Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * blkfront.c
0003  *
0004  * XenLinux virtual block device driver.
0005  *
0006  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
0007  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
0008  * Copyright (c) 2004, Christian Limpach
0009  * Copyright (c) 2004, Andrew Warfield
0010  * Copyright (c) 2005, Christopher Clark
0011  * Copyright (c) 2005, XenSource Ltd
0012  *
0013  * This program is free software; you can redistribute it and/or
0014  * modify it under the terms of the GNU General Public License version 2
0015  * as published by the Free Software Foundation; or, when distributed
0016  * separately from the Linux kernel or incorporated into other
0017  * software packages, subject to the following license:
0018  *
0019  * Permission is hereby granted, free of charge, to any person obtaining a copy
0020  * of this source file (the "Software"), to deal in the Software without
0021  * restriction, including without limitation the rights to use, copy, modify,
0022  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
0023  * and to permit persons to whom the Software is furnished to do so, subject to
0024  * the following conditions:
0025  *
0026  * The above copyright notice and this permission notice shall be included in
0027  * all copies or substantial portions of the Software.
0028  *
0029  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0030  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
0031  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
0032  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
0033  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
0034  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
0035  * IN THE SOFTWARE.
0036  */
0037 
0038 #include <linux/interrupt.h>
0039 #include <linux/blkdev.h>
0040 #include <linux/blk-mq.h>
0041 #include <linux/hdreg.h>
0042 #include <linux/cdrom.h>
0043 #include <linux/module.h>
0044 #include <linux/slab.h>
0045 #include <linux/major.h>
0046 #include <linux/mutex.h>
0047 #include <linux/scatterlist.h>
0048 #include <linux/bitmap.h>
0049 #include <linux/list.h>
0050 #include <linux/workqueue.h>
0051 #include <linux/sched/mm.h>
0052 
0053 #include <xen/xen.h>
0054 #include <xen/xenbus.h>
0055 #include <xen/grant_table.h>
0056 #include <xen/events.h>
0057 #include <xen/page.h>
0058 #include <xen/platform_pci.h>
0059 
0060 #include <xen/interface/grant_table.h>
0061 #include <xen/interface/io/blkif.h>
0062 #include <xen/interface/io/protocols.h>
0063 
0064 #include <asm/xen/hypervisor.h>
0065 
0066 /*
0067  * The minimal size of segment supported by the block framework is PAGE_SIZE.
0068  * When Linux is using a different page size than Xen, it may not be possible
0069  * to put all the data in a single segment.
0070  * This can happen when the backend doesn't support indirect descriptor and
0071  * therefore the maximum amount of data that a request can carry is
0072  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
0073  *
0074  * Note that we only support one extra request. So the Linux page size
0075  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
0076  * 88KB.
0077  */
0078 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
0079 
0080 enum blkif_state {
0081     BLKIF_STATE_DISCONNECTED,
0082     BLKIF_STATE_CONNECTED,
0083     BLKIF_STATE_SUSPENDED,
0084     BLKIF_STATE_ERROR,
0085 };
0086 
0087 struct grant {
0088     grant_ref_t gref;
0089     struct page *page;
0090     struct list_head node;
0091 };
0092 
0093 enum blk_req_status {
0094     REQ_PROCESSING,
0095     REQ_WAITING,
0096     REQ_DONE,
0097     REQ_ERROR,
0098     REQ_EOPNOTSUPP,
0099 };
0100 
0101 struct blk_shadow {
0102     struct blkif_request req;
0103     struct request *request;
0104     struct grant **grants_used;
0105     struct grant **indirect_grants;
0106     struct scatterlist *sg;
0107     unsigned int num_sg;
0108     enum blk_req_status status;
0109 
0110     #define NO_ASSOCIATED_ID ~0UL
0111     /*
0112      * Id of the sibling if we ever need 2 requests when handling a
0113      * block I/O request
0114      */
0115     unsigned long associated_id;
0116 };
0117 
0118 struct blkif_req {
0119     blk_status_t    error;
0120 };
0121 
0122 static inline struct blkif_req *blkif_req(struct request *rq)
0123 {
0124     return blk_mq_rq_to_pdu(rq);
0125 }
0126 
0127 static DEFINE_MUTEX(blkfront_mutex);
0128 static const struct block_device_operations xlvbd_block_fops;
0129 static struct delayed_work blkfront_work;
0130 static LIST_HEAD(info_list);
0131 
0132 /*
0133  * Maximum number of segments in indirect requests, the actual value used by
0134  * the frontend driver is the minimum of this value and the value provided
0135  * by the backend driver.
0136  */
0137 
0138 static unsigned int xen_blkif_max_segments = 32;
0139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
0140 MODULE_PARM_DESC(max_indirect_segments,
0141          "Maximum amount of segments in indirect requests (default is 32)");
0142 
0143 static unsigned int xen_blkif_max_queues = 4;
0144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
0145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
0146 
0147 /*
0148  * Maximum order of pages to be used for the shared ring between front and
0149  * backend, 4KB page granularity is used.
0150  */
0151 static unsigned int xen_blkif_max_ring_order;
0152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
0153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
0154 
0155 static bool __read_mostly xen_blkif_trusted = true;
0156 module_param_named(trusted, xen_blkif_trusted, bool, 0644);
0157 MODULE_PARM_DESC(trusted, "Is the backend trusted");
0158 
0159 #define BLK_RING_SIZE(info) \
0160     __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
0161 
0162 /*
0163  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
0164  * characters are enough. Define to 20 to keep consistent with backend.
0165  */
0166 #define RINGREF_NAME_LEN (20)
0167 /*
0168  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
0169  */
0170 #define QUEUE_NAME_LEN (17)
0171 
0172 /*
0173  *  Per-ring info.
0174  *  Every blkfront device can associate with one or more blkfront_ring_info,
0175  *  depending on how many hardware queues/rings to be used.
0176  */
0177 struct blkfront_ring_info {
0178     /* Lock to protect data in every ring buffer. */
0179     spinlock_t ring_lock;
0180     struct blkif_front_ring ring;
0181     unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
0182     unsigned int evtchn, irq;
0183     struct work_struct work;
0184     struct gnttab_free_callback callback;
0185     struct list_head indirect_pages;
0186     struct list_head grants;
0187     unsigned int persistent_gnts_c;
0188     unsigned long shadow_free;
0189     struct blkfront_info *dev_info;
0190     struct blk_shadow shadow[];
0191 };
0192 
0193 /*
0194  * We have one of these per vbd, whether ide, scsi or 'other'.  They
0195  * hang in private_data off the gendisk structure. We may end up
0196  * putting all kinds of interesting stuff here :-)
0197  */
0198 struct blkfront_info
0199 {
0200     struct mutex mutex;
0201     struct xenbus_device *xbdev;
0202     struct gendisk *gd;
0203     u16 sector_size;
0204     unsigned int physical_sector_size;
0205     unsigned long vdisk_info;
0206     int vdevice;
0207     blkif_vdev_t handle;
0208     enum blkif_state connected;
0209     /* Number of pages per ring buffer. */
0210     unsigned int nr_ring_pages;
0211     struct request_queue *rq;
0212     unsigned int feature_flush:1;
0213     unsigned int feature_fua:1;
0214     unsigned int feature_discard:1;
0215     unsigned int feature_secdiscard:1;
0216     /* Connect-time cached feature_persistent parameter */
0217     unsigned int feature_persistent_parm:1;
0218     /* Persistent grants feature negotiation result */
0219     unsigned int feature_persistent:1;
0220     unsigned int bounce:1;
0221     unsigned int discard_granularity;
0222     unsigned int discard_alignment;
0223     /* Number of 4KB segments handled */
0224     unsigned int max_indirect_segments;
0225     int is_ready;
0226     struct blk_mq_tag_set tag_set;
0227     struct blkfront_ring_info *rinfo;
0228     unsigned int nr_rings;
0229     unsigned int rinfo_size;
0230     /* Save uncomplete reqs and bios for migration. */
0231     struct list_head requests;
0232     struct bio_list bio_list;
0233     struct list_head info_list;
0234 };
0235 
0236 static unsigned int nr_minors;
0237 static unsigned long *minors;
0238 static DEFINE_SPINLOCK(minor_lock);
0239 
0240 #define PARTS_PER_DISK      16
0241 #define PARTS_PER_EXT_DISK      256
0242 
0243 #define BLKIF_MAJOR(dev) ((dev)>>8)
0244 #define BLKIF_MINOR(dev) ((dev) & 0xff)
0245 
0246 #define EXT_SHIFT 28
0247 #define EXTENDED (1<<EXT_SHIFT)
0248 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
0249 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
0250 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
0251 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
0252 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
0253 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
0254 
0255 #define DEV_NAME    "xvd"   /* name in /dev */
0256 
0257 /*
0258  * Grants are always the same size as a Xen page (i.e 4KB).
0259  * A physical segment is always the same size as a Linux page.
0260  * Number of grants per physical segment
0261  */
0262 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
0263 
0264 #define GRANTS_PER_INDIRECT_FRAME \
0265     (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
0266 
0267 #define INDIRECT_GREFS(_grants)     \
0268     DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
0269 
0270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
0271 static void blkfront_gather_backend_features(struct blkfront_info *info);
0272 static int negotiate_mq(struct blkfront_info *info);
0273 
0274 #define for_each_rinfo(info, ptr, idx)              \
0275     for ((ptr) = (info)->rinfo, (idx) = 0;          \
0276          (idx) < (info)->nr_rings;              \
0277          (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
0278 
0279 static inline struct blkfront_ring_info *
0280 get_rinfo(const struct blkfront_info *info, unsigned int i)
0281 {
0282     BUG_ON(i >= info->nr_rings);
0283     return (void *)info->rinfo + i * info->rinfo_size;
0284 }
0285 
0286 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
0287 {
0288     unsigned long free = rinfo->shadow_free;
0289 
0290     BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
0291     rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
0292     rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
0293     return free;
0294 }
0295 
0296 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
0297                   unsigned long id)
0298 {
0299     if (rinfo->shadow[id].req.u.rw.id != id)
0300         return -EINVAL;
0301     if (rinfo->shadow[id].request == NULL)
0302         return -EINVAL;
0303     rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
0304     rinfo->shadow[id].request = NULL;
0305     rinfo->shadow_free = id;
0306     return 0;
0307 }
0308 
0309 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
0310 {
0311     struct blkfront_info *info = rinfo->dev_info;
0312     struct page *granted_page;
0313     struct grant *gnt_list_entry, *n;
0314     int i = 0;
0315 
0316     while (i < num) {
0317         gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
0318         if (!gnt_list_entry)
0319             goto out_of_memory;
0320 
0321         if (info->bounce) {
0322             granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
0323             if (!granted_page) {
0324                 kfree(gnt_list_entry);
0325                 goto out_of_memory;
0326             }
0327             gnt_list_entry->page = granted_page;
0328         }
0329 
0330         gnt_list_entry->gref = INVALID_GRANT_REF;
0331         list_add(&gnt_list_entry->node, &rinfo->grants);
0332         i++;
0333     }
0334 
0335     return 0;
0336 
0337 out_of_memory:
0338     list_for_each_entry_safe(gnt_list_entry, n,
0339                              &rinfo->grants, node) {
0340         list_del(&gnt_list_entry->node);
0341         if (info->bounce)
0342             __free_page(gnt_list_entry->page);
0343         kfree(gnt_list_entry);
0344         i--;
0345     }
0346     BUG_ON(i != 0);
0347     return -ENOMEM;
0348 }
0349 
0350 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
0351 {
0352     struct grant *gnt_list_entry;
0353 
0354     BUG_ON(list_empty(&rinfo->grants));
0355     gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
0356                       node);
0357     list_del(&gnt_list_entry->node);
0358 
0359     if (gnt_list_entry->gref != INVALID_GRANT_REF)
0360         rinfo->persistent_gnts_c--;
0361 
0362     return gnt_list_entry;
0363 }
0364 
0365 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
0366                     const struct blkfront_info *info)
0367 {
0368     gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
0369                          info->xbdev->otherend_id,
0370                          gnt_list_entry->page,
0371                          0);
0372 }
0373 
0374 static struct grant *get_grant(grant_ref_t *gref_head,
0375                    unsigned long gfn,
0376                    struct blkfront_ring_info *rinfo)
0377 {
0378     struct grant *gnt_list_entry = get_free_grant(rinfo);
0379     struct blkfront_info *info = rinfo->dev_info;
0380 
0381     if (gnt_list_entry->gref != INVALID_GRANT_REF)
0382         return gnt_list_entry;
0383 
0384     /* Assign a gref to this page */
0385     gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
0386     BUG_ON(gnt_list_entry->gref == -ENOSPC);
0387     if (info->bounce)
0388         grant_foreign_access(gnt_list_entry, info);
0389     else {
0390         /* Grant access to the GFN passed by the caller */
0391         gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
0392                         info->xbdev->otherend_id,
0393                         gfn, 0);
0394     }
0395 
0396     return gnt_list_entry;
0397 }
0398 
0399 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
0400                     struct blkfront_ring_info *rinfo)
0401 {
0402     struct grant *gnt_list_entry = get_free_grant(rinfo);
0403     struct blkfront_info *info = rinfo->dev_info;
0404 
0405     if (gnt_list_entry->gref != INVALID_GRANT_REF)
0406         return gnt_list_entry;
0407 
0408     /* Assign a gref to this page */
0409     gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
0410     BUG_ON(gnt_list_entry->gref == -ENOSPC);
0411     if (!info->bounce) {
0412         struct page *indirect_page;
0413 
0414         /* Fetch a pre-allocated page to use for indirect grefs */
0415         BUG_ON(list_empty(&rinfo->indirect_pages));
0416         indirect_page = list_first_entry(&rinfo->indirect_pages,
0417                          struct page, lru);
0418         list_del(&indirect_page->lru);
0419         gnt_list_entry->page = indirect_page;
0420     }
0421     grant_foreign_access(gnt_list_entry, info);
0422 
0423     return gnt_list_entry;
0424 }
0425 
0426 static const char *op_name(int op)
0427 {
0428     static const char *const names[] = {
0429         [BLKIF_OP_READ] = "read",
0430         [BLKIF_OP_WRITE] = "write",
0431         [BLKIF_OP_WRITE_BARRIER] = "barrier",
0432         [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
0433         [BLKIF_OP_DISCARD] = "discard" };
0434 
0435     if (op < 0 || op >= ARRAY_SIZE(names))
0436         return "unknown";
0437 
0438     if (!names[op])
0439         return "reserved";
0440 
0441     return names[op];
0442 }
0443 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
0444 {
0445     unsigned int end = minor + nr;
0446     int rc;
0447 
0448     if (end > nr_minors) {
0449         unsigned long *bitmap, *old;
0450 
0451         bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
0452                  GFP_KERNEL);
0453         if (bitmap == NULL)
0454             return -ENOMEM;
0455 
0456         spin_lock(&minor_lock);
0457         if (end > nr_minors) {
0458             old = minors;
0459             memcpy(bitmap, minors,
0460                    BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
0461             minors = bitmap;
0462             nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
0463         } else
0464             old = bitmap;
0465         spin_unlock(&minor_lock);
0466         kfree(old);
0467     }
0468 
0469     spin_lock(&minor_lock);
0470     if (find_next_bit(minors, end, minor) >= end) {
0471         bitmap_set(minors, minor, nr);
0472         rc = 0;
0473     } else
0474         rc = -EBUSY;
0475     spin_unlock(&minor_lock);
0476 
0477     return rc;
0478 }
0479 
0480 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
0481 {
0482     unsigned int end = minor + nr;
0483 
0484     BUG_ON(end > nr_minors);
0485     spin_lock(&minor_lock);
0486     bitmap_clear(minors,  minor, nr);
0487     spin_unlock(&minor_lock);
0488 }
0489 
0490 static void blkif_restart_queue_callback(void *arg)
0491 {
0492     struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
0493     schedule_work(&rinfo->work);
0494 }
0495 
0496 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
0497 {
0498     /* We don't have real geometry info, but let's at least return
0499        values consistent with the size of the device */
0500     sector_t nsect = get_capacity(bd->bd_disk);
0501     sector_t cylinders = nsect;
0502 
0503     hg->heads = 0xff;
0504     hg->sectors = 0x3f;
0505     sector_div(cylinders, hg->heads * hg->sectors);
0506     hg->cylinders = cylinders;
0507     if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
0508         hg->cylinders = 0xffff;
0509     return 0;
0510 }
0511 
0512 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
0513                unsigned command, unsigned long argument)
0514 {
0515     struct blkfront_info *info = bdev->bd_disk->private_data;
0516     int i;
0517 
0518     switch (command) {
0519     case CDROMMULTISESSION:
0520         for (i = 0; i < sizeof(struct cdrom_multisession); i++)
0521             if (put_user(0, (char __user *)(argument + i)))
0522                 return -EFAULT;
0523         return 0;
0524     case CDROM_GET_CAPABILITY:
0525         if (!(info->vdisk_info & VDISK_CDROM))
0526             return -EINVAL;
0527         return 0;
0528     default:
0529         return -EINVAL;
0530     }
0531 }
0532 
0533 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
0534                         struct request *req,
0535                         struct blkif_request **ring_req)
0536 {
0537     unsigned long id;
0538 
0539     *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
0540     rinfo->ring.req_prod_pvt++;
0541 
0542     id = get_id_from_freelist(rinfo);
0543     rinfo->shadow[id].request = req;
0544     rinfo->shadow[id].status = REQ_PROCESSING;
0545     rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
0546 
0547     rinfo->shadow[id].req.u.rw.id = id;
0548 
0549     return id;
0550 }
0551 
0552 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
0553 {
0554     struct blkfront_info *info = rinfo->dev_info;
0555     struct blkif_request *ring_req, *final_ring_req;
0556     unsigned long id;
0557 
0558     /* Fill out a communications ring structure. */
0559     id = blkif_ring_get_request(rinfo, req, &final_ring_req);
0560     ring_req = &rinfo->shadow[id].req;
0561 
0562     ring_req->operation = BLKIF_OP_DISCARD;
0563     ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
0564     ring_req->u.discard.id = id;
0565     ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
0566     if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
0567         ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
0568     else
0569         ring_req->u.discard.flag = 0;
0570 
0571     /* Copy the request to the ring page. */
0572     *final_ring_req = *ring_req;
0573     rinfo->shadow[id].status = REQ_WAITING;
0574 
0575     return 0;
0576 }
0577 
0578 struct setup_rw_req {
0579     unsigned int grant_idx;
0580     struct blkif_request_segment *segments;
0581     struct blkfront_ring_info *rinfo;
0582     struct blkif_request *ring_req;
0583     grant_ref_t gref_head;
0584     unsigned int id;
0585     /* Only used when persistent grant is used and it's a write request */
0586     bool need_copy;
0587     unsigned int bvec_off;
0588     char *bvec_data;
0589 
0590     bool require_extra_req;
0591     struct blkif_request *extra_ring_req;
0592 };
0593 
0594 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
0595                      unsigned int len, void *data)
0596 {
0597     struct setup_rw_req *setup = data;
0598     int n, ref;
0599     struct grant *gnt_list_entry;
0600     unsigned int fsect, lsect;
0601     /* Convenient aliases */
0602     unsigned int grant_idx = setup->grant_idx;
0603     struct blkif_request *ring_req = setup->ring_req;
0604     struct blkfront_ring_info *rinfo = setup->rinfo;
0605     /*
0606      * We always use the shadow of the first request to store the list
0607      * of grant associated to the block I/O request. This made the
0608      * completion more easy to handle even if the block I/O request is
0609      * split.
0610      */
0611     struct blk_shadow *shadow = &rinfo->shadow[setup->id];
0612 
0613     if (unlikely(setup->require_extra_req &&
0614              grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
0615         /*
0616          * We are using the second request, setup grant_idx
0617          * to be the index of the segment array.
0618          */
0619         grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
0620         ring_req = setup->extra_ring_req;
0621     }
0622 
0623     if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
0624         (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
0625         if (setup->segments)
0626             kunmap_atomic(setup->segments);
0627 
0628         n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
0629         gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
0630         shadow->indirect_grants[n] = gnt_list_entry;
0631         setup->segments = kmap_atomic(gnt_list_entry->page);
0632         ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
0633     }
0634 
0635     gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
0636     ref = gnt_list_entry->gref;
0637     /*
0638      * All the grants are stored in the shadow of the first
0639      * request. Therefore we have to use the global index.
0640      */
0641     shadow->grants_used[setup->grant_idx] = gnt_list_entry;
0642 
0643     if (setup->need_copy) {
0644         void *shared_data;
0645 
0646         shared_data = kmap_atomic(gnt_list_entry->page);
0647         /*
0648          * this does not wipe data stored outside the
0649          * range sg->offset..sg->offset+sg->length.
0650          * Therefore, blkback *could* see data from
0651          * previous requests. This is OK as long as
0652          * persistent grants are shared with just one
0653          * domain. It may need refactoring if this
0654          * changes
0655          */
0656         memcpy(shared_data + offset,
0657                setup->bvec_data + setup->bvec_off,
0658                len);
0659 
0660         kunmap_atomic(shared_data);
0661         setup->bvec_off += len;
0662     }
0663 
0664     fsect = offset >> 9;
0665     lsect = fsect + (len >> 9) - 1;
0666     if (ring_req->operation != BLKIF_OP_INDIRECT) {
0667         ring_req->u.rw.seg[grant_idx] =
0668             (struct blkif_request_segment) {
0669                 .gref       = ref,
0670                 .first_sect = fsect,
0671                 .last_sect  = lsect };
0672     } else {
0673         setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
0674             (struct blkif_request_segment) {
0675                 .gref       = ref,
0676                 .first_sect = fsect,
0677                 .last_sect  = lsect };
0678     }
0679 
0680     (setup->grant_idx)++;
0681 }
0682 
0683 static void blkif_setup_extra_req(struct blkif_request *first,
0684                   struct blkif_request *second)
0685 {
0686     uint16_t nr_segments = first->u.rw.nr_segments;
0687 
0688     /*
0689      * The second request is only present when the first request uses
0690      * all its segments. It's always the continuity of the first one.
0691      */
0692     first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
0693 
0694     second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
0695     second->u.rw.sector_number = first->u.rw.sector_number +
0696         (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
0697 
0698     second->u.rw.handle = first->u.rw.handle;
0699     second->operation = first->operation;
0700 }
0701 
0702 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
0703 {
0704     struct blkfront_info *info = rinfo->dev_info;
0705     struct blkif_request *ring_req, *extra_ring_req = NULL;
0706     struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
0707     unsigned long id, extra_id = NO_ASSOCIATED_ID;
0708     bool require_extra_req = false;
0709     int i;
0710     struct setup_rw_req setup = {
0711         .grant_idx = 0,
0712         .segments = NULL,
0713         .rinfo = rinfo,
0714         .need_copy = rq_data_dir(req) && info->bounce,
0715     };
0716 
0717     /*
0718      * Used to store if we are able to queue the request by just using
0719      * existing persistent grants, or if we have to get new grants,
0720      * as there are not sufficiently many free.
0721      */
0722     bool new_persistent_gnts = false;
0723     struct scatterlist *sg;
0724     int num_sg, max_grefs, num_grant;
0725 
0726     max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
0727     if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
0728         /*
0729          * If we are using indirect segments we need to account
0730          * for the indirect grefs used in the request.
0731          */
0732         max_grefs += INDIRECT_GREFS(max_grefs);
0733 
0734     /* Check if we have enough persistent grants to allocate a requests */
0735     if (rinfo->persistent_gnts_c < max_grefs) {
0736         new_persistent_gnts = true;
0737 
0738         if (gnttab_alloc_grant_references(
0739             max_grefs - rinfo->persistent_gnts_c,
0740             &setup.gref_head) < 0) {
0741             gnttab_request_free_callback(
0742                 &rinfo->callback,
0743                 blkif_restart_queue_callback,
0744                 rinfo,
0745                 max_grefs - rinfo->persistent_gnts_c);
0746             return 1;
0747         }
0748     }
0749 
0750     /* Fill out a communications ring structure. */
0751     id = blkif_ring_get_request(rinfo, req, &final_ring_req);
0752     ring_req = &rinfo->shadow[id].req;
0753 
0754     num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
0755     num_grant = 0;
0756     /* Calculate the number of grant used */
0757     for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
0758            num_grant += gnttab_count_grant(sg->offset, sg->length);
0759 
0760     require_extra_req = info->max_indirect_segments == 0 &&
0761         num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
0762     BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
0763 
0764     rinfo->shadow[id].num_sg = num_sg;
0765     if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
0766         likely(!require_extra_req)) {
0767         /*
0768          * The indirect operation can only be a BLKIF_OP_READ or
0769          * BLKIF_OP_WRITE
0770          */
0771         BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
0772         ring_req->operation = BLKIF_OP_INDIRECT;
0773         ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
0774             BLKIF_OP_WRITE : BLKIF_OP_READ;
0775         ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
0776         ring_req->u.indirect.handle = info->handle;
0777         ring_req->u.indirect.nr_segments = num_grant;
0778     } else {
0779         ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
0780         ring_req->u.rw.handle = info->handle;
0781         ring_req->operation = rq_data_dir(req) ?
0782             BLKIF_OP_WRITE : BLKIF_OP_READ;
0783         if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
0784             /*
0785              * Ideally we can do an unordered flush-to-disk.
0786              * In case the backend onlysupports barriers, use that.
0787              * A barrier request a superset of FUA, so we can
0788              * implement it the same way.  (It's also a FLUSH+FUA,
0789              * since it is guaranteed ordered WRT previous writes.)
0790              */
0791             if (info->feature_flush && info->feature_fua)
0792                 ring_req->operation =
0793                     BLKIF_OP_WRITE_BARRIER;
0794             else if (info->feature_flush)
0795                 ring_req->operation =
0796                     BLKIF_OP_FLUSH_DISKCACHE;
0797             else
0798                 ring_req->operation = 0;
0799         }
0800         ring_req->u.rw.nr_segments = num_grant;
0801         if (unlikely(require_extra_req)) {
0802             extra_id = blkif_ring_get_request(rinfo, req,
0803                               &final_extra_ring_req);
0804             extra_ring_req = &rinfo->shadow[extra_id].req;
0805 
0806             /*
0807              * Only the first request contains the scatter-gather
0808              * list.
0809              */
0810             rinfo->shadow[extra_id].num_sg = 0;
0811 
0812             blkif_setup_extra_req(ring_req, extra_ring_req);
0813 
0814             /* Link the 2 requests together */
0815             rinfo->shadow[extra_id].associated_id = id;
0816             rinfo->shadow[id].associated_id = extra_id;
0817         }
0818     }
0819 
0820     setup.ring_req = ring_req;
0821     setup.id = id;
0822 
0823     setup.require_extra_req = require_extra_req;
0824     if (unlikely(require_extra_req))
0825         setup.extra_ring_req = extra_ring_req;
0826 
0827     for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
0828         BUG_ON(sg->offset + sg->length > PAGE_SIZE);
0829 
0830         if (setup.need_copy) {
0831             setup.bvec_off = sg->offset;
0832             setup.bvec_data = kmap_atomic(sg_page(sg));
0833         }
0834 
0835         gnttab_foreach_grant_in_range(sg_page(sg),
0836                           sg->offset,
0837                           sg->length,
0838                           blkif_setup_rw_req_grant,
0839                           &setup);
0840 
0841         if (setup.need_copy)
0842             kunmap_atomic(setup.bvec_data);
0843     }
0844     if (setup.segments)
0845         kunmap_atomic(setup.segments);
0846 
0847     /* Copy request(s) to the ring page. */
0848     *final_ring_req = *ring_req;
0849     rinfo->shadow[id].status = REQ_WAITING;
0850     if (unlikely(require_extra_req)) {
0851         *final_extra_ring_req = *extra_ring_req;
0852         rinfo->shadow[extra_id].status = REQ_WAITING;
0853     }
0854 
0855     if (new_persistent_gnts)
0856         gnttab_free_grant_references(setup.gref_head);
0857 
0858     return 0;
0859 }
0860 
0861 /*
0862  * Generate a Xen blkfront IO request from a blk layer request.  Reads
0863  * and writes are handled as expected.
0864  *
0865  * @req: a request struct
0866  */
0867 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
0868 {
0869     if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
0870         return 1;
0871 
0872     if (unlikely(req_op(req) == REQ_OP_DISCARD ||
0873              req_op(req) == REQ_OP_SECURE_ERASE))
0874         return blkif_queue_discard_req(req, rinfo);
0875     else
0876         return blkif_queue_rw_req(req, rinfo);
0877 }
0878 
0879 static inline void flush_requests(struct blkfront_ring_info *rinfo)
0880 {
0881     int notify;
0882 
0883     RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
0884 
0885     if (notify)
0886         notify_remote_via_irq(rinfo->irq);
0887 }
0888 
0889 static inline bool blkif_request_flush_invalid(struct request *req,
0890                            struct blkfront_info *info)
0891 {
0892     return (blk_rq_is_passthrough(req) ||
0893         ((req_op(req) == REQ_OP_FLUSH) &&
0894          !info->feature_flush) ||
0895         ((req->cmd_flags & REQ_FUA) &&
0896          !info->feature_fua));
0897 }
0898 
0899 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
0900               const struct blk_mq_queue_data *qd)
0901 {
0902     unsigned long flags;
0903     int qid = hctx->queue_num;
0904     struct blkfront_info *info = hctx->queue->queuedata;
0905     struct blkfront_ring_info *rinfo = NULL;
0906 
0907     rinfo = get_rinfo(info, qid);
0908     blk_mq_start_request(qd->rq);
0909     spin_lock_irqsave(&rinfo->ring_lock, flags);
0910     if (RING_FULL(&rinfo->ring))
0911         goto out_busy;
0912 
0913     if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
0914         goto out_err;
0915 
0916     if (blkif_queue_request(qd->rq, rinfo))
0917         goto out_busy;
0918 
0919     flush_requests(rinfo);
0920     spin_unlock_irqrestore(&rinfo->ring_lock, flags);
0921     return BLK_STS_OK;
0922 
0923 out_err:
0924     spin_unlock_irqrestore(&rinfo->ring_lock, flags);
0925     return BLK_STS_IOERR;
0926 
0927 out_busy:
0928     blk_mq_stop_hw_queue(hctx);
0929     spin_unlock_irqrestore(&rinfo->ring_lock, flags);
0930     return BLK_STS_DEV_RESOURCE;
0931 }
0932 
0933 static void blkif_complete_rq(struct request *rq)
0934 {
0935     blk_mq_end_request(rq, blkif_req(rq)->error);
0936 }
0937 
0938 static const struct blk_mq_ops blkfront_mq_ops = {
0939     .queue_rq = blkif_queue_rq,
0940     .complete = blkif_complete_rq,
0941 };
0942 
0943 static void blkif_set_queue_limits(struct blkfront_info *info)
0944 {
0945     struct request_queue *rq = info->rq;
0946     struct gendisk *gd = info->gd;
0947     unsigned int segments = info->max_indirect_segments ? :
0948                 BLKIF_MAX_SEGMENTS_PER_REQUEST;
0949 
0950     blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
0951 
0952     if (info->feature_discard) {
0953         blk_queue_max_discard_sectors(rq, get_capacity(gd));
0954         rq->limits.discard_granularity = info->discard_granularity ?:
0955                          info->physical_sector_size;
0956         rq->limits.discard_alignment = info->discard_alignment;
0957         if (info->feature_secdiscard)
0958             blk_queue_max_secure_erase_sectors(rq,
0959                                get_capacity(gd));
0960     }
0961 
0962     /* Hard sector size and max sectors impersonate the equiv. hardware. */
0963     blk_queue_logical_block_size(rq, info->sector_size);
0964     blk_queue_physical_block_size(rq, info->physical_sector_size);
0965     blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
0966 
0967     /* Each segment in a request is up to an aligned page in size. */
0968     blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
0969     blk_queue_max_segment_size(rq, PAGE_SIZE);
0970 
0971     /* Ensure a merged request will fit in a single I/O ring slot. */
0972     blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
0973 
0974     /* Make sure buffer addresses are sector-aligned. */
0975     blk_queue_dma_alignment(rq, 511);
0976 }
0977 
0978 static const char *flush_info(struct blkfront_info *info)
0979 {
0980     if (info->feature_flush && info->feature_fua)
0981         return "barrier: enabled;";
0982     else if (info->feature_flush)
0983         return "flush diskcache: enabled;";
0984     else
0985         return "barrier or flush: disabled;";
0986 }
0987 
0988 static void xlvbd_flush(struct blkfront_info *info)
0989 {
0990     blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
0991                   info->feature_fua ? true : false);
0992     pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
0993         info->gd->disk_name, flush_info(info),
0994         "persistent grants:", info->feature_persistent ?
0995         "enabled;" : "disabled;", "indirect descriptors:",
0996         info->max_indirect_segments ? "enabled;" : "disabled;",
0997         "bounce buffer:", info->bounce ? "enabled" : "disabled;");
0998 }
0999 
1000 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1001 {
1002     int major;
1003     major = BLKIF_MAJOR(vdevice);
1004     *minor = BLKIF_MINOR(vdevice);
1005     switch (major) {
1006         case XEN_IDE0_MAJOR:
1007             *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1008             *minor = ((*minor / 64) * PARTS_PER_DISK) +
1009                 EMULATED_HD_DISK_MINOR_OFFSET;
1010             break;
1011         case XEN_IDE1_MAJOR:
1012             *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1013             *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1014                 EMULATED_HD_DISK_MINOR_OFFSET;
1015             break;
1016         case XEN_SCSI_DISK0_MAJOR:
1017             *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1018             *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1019             break;
1020         case XEN_SCSI_DISK1_MAJOR:
1021         case XEN_SCSI_DISK2_MAJOR:
1022         case XEN_SCSI_DISK3_MAJOR:
1023         case XEN_SCSI_DISK4_MAJOR:
1024         case XEN_SCSI_DISK5_MAJOR:
1025         case XEN_SCSI_DISK6_MAJOR:
1026         case XEN_SCSI_DISK7_MAJOR:
1027             *offset = (*minor / PARTS_PER_DISK) + 
1028                 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1029                 EMULATED_SD_DISK_NAME_OFFSET;
1030             *minor = *minor +
1031                 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1032                 EMULATED_SD_DISK_MINOR_OFFSET;
1033             break;
1034         case XEN_SCSI_DISK8_MAJOR:
1035         case XEN_SCSI_DISK9_MAJOR:
1036         case XEN_SCSI_DISK10_MAJOR:
1037         case XEN_SCSI_DISK11_MAJOR:
1038         case XEN_SCSI_DISK12_MAJOR:
1039         case XEN_SCSI_DISK13_MAJOR:
1040         case XEN_SCSI_DISK14_MAJOR:
1041         case XEN_SCSI_DISK15_MAJOR:
1042             *offset = (*minor / PARTS_PER_DISK) + 
1043                 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1044                 EMULATED_SD_DISK_NAME_OFFSET;
1045             *minor = *minor +
1046                 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1047                 EMULATED_SD_DISK_MINOR_OFFSET;
1048             break;
1049         case XENVBD_MAJOR:
1050             *offset = *minor / PARTS_PER_DISK;
1051             break;
1052         default:
1053             printk(KERN_WARNING "blkfront: your disk configuration is "
1054                     "incorrect, please use an xvd device instead\n");
1055             return -ENODEV;
1056     }
1057     return 0;
1058 }
1059 
1060 static char *encode_disk_name(char *ptr, unsigned int n)
1061 {
1062     if (n >= 26)
1063         ptr = encode_disk_name(ptr, n / 26 - 1);
1064     *ptr = 'a' + n % 26;
1065     return ptr + 1;
1066 }
1067 
1068 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1069         struct blkfront_info *info, u16 sector_size,
1070         unsigned int physical_sector_size)
1071 {
1072     struct gendisk *gd;
1073     int nr_minors = 1;
1074     int err;
1075     unsigned int offset;
1076     int minor;
1077     int nr_parts;
1078     char *ptr;
1079 
1080     BUG_ON(info->gd != NULL);
1081     BUG_ON(info->rq != NULL);
1082 
1083     if ((info->vdevice>>EXT_SHIFT) > 1) {
1084         /* this is above the extended range; something is wrong */
1085         printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1086         return -ENODEV;
1087     }
1088 
1089     if (!VDEV_IS_EXTENDED(info->vdevice)) {
1090         err = xen_translate_vdev(info->vdevice, &minor, &offset);
1091         if (err)
1092             return err;
1093         nr_parts = PARTS_PER_DISK;
1094     } else {
1095         minor = BLKIF_MINOR_EXT(info->vdevice);
1096         nr_parts = PARTS_PER_EXT_DISK;
1097         offset = minor / nr_parts;
1098         if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1099             printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1100                     "emulated IDE disks,\n\t choose an xvd device name"
1101                     "from xvde on\n", info->vdevice);
1102     }
1103     if (minor >> MINORBITS) {
1104         pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1105             info->vdevice, minor);
1106         return -ENODEV;
1107     }
1108 
1109     if ((minor % nr_parts) == 0)
1110         nr_minors = nr_parts;
1111 
1112     err = xlbd_reserve_minors(minor, nr_minors);
1113     if (err)
1114         return err;
1115 
1116     memset(&info->tag_set, 0, sizeof(info->tag_set));
1117     info->tag_set.ops = &blkfront_mq_ops;
1118     info->tag_set.nr_hw_queues = info->nr_rings;
1119     if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1120         /*
1121          * When indirect descriptior is not supported, the I/O request
1122          * will be split between multiple request in the ring.
1123          * To avoid problems when sending the request, divide by
1124          * 2 the depth of the queue.
1125          */
1126         info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1127     } else
1128         info->tag_set.queue_depth = BLK_RING_SIZE(info);
1129     info->tag_set.numa_node = NUMA_NO_NODE;
1130     info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1131     info->tag_set.cmd_size = sizeof(struct blkif_req);
1132     info->tag_set.driver_data = info;
1133 
1134     err = blk_mq_alloc_tag_set(&info->tag_set);
1135     if (err)
1136         goto out_release_minors;
1137 
1138     gd = blk_mq_alloc_disk(&info->tag_set, info);
1139     if (IS_ERR(gd)) {
1140         err = PTR_ERR(gd);
1141         goto out_free_tag_set;
1142     }
1143 
1144     strcpy(gd->disk_name, DEV_NAME);
1145     ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1146     BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1147     if (nr_minors > 1)
1148         *ptr = 0;
1149     else
1150         snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1151              "%d", minor & (nr_parts - 1));
1152 
1153     gd->major = XENVBD_MAJOR;
1154     gd->first_minor = minor;
1155     gd->minors = nr_minors;
1156     gd->fops = &xlvbd_block_fops;
1157     gd->private_data = info;
1158     set_capacity(gd, capacity);
1159 
1160     info->rq = gd->queue;
1161     info->gd = gd;
1162     info->sector_size = sector_size;
1163     info->physical_sector_size = physical_sector_size;
1164     blkif_set_queue_limits(info);
1165 
1166     xlvbd_flush(info);
1167 
1168     if (info->vdisk_info & VDISK_READONLY)
1169         set_disk_ro(gd, 1);
1170     if (info->vdisk_info & VDISK_REMOVABLE)
1171         gd->flags |= GENHD_FL_REMOVABLE;
1172 
1173     return 0;
1174 
1175 out_free_tag_set:
1176     blk_mq_free_tag_set(&info->tag_set);
1177 out_release_minors:
1178     xlbd_release_minors(minor, nr_minors);
1179     return err;
1180 }
1181 
1182 /* Already hold rinfo->ring_lock. */
1183 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1184 {
1185     if (!RING_FULL(&rinfo->ring))
1186         blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1187 }
1188 
1189 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1190 {
1191     unsigned long flags;
1192 
1193     spin_lock_irqsave(&rinfo->ring_lock, flags);
1194     kick_pending_request_queues_locked(rinfo);
1195     spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1196 }
1197 
1198 static void blkif_restart_queue(struct work_struct *work)
1199 {
1200     struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1201 
1202     if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1203         kick_pending_request_queues(rinfo);
1204 }
1205 
1206 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1207 {
1208     struct grant *persistent_gnt, *n;
1209     struct blkfront_info *info = rinfo->dev_info;
1210     int i, j, segs;
1211 
1212     /*
1213      * Remove indirect pages, this only happens when using indirect
1214      * descriptors but not persistent grants
1215      */
1216     if (!list_empty(&rinfo->indirect_pages)) {
1217         struct page *indirect_page, *n;
1218 
1219         BUG_ON(info->bounce);
1220         list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1221             list_del(&indirect_page->lru);
1222             __free_page(indirect_page);
1223         }
1224     }
1225 
1226     /* Remove all persistent grants. */
1227     if (!list_empty(&rinfo->grants)) {
1228         list_for_each_entry_safe(persistent_gnt, n,
1229                      &rinfo->grants, node) {
1230             list_del(&persistent_gnt->node);
1231             if (persistent_gnt->gref != INVALID_GRANT_REF) {
1232                 gnttab_end_foreign_access(persistent_gnt->gref,
1233                               NULL);
1234                 rinfo->persistent_gnts_c--;
1235             }
1236             if (info->bounce)
1237                 __free_page(persistent_gnt->page);
1238             kfree(persistent_gnt);
1239         }
1240     }
1241     BUG_ON(rinfo->persistent_gnts_c != 0);
1242 
1243     for (i = 0; i < BLK_RING_SIZE(info); i++) {
1244         /*
1245          * Clear persistent grants present in requests already
1246          * on the shared ring
1247          */
1248         if (!rinfo->shadow[i].request)
1249             goto free_shadow;
1250 
1251         segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1252                rinfo->shadow[i].req.u.indirect.nr_segments :
1253                rinfo->shadow[i].req.u.rw.nr_segments;
1254         for (j = 0; j < segs; j++) {
1255             persistent_gnt = rinfo->shadow[i].grants_used[j];
1256             gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1257             if (info->bounce)
1258                 __free_page(persistent_gnt->page);
1259             kfree(persistent_gnt);
1260         }
1261 
1262         if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1263             /*
1264              * If this is not an indirect operation don't try to
1265              * free indirect segments
1266              */
1267             goto free_shadow;
1268 
1269         for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1270             persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1271             gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1272             __free_page(persistent_gnt->page);
1273             kfree(persistent_gnt);
1274         }
1275 
1276 free_shadow:
1277         kvfree(rinfo->shadow[i].grants_used);
1278         rinfo->shadow[i].grants_used = NULL;
1279         kvfree(rinfo->shadow[i].indirect_grants);
1280         rinfo->shadow[i].indirect_grants = NULL;
1281         kvfree(rinfo->shadow[i].sg);
1282         rinfo->shadow[i].sg = NULL;
1283     }
1284 
1285     /* No more gnttab callback work. */
1286     gnttab_cancel_free_callback(&rinfo->callback);
1287 
1288     /* Flush gnttab callback work. Must be done with no locks held. */
1289     flush_work(&rinfo->work);
1290 
1291     /* Free resources associated with old device channel. */
1292     xenbus_teardown_ring((void **)&rinfo->ring.sring, info->nr_ring_pages,
1293                  rinfo->ring_ref);
1294 
1295     if (rinfo->irq)
1296         unbind_from_irqhandler(rinfo->irq, rinfo);
1297     rinfo->evtchn = rinfo->irq = 0;
1298 }
1299 
1300 static void blkif_free(struct blkfront_info *info, int suspend)
1301 {
1302     unsigned int i;
1303     struct blkfront_ring_info *rinfo;
1304 
1305     /* Prevent new requests being issued until we fix things up. */
1306     info->connected = suspend ?
1307         BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1308     /* No more blkif_request(). */
1309     if (info->rq)
1310         blk_mq_stop_hw_queues(info->rq);
1311 
1312     for_each_rinfo(info, rinfo, i)
1313         blkif_free_ring(rinfo);
1314 
1315     kvfree(info->rinfo);
1316     info->rinfo = NULL;
1317     info->nr_rings = 0;
1318 }
1319 
1320 struct copy_from_grant {
1321     const struct blk_shadow *s;
1322     unsigned int grant_idx;
1323     unsigned int bvec_offset;
1324     char *bvec_data;
1325 };
1326 
1327 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1328                   unsigned int len, void *data)
1329 {
1330     struct copy_from_grant *info = data;
1331     char *shared_data;
1332     /* Convenient aliases */
1333     const struct blk_shadow *s = info->s;
1334 
1335     shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1336 
1337     memcpy(info->bvec_data + info->bvec_offset,
1338            shared_data + offset, len);
1339 
1340     info->bvec_offset += len;
1341     info->grant_idx++;
1342 
1343     kunmap_atomic(shared_data);
1344 }
1345 
1346 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1347 {
1348     switch (rsp)
1349     {
1350     case BLKIF_RSP_OKAY:
1351         return REQ_DONE;
1352     case BLKIF_RSP_EOPNOTSUPP:
1353         return REQ_EOPNOTSUPP;
1354     case BLKIF_RSP_ERROR:
1355     default:
1356         return REQ_ERROR;
1357     }
1358 }
1359 
1360 /*
1361  * Get the final status of the block request based on two ring response
1362  */
1363 static int blkif_get_final_status(enum blk_req_status s1,
1364                   enum blk_req_status s2)
1365 {
1366     BUG_ON(s1 < REQ_DONE);
1367     BUG_ON(s2 < REQ_DONE);
1368 
1369     if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1370         return BLKIF_RSP_ERROR;
1371     else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1372         return BLKIF_RSP_EOPNOTSUPP;
1373     return BLKIF_RSP_OKAY;
1374 }
1375 
1376 /*
1377  * Return values:
1378  *  1 response processed.
1379  *  0 missing further responses.
1380  * -1 error while processing.
1381  */
1382 static int blkif_completion(unsigned long *id,
1383                 struct blkfront_ring_info *rinfo,
1384                 struct blkif_response *bret)
1385 {
1386     int i = 0;
1387     struct scatterlist *sg;
1388     int num_sg, num_grant;
1389     struct blkfront_info *info = rinfo->dev_info;
1390     struct blk_shadow *s = &rinfo->shadow[*id];
1391     struct copy_from_grant data = {
1392         .grant_idx = 0,
1393     };
1394 
1395     num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1396         s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1397 
1398     /* The I/O request may be split in two. */
1399     if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1400         struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1401 
1402         /* Keep the status of the current response in shadow. */
1403         s->status = blkif_rsp_to_req_status(bret->status);
1404 
1405         /* Wait the second response if not yet here. */
1406         if (s2->status < REQ_DONE)
1407             return 0;
1408 
1409         bret->status = blkif_get_final_status(s->status,
1410                               s2->status);
1411 
1412         /*
1413          * All the grants is stored in the first shadow in order
1414          * to make the completion code simpler.
1415          */
1416         num_grant += s2->req.u.rw.nr_segments;
1417 
1418         /*
1419          * The two responses may not come in order. Only the
1420          * first request will store the scatter-gather list.
1421          */
1422         if (s2->num_sg != 0) {
1423             /* Update "id" with the ID of the first response. */
1424             *id = s->associated_id;
1425             s = s2;
1426         }
1427 
1428         /*
1429          * We don't need anymore the second request, so recycling
1430          * it now.
1431          */
1432         if (add_id_to_freelist(rinfo, s->associated_id))
1433             WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1434                  info->gd->disk_name, s->associated_id);
1435     }
1436 
1437     data.s = s;
1438     num_sg = s->num_sg;
1439 
1440     if (bret->operation == BLKIF_OP_READ && info->bounce) {
1441         for_each_sg(s->sg, sg, num_sg, i) {
1442             BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1443 
1444             data.bvec_offset = sg->offset;
1445             data.bvec_data = kmap_atomic(sg_page(sg));
1446 
1447             gnttab_foreach_grant_in_range(sg_page(sg),
1448                               sg->offset,
1449                               sg->length,
1450                               blkif_copy_from_grant,
1451                               &data);
1452 
1453             kunmap_atomic(data.bvec_data);
1454         }
1455     }
1456     /* Add the persistent grant into the list of free grants */
1457     for (i = 0; i < num_grant; i++) {
1458         if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1459             /*
1460              * If the grant is still mapped by the backend (the
1461              * backend has chosen to make this grant persistent)
1462              * we add it at the head of the list, so it will be
1463              * reused first.
1464              */
1465             if (!info->feature_persistent) {
1466                 pr_alert("backed has not unmapped grant: %u\n",
1467                      s->grants_used[i]->gref);
1468                 return -1;
1469             }
1470             list_add(&s->grants_used[i]->node, &rinfo->grants);
1471             rinfo->persistent_gnts_c++;
1472         } else {
1473             /*
1474              * If the grant is not mapped by the backend we add it
1475              * to the tail of the list, so it will not be picked
1476              * again unless we run out of persistent grants.
1477              */
1478             s->grants_used[i]->gref = INVALID_GRANT_REF;
1479             list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1480         }
1481     }
1482     if (s->req.operation == BLKIF_OP_INDIRECT) {
1483         for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1484             if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1485                 if (!info->feature_persistent) {
1486                     pr_alert("backed has not unmapped grant: %u\n",
1487                          s->indirect_grants[i]->gref);
1488                     return -1;
1489                 }
1490                 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1491                 rinfo->persistent_gnts_c++;
1492             } else {
1493                 struct page *indirect_page;
1494 
1495                 /*
1496                  * Add the used indirect page back to the list of
1497                  * available pages for indirect grefs.
1498                  */
1499                 if (!info->bounce) {
1500                     indirect_page = s->indirect_grants[i]->page;
1501                     list_add(&indirect_page->lru, &rinfo->indirect_pages);
1502                 }
1503                 s->indirect_grants[i]->gref = INVALID_GRANT_REF;
1504                 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1505             }
1506         }
1507     }
1508 
1509     return 1;
1510 }
1511 
1512 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1513 {
1514     struct request *req;
1515     struct blkif_response bret;
1516     RING_IDX i, rp;
1517     unsigned long flags;
1518     struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1519     struct blkfront_info *info = rinfo->dev_info;
1520     unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1521 
1522     if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1523         xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1524         return IRQ_HANDLED;
1525     }
1526 
1527     spin_lock_irqsave(&rinfo->ring_lock, flags);
1528  again:
1529     rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1530     virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1531     if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1532         pr_alert("%s: illegal number of responses %u\n",
1533              info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1534         goto err;
1535     }
1536 
1537     for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1538         unsigned long id;
1539         unsigned int op;
1540 
1541         eoiflag = 0;
1542 
1543         RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1544         id = bret.id;
1545 
1546         /*
1547          * The backend has messed up and given us an id that we would
1548          * never have given to it (we stamp it up to BLK_RING_SIZE -
1549          * look in get_id_from_freelist.
1550          */
1551         if (id >= BLK_RING_SIZE(info)) {
1552             pr_alert("%s: response has incorrect id (%ld)\n",
1553                  info->gd->disk_name, id);
1554             goto err;
1555         }
1556         if (rinfo->shadow[id].status != REQ_WAITING) {
1557             pr_alert("%s: response references no pending request\n",
1558                  info->gd->disk_name);
1559             goto err;
1560         }
1561 
1562         rinfo->shadow[id].status = REQ_PROCESSING;
1563         req  = rinfo->shadow[id].request;
1564 
1565         op = rinfo->shadow[id].req.operation;
1566         if (op == BLKIF_OP_INDIRECT)
1567             op = rinfo->shadow[id].req.u.indirect.indirect_op;
1568         if (bret.operation != op) {
1569             pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1570                  info->gd->disk_name, bret.operation, op);
1571             goto err;
1572         }
1573 
1574         if (bret.operation != BLKIF_OP_DISCARD) {
1575             int ret;
1576 
1577             /*
1578              * We may need to wait for an extra response if the
1579              * I/O request is split in 2
1580              */
1581             ret = blkif_completion(&id, rinfo, &bret);
1582             if (!ret)
1583                 continue;
1584             if (unlikely(ret < 0))
1585                 goto err;
1586         }
1587 
1588         if (add_id_to_freelist(rinfo, id)) {
1589             WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1590                  info->gd->disk_name, op_name(bret.operation), id);
1591             continue;
1592         }
1593 
1594         if (bret.status == BLKIF_RSP_OKAY)
1595             blkif_req(req)->error = BLK_STS_OK;
1596         else
1597             blkif_req(req)->error = BLK_STS_IOERR;
1598 
1599         switch (bret.operation) {
1600         case BLKIF_OP_DISCARD:
1601             if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1602                 struct request_queue *rq = info->rq;
1603 
1604                 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1605                        info->gd->disk_name, op_name(bret.operation));
1606                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1607                 info->feature_discard = 0;
1608                 info->feature_secdiscard = 0;
1609                 blk_queue_max_discard_sectors(rq, 0);
1610                 blk_queue_max_secure_erase_sectors(rq, 0);
1611             }
1612             break;
1613         case BLKIF_OP_FLUSH_DISKCACHE:
1614         case BLKIF_OP_WRITE_BARRIER:
1615             if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1616                 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1617                        info->gd->disk_name, op_name(bret.operation));
1618                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1619             }
1620             if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1621                      rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1622                 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1623                        info->gd->disk_name, op_name(bret.operation));
1624                 blkif_req(req)->error = BLK_STS_NOTSUPP;
1625             }
1626             if (unlikely(blkif_req(req)->error)) {
1627                 if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1628                     blkif_req(req)->error = BLK_STS_OK;
1629                 info->feature_fua = 0;
1630                 info->feature_flush = 0;
1631                 xlvbd_flush(info);
1632             }
1633             fallthrough;
1634         case BLKIF_OP_READ:
1635         case BLKIF_OP_WRITE:
1636             if (unlikely(bret.status != BLKIF_RSP_OKAY))
1637                 dev_dbg_ratelimited(&info->xbdev->dev,
1638                     "Bad return from blkdev data request: %#x\n",
1639                     bret.status);
1640 
1641             break;
1642         default:
1643             BUG();
1644         }
1645 
1646         if (likely(!blk_should_fake_timeout(req->q)))
1647             blk_mq_complete_request(req);
1648     }
1649 
1650     rinfo->ring.rsp_cons = i;
1651 
1652     if (i != rinfo->ring.req_prod_pvt) {
1653         int more_to_do;
1654         RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1655         if (more_to_do)
1656             goto again;
1657     } else
1658         rinfo->ring.sring->rsp_event = i + 1;
1659 
1660     kick_pending_request_queues_locked(rinfo);
1661 
1662     spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1663 
1664     xen_irq_lateeoi(irq, eoiflag);
1665 
1666     return IRQ_HANDLED;
1667 
1668  err:
1669     info->connected = BLKIF_STATE_ERROR;
1670 
1671     spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1672 
1673     /* No EOI in order to avoid further interrupts. */
1674 
1675     pr_alert("%s disabled for further use\n", info->gd->disk_name);
1676     return IRQ_HANDLED;
1677 }
1678 
1679 
1680 static int setup_blkring(struct xenbus_device *dev,
1681              struct blkfront_ring_info *rinfo)
1682 {
1683     struct blkif_sring *sring;
1684     int err;
1685     struct blkfront_info *info = rinfo->dev_info;
1686     unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1687 
1688     err = xenbus_setup_ring(dev, GFP_NOIO, (void **)&sring,
1689                 info->nr_ring_pages, rinfo->ring_ref);
1690     if (err)
1691         goto fail;
1692 
1693     XEN_FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1694 
1695     err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1696     if (err)
1697         goto fail;
1698 
1699     err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1700                         0, "blkif", rinfo);
1701     if (err <= 0) {
1702         xenbus_dev_fatal(dev, err,
1703                  "bind_evtchn_to_irqhandler failed");
1704         goto fail;
1705     }
1706     rinfo->irq = err;
1707 
1708     return 0;
1709 fail:
1710     blkif_free(info, 0);
1711     return err;
1712 }
1713 
1714 /*
1715  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1716  * ring buffer may have multi pages depending on ->nr_ring_pages.
1717  */
1718 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1719                 struct blkfront_ring_info *rinfo, const char *dir)
1720 {
1721     int err;
1722     unsigned int i;
1723     const char *message = NULL;
1724     struct blkfront_info *info = rinfo->dev_info;
1725 
1726     if (info->nr_ring_pages == 1) {
1727         err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1728         if (err) {
1729             message = "writing ring-ref";
1730             goto abort_transaction;
1731         }
1732     } else {
1733         for (i = 0; i < info->nr_ring_pages; i++) {
1734             char ring_ref_name[RINGREF_NAME_LEN];
1735 
1736             snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1737             err = xenbus_printf(xbt, dir, ring_ref_name,
1738                         "%u", rinfo->ring_ref[i]);
1739             if (err) {
1740                 message = "writing ring-ref";
1741                 goto abort_transaction;
1742             }
1743         }
1744     }
1745 
1746     err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1747     if (err) {
1748         message = "writing event-channel";
1749         goto abort_transaction;
1750     }
1751 
1752     return 0;
1753 
1754 abort_transaction:
1755     xenbus_transaction_end(xbt, 1);
1756     if (message)
1757         xenbus_dev_fatal(info->xbdev, err, "%s", message);
1758 
1759     return err;
1760 }
1761 
1762 /* Enable the persistent grants feature. */
1763 static bool feature_persistent = true;
1764 module_param(feature_persistent, bool, 0644);
1765 MODULE_PARM_DESC(feature_persistent,
1766         "Enables the persistent grants feature");
1767 
1768 /* Common code used when first setting up, and when resuming. */
1769 static int talk_to_blkback(struct xenbus_device *dev,
1770                struct blkfront_info *info)
1771 {
1772     const char *message = NULL;
1773     struct xenbus_transaction xbt;
1774     int err;
1775     unsigned int i, max_page_order;
1776     unsigned int ring_page_order;
1777     struct blkfront_ring_info *rinfo;
1778 
1779     if (!info)
1780         return -ENODEV;
1781 
1782     /* Check if backend is trusted. */
1783     info->bounce = !xen_blkif_trusted ||
1784                !xenbus_read_unsigned(dev->nodename, "trusted", 1);
1785 
1786     max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1787                           "max-ring-page-order", 0);
1788     ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1789     info->nr_ring_pages = 1 << ring_page_order;
1790 
1791     err = negotiate_mq(info);
1792     if (err)
1793         goto destroy_blkring;
1794 
1795     for_each_rinfo(info, rinfo, i) {
1796         /* Create shared ring, alloc event channel. */
1797         err = setup_blkring(dev, rinfo);
1798         if (err)
1799             goto destroy_blkring;
1800     }
1801 
1802 again:
1803     err = xenbus_transaction_start(&xbt);
1804     if (err) {
1805         xenbus_dev_fatal(dev, err, "starting transaction");
1806         goto destroy_blkring;
1807     }
1808 
1809     if (info->nr_ring_pages > 1) {
1810         err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1811                     ring_page_order);
1812         if (err) {
1813             message = "writing ring-page-order";
1814             goto abort_transaction;
1815         }
1816     }
1817 
1818     /* We already got the number of queues/rings in _probe */
1819     if (info->nr_rings == 1) {
1820         err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1821         if (err)
1822             goto destroy_blkring;
1823     } else {
1824         char *path;
1825         size_t pathsize;
1826 
1827         err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1828                     info->nr_rings);
1829         if (err) {
1830             message = "writing multi-queue-num-queues";
1831             goto abort_transaction;
1832         }
1833 
1834         pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1835         path = kmalloc(pathsize, GFP_KERNEL);
1836         if (!path) {
1837             err = -ENOMEM;
1838             message = "ENOMEM while writing ring references";
1839             goto abort_transaction;
1840         }
1841 
1842         for_each_rinfo(info, rinfo, i) {
1843             memset(path, 0, pathsize);
1844             snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1845             err = write_per_ring_nodes(xbt, rinfo, path);
1846             if (err) {
1847                 kfree(path);
1848                 goto destroy_blkring;
1849             }
1850         }
1851         kfree(path);
1852     }
1853     err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1854                 XEN_IO_PROTO_ABI_NATIVE);
1855     if (err) {
1856         message = "writing protocol";
1857         goto abort_transaction;
1858     }
1859     info->feature_persistent_parm = feature_persistent;
1860     err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1861             info->feature_persistent_parm);
1862     if (err)
1863         dev_warn(&dev->dev,
1864              "writing persistent grants feature to xenbus");
1865 
1866     err = xenbus_transaction_end(xbt, 0);
1867     if (err) {
1868         if (err == -EAGAIN)
1869             goto again;
1870         xenbus_dev_fatal(dev, err, "completing transaction");
1871         goto destroy_blkring;
1872     }
1873 
1874     for_each_rinfo(info, rinfo, i) {
1875         unsigned int j;
1876 
1877         for (j = 0; j < BLK_RING_SIZE(info); j++)
1878             rinfo->shadow[j].req.u.rw.id = j + 1;
1879         rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1880     }
1881     xenbus_switch_state(dev, XenbusStateInitialised);
1882 
1883     return 0;
1884 
1885  abort_transaction:
1886     xenbus_transaction_end(xbt, 1);
1887     if (message)
1888         xenbus_dev_fatal(dev, err, "%s", message);
1889  destroy_blkring:
1890     blkif_free(info, 0);
1891     return err;
1892 }
1893 
1894 static int negotiate_mq(struct blkfront_info *info)
1895 {
1896     unsigned int backend_max_queues;
1897     unsigned int i;
1898     struct blkfront_ring_info *rinfo;
1899 
1900     BUG_ON(info->nr_rings);
1901 
1902     /* Check if backend supports multiple queues. */
1903     backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1904                           "multi-queue-max-queues", 1);
1905     info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1906     /* We need at least one ring. */
1907     if (!info->nr_rings)
1908         info->nr_rings = 1;
1909 
1910     info->rinfo_size = struct_size(info->rinfo, shadow,
1911                        BLK_RING_SIZE(info));
1912     info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1913     if (!info->rinfo) {
1914         xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1915         info->nr_rings = 0;
1916         return -ENOMEM;
1917     }
1918 
1919     for_each_rinfo(info, rinfo, i) {
1920         INIT_LIST_HEAD(&rinfo->indirect_pages);
1921         INIT_LIST_HEAD(&rinfo->grants);
1922         rinfo->dev_info = info;
1923         INIT_WORK(&rinfo->work, blkif_restart_queue);
1924         spin_lock_init(&rinfo->ring_lock);
1925     }
1926     return 0;
1927 }
1928 
1929 /*
1930  * Entry point to this code when a new device is created.  Allocate the basic
1931  * structures and the ring buffer for communication with the backend, and
1932  * inform the backend of the appropriate details for those.  Switch to
1933  * Initialised state.
1934  */
1935 static int blkfront_probe(struct xenbus_device *dev,
1936               const struct xenbus_device_id *id)
1937 {
1938     int err, vdevice;
1939     struct blkfront_info *info;
1940 
1941     /* FIXME: Use dynamic device id if this is not set. */
1942     err = xenbus_scanf(XBT_NIL, dev->nodename,
1943                "virtual-device", "%i", &vdevice);
1944     if (err != 1) {
1945         /* go looking in the extended area instead */
1946         err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1947                    "%i", &vdevice);
1948         if (err != 1) {
1949             xenbus_dev_fatal(dev, err, "reading virtual-device");
1950             return err;
1951         }
1952     }
1953 
1954     if (xen_hvm_domain()) {
1955         char *type;
1956         int len;
1957         /* no unplug has been done: do not hook devices != xen vbds */
1958         if (xen_has_pv_and_legacy_disk_devices()) {
1959             int major;
1960 
1961             if (!VDEV_IS_EXTENDED(vdevice))
1962                 major = BLKIF_MAJOR(vdevice);
1963             else
1964                 major = XENVBD_MAJOR;
1965 
1966             if (major != XENVBD_MAJOR) {
1967                 printk(KERN_INFO
1968                         "%s: HVM does not support vbd %d as xen block device\n",
1969                         __func__, vdevice);
1970                 return -ENODEV;
1971             }
1972         }
1973         /* do not create a PV cdrom device if we are an HVM guest */
1974         type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1975         if (IS_ERR(type))
1976             return -ENODEV;
1977         if (strncmp(type, "cdrom", 5) == 0) {
1978             kfree(type);
1979             return -ENODEV;
1980         }
1981         kfree(type);
1982     }
1983     info = kzalloc(sizeof(*info), GFP_KERNEL);
1984     if (!info) {
1985         xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1986         return -ENOMEM;
1987     }
1988 
1989     info->xbdev = dev;
1990 
1991     mutex_init(&info->mutex);
1992     info->vdevice = vdevice;
1993     info->connected = BLKIF_STATE_DISCONNECTED;
1994 
1995     /* Front end dir is a number, which is used as the id. */
1996     info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1997     dev_set_drvdata(&dev->dev, info);
1998 
1999     mutex_lock(&blkfront_mutex);
2000     list_add(&info->info_list, &info_list);
2001     mutex_unlock(&blkfront_mutex);
2002 
2003     return 0;
2004 }
2005 
2006 static int blkif_recover(struct blkfront_info *info)
2007 {
2008     unsigned int r_index;
2009     struct request *req, *n;
2010     int rc;
2011     struct bio *bio;
2012     unsigned int segs;
2013     struct blkfront_ring_info *rinfo;
2014 
2015     blkfront_gather_backend_features(info);
2016     /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2017     blkif_set_queue_limits(info);
2018     segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2019     blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2020 
2021     for_each_rinfo(info, rinfo, r_index) {
2022         rc = blkfront_setup_indirect(rinfo);
2023         if (rc)
2024             return rc;
2025     }
2026     xenbus_switch_state(info->xbdev, XenbusStateConnected);
2027 
2028     /* Now safe for us to use the shared ring */
2029     info->connected = BLKIF_STATE_CONNECTED;
2030 
2031     for_each_rinfo(info, rinfo, r_index) {
2032         /* Kick any other new requests queued since we resumed */
2033         kick_pending_request_queues(rinfo);
2034     }
2035 
2036     list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2037         /* Requeue pending requests (flush or discard) */
2038         list_del_init(&req->queuelist);
2039         BUG_ON(req->nr_phys_segments > segs);
2040         blk_mq_requeue_request(req, false);
2041     }
2042     blk_mq_start_stopped_hw_queues(info->rq, true);
2043     blk_mq_kick_requeue_list(info->rq);
2044 
2045     while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2046         /* Traverse the list of pending bios and re-queue them */
2047         submit_bio(bio);
2048     }
2049 
2050     return 0;
2051 }
2052 
2053 /*
2054  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2055  * driver restart.  We tear down our blkif structure and recreate it, but
2056  * leave the device-layer structures intact so that this is transparent to the
2057  * rest of the kernel.
2058  */
2059 static int blkfront_resume(struct xenbus_device *dev)
2060 {
2061     struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2062     int err = 0;
2063     unsigned int i, j;
2064     struct blkfront_ring_info *rinfo;
2065 
2066     dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2067 
2068     bio_list_init(&info->bio_list);
2069     INIT_LIST_HEAD(&info->requests);
2070     for_each_rinfo(info, rinfo, i) {
2071         struct bio_list merge_bio;
2072         struct blk_shadow *shadow = rinfo->shadow;
2073 
2074         for (j = 0; j < BLK_RING_SIZE(info); j++) {
2075             /* Not in use? */
2076             if (!shadow[j].request)
2077                 continue;
2078 
2079             /*
2080              * Get the bios in the request so we can re-queue them.
2081              */
2082             if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2083                 req_op(shadow[j].request) == REQ_OP_DISCARD ||
2084                 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2085                 shadow[j].request->cmd_flags & REQ_FUA) {
2086                 /*
2087                  * Flush operations don't contain bios, so
2088                  * we need to requeue the whole request
2089                  *
2090                  * XXX: but this doesn't make any sense for a
2091                  * write with the FUA flag set..
2092                  */
2093                 list_add(&shadow[j].request->queuelist, &info->requests);
2094                 continue;
2095             }
2096             merge_bio.head = shadow[j].request->bio;
2097             merge_bio.tail = shadow[j].request->biotail;
2098             bio_list_merge(&info->bio_list, &merge_bio);
2099             shadow[j].request->bio = NULL;
2100             blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2101         }
2102     }
2103 
2104     blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2105 
2106     err = talk_to_blkback(dev, info);
2107     if (!err)
2108         blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2109 
2110     /*
2111      * We have to wait for the backend to switch to
2112      * connected state, since we want to read which
2113      * features it supports.
2114      */
2115 
2116     return err;
2117 }
2118 
2119 static void blkfront_closing(struct blkfront_info *info)
2120 {
2121     struct xenbus_device *xbdev = info->xbdev;
2122     struct blkfront_ring_info *rinfo;
2123     unsigned int i;
2124 
2125     if (xbdev->state == XenbusStateClosing)
2126         return;
2127 
2128     /* No more blkif_request(). */
2129     if (info->rq && info->gd) {
2130         blk_mq_stop_hw_queues(info->rq);
2131         blk_mark_disk_dead(info->gd);
2132         set_capacity(info->gd, 0);
2133     }
2134 
2135     for_each_rinfo(info, rinfo, i) {
2136         /* No more gnttab callback work. */
2137         gnttab_cancel_free_callback(&rinfo->callback);
2138 
2139         /* Flush gnttab callback work. Must be done with no locks held. */
2140         flush_work(&rinfo->work);
2141     }
2142 
2143     xenbus_frontend_closed(xbdev);
2144 }
2145 
2146 static void blkfront_setup_discard(struct blkfront_info *info)
2147 {
2148     info->feature_discard = 1;
2149     info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2150                              "discard-granularity",
2151                              0);
2152     info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2153                                "discard-alignment", 0);
2154     info->feature_secdiscard =
2155         !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2156                        0);
2157 }
2158 
2159 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2160 {
2161     unsigned int psegs, grants, memflags;
2162     int err, i;
2163     struct blkfront_info *info = rinfo->dev_info;
2164 
2165     memflags = memalloc_noio_save();
2166 
2167     if (info->max_indirect_segments == 0) {
2168         if (!HAS_EXTRA_REQ)
2169             grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2170         else {
2171             /*
2172              * When an extra req is required, the maximum
2173              * grants supported is related to the size of the
2174              * Linux block segment.
2175              */
2176             grants = GRANTS_PER_PSEG;
2177         }
2178     }
2179     else
2180         grants = info->max_indirect_segments;
2181     psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2182 
2183     err = fill_grant_buffer(rinfo,
2184                 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2185     if (err)
2186         goto out_of_memory;
2187 
2188     if (!info->bounce && info->max_indirect_segments) {
2189         /*
2190          * We are using indirect descriptors but don't have a bounce
2191          * buffer, we need to allocate a set of pages that can be
2192          * used for mapping indirect grefs
2193          */
2194         int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2195 
2196         BUG_ON(!list_empty(&rinfo->indirect_pages));
2197         for (i = 0; i < num; i++) {
2198             struct page *indirect_page = alloc_page(GFP_KERNEL |
2199                                 __GFP_ZERO);
2200             if (!indirect_page)
2201                 goto out_of_memory;
2202             list_add(&indirect_page->lru, &rinfo->indirect_pages);
2203         }
2204     }
2205 
2206     for (i = 0; i < BLK_RING_SIZE(info); i++) {
2207         rinfo->shadow[i].grants_used =
2208             kvcalloc(grants,
2209                  sizeof(rinfo->shadow[i].grants_used[0]),
2210                  GFP_KERNEL);
2211         rinfo->shadow[i].sg = kvcalloc(psegs,
2212                            sizeof(rinfo->shadow[i].sg[0]),
2213                            GFP_KERNEL);
2214         if (info->max_indirect_segments)
2215             rinfo->shadow[i].indirect_grants =
2216                 kvcalloc(INDIRECT_GREFS(grants),
2217                      sizeof(rinfo->shadow[i].indirect_grants[0]),
2218                      GFP_KERNEL);
2219         if ((rinfo->shadow[i].grants_used == NULL) ||
2220             (rinfo->shadow[i].sg == NULL) ||
2221              (info->max_indirect_segments &&
2222              (rinfo->shadow[i].indirect_grants == NULL)))
2223             goto out_of_memory;
2224         sg_init_table(rinfo->shadow[i].sg, psegs);
2225     }
2226 
2227     memalloc_noio_restore(memflags);
2228 
2229     return 0;
2230 
2231 out_of_memory:
2232     for (i = 0; i < BLK_RING_SIZE(info); i++) {
2233         kvfree(rinfo->shadow[i].grants_used);
2234         rinfo->shadow[i].grants_used = NULL;
2235         kvfree(rinfo->shadow[i].sg);
2236         rinfo->shadow[i].sg = NULL;
2237         kvfree(rinfo->shadow[i].indirect_grants);
2238         rinfo->shadow[i].indirect_grants = NULL;
2239     }
2240     if (!list_empty(&rinfo->indirect_pages)) {
2241         struct page *indirect_page, *n;
2242         list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2243             list_del(&indirect_page->lru);
2244             __free_page(indirect_page);
2245         }
2246     }
2247 
2248     memalloc_noio_restore(memflags);
2249 
2250     return -ENOMEM;
2251 }
2252 
2253 /*
2254  * Gather all backend feature-*
2255  */
2256 static void blkfront_gather_backend_features(struct blkfront_info *info)
2257 {
2258     unsigned int indirect_segments;
2259 
2260     info->feature_flush = 0;
2261     info->feature_fua = 0;
2262 
2263     /*
2264      * If there's no "feature-barrier" defined, then it means
2265      * we're dealing with a very old backend which writes
2266      * synchronously; nothing to do.
2267      *
2268      * If there are barriers, then we use flush.
2269      */
2270     if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2271         info->feature_flush = 1;
2272         info->feature_fua = 1;
2273     }
2274 
2275     /*
2276      * And if there is "feature-flush-cache" use that above
2277      * barriers.
2278      */
2279     if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2280                  0)) {
2281         info->feature_flush = 1;
2282         info->feature_fua = 0;
2283     }
2284 
2285     if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2286         blkfront_setup_discard(info);
2287 
2288     if (info->feature_persistent_parm)
2289         info->feature_persistent =
2290             !!xenbus_read_unsigned(info->xbdev->otherend,
2291                            "feature-persistent", 0);
2292     if (info->feature_persistent)
2293         info->bounce = true;
2294 
2295     indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2296                     "feature-max-indirect-segments", 0);
2297     if (indirect_segments > xen_blkif_max_segments)
2298         indirect_segments = xen_blkif_max_segments;
2299     if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2300         indirect_segments = 0;
2301     info->max_indirect_segments = indirect_segments;
2302 
2303     if (info->feature_persistent) {
2304         mutex_lock(&blkfront_mutex);
2305         schedule_delayed_work(&blkfront_work, HZ * 10);
2306         mutex_unlock(&blkfront_mutex);
2307     }
2308 }
2309 
2310 /*
2311  * Invoked when the backend is finally 'ready' (and has told produced
2312  * the details about the physical device - #sectors, size, etc).
2313  */
2314 static void blkfront_connect(struct blkfront_info *info)
2315 {
2316     unsigned long long sectors;
2317     unsigned long sector_size;
2318     unsigned int physical_sector_size;
2319     int err, i;
2320     struct blkfront_ring_info *rinfo;
2321 
2322     switch (info->connected) {
2323     case BLKIF_STATE_CONNECTED:
2324         /*
2325          * Potentially, the back-end may be signalling
2326          * a capacity change; update the capacity.
2327          */
2328         err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2329                    "sectors", "%Lu", &sectors);
2330         if (XENBUS_EXIST_ERR(err))
2331             return;
2332         printk(KERN_INFO "Setting capacity to %Lu\n",
2333                sectors);
2334         set_capacity_and_notify(info->gd, sectors);
2335 
2336         return;
2337     case BLKIF_STATE_SUSPENDED:
2338         /*
2339          * If we are recovering from suspension, we need to wait
2340          * for the backend to announce it's features before
2341          * reconnecting, at least we need to know if the backend
2342          * supports indirect descriptors, and how many.
2343          */
2344         blkif_recover(info);
2345         return;
2346 
2347     default:
2348         break;
2349     }
2350 
2351     dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2352         __func__, info->xbdev->otherend);
2353 
2354     err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2355                 "sectors", "%llu", &sectors,
2356                 "info", "%u", &info->vdisk_info,
2357                 "sector-size", "%lu", &sector_size,
2358                 NULL);
2359     if (err) {
2360         xenbus_dev_fatal(info->xbdev, err,
2361                  "reading backend fields at %s",
2362                  info->xbdev->otherend);
2363         return;
2364     }
2365 
2366     /*
2367      * physical-sector-size is a newer field, so old backends may not
2368      * provide this. Assume physical sector size to be the same as
2369      * sector_size in that case.
2370      */
2371     physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2372                             "physical-sector-size",
2373                             sector_size);
2374     blkfront_gather_backend_features(info);
2375     for_each_rinfo(info, rinfo, i) {
2376         err = blkfront_setup_indirect(rinfo);
2377         if (err) {
2378             xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2379                      info->xbdev->otherend);
2380             blkif_free(info, 0);
2381             break;
2382         }
2383     }
2384 
2385     err = xlvbd_alloc_gendisk(sectors, info, sector_size,
2386                   physical_sector_size);
2387     if (err) {
2388         xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2389                  info->xbdev->otherend);
2390         goto fail;
2391     }
2392 
2393     xenbus_switch_state(info->xbdev, XenbusStateConnected);
2394 
2395     /* Kick pending requests. */
2396     info->connected = BLKIF_STATE_CONNECTED;
2397     for_each_rinfo(info, rinfo, i)
2398         kick_pending_request_queues(rinfo);
2399 
2400     err = device_add_disk(&info->xbdev->dev, info->gd, NULL);
2401     if (err) {
2402         put_disk(info->gd);
2403         blk_mq_free_tag_set(&info->tag_set);
2404         info->rq = NULL;
2405         goto fail;
2406     }
2407 
2408     info->is_ready = 1;
2409     return;
2410 
2411 fail:
2412     blkif_free(info, 0);
2413     return;
2414 }
2415 
2416 /*
2417  * Callback received when the backend's state changes.
2418  */
2419 static void blkback_changed(struct xenbus_device *dev,
2420                 enum xenbus_state backend_state)
2421 {
2422     struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2423 
2424     dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2425 
2426     switch (backend_state) {
2427     case XenbusStateInitWait:
2428         if (dev->state != XenbusStateInitialising)
2429             break;
2430         if (talk_to_blkback(dev, info))
2431             break;
2432         break;
2433     case XenbusStateInitialising:
2434     case XenbusStateInitialised:
2435     case XenbusStateReconfiguring:
2436     case XenbusStateReconfigured:
2437     case XenbusStateUnknown:
2438         break;
2439 
2440     case XenbusStateConnected:
2441         /*
2442          * talk_to_blkback sets state to XenbusStateInitialised
2443          * and blkfront_connect sets it to XenbusStateConnected
2444          * (if connection went OK).
2445          *
2446          * If the backend (or toolstack) decides to poke at backend
2447          * state (and re-trigger the watch by setting the state repeatedly
2448          * to XenbusStateConnected (4)) we need to deal with this.
2449          * This is allowed as this is used to communicate to the guest
2450          * that the size of disk has changed!
2451          */
2452         if ((dev->state != XenbusStateInitialised) &&
2453             (dev->state != XenbusStateConnected)) {
2454             if (talk_to_blkback(dev, info))
2455                 break;
2456         }
2457 
2458         blkfront_connect(info);
2459         break;
2460 
2461     case XenbusStateClosed:
2462         if (dev->state == XenbusStateClosed)
2463             break;
2464         fallthrough;
2465     case XenbusStateClosing:
2466         blkfront_closing(info);
2467         break;
2468     }
2469 }
2470 
2471 static int blkfront_remove(struct xenbus_device *xbdev)
2472 {
2473     struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2474 
2475     dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2476 
2477     if (info->gd)
2478         del_gendisk(info->gd);
2479 
2480     mutex_lock(&blkfront_mutex);
2481     list_del(&info->info_list);
2482     mutex_unlock(&blkfront_mutex);
2483 
2484     blkif_free(info, 0);
2485     if (info->gd) {
2486         xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2487         put_disk(info->gd);
2488         blk_mq_free_tag_set(&info->tag_set);
2489     }
2490 
2491     kfree(info);
2492     return 0;
2493 }
2494 
2495 static int blkfront_is_ready(struct xenbus_device *dev)
2496 {
2497     struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2498 
2499     return info->is_ready && info->xbdev;
2500 }
2501 
2502 static const struct block_device_operations xlvbd_block_fops =
2503 {
2504     .owner = THIS_MODULE,
2505     .getgeo = blkif_getgeo,
2506     .ioctl = blkif_ioctl,
2507     .compat_ioctl = blkdev_compat_ptr_ioctl,
2508 };
2509 
2510 
2511 static const struct xenbus_device_id blkfront_ids[] = {
2512     { "vbd" },
2513     { "" }
2514 };
2515 
2516 static struct xenbus_driver blkfront_driver = {
2517     .ids  = blkfront_ids,
2518     .probe = blkfront_probe,
2519     .remove = blkfront_remove,
2520     .resume = blkfront_resume,
2521     .otherend_changed = blkback_changed,
2522     .is_ready = blkfront_is_ready,
2523 };
2524 
2525 static void purge_persistent_grants(struct blkfront_info *info)
2526 {
2527     unsigned int i;
2528     unsigned long flags;
2529     struct blkfront_ring_info *rinfo;
2530 
2531     for_each_rinfo(info, rinfo, i) {
2532         struct grant *gnt_list_entry, *tmp;
2533         LIST_HEAD(grants);
2534 
2535         spin_lock_irqsave(&rinfo->ring_lock, flags);
2536 
2537         if (rinfo->persistent_gnts_c == 0) {
2538             spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2539             continue;
2540         }
2541 
2542         list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2543                      node) {
2544             if (gnt_list_entry->gref == INVALID_GRANT_REF ||
2545                 !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2546                 continue;
2547 
2548             list_del(&gnt_list_entry->node);
2549             rinfo->persistent_gnts_c--;
2550             gnt_list_entry->gref = INVALID_GRANT_REF;
2551             list_add_tail(&gnt_list_entry->node, &grants);
2552         }
2553 
2554         list_splice_tail(&grants, &rinfo->grants);
2555 
2556         spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2557     }
2558 }
2559 
2560 static void blkfront_delay_work(struct work_struct *work)
2561 {
2562     struct blkfront_info *info;
2563     bool need_schedule_work = false;
2564 
2565     /*
2566      * Note that when using bounce buffers but not persistent grants
2567      * there's no need to run blkfront_delay_work because grants are
2568      * revoked in blkif_completion or else an error is reported and the
2569      * connection is closed.
2570      */
2571 
2572     mutex_lock(&blkfront_mutex);
2573 
2574     list_for_each_entry(info, &info_list, info_list) {
2575         if (info->feature_persistent) {
2576             need_schedule_work = true;
2577             mutex_lock(&info->mutex);
2578             purge_persistent_grants(info);
2579             mutex_unlock(&info->mutex);
2580         }
2581     }
2582 
2583     if (need_schedule_work)
2584         schedule_delayed_work(&blkfront_work, HZ * 10);
2585 
2586     mutex_unlock(&blkfront_mutex);
2587 }
2588 
2589 static int __init xlblk_init(void)
2590 {
2591     int ret;
2592     int nr_cpus = num_online_cpus();
2593 
2594     if (!xen_domain())
2595         return -ENODEV;
2596 
2597     if (!xen_has_pv_disk_devices())
2598         return -ENODEV;
2599 
2600     if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2601         pr_warn("xen_blk: can't get major %d with name %s\n",
2602             XENVBD_MAJOR, DEV_NAME);
2603         return -ENODEV;
2604     }
2605 
2606     if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2607         xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2608 
2609     if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2610         pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2611             xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2612         xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2613     }
2614 
2615     if (xen_blkif_max_queues > nr_cpus) {
2616         pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2617             xen_blkif_max_queues, nr_cpus);
2618         xen_blkif_max_queues = nr_cpus;
2619     }
2620 
2621     INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2622 
2623     ret = xenbus_register_frontend(&blkfront_driver);
2624     if (ret) {
2625         unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2626         return ret;
2627     }
2628 
2629     return 0;
2630 }
2631 module_init(xlblk_init);
2632 
2633 
2634 static void __exit xlblk_exit(void)
2635 {
2636     cancel_delayed_work_sync(&blkfront_work);
2637 
2638     xenbus_unregister_driver(&blkfront_driver);
2639     unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2640     kfree(minors);
2641 }
2642 module_exit(xlblk_exit);
2643 
2644 MODULE_DESCRIPTION("Xen virtual block device frontend");
2645 MODULE_LICENSE("GPL");
2646 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2647 MODULE_ALIAS("xen:vbd");
2648 MODULE_ALIAS("xenblk");