reset_dev(hu->hdev);
0551         }
0552     }
0553 
0554     mutex_unlock(&qca->hci_memdump_lock);
0555 }
0556 
0557 
0558 /* Initialize protocol */
0559 static int qca_open(struct hci_uart *hu)
0560 {
0561     struct qca_serdev *qcadev;
0562     struct qca_data *qca;
0563 
0564     BT_DBG("hu %p qca_open", hu);
0565 
0566     if (!hci_uart_has_flow_control(hu))
0567         return -EOPNOTSUPP;
0568 
0569     qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
0570     if (!qca)
0571         return -ENOMEM;
0572 
0573     skb_queue_head_init(&qca->txq);
0574     skb_queue_head_init(&qca->tx_wait_q);
0575     skb_queue_head_init(&qca->rx_memdump_q);
0576     spin_lock_init(&qca->hci_ibs_lock);
0577     mutex_init(&qca->hci_memdump_lock);
0578     qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
0579     if (!qca->workqueue) {
0580         BT_ERR("QCA Workqueue not initialized properly");
0581         kfree(qca);
0582         return -ENOMEM;
0583     }
0584 
0585     INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
0586     INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
0587     INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
0588     INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
0589     INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
0590     INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
0591               qca_controller_memdump_timeout);
0592     init_waitqueue_head(&qca->suspend_wait_q);
0593 
0594     qca->hu = hu;
0595     init_completion(&qca->drop_ev_comp);
0596 
0597     /* Assume we start with both sides asleep -- extra wakes OK */
0598     qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
0599     qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
0600 
0601     qca->vote_last_jif = jiffies;
0602 
0603     hu->priv = qca;
0604 
0605     if (hu->serdev) {
0606         qcadev = serdev_device_get_drvdata(hu->serdev);
0607 
0608         if (qca_is_wcn399x(qcadev->btsoc_type) ||
0609             qca_is_wcn6750(qcadev->btsoc_type))
0610             hu->init_speed = qcadev->init_speed;
0611 
0612         if (qcadev->oper_speed)
0613             hu->oper_speed = qcadev->oper_speed;
0614     }
0615 
0616     timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
0617     qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
0618 
0619     timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
0620     qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
0621 
0622     BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
0623            qca->tx_idle_delay, qca->wake_retrans);
0624 
0625     return 0;
0626 }
0627 
0628 static void qca_debugfs_init(struct hci_dev *hdev)
0629 {
0630     struct hci_uart *hu = hci_get_drvdata(hdev);
0631     struct qca_data *qca = hu->priv;
0632     struct dentry *ibs_dir;
0633     umode_t mode;
0634 
0635     if (!hdev->debugfs)
0636         return;
0637 
0638     ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
0639 
0640     /* read only */
0641     mode = 0444;
0642     debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
0643     debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
0644     debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
0645                &qca->ibs_sent_slps);
0646     debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
0647                &qca->ibs_sent_wakes);
0648     debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
0649                &qca->ibs_sent_wacks);
0650     debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
0651                &qca->ibs_recv_slps);
0652     debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
0653                &qca->ibs_recv_wakes);
0654     debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
0655                &qca->ibs_recv_wacks);
0656     debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
0657     debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
0658     debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
0659     debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
0660     debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
0661     debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
0662     debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
0663     debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
0664     debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
0665     debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
0666 
0667     /* read/write */
0668     mode = 0644;
0669     debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
0670     debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
0671                &qca->tx_idle_delay);
0672 }
0673 
0674 /* Flush protocol data */
0675 static int qca_flush(struct hci_uart *hu)
0676 {
0677     struct qca_data *qca = hu->priv;
0678 
0679     BT_DBG("hu %p qca flush", hu);
0680 
0681     skb_queue_purge(&qca->tx_wait_q);
0682     skb_queue_purge(&qca->txq);
0683 
0684     return 0;
0685 }
0686 
0687 /* Close protocol */
0688 static int qca_close(struct hci_uart *hu)
0689 {
0690     struct qca_data *qca = hu->priv;
0691 
0692     BT_DBG("hu %p qca close", hu);
0693 
0694     serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
0695 
0696     skb_queue_purge(&qca->tx_wait_q);
0697     skb_queue_purge(&qca->txq);
0698     skb_queue_purge(&qca->rx_memdump_q);
0699     destroy_workqueue(qca->workqueue);
0700     del_timer_sync(&qca->tx_idle_timer);
0701     del_timer_sync(&qca->wake_retrans_timer);
0702     qca->hu = NULL;
0703 
0704     kfree_skb(qca->rx_skb);
0705 
0706     hu->priv = NULL;
0707 
0708     kfree(qca);
0709 
0710     return 0;
0711 }
0712 
0713 /* Called upon a wake-up-indication from the device.
0714  */
0715 static void device_want_to_wakeup(struct hci_uart *hu)
0716 {
0717     unsigned long flags;
0718     struct qca_data *qca = hu->priv;
0719 
0720     BT_DBG("hu %p want to wake up", hu);
0721 
0722     spin_lock_irqsave(&qca->hci_ibs_lock, flags);
0723 
0724     qca->ibs_recv_wakes++;
0725 
0726     /* Don't wake the rx up when suspending. */
0727     if (test_bit(QCA_SUSPENDING, &qca->flags)) {
0728         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0729         return;
0730     }
0731 
0732     switch (qca->rx_ibs_state) {
0733     case HCI_IBS_RX_ASLEEP:
0734         /* Make sure clock is on - we may have turned clock off since
0735          * receiving the wake up indicator awake rx clock.
0736          */
0737         queue_work(qca->workqueue, &qca->ws_awake_rx);
0738         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0739         return;
0740 
0741     case HCI_IBS_RX_AWAKE:
0742         /* Always acknowledge device wake up,
0743          * sending IBS message doesn't count as TX ON.
0744          */
0745         if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
0746             BT_ERR("Failed to acknowledge device wake up");
0747             break;
0748         }
0749         qca->ibs_sent_wacks++;
0750         break;
0751 
0752     default:
0753         /* Any other state is illegal */
0754         BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
0755                qca->rx_ibs_state);
0756         break;
0757     }
0758 
0759     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0760 
0761     /* Actually send the packets */
0762     hci_uart_tx_wakeup(hu);
0763 }
0764 
0765 /* Called upon a sleep-indication from the device.
0766  */
0767 static void device_want_to_sleep(struct hci_uart *hu)
0768 {
0769     unsigned long flags;
0770     struct qca_data *qca = hu->priv;
0771 
0772     BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
0773 
0774     spin_lock_irqsave(&qca->hci_ibs_lock, flags);
0775 
0776     qca->ibs_recv_slps++;
0777 
0778     switch (qca->rx_ibs_state) {
0779     case HCI_IBS_RX_AWAKE:
0780         /* Update state */
0781         qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
0782         /* Vote off rx clock under workqueue */
0783         queue_work(qca->workqueue, &qca->ws_rx_vote_off);
0784         break;
0785 
0786     case HCI_IBS_RX_ASLEEP:
0787         break;
0788 
0789     default:
0790         /* Any other state is illegal */
0791         BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
0792                qca->rx_ibs_state);
0793         break;
0794     }
0795 
0796     wake_up_interruptible(&qca->suspend_wait_q);
0797 
0798     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0799 }
0800 
0801 /* Called upon wake-up-acknowledgement from the device
0802  */
0803 static void device_woke_up(struct hci_uart *hu)
0804 {
0805     unsigned long flags, idle_delay;
0806     struct qca_data *qca = hu->priv;
0807     struct sk_buff *skb = NULL;
0808 
0809     BT_DBG("hu %p woke up", hu);
0810 
0811     spin_lock_irqsave(&qca->hci_ibs_lock, flags);
0812 
0813     qca->ibs_recv_wacks++;
0814 
0815     /* Don't react to the wake-up-acknowledgment when suspending. */
0816     if (test_bit(QCA_SUSPENDING, &qca->flags)) {
0817         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0818         return;
0819     }
0820 
0821     switch (qca->tx_ibs_state) {
0822     case HCI_IBS_TX_AWAKE:
0823         /* Expect one if we send 2 WAKEs */
0824         BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
0825                qca->tx_ibs_state);
0826         break;
0827 
0828     case HCI_IBS_TX_WAKING:
0829         /* Send pending packets */
0830         while ((skb = skb_dequeue(&qca->tx_wait_q)))
0831             skb_queue_tail(&qca->txq, skb);
0832 
0833         /* Switch timers and change state to HCI_IBS_TX_AWAKE */
0834         del_timer(&qca->wake_retrans_timer);
0835         idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
0836         mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
0837         qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
0838         break;
0839 
0840     case HCI_IBS_TX_ASLEEP:
0841     default:
0842         BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
0843                qca->tx_ibs_state);
0844         break;
0845     }
0846 
0847     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0848 
0849     /* Actually send the packets */
0850     hci_uart_tx_wakeup(hu);
0851 }
0852 
0853 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
0854  * two simultaneous tasklets.
0855  */
0856 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
0857 {
0858     unsigned long flags = 0, idle_delay;
0859     struct qca_data *qca = hu->priv;
0860 
0861     BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
0862            qca->tx_ibs_state);
0863 
0864     if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
0865         /* As SSR is in progress, ignore the packets */
0866         bt_dev_dbg(hu->hdev, "SSR is in progress");
0867         kfree_skb(skb);
0868         return 0;
0869     }
0870 
0871     /* Prepend skb with frame type */
0872     memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
0873 
0874     spin_lock_irqsave(&qca->hci_ibs_lock, flags);
0875 
0876     /* Don't go to sleep in middle of patch download or
0877      * Out-Of-Band(GPIOs control) sleep is selected.
0878      * Don't wake the device up when suspending.
0879      */
0880     if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
0881         test_bit(QCA_SUSPENDING, &qca->flags)) {
0882         skb_queue_tail(&qca->txq, skb);
0883         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0884         return 0;
0885     }
0886 
0887     /* Act according to current state */
0888     switch (qca->tx_ibs_state) {
0889     case HCI_IBS_TX_AWAKE:
0890         BT_DBG("Device awake, sending normally");
0891         skb_queue_tail(&qca->txq, skb);
0892         idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
0893         mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
0894         break;
0895 
0896     case HCI_IBS_TX_ASLEEP:
0897         BT_DBG("Device asleep, waking up and queueing packet");
0898         /* Save packet for later */
0899         skb_queue_tail(&qca->tx_wait_q, skb);
0900 
0901         qca->tx_ibs_state = HCI_IBS_TX_WAKING;
0902         /* Schedule a work queue to wake up device */
0903         queue_work(qca->workqueue, &qca->ws_awake_device);
0904         break;
0905 
0906     case HCI_IBS_TX_WAKING:
0907         BT_DBG("Device waking up, queueing packet");
0908         /* Transient state; just keep packet for later */
0909         skb_queue_tail(&qca->tx_wait_q, skb);
0910         break;
0911 
0912     default:
0913         BT_ERR("Illegal tx state: %d (losing packet)",
0914                qca->tx_ibs_state);
0915         kfree_skb(skb);
0916         break;
0917     }
0918 
0919     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
0920 
0921     return 0;
0922 }
0923 
0924 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
0925 {
0926     struct hci_uart *hu = hci_get_drvdata(hdev);
0927 
0928     BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
0929 
0930     device_want_to_sleep(hu);
0931 
0932     kfree_skb(skb);
0933     return 0;
0934 }
0935 
0936 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
0937 {
0938     struct hci_uart *hu = hci_get_drvdata(hdev);
0939 
0940     BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
0941 
0942     device_want_to_wakeup(hu);
0943 
0944     kfree_skb(skb);
0945     return 0;
0946 }
0947 
0948 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
0949 {
0950     struct hci_uart *hu = hci_get_drvdata(hdev);
0951 
0952     BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
0953 
0954     device_woke_up(hu);
0955 
0956     kfree_skb(skb);
0957     return 0;
0958 }
0959 
0960 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
0961 {
0962     /* We receive debug logs from chip as an ACL packets.
0963      * Instead of sending the data to ACL to decode the
0964      * received data, we are pushing them to the above layers
0965      * as a diagnostic packet.
0966      */
0967     if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
0968         return hci_recv_diag(hdev, skb);
0969 
0970     return hci_recv_frame(hdev, skb);
0971 }
0972 
0973 static void qca_controller_memdump(struct work_struct *work)
0974 {
0975     struct qca_data *qca = container_of(work, struct qca_data,
0976                         ctrl_memdump_evt);
0977     struct hci_uart *hu = qca->hu;
0978     struct sk_buff *skb;
0979     struct qca_memdump_event_hdr *cmd_hdr;
0980     struct qca_memdump_data *qca_memdump = qca->qca_memdump;
0981     struct qca_dump_size *dump;
0982     char *memdump_buf;
0983     char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
0984     u16 seq_no;
0985     u32 dump_size;
0986     u32 rx_size;
0987     enum qca_btsoc_type soc_type = qca_soc_type(hu);
0988 
0989     while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
0990 
0991         mutex_lock(&qca->hci_memdump_lock);
0992         /* Skip processing the received packets if timeout detected
0993          * or memdump collection completed.
0994          */
0995         if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
0996             qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
0997             mutex_unlock(&qca->hci_memdump_lock);
0998             return;
0999         }
1000 
1001         if (!qca_memdump) {
1002             qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
1003                           GFP_ATOMIC);
1004             if (!qca_memdump) {
1005                 mutex_unlock(&qca->hci_memdump_lock);
1006                 return;
1007             }
1008 
1009             qca->qca_memdump = qca_memdump;
1010         }
1011 
1012         qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1013         cmd_hdr = (void *) skb->data;
1014         seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1015         skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1016 
1017         if (!seq_no) {
1018 
1019             /* This is the first frame of memdump packet from
1020              * the controller, Disable IBS to recevie dump
1021              * with out any interruption, ideally time required for
1022              * the controller to send the dump is 8 seconds. let us
1023              * start timer to handle this asynchronous activity.
1024              */
1025             set_bit(QCA_IBS_DISABLED, &qca->flags);
1026             set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1027             dump = (void *) skb->data;
1028             dump_size = __le32_to_cpu(dump->dump_size);
1029             if (!(dump_size)) {
1030                 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1031                 kfree(qca_memdump);
1032                 kfree_skb(skb);
1033                 qca->qca_memdump = NULL;
1034                 mutex_unlock(&qca->hci_memdump_lock);
1035                 return;
1036             }
1037 
1038             bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1039                     dump_size);
1040             queue_delayed_work(qca->workqueue,
1041                        &qca->ctrl_memdump_timeout,
1042                        msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1043                       );
1044 
1045             skb_pull(skb, sizeof(dump_size));
1046             memdump_buf = vmalloc(dump_size);
1047             qca_memdump->ram_dump_size = dump_size;
1048             qca_memdump->memdump_buf_head = memdump_buf;
1049             qca_memdump->memdump_buf_tail = memdump_buf;
1050         }
1051 
1052         memdump_buf = qca_memdump->memdump_buf_tail;
1053 
1054         /* If sequence no 0 is missed then there is no point in
1055          * accepting the other sequences.
1056          */
1057         if (!memdump_buf) {
1058             bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1059             kfree(qca_memdump);
1060             kfree_skb(skb);
1061             qca->qca_memdump = NULL;
1062             mutex_unlock(&qca->hci_memdump_lock);
1063             return;
1064         }
1065 
1066         /* There could be chance of missing some packets from
1067          * the controller. In such cases let us store the dummy
1068          * packets in the buffer.
1069          */
1070         /* For QCA6390, controller does not lost packets but
1071          * sequence number field of packet sometimes has error
1072          * bits, so skip this checking for missing packet.
1073          */
1074         while ((seq_no > qca_memdump->current_seq_no + 1) &&
1075                (soc_type != QCA_QCA6390) &&
1076                seq_no != QCA_LAST_SEQUENCE_NUM) {
1077             bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1078                    qca_memdump->current_seq_no);
1079             rx_size = qca_memdump->received_dump;
1080             rx_size += QCA_DUMP_PACKET_SIZE;
1081             if (rx_size > qca_memdump->ram_dump_size) {
1082                 bt_dev_err(hu->hdev,
1083                        "QCA memdump received %d, no space for missed packet",
1084                        qca_memdump->received_dump);
1085                 break;
1086             }
1087             memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1088             memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1089             qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1090             qca_memdump->current_seq_no++;
1091         }
1092 
1093         rx_size = qca_memdump->received_dump + skb->len;
1094         if (rx_size <= qca_memdump->ram_dump_size) {
1095             if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1096                 (seq_no != qca_memdump->current_seq_no))
1097                 bt_dev_err(hu->hdev,
1098                        "QCA memdump unexpected packet %d",
1099                        seq_no);
1100             bt_dev_dbg(hu->hdev,
1101                    "QCA memdump packet %d with length %d",
1102                    seq_no, skb->len);
1103             memcpy(memdump_buf, (unsigned char *)skb->data,
1104                    skb->len);
1105             memdump_buf = memdump_buf + skb->len;
1106             qca_memdump->memdump_buf_tail = memdump_buf;
1107             qca_memdump->current_seq_no = seq_no + 1;
1108             qca_memdump->received_dump += skb->len;
1109         } else {
1110             bt_dev_err(hu->hdev,
1111                    "QCA memdump received %d, no space for packet %d",
1112                    qca_memdump->received_dump, seq_no);
1113         }
1114         qca->qca_memdump = qca_memdump;
1115         kfree_skb(skb);
1116         if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1117             bt_dev_info(hu->hdev,
1118                     "QCA memdump Done, received %d, total %d",
1119                     qca_memdump->received_dump,
1120                     qca_memdump->ram_dump_size);
1121             memdump_buf = qca_memdump->memdump_buf_head;
1122             dev_coredumpv(&hu->serdev->dev, memdump_buf,
1123                       qca_memdump->received_dump, GFP_KERNEL);
1124             cancel_delayed_work(&qca->ctrl_memdump_timeout);
1125             kfree(qca->qca_memdump);
1126             qca->qca_memdump = NULL;
1127             qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1128             clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1129         }
1130 
1131         mutex_unlock(&qca->hci_memdump_lock);
1132     }
1133 
1134 }
1135 
1136 static int qca_controller_memdump_event(struct hci_dev *hdev,
1137                     struct sk_buff *skb)
1138 {
1139     struct hci_uart *hu = hci_get_drvdata(hdev);
1140     struct qca_data *qca = hu->priv;
1141 
1142     set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1143     skb_queue_tail(&qca->rx_memdump_q, skb);
1144     queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1145 
1146     return 0;
1147 }
1148 
1149 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1150 {
1151     struct hci_uart *hu = hci_get_drvdata(hdev);
1152     struct qca_data *qca = hu->priv;
1153 
1154     if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1155         struct hci_event_hdr *hdr = (void *)skb->data;
1156 
1157         /* For the WCN3990 the vendor command for a baudrate change
1158          * isn't sent as synchronous HCI command, because the
1159          * controller sends the corresponding vendor event with the
1160          * new baudrate. The event is received and properly decoded
1161          * after changing the baudrate of the host port. It needs to
1162          * be dropped, otherwise it can be misinterpreted as
1163          * response to a later firmware download command (also a
1164          * vendor command).
1165          */
1166 
1167         if (hdr->evt == HCI_EV_VENDOR)
1168             complete(&qca->drop_ev_comp);
1169 
1170         kfree_skb(skb);
1171 
1172         return 0;
1173     }
1174     /* We receive chip memory dump as an event packet, With a dedicated
1175      * handler followed by a hardware error event. When this event is
1176      * received we store dump into a file before closing hci. This
1177      * dump will help in triaging the issues.
1178      */
1179     if ((skb->data[0] == HCI_VENDOR_PKT) &&
1180         (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1181         return qca_controller_memdump_event(hdev, skb);
1182 
1183     return hci_recv_frame(hdev, skb);
1184 }
1185 
1186 #define QCA_IBS_SLEEP_IND_EVENT \
1187     .type = HCI_IBS_SLEEP_IND, \
1188     .hlen = 0, \
1189     .loff = 0, \
1190     .lsize = 0, \
1191     .maxlen = HCI_MAX_IBS_SIZE
1192 
1193 #define QCA_IBS_WAKE_IND_EVENT \
1194     .type = HCI_IBS_WAKE_IND, \
1195     .hlen = 0, \
1196     .loff = 0, \
1197     .lsize = 0, \
1198     .maxlen = HCI_MAX_IBS_SIZE
1199 
1200 #define QCA_IBS_WAKE_ACK_EVENT \
1201     .type = HCI_IBS_WAKE_ACK, \
1202     .hlen = 0, \
1203     .loff = 0, \
1204     .lsize = 0, \
1205     .maxlen = HCI_MAX_IBS_SIZE
1206 
1207 static const struct h4_recv_pkt qca_recv_pkts[] = {
1208     { H4_RECV_ACL,             .recv = qca_recv_acl_data },
1209     { H4_RECV_SCO,             .recv = hci_recv_frame    },
1210     { H4_RECV_EVENT,           .recv = qca_recv_event    },
1211     { QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1212     { QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1213     { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1214 };
1215 
1216 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1217 {
1218     struct qca_data *qca = hu->priv;
1219 
1220     if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1221         return -EUNATCH;
1222 
1223     qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1224                   qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1225     if (IS_ERR(qca->rx_skb)) {
1226         int err = PTR_ERR(qca->rx_skb);
1227         bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1228         qca->rx_skb = NULL;
1229         return err;
1230     }
1231 
1232     return count;
1233 }
1234 
1235 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1236 {
1237     struct qca_data *qca = hu->priv;
1238 
1239     return skb_dequeue(&qca->txq);
1240 }
1241 
1242 static uint8_t qca_get_baudrate_value(int speed)
1243 {
1244     switch (speed) {
1245     case 9600:
1246         return QCA_BAUDRATE_9600;
1247     case 19200:
1248         return QCA_BAUDRATE_19200;
1249     case 38400:
1250         return QCA_BAUDRATE_38400;
1251     case 57600:
1252         return QCA_BAUDRATE_57600;
1253     case 115200:
1254         return QCA_BAUDRATE_115200;
1255     case 230400:
1256         return QCA_BAUDRATE_230400;
1257     case 460800:
1258         return QCA_BAUDRATE_460800;
1259     case 500000:
1260         return QCA_BAUDRATE_500000;
1261     case 921600:
1262         return QCA_BAUDRATE_921600;
1263     case 1000000:
1264         return QCA_BAUDRATE_1000000;
1265     case 2000000:
1266         return QCA_BAUDRATE_2000000;
1267     case 3000000:
1268         return QCA_BAUDRATE_3000000;
1269     case 3200000:
1270         return QCA_BAUDRATE_3200000;
1271     case 3500000:
1272         return QCA_BAUDRATE_3500000;
1273     default:
1274         return QCA_BAUDRATE_115200;
1275     }
1276 }
1277 
1278 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1279 {
1280     struct hci_uart *hu = hci_get_drvdata(hdev);
1281     struct qca_data *qca = hu->priv;
1282     struct sk_buff *skb;
1283     u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1284 
1285     if (baudrate > QCA_BAUDRATE_3200000)
1286         return -EINVAL;
1287 
1288     cmd[4] = baudrate;
1289 
1290     skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1291     if (!skb) {
1292         bt_dev_err(hdev, "Failed to allocate baudrate packet");
1293         return -ENOMEM;
1294     }
1295 
1296     /* Assign commands to change baudrate and packet type. */
1297     skb_put_data(skb, cmd, sizeof(cmd));
1298     hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1299 
1300     skb_queue_tail(&qca->txq, skb);
1301     hci_uart_tx_wakeup(hu);
1302 
1303     /* Wait for the baudrate change request to be sent */
1304 
1305     while (!skb_queue_empty(&qca->txq))
1306         usleep_range(100, 200);
1307 
1308     if (hu->serdev)
1309         serdev_device_wait_until_sent(hu->serdev,
1310               msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1311 
1312     /* Give the controller time to process the request */
1313     if (qca_is_wcn399x(qca_soc_type(hu)) ||
1314         qca_is_wcn6750(qca_soc_type(hu)))
1315         usleep_range(1000, 10000);
1316     else
1317         msleep(300);
1318 
1319     return 0;
1320 }
1321 
1322 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1323 {
1324     if (hu->serdev)
1325         serdev_device_set_baudrate(hu->serdev, speed);
1326     else
1327         hci_uart_set_baudrate(hu, speed);
1328 }
1329 
1330 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1331 {
1332     int ret;
1333     int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1334     u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1335 
1336     /* These power pulses are single byte command which are sent
1337      * at required baudrate to wcn3990. On wcn3990, we have an external
1338      * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1339      * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1340      * and also we use the same power inputs to turn on and off for
1341      * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1342      * we send a power on pulse at 115200 bps. This algorithm will help to
1343      * save power. Disabling hardware flow control is mandatory while
1344      * sending power pulses to SoC.
1345      */
1346     bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1347 
1348     serdev_device_write_flush(hu->serdev);
1349     hci_uart_set_flow_control(hu, true);
1350     ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1351     if (ret < 0) {
1352         bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1353         return ret;
1354     }
1355 
1356     serdev_device_wait_until_sent(hu->serdev, timeout);
1357     hci_uart_set_flow_control(hu, false);
1358 
1359     /* Give to controller time to boot/shutdown */
1360     if (on)
1361         msleep(100);
1362     else
1363         usleep_range(1000, 10000);
1364 
1365     return 0;
1366 }
1367 
1368 static unsigned int qca_get_speed(struct hci_uart *hu,
1369                   enum qca_speed_type speed_type)
1370 {
1371     unsigned int speed = 0;
1372 
1373     if (speed_type == QCA_INIT_SPEED) {
1374         if (hu->init_speed)
1375             speed = hu->init_speed;
1376         else if (hu->proto->init_speed)
1377             speed = hu->proto->init_speed;
1378     } else {
1379         if (hu->oper_speed)
1380             speed = hu->oper_speed;
1381         else if (hu->proto->oper_speed)
1382             speed = hu->proto->oper_speed;
1383     }
1384 
1385     return speed;
1386 }
1387 
1388 static int qca_check_speeds(struct hci_uart *hu)
1389 {
1390     if (qca_is_wcn399x(qca_soc_type(hu)) ||
1391         qca_is_wcn6750(qca_soc_type(hu))) {
1392         if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1393             !qca_get_speed(hu, QCA_OPER_SPEED))
1394             return -EINVAL;
1395     } else {
1396         if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1397             !qca_get_speed(hu, QCA_OPER_SPEED))
1398             return -EINVAL;
1399     }
1400 
1401     return 0;
1402 }
1403 
1404 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1405 {
1406     unsigned int speed, qca_baudrate;
1407     struct qca_data *qca = hu->priv;
1408     int ret = 0;
1409 
1410     if (speed_type == QCA_INIT_SPEED) {
1411         speed = qca_get_speed(hu, QCA_INIT_SPEED);
1412         if (speed)
1413             host_set_baudrate(hu, speed);
1414     } else {
1415         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1416 
1417         speed = qca_get_speed(hu, QCA_OPER_SPEED);
1418         if (!speed)
1419             return 0;
1420 
1421         /* Disable flow control for wcn3990 to deassert RTS while
1422          * changing the baudrate of chip and host.
1423          */
1424         if (qca_is_wcn399x(soc_type) ||
1425             qca_is_wcn6750(soc_type))
1426             hci_uart_set_flow_control(hu, true);
1427 
1428         if (soc_type == QCA_WCN3990) {
1429             reinit_completion(&qca->drop_ev_comp);
1430             set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1431         }
1432 
1433         qca_baudrate = qca_get_baudrate_value(speed);
1434         bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1435         ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1436         if (ret)
1437             goto error;
1438 
1439         host_set_baudrate(hu, speed);
1440 
1441 error:
1442         if (qca_is_wcn399x(soc_type) ||
1443             qca_is_wcn6750(soc_type))
1444             hci_uart_set_flow_control(hu, false);
1445 
1446         if (soc_type == QCA_WCN3990) {
1447             /* Wait for the controller to send the vendor event
1448              * for the baudrate change command.
1449              */
1450             if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1451                          msecs_to_jiffies(100))) {
1452                 bt_dev_err(hu->hdev,
1453                        "Failed to change controller baudrate\n");
1454                 ret = -ETIMEDOUT;
1455             }
1456 
1457             clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1458         }
1459     }
1460 
1461     return ret;
1462 }
1463 
1464 static int qca_send_crashbuffer(struct hci_uart *hu)
1465 {
1466     struct qca_data *qca = hu->priv;
1467     struct sk_buff *skb;
1468 
1469     skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1470     if (!skb) {
1471         bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1472         return -ENOMEM;
1473     }
1474 
1475     /* We forcefully crash the controller, by sending 0xfb byte for
1476      * 1024 times. We also might have chance of losing data, To be
1477      * on safer side we send 1096 bytes to the SoC.
1478      */
1479     memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1480            QCA_CRASHBYTE_PACKET_LEN);
1481     hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1482     bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1483     skb_queue_tail(&qca->txq, skb);
1484     hci_uart_tx_wakeup(hu);
1485 
1486     return 0;
1487 }
1488 
1489 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1490 {
1491     struct hci_uart *hu = hci_get_drvdata(hdev);
1492     struct qca_data *qca = hu->priv;
1493 
1494     wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1495                 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1496 
1497     clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1498 }
1499 
1500 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1501 {
1502     struct hci_uart *hu = hci_get_drvdata(hdev);
1503     struct qca_data *qca = hu->priv;
1504 
1505     set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1506     set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1507     bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1508 
1509     if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1510         /* If hardware error event received for other than QCA
1511          * soc memory dump event, then we need to crash the SOC
1512          * and wait here for 8 seconds to get the dump packets.
1513          * This will block main thread to be on hold until we
1514          * collect dump.
1515          */
1516         set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1517         qca_send_crashbuffer(hu);
1518         qca_wait_for_dump_collection(hdev);
1519     } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1520         /* Let us wait here until memory dump collected or
1521          * memory dump timer expired.
1522          */
1523         bt_dev_info(hdev, "waiting for dump to complete");
1524         qca_wait_for_dump_collection(hdev);
1525     }
1526 
1527     mutex_lock(&qca->hci_memdump_lock);
1528     if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1529         bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1530         if (qca->qca_memdump) {
1531             vfree(qca->qca_memdump->memdump_buf_head);
1532             kfree(qca->qca_memdump);
1533             qca->qca_memdump = NULL;
1534         }
1535         qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1536         cancel_delayed_work(&qca->ctrl_memdump_timeout);
1537     }
1538     mutex_unlock(&qca->hci_memdump_lock);
1539 
1540     if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1541         qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1542         cancel_work_sync(&qca->ctrl_memdump_evt);
1543         skb_queue_purge(&qca->rx_memdump_q);
1544     }
1545 
1546     clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1547 }
1548 
1549 static void qca_cmd_timeout(struct hci_dev *hdev)
1550 {
1551     struct hci_uart *hu = hci_get_drvdata(hdev);
1552     struct qca_data *qca = hu->priv;
1553 
1554     set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1555     if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1556         set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1557         qca_send_crashbuffer(hu);
1558         qca_wait_for_dump_collection(hdev);
1559     } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1560         /* Let us wait here until memory dump collected or
1561          * memory dump timer expired.
1562          */
1563         bt_dev_info(hdev, "waiting for dump to complete");
1564         qca_wait_for_dump_collection(hdev);
1565     }
1566 
1567     mutex_lock(&qca->hci_memdump_lock);
1568     if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1569         qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1570         if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1571             /* Inject hw error event to reset the device
1572              * and driver.
1573              */
1574             hci_reset_dev(hu->hdev);
1575         }
1576     }
1577     mutex_unlock(&qca->hci_memdump_lock);
1578 }
1579 
1580 static bool qca_wakeup(struct hci_dev *hdev)
1581 {
1582     struct hci_uart *hu = hci_get_drvdata(hdev);
1583     bool wakeup;
1584 
1585     /* UART driver handles the interrupt from BT SoC.So we need to use
1586      * device handle of UART driver to get the status of device may wakeup.
1587      */
1588     wakeup = device_may_wakeup(hu->serdev->ctrl->dev.parent);
1589     bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1590 
1591     return wakeup;
1592 }
1593 
1594 static int qca_regulator_init(struct hci_uart *hu)
1595 {
1596     enum qca_btsoc_type soc_type = qca_soc_type(hu);
1597     struct qca_serdev *qcadev;
1598     int ret;
1599     bool sw_ctrl_state;
1600 
1601     /* Check for vregs status, may be hci down has turned
1602      * off the voltage regulator.
1603      */
1604     qcadev = serdev_device_get_drvdata(hu->serdev);
1605     if (!qcadev->bt_power->vregs_on) {
1606         serdev_device_close(hu->serdev);
1607         ret = qca_regulator_enable(qcadev);
1608         if (ret)
1609             return ret;
1610 
1611         ret = serdev_device_open(hu->serdev);
1612         if (ret) {
1613             bt_dev_err(hu->hdev, "failed to open port");
1614             return ret;
1615         }
1616     }
1617 
1618     if (qca_is_wcn399x(soc_type)) {
1619         /* Forcefully enable wcn399x to enter in to boot mode. */
1620         host_set_baudrate(hu, 2400);
1621         ret = qca_send_power_pulse(hu, false);
1622         if (ret)
1623             return ret;
1624     }
1625 
1626     /* For wcn6750 need to enable gpio bt_en */
1627     if (qcadev->bt_en) {
1628         gpiod_set_value_cansleep(qcadev->bt_en, 0);
1629         msleep(50);
1630         gpiod_set_value_cansleep(qcadev->bt_en, 1);
1631         msleep(50);
1632         if (qcadev->sw_ctrl) {
1633             sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1634             bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1635         }
1636     }
1637 
1638     qca_set_speed(hu, QCA_INIT_SPEED);
1639 
1640     if (qca_is_wcn399x(soc_type)) {
1641         ret = qca_send_power_pulse(hu, true);
1642         if (ret)
1643             return ret;
1644     }
1645 
1646     /* Now the device is in ready state to communicate with host.
1647      * To sync host with device we need to reopen port.
1648      * Without this, we will have RTS and CTS synchronization
1649      * issues.
1650      */
1651     serdev_device_close(hu->serdev);
1652     ret = serdev_device_open(hu->serdev);
1653     if (ret) {
1654         bt_dev_err(hu->hdev, "failed to open port");
1655         return ret;
1656     }
1657 
1658     hci_uart_set_flow_control(hu, false);
1659 
1660     return 0;
1661 }
1662 
1663 static int qca_power_on(struct hci_dev *hdev)
1664 {
1665     struct hci_uart *hu = hci_get_drvdata(hdev);
1666     enum qca_btsoc_type soc_type = qca_soc_type(hu);
1667     struct qca_serdev *qcadev;
1668     struct qca_data *qca = hu->priv;
1669     int ret = 0;
1670 
1671     /* Non-serdev device usually is powered by external power
1672      * and don't need additional action in driver for power on
1673      */
1674     if (!hu->serdev)
1675         return 0;
1676 
1677     if (qca_is_wcn399x(soc_type) ||
1678         qca_is_wcn6750(soc_type)) {
1679         ret = qca_regulator_init(hu);
1680     } else {
1681         qcadev = serdev_device_get_drvdata(hu->serdev);
1682         if (qcadev->bt_en) {
1683             gpiod_set_value_cansleep(qcadev->bt_en, 1);
1684             /* Controller needs time to bootup. */
1685             msleep(150);
1686         }
1687     }
1688 
1689     clear_bit(QCA_BT_OFF, &qca->flags);
1690     return ret;
1691 }
1692 
1693 static int qca_setup(struct hci_uart *hu)
1694 {
1695     struct hci_dev *hdev = hu->hdev;
1696     struct qca_data *qca = hu->priv;
1697     unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1698     unsigned int retries = 0;
1699     enum qca_btsoc_type soc_type = qca_soc_type(hu);
1700     const char *firmware_name = qca_get_firmware_name(hu);
1701     int ret;
1702     struct qca_btsoc_version ver;
1703 
1704     ret = qca_check_speeds(hu);
1705     if (ret)
1706         return ret;
1707 
1708     clear_bit(QCA_ROM_FW, &qca->flags);
1709     /* Patch downloading has to be done without IBS mode */
1710     set_bit(QCA_IBS_DISABLED, &qca->flags);
1711 
1712     /* Enable controller to do both LE scan and BR/EDR inquiry
1713      * simultaneously.
1714      */
1715     set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1716 
1717     bt_dev_info(hdev, "setting up %s",
1718         qca_is_wcn399x(soc_type) ? "wcn399x" :
1719         (soc_type == QCA_WCN6750) ? "wcn6750" : "ROME/QCA6390");
1720 
1721     qca->memdump_state = QCA_MEMDUMP_IDLE;
1722 
1723 retry:
1724     ret = qca_power_on(hdev);
1725     if (ret)
1726         goto out;
1727 
1728     clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1729 
1730     if (qca_is_wcn399x(soc_type) ||
1731         qca_is_wcn6750(soc_type)) {
1732         set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1733         hci_set_aosp_capable(hdev);
1734 
1735         ret = qca_read_soc_version(hdev, &ver, soc_type);
1736         if (ret)
1737             goto out;
1738     } else {
1739         qca_set_speed(hu, QCA_INIT_SPEED);
1740     }
1741 
1742     /* Setup user speed if needed */
1743     speed = qca_get_speed(hu, QCA_OPER_SPEED);
1744     if (speed) {
1745         ret = qca_set_speed(hu, QCA_OPER_SPEED);
1746         if (ret)
1747             goto out;
1748 
1749         qca_baudrate = qca_get_baudrate_value(speed);
1750     }
1751 
1752     if (!(qca_is_wcn399x(soc_type) ||
1753          qca_is_wcn6750(soc_type))) {
1754         /* Get QCA version information */
1755         ret = qca_read_soc_version(hdev, &ver, soc_type);
1756         if (ret)
1757             goto out;
1758     }
1759 
1760     /* Setup patch / NVM configurations */
1761     ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1762             firmware_name);
1763     if (!ret) {
1764         clear_bit(QCA_IBS_DISABLED, &qca->flags);
1765         qca_debugfs_init(hdev);
1766         hu->hdev->hw_error = qca_hw_error;
1767         hu->hdev->cmd_timeout = qca_cmd_timeout;
1768         hu->hdev->wakeup = qca_wakeup;
1769     } else if (ret == -ENOENT) {
1770         /* No patch/nvm-config found, run with original fw/config */
1771         set_bit(QCA_ROM_FW, &qca->flags);
1772         ret = 0;
1773     } else if (ret == -EAGAIN) {
1774         /*
1775          * Userspace firmware loader will return -EAGAIN in case no
1776          * patch/nvm-config is found, so run with original fw/config.
1777          */
1778         set_bit(QCA_ROM_FW, &qca->flags);
1779         ret = 0;
1780     }
1781 
1782 out:
1783     if (ret && retries < MAX_INIT_RETRIES) {
1784         bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1785         qca_power_shutdown(hu);
1786         if (hu->serdev) {
1787             serdev_device_close(hu->serdev);
1788             ret = serdev_device_open(hu->serdev);
1789             if (ret) {
1790                 bt_dev_err(hdev, "failed to open port");
1791                 return ret;
1792             }
1793         }
1794         retries++;
1795         goto retry;
1796     }
1797 
1798     /* Setup bdaddr */
1799     if (soc_type == QCA_ROME)
1800         hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1801     else
1802         hu->hdev->set_bdaddr = qca_set_bdaddr;
1803 
1804     return ret;
1805 }
1806 
1807 static const struct hci_uart_proto qca_proto = {
1808     .id     = HCI_UART_QCA,
1809     .name       = "QCA",
1810     .manufacturer   = 29,
1811     .init_speed = 115200,
1812     .oper_speed = 3000000,
1813     .open       = qca_open,
1814     .close      = qca_close,
1815     .flush      = qca_flush,
1816     .setup      = qca_setup,
1817     .recv       = qca_recv,
1818     .enqueue    = qca_enqueue,
1819     .dequeue    = qca_dequeue,
1820 };
1821 
1822 static const struct qca_device_data qca_soc_data_wcn3990 = {
1823     .soc_type = QCA_WCN3990,
1824     .vregs = (struct qca_vreg []) {
1825         { "vddio", 15000  },
1826         { "vddxo", 80000  },
1827         { "vddrf", 300000 },
1828         { "vddch0", 450000 },
1829     },
1830     .num_vregs = 4,
1831 };
1832 
1833 static const struct qca_device_data qca_soc_data_wcn3991 = {
1834     .soc_type = QCA_WCN3991,
1835     .vregs = (struct qca_vreg []) {
1836         { "vddio", 15000  },
1837         { "vddxo", 80000  },
1838         { "vddrf", 300000 },
1839         { "vddch0", 450000 },
1840     },
1841     .num_vregs = 4,
1842     .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1843 };
1844 
1845 static const struct qca_device_data qca_soc_data_wcn3998 = {
1846     .soc_type = QCA_WCN3998,
1847     .vregs = (struct qca_vreg []) {
1848         { "vddio", 10000  },
1849         { "vddxo", 80000  },
1850         { "vddrf", 300000 },
1851         { "vddch0", 450000 },
1852     },
1853     .num_vregs = 4,
1854 };
1855 
1856 static const struct qca_device_data qca_soc_data_qca6390 = {
1857     .soc_type = QCA_QCA6390,
1858     .num_vregs = 0,
1859 };
1860 
1861 static const struct qca_device_data qca_soc_data_wcn6750 = {
1862     .soc_type = QCA_WCN6750,
1863     .vregs = (struct qca_vreg []) {
1864         { "vddio", 5000 },
1865         { "vddaon", 26000 },
1866         { "vddbtcxmx", 126000 },
1867         { "vddrfacmn", 12500 },
1868         { "vddrfa0p8", 102000 },
1869         { "vddrfa1p7", 302000 },
1870         { "vddrfa1p2", 257000 },
1871         { "vddrfa2p2", 1700000 },
1872         { "vddasd", 200 },
1873     },
1874     .num_vregs = 9,
1875     .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1876 };
1877 
1878 static void qca_power_shutdown(struct hci_uart *hu)
1879 {
1880     struct qca_serdev *qcadev;
1881     struct qca_data *qca = hu->priv;
1882     unsigned long flags;
1883     enum qca_btsoc_type soc_type = qca_soc_type(hu);
1884     bool sw_ctrl_state;
1885 
1886     /* From this point we go into power off state. But serial port is
1887      * still open, stop queueing the IBS data and flush all the buffered
1888      * data in skb's.
1889      */
1890     spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1891     set_bit(QCA_IBS_DISABLED, &qca->flags);
1892     qca_flush(hu);
1893     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1894 
1895     /* Non-serdev device usually is powered by external power
1896      * and don't need additional action in driver for power down
1897      */
1898     if (!hu->serdev)
1899         return;
1900 
1901     qcadev = serdev_device_get_drvdata(hu->serdev);
1902 
1903     if (qca_is_wcn399x(soc_type)) {
1904         host_set_baudrate(hu, 2400);
1905         qca_send_power_pulse(hu, false);
1906         qca_regulator_disable(qcadev);
1907     } else if (soc_type == QCA_WCN6750) {
1908         gpiod_set_value_cansleep(qcadev->bt_en, 0);
1909         msleep(100);
1910         qca_regulator_disable(qcadev);
1911         if (qcadev->sw_ctrl) {
1912             sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1913             bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1914         }
1915     } else if (qcadev->bt_en) {
1916         gpiod_set_value_cansleep(qcadev->bt_en, 0);
1917     }
1918 
1919     set_bit(QCA_BT_OFF, &qca->flags);
1920 }
1921 
1922 static int qca_power_off(struct hci_dev *hdev)
1923 {
1924     struct hci_uart *hu = hci_get_drvdata(hdev);
1925     struct qca_data *qca = hu->priv;
1926     enum qca_btsoc_type soc_type = qca_soc_type(hu);
1927 
1928     hu->hdev->hw_error = NULL;
1929     hu->hdev->cmd_timeout = NULL;
1930 
1931     del_timer_sync(&qca->wake_retrans_timer);
1932     del_timer_sync(&qca->tx_idle_timer);
1933 
1934     /* Stop sending shutdown command if soc crashes. */
1935     if (soc_type != QCA_ROME
1936         && qca->memdump_state == QCA_MEMDUMP_IDLE) {
1937         qca_send_pre_shutdown_cmd(hdev);
1938         usleep_range(8000, 10000);
1939     }
1940 
1941     qca_power_shutdown(hu);
1942     return 0;
1943 }
1944 
1945 static int qca_regulator_enable(struct qca_serdev *qcadev)
1946 {
1947     struct qca_power *power = qcadev->bt_power;
1948     int ret;
1949 
1950     /* Already enabled */
1951     if (power->vregs_on)
1952         return 0;
1953 
1954     BT_DBG("enabling %d regulators)", power->num_vregs);
1955 
1956     ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1957     if (ret)
1958         return ret;
1959 
1960     power->vregs_on = true;
1961 
1962     ret = clk_prepare_enable(qcadev->susclk);
1963     if (ret)
1964         qca_regulator_disable(qcadev);
1965 
1966     return ret;
1967 }
1968 
1969 static void qca_regulator_disable(struct qca_serdev *qcadev)
1970 {
1971     struct qca_power *power;
1972 
1973     if (!qcadev)
1974         return;
1975 
1976     power = qcadev->bt_power;
1977 
1978     /* Already disabled? */
1979     if (!power->vregs_on)
1980         return;
1981 
1982     regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1983     power->vregs_on = false;
1984 
1985     clk_disable_unprepare(qcadev->susclk);
1986 }
1987 
1988 static int qca_init_regulators(struct qca_power *qca,
1989                 const struct qca_vreg *vregs, size_t num_vregs)
1990 {
1991     struct regulator_bulk_data *bulk;
1992     int ret;
1993     int i;
1994 
1995     bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1996     if (!bulk)
1997         return -ENOMEM;
1998 
1999     for (i = 0; i < num_vregs; i++)
2000         bulk[i].supply = vregs[i].name;
2001 
2002     ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2003     if (ret < 0)
2004         return ret;
2005 
2006     for (i = 0; i < num_vregs; i++) {
2007         ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2008         if (ret)
2009             return ret;
2010     }
2011 
2012     qca->vreg_bulk = bulk;
2013     qca->num_vregs = num_vregs;
2014 
2015     return 0;
2016 }
2017 
2018 static int qca_serdev_probe(struct serdev_device *serdev)
2019 {
2020     struct qca_serdev *qcadev;
2021     struct hci_dev *hdev;
2022     const struct qca_device_data *data;
2023     int err;
2024     bool power_ctrl_enabled = true;
2025 
2026     qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2027     if (!qcadev)
2028         return -ENOMEM;
2029 
2030     qcadev->serdev_hu.serdev = serdev;
2031     data = device_get_match_data(&serdev->dev);
2032     serdev_device_set_drvdata(serdev, qcadev);
2033     device_property_read_string(&serdev->dev, "firmware-name",
2034                      &qcadev->firmware_name);
2035     device_property_read_u32(&serdev->dev, "max-speed",
2036                  &qcadev->oper_speed);
2037     if (!qcadev->oper_speed)
2038         BT_DBG("UART will pick default operating speed");
2039 
2040     if (data &&
2041         (qca_is_wcn399x(data->soc_type) ||
2042         qca_is_wcn6750(data->soc_type))) {
2043         qcadev->btsoc_type = data->soc_type;
2044         qcadev->bt_power = devm_kzalloc(&serdev->dev,
2045                         sizeof(struct qca_power),
2046                         GFP_KERNEL);
2047         if (!qcadev->bt_power)
2048             return -ENOMEM;
2049 
2050         qcadev->bt_power->dev = &serdev->dev;
2051         err = qca_init_regulators(qcadev->bt_power, data->vregs,
2052                       data->num_vregs);
2053         if (err) {
2054             BT_ERR("Failed to init regulators:%d", err);
2055             return err;
2056         }
2057 
2058         qcadev->bt_power->vregs_on = false;
2059 
2060         qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2061                            GPIOD_OUT_LOW);
2062         if (IS_ERR_OR_NULL(qcadev->bt_en) && data->soc_type == QCA_WCN6750) {
2063             dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2064             power_ctrl_enabled = false;
2065         }
2066 
2067         qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2068                            GPIOD_IN);
2069         if (IS_ERR_OR_NULL(qcadev->sw_ctrl) && data->soc_type == QCA_WCN6750)
2070             dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2071 
2072         qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2073         if (IS_ERR(qcadev->susclk)) {
2074             dev_err(&serdev->dev, "failed to acquire clk\n");
2075             return PTR_ERR(qcadev->susclk);
2076         }
2077 
2078         err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2079         if (err) {
2080             BT_ERR("wcn3990 serdev registration failed");
2081             return err;
2082         }
2083     } else {
2084         if (data)
2085             qcadev->btsoc_type = data->soc_type;
2086         else
2087             qcadev->btsoc_type = QCA_ROME;
2088 
2089         qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2090                            GPIOD_OUT_LOW);
2091         if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2092             dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2093             power_ctrl_enabled = false;
2094         }
2095 
2096         qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2097         if (IS_ERR(qcadev->susclk)) {
2098             dev_warn(&serdev->dev, "failed to acquire clk\n");
2099             return PTR_ERR(qcadev->susclk);
2100         }
2101         err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2102         if (err)
2103             return err;
2104 
2105         err = clk_prepare_enable(qcadev->susclk);
2106         if (err)
2107             return err;
2108 
2109         err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2110         if (err) {
2111             BT_ERR("Rome serdev registration failed");
2112             clk_disable_unprepare(qcadev->susclk);
2113             return err;
2114         }
2115     }
2116 
2117     hdev = qcadev->serdev_hu.hdev;
2118 
2119     if (power_ctrl_enabled) {
2120         set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2121         hdev->shutdown = qca_power_off;
2122     }
2123 
2124     if (data) {
2125         /* Wideband speech support must be set per driver since it can't
2126          * be queried via hci. Same with the valid le states quirk.
2127          */
2128         if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2129             set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2130                 &hdev->quirks);
2131 
2132         if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2133             set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2134     }
2135 
2136     return 0;
2137 }
2138 
2139 static void qca_serdev_remove(struct serdev_device *serdev)
2140 {
2141     struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2142     struct qca_power *power = qcadev->bt_power;
2143 
2144     if ((qca_is_wcn399x(qcadev->btsoc_type) ||
2145          qca_is_wcn6750(qcadev->btsoc_type)) &&
2146          power->vregs_on)
2147         qca_power_shutdown(&qcadev->serdev_hu);
2148     else if (qcadev->susclk)
2149         clk_disable_unprepare(qcadev->susclk);
2150 
2151     hci_uart_unregister_device(&qcadev->serdev_hu);
2152 }
2153 
2154 static void qca_serdev_shutdown(struct device *dev)
2155 {
2156     int ret;
2157     int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2158     struct serdev_device *serdev = to_serdev_device(dev);
2159     struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2160     const u8 ibs_wake_cmd[] = { 0xFD };
2161     const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2162 
2163     if (qcadev->btsoc_type == QCA_QCA6390) {
2164         serdev_device_write_flush(serdev);
2165         ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2166                           sizeof(ibs_wake_cmd));
2167         if (ret < 0) {
2168             BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2169             return;
2170         }
2171         serdev_device_wait_until_sent(serdev, timeout);
2172         usleep_range(8000, 10000);
2173 
2174         serdev_device_write_flush(serdev);
2175         ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2176                           sizeof(edl_reset_soc_cmd));
2177         if (ret < 0) {
2178             BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2179             return;
2180         }
2181         serdev_device_wait_until_sent(serdev, timeout);
2182         usleep_range(8000, 10000);
2183     }
2184 }
2185 
2186 static int __maybe_unused qca_suspend(struct device *dev)
2187 {
2188     struct serdev_device *serdev = to_serdev_device(dev);
2189     struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2190     struct hci_uart *hu = &qcadev->serdev_hu;
2191     struct qca_data *qca = hu->priv;
2192     unsigned long flags;
2193     bool tx_pending = false;
2194     int ret = 0;
2195     u8 cmd;
2196     u32 wait_timeout = 0;
2197 
2198     set_bit(QCA_SUSPENDING, &qca->flags);
2199 
2200     /* if BT SoC is running with default firmware then it does not
2201      * support in-band sleep
2202      */
2203     if (test_bit(QCA_ROM_FW, &qca->flags))
2204         return 0;
2205 
2206     /* During SSR after memory dump collection, controller will be
2207      * powered off and then powered on.If controller is powered off
2208      * during SSR then we should wait until SSR is completed.
2209      */
2210     if (test_bit(QCA_BT_OFF, &qca->flags) &&
2211         !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2212         return 0;
2213 
2214     if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2215         test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2216         wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2217                     IBS_DISABLE_SSR_TIMEOUT_MS :
2218                     FW_DOWNLOAD_TIMEOUT_MS;
2219 
2220         /* QCA_IBS_DISABLED flag is set to true, During FW download
2221          * and during memory dump collection. It is reset to false,
2222          * After FW download complete.
2223          */
2224         wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2225                 TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2226 
2227         if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2228             bt_dev_err(hu->hdev, "SSR or FW download time out");
2229             ret = -ETIMEDOUT;
2230             goto error;
2231         }
2232     }
2233 
2234     cancel_work_sync(&qca->ws_awake_device);
2235     cancel_work_sync(&qca->ws_awake_rx);
2236 
2237     spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2238                  flags, SINGLE_DEPTH_NESTING);
2239 
2240     switch (qca->tx_ibs_state) {
2241     case HCI_IBS_TX_WAKING:
2242         del_timer(&qca->wake_retrans_timer);
2243         fallthrough;
2244     case HCI_IBS_TX_AWAKE:
2245         del_timer(&qca->tx_idle_timer);
2246 
2247         serdev_device_write_flush(hu->serdev);
2248         cmd = HCI_IBS_SLEEP_IND;
2249         ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2250 
2251         if (ret < 0) {
2252             BT_ERR("Failed to send SLEEP to device");
2253             break;
2254         }
2255 
2256         qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2257         qca->ibs_sent_slps++;
2258         tx_pending = true;
2259         break;
2260 
2261     case HCI_IBS_TX_ASLEEP:
2262         break;
2263 
2264     default:
2265         BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2266         ret = -EINVAL;
2267         break;
2268     }
2269 
2270     spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2271 
2272     if (ret < 0)
2273         goto error;
2274 
2275     if (tx_pending) {
2276         serdev_device_wait_until_sent(hu->serdev,
2277                           msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2278         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2279     }
2280 
2281     /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2282      * to sleep, so that the packet does not wake the system later.
2283      */
2284     ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2285             qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2286             msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2287     if (ret == 0) {
2288         ret = -ETIMEDOUT;
2289         goto error;
2290     }
2291 
2292     return 0;
2293 
2294 error:
2295     clear_bit(QCA_SUSPENDING, &qca->flags);
2296 
2297     return ret;
2298 }
2299 
2300 static int __maybe_unused qca_resume(struct device *dev)
2301 {
2302     struct serdev_device *serdev = to_serdev_device(dev);
2303     struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2304     struct hci_uart *hu = &qcadev->serdev_hu;
2305     struct qca_data *qca = hu->priv;
2306 
2307     clear_bit(QCA_SUSPENDING, &qca->flags);
2308 
2309     return 0;
2310 }
2311 
2312 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2313 
2314 #ifdef CONFIG_OF
2315 static const struct of_device_id qca_bluetooth_of_match[] = {
2316     { .compatible = "qcom,qca6174-bt" },
2317     { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2318     { .compatible = "qcom,qca9377-bt" },
2319     { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2320     { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2321     { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2322     { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2323     { /* sentinel */ }
2324 };
2325 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2326 #endif
2327 
2328 #ifdef CONFIG_ACPI
2329 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2330     { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2331     { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2332     { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2333     { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2334     { },
2335 };
2336 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2337 #endif
2338 
2339 
2340 static struct serdev_device_driver qca_serdev_driver = {
2341     .probe = qca_serdev_probe,
2342     .remove = qca_serdev_remove,
2343     .driver = {
2344         .name = "hci_uart_qca",
2345         .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2346         .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2347         .shutdown = qca_serdev_shutdown,
2348         .pm = &qca_pm_ops,
2349     },
2350 };
2351 
2352 int __init qca_init(void)
2353 {
2354     serdev_device_driver_register(&qca_serdev_driver);
2355 
2356     return hci_uart_register_proto(&qca_proto);
2357 }
2358 
2359 int __exit qca_deinit(void)
2360 {
2361     serdev_device_driver_unregister(&qca_serdev_driver);
2362 
2363     return hci_uart_unregister_proto(&qca_proto);
2364 }