0001
0002
0003
0004
0005
0006 #include <linux/module.h>
0007
0008 #include <linux/moduleparam.h>
0009 #include <linux/sched.h>
0010 #include <linux/fs.h>
0011 #include <linux/init.h>
0012 #include "null_blk.h"
0013
0014 #undef pr_fmt
0015 #define pr_fmt(fmt) "null_blk: " fmt
0016
0017 #define FREE_BATCH 16
0018
0019 #define TICKS_PER_SEC 50ULL
0020 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
0021
0022 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
0023 static DECLARE_FAULT_ATTR(null_timeout_attr);
0024 static DECLARE_FAULT_ATTR(null_requeue_attr);
0025 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
0026 #endif
0027
0028 static inline u64 mb_per_tick(int mbps)
0029 {
0030 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
0031 }
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041 enum nullb_device_flags {
0042 NULLB_DEV_FL_CONFIGURED = 0,
0043 NULLB_DEV_FL_UP = 1,
0044 NULLB_DEV_FL_THROTTLED = 2,
0045 NULLB_DEV_FL_CACHE = 3,
0046 };
0047
0048 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061 struct nullb_page {
0062 struct page *page;
0063 DECLARE_BITMAP(bitmap, MAP_SZ);
0064 };
0065 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
0066 #define NULLB_PAGE_FREE (MAP_SZ - 2)
0067
0068 static LIST_HEAD(nullb_list);
0069 static struct mutex lock;
0070 static int null_major;
0071 static DEFINE_IDA(nullb_indexes);
0072 static struct blk_mq_tag_set tag_set;
0073
0074 enum {
0075 NULL_IRQ_NONE = 0,
0076 NULL_IRQ_SOFTIRQ = 1,
0077 NULL_IRQ_TIMER = 2,
0078 };
0079
0080 static bool g_virt_boundary = false;
0081 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
0082 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
0083
0084 static int g_no_sched;
0085 module_param_named(no_sched, g_no_sched, int, 0444);
0086 MODULE_PARM_DESC(no_sched, "No io scheduler");
0087
0088 static int g_submit_queues = 1;
0089 module_param_named(submit_queues, g_submit_queues, int, 0444);
0090 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
0091
0092 static int g_poll_queues = 1;
0093 module_param_named(poll_queues, g_poll_queues, int, 0444);
0094 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
0095
0096 static int g_home_node = NUMA_NO_NODE;
0097 module_param_named(home_node, g_home_node, int, 0444);
0098 MODULE_PARM_DESC(home_node, "Home node for the device");
0099
0100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
0101
0102
0103
0104
0105 static char g_timeout_str[80];
0106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
0107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
0108
0109 static char g_requeue_str[80];
0110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
0111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
0112
0113 static char g_init_hctx_str[80];
0114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
0115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
0116 #endif
0117
0118 static int g_queue_mode = NULL_Q_MQ;
0119
0120 static int null_param_store_val(const char *str, int *val, int min, int max)
0121 {
0122 int ret, new_val;
0123
0124 ret = kstrtoint(str, 10, &new_val);
0125 if (ret)
0126 return -EINVAL;
0127
0128 if (new_val < min || new_val > max)
0129 return -EINVAL;
0130
0131 *val = new_val;
0132 return 0;
0133 }
0134
0135 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
0136 {
0137 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
0138 }
0139
0140 static const struct kernel_param_ops null_queue_mode_param_ops = {
0141 .set = null_set_queue_mode,
0142 .get = param_get_int,
0143 };
0144
0145 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
0146 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
0147
0148 static int g_gb = 250;
0149 module_param_named(gb, g_gb, int, 0444);
0150 MODULE_PARM_DESC(gb, "Size in GB");
0151
0152 static int g_bs = 512;
0153 module_param_named(bs, g_bs, int, 0444);
0154 MODULE_PARM_DESC(bs, "Block size (in bytes)");
0155
0156 static int g_max_sectors;
0157 module_param_named(max_sectors, g_max_sectors, int, 0444);
0158 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
0159
0160 static unsigned int nr_devices = 1;
0161 module_param(nr_devices, uint, 0444);
0162 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
0163
0164 static bool g_blocking;
0165 module_param_named(blocking, g_blocking, bool, 0444);
0166 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
0167
0168 static bool shared_tags;
0169 module_param(shared_tags, bool, 0444);
0170 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
0171
0172 static bool g_shared_tag_bitmap;
0173 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
0174 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
0175
0176 static int g_irqmode = NULL_IRQ_SOFTIRQ;
0177
0178 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
0179 {
0180 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
0181 NULL_IRQ_TIMER);
0182 }
0183
0184 static const struct kernel_param_ops null_irqmode_param_ops = {
0185 .set = null_set_irqmode,
0186 .get = param_get_int,
0187 };
0188
0189 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
0190 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
0191
0192 static unsigned long g_completion_nsec = 10000;
0193 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
0194 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
0195
0196 static int g_hw_queue_depth = 64;
0197 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
0198 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
0199
0200 static bool g_use_per_node_hctx;
0201 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
0202 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
0203
0204 static bool g_memory_backed;
0205 module_param_named(memory_backed, g_memory_backed, bool, 0444);
0206 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
0207
0208 static bool g_discard;
0209 module_param_named(discard, g_discard, bool, 0444);
0210 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
0211
0212 static unsigned long g_cache_size;
0213 module_param_named(cache_size, g_cache_size, ulong, 0444);
0214 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
0215
0216 static unsigned int g_mbps;
0217 module_param_named(mbps, g_mbps, uint, 0444);
0218 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
0219
0220 static bool g_zoned;
0221 module_param_named(zoned, g_zoned, bool, S_IRUGO);
0222 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
0223
0224 static unsigned long g_zone_size = 256;
0225 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
0226 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
0227
0228 static unsigned long g_zone_capacity;
0229 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
0230 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
0231
0232 static unsigned int g_zone_nr_conv;
0233 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
0234 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
0235
0236 static unsigned int g_zone_max_open;
0237 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
0238 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
0239
0240 static unsigned int g_zone_max_active;
0241 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
0242 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
0243
0244 static struct nullb_device *null_alloc_dev(void);
0245 static void null_free_dev(struct nullb_device *dev);
0246 static void null_del_dev(struct nullb *nullb);
0247 static int null_add_dev(struct nullb_device *dev);
0248 static struct nullb *null_find_dev_by_name(const char *name);
0249 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
0250
0251 static inline struct nullb_device *to_nullb_device(struct config_item *item)
0252 {
0253 return item ? container_of(item, struct nullb_device, item) : NULL;
0254 }
0255
0256 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
0257 {
0258 return snprintf(page, PAGE_SIZE, "%u\n", val);
0259 }
0260
0261 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
0262 char *page)
0263 {
0264 return snprintf(page, PAGE_SIZE, "%lu\n", val);
0265 }
0266
0267 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
0268 {
0269 return snprintf(page, PAGE_SIZE, "%u\n", val);
0270 }
0271
0272 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
0273 const char *page, size_t count)
0274 {
0275 unsigned int tmp;
0276 int result;
0277
0278 result = kstrtouint(page, 0, &tmp);
0279 if (result < 0)
0280 return result;
0281
0282 *val = tmp;
0283 return count;
0284 }
0285
0286 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
0287 const char *page, size_t count)
0288 {
0289 int result;
0290 unsigned long tmp;
0291
0292 result = kstrtoul(page, 0, &tmp);
0293 if (result < 0)
0294 return result;
0295
0296 *val = tmp;
0297 return count;
0298 }
0299
0300 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
0301 size_t count)
0302 {
0303 bool tmp;
0304 int result;
0305
0306 result = kstrtobool(page, &tmp);
0307 if (result < 0)
0308 return result;
0309
0310 *val = tmp;
0311 return count;
0312 }
0313
0314
0315 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
0316 static ssize_t \
0317 nullb_device_##NAME##_show(struct config_item *item, char *page) \
0318 { \
0319 return nullb_device_##TYPE##_attr_show( \
0320 to_nullb_device(item)->NAME, page); \
0321 } \
0322 static ssize_t \
0323 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
0324 size_t count) \
0325 { \
0326 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
0327 struct nullb_device *dev = to_nullb_device(item); \
0328 TYPE new_value = 0; \
0329 int ret; \
0330 \
0331 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
0332 if (ret < 0) \
0333 return ret; \
0334 if (apply_fn) \
0335 ret = apply_fn(dev, new_value); \
0336 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
0337 ret = -EBUSY; \
0338 if (ret < 0) \
0339 return ret; \
0340 dev->NAME = new_value; \
0341 return count; \
0342 } \
0343 CONFIGFS_ATTR(nullb_device_, NAME);
0344
0345 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
0346 unsigned int submit_queues,
0347 unsigned int poll_queues)
0348
0349 {
0350 struct blk_mq_tag_set *set;
0351 int ret, nr_hw_queues;
0352
0353 if (!dev->nullb)
0354 return 0;
0355
0356
0357
0358
0359 if (!submit_queues)
0360 return -EINVAL;
0361
0362
0363
0364
0365
0366 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
0367 return -EINVAL;
0368
0369
0370
0371
0372
0373 dev->prev_submit_queues = dev->submit_queues;
0374 dev->prev_poll_queues = dev->poll_queues;
0375 dev->submit_queues = submit_queues;
0376 dev->poll_queues = poll_queues;
0377
0378 set = dev->nullb->tag_set;
0379 nr_hw_queues = submit_queues + poll_queues;
0380 blk_mq_update_nr_hw_queues(set, nr_hw_queues);
0381 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
0382
0383 if (ret) {
0384
0385 dev->submit_queues = dev->prev_submit_queues;
0386 dev->poll_queues = dev->prev_poll_queues;
0387 }
0388
0389 return ret;
0390 }
0391
0392 static int nullb_apply_submit_queues(struct nullb_device *dev,
0393 unsigned int submit_queues)
0394 {
0395 return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
0396 }
0397
0398 static int nullb_apply_poll_queues(struct nullb_device *dev,
0399 unsigned int poll_queues)
0400 {
0401 return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
0402 }
0403
0404 NULLB_DEVICE_ATTR(size, ulong, NULL);
0405 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
0406 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
0407 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
0408 NULLB_DEVICE_ATTR(home_node, uint, NULL);
0409 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
0410 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
0411 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
0412 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
0413 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
0414 NULLB_DEVICE_ATTR(index, uint, NULL);
0415 NULLB_DEVICE_ATTR(blocking, bool, NULL);
0416 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
0417 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
0418 NULLB_DEVICE_ATTR(discard, bool, NULL);
0419 NULLB_DEVICE_ATTR(mbps, uint, NULL);
0420 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
0421 NULLB_DEVICE_ATTR(zoned, bool, NULL);
0422 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
0423 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
0424 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
0425 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
0426 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
0427 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
0428 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
0429 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
0430
0431 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
0432 {
0433 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
0434 }
0435
0436 static ssize_t nullb_device_power_store(struct config_item *item,
0437 const char *page, size_t count)
0438 {
0439 struct nullb_device *dev = to_nullb_device(item);
0440 bool newp = false;
0441 ssize_t ret;
0442
0443 ret = nullb_device_bool_attr_store(&newp, page, count);
0444 if (ret < 0)
0445 return ret;
0446
0447 if (!dev->power && newp) {
0448 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
0449 return count;
0450 ret = null_add_dev(dev);
0451 if (ret) {
0452 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
0453 return ret;
0454 }
0455
0456 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
0457 dev->power = newp;
0458 } else if (dev->power && !newp) {
0459 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
0460 mutex_lock(&lock);
0461 dev->power = newp;
0462 null_del_dev(dev->nullb);
0463 mutex_unlock(&lock);
0464 }
0465 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
0466 }
0467
0468 return count;
0469 }
0470
0471 CONFIGFS_ATTR(nullb_device_, power);
0472
0473 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
0474 {
0475 struct nullb_device *t_dev = to_nullb_device(item);
0476
0477 return badblocks_show(&t_dev->badblocks, page, 0);
0478 }
0479
0480 static ssize_t nullb_device_badblocks_store(struct config_item *item,
0481 const char *page, size_t count)
0482 {
0483 struct nullb_device *t_dev = to_nullb_device(item);
0484 char *orig, *buf, *tmp;
0485 u64 start, end;
0486 int ret;
0487
0488 orig = kstrndup(page, count, GFP_KERNEL);
0489 if (!orig)
0490 return -ENOMEM;
0491
0492 buf = strstrip(orig);
0493
0494 ret = -EINVAL;
0495 if (buf[0] != '+' && buf[0] != '-')
0496 goto out;
0497 tmp = strchr(&buf[1], '-');
0498 if (!tmp)
0499 goto out;
0500 *tmp = '\0';
0501 ret = kstrtoull(buf + 1, 0, &start);
0502 if (ret)
0503 goto out;
0504 ret = kstrtoull(tmp + 1, 0, &end);
0505 if (ret)
0506 goto out;
0507 ret = -EINVAL;
0508 if (start > end)
0509 goto out;
0510
0511 cmpxchg(&t_dev->badblocks.shift, -1, 0);
0512 if (buf[0] == '+')
0513 ret = badblocks_set(&t_dev->badblocks, start,
0514 end - start + 1, 1);
0515 else
0516 ret = badblocks_clear(&t_dev->badblocks, start,
0517 end - start + 1);
0518 if (ret == 0)
0519 ret = count;
0520 out:
0521 kfree(orig);
0522 return ret;
0523 }
0524 CONFIGFS_ATTR(nullb_device_, badblocks);
0525
0526 static struct configfs_attribute *nullb_device_attrs[] = {
0527 &nullb_device_attr_size,
0528 &nullb_device_attr_completion_nsec,
0529 &nullb_device_attr_submit_queues,
0530 &nullb_device_attr_poll_queues,
0531 &nullb_device_attr_home_node,
0532 &nullb_device_attr_queue_mode,
0533 &nullb_device_attr_blocksize,
0534 &nullb_device_attr_max_sectors,
0535 &nullb_device_attr_irqmode,
0536 &nullb_device_attr_hw_queue_depth,
0537 &nullb_device_attr_index,
0538 &nullb_device_attr_blocking,
0539 &nullb_device_attr_use_per_node_hctx,
0540 &nullb_device_attr_power,
0541 &nullb_device_attr_memory_backed,
0542 &nullb_device_attr_discard,
0543 &nullb_device_attr_mbps,
0544 &nullb_device_attr_cache_size,
0545 &nullb_device_attr_badblocks,
0546 &nullb_device_attr_zoned,
0547 &nullb_device_attr_zone_size,
0548 &nullb_device_attr_zone_capacity,
0549 &nullb_device_attr_zone_nr_conv,
0550 &nullb_device_attr_zone_max_open,
0551 &nullb_device_attr_zone_max_active,
0552 &nullb_device_attr_virt_boundary,
0553 &nullb_device_attr_no_sched,
0554 &nullb_device_attr_shared_tag_bitmap,
0555 NULL,
0556 };
0557
0558 static void nullb_device_release(struct config_item *item)
0559 {
0560 struct nullb_device *dev = to_nullb_device(item);
0561
0562 null_free_device_storage(dev, false);
0563 null_free_dev(dev);
0564 }
0565
0566 static struct configfs_item_operations nullb_device_ops = {
0567 .release = nullb_device_release,
0568 };
0569
0570 static const struct config_item_type nullb_device_type = {
0571 .ct_item_ops = &nullb_device_ops,
0572 .ct_attrs = nullb_device_attrs,
0573 .ct_owner = THIS_MODULE,
0574 };
0575
0576 static struct
0577 config_item *nullb_group_make_item(struct config_group *group, const char *name)
0578 {
0579 struct nullb_device *dev;
0580
0581 if (null_find_dev_by_name(name))
0582 return ERR_PTR(-EEXIST);
0583
0584 dev = null_alloc_dev();
0585 if (!dev)
0586 return ERR_PTR(-ENOMEM);
0587
0588 config_item_init_type_name(&dev->item, name, &nullb_device_type);
0589
0590 return &dev->item;
0591 }
0592
0593 static void
0594 nullb_group_drop_item(struct config_group *group, struct config_item *item)
0595 {
0596 struct nullb_device *dev = to_nullb_device(item);
0597
0598 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
0599 mutex_lock(&lock);
0600 dev->power = false;
0601 null_del_dev(dev->nullb);
0602 mutex_unlock(&lock);
0603 }
0604
0605 config_item_put(item);
0606 }
0607
0608 static ssize_t memb_group_features_show(struct config_item *item, char *page)
0609 {
0610 return snprintf(page, PAGE_SIZE,
0611 "badblocks,blocking,blocksize,cache_size,"
0612 "completion_nsec,discard,home_node,hw_queue_depth,"
0613 "irqmode,max_sectors,mbps,memory_backed,no_sched,"
0614 "poll_queues,power,queue_mode,shared_tag_bitmap,size,"
0615 "submit_queues,use_per_node_hctx,virt_boundary,zoned,"
0616 "zone_capacity,zone_max_active,zone_max_open,"
0617 "zone_nr_conv,zone_size\n");
0618 }
0619
0620 CONFIGFS_ATTR_RO(memb_group_, features);
0621
0622 static struct configfs_attribute *nullb_group_attrs[] = {
0623 &memb_group_attr_features,
0624 NULL,
0625 };
0626
0627 static struct configfs_group_operations nullb_group_ops = {
0628 .make_item = nullb_group_make_item,
0629 .drop_item = nullb_group_drop_item,
0630 };
0631
0632 static const struct config_item_type nullb_group_type = {
0633 .ct_group_ops = &nullb_group_ops,
0634 .ct_attrs = nullb_group_attrs,
0635 .ct_owner = THIS_MODULE,
0636 };
0637
0638 static struct configfs_subsystem nullb_subsys = {
0639 .su_group = {
0640 .cg_item = {
0641 .ci_namebuf = "nullb",
0642 .ci_type = &nullb_group_type,
0643 },
0644 },
0645 };
0646
0647 static inline int null_cache_active(struct nullb *nullb)
0648 {
0649 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
0650 }
0651
0652 static struct nullb_device *null_alloc_dev(void)
0653 {
0654 struct nullb_device *dev;
0655
0656 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
0657 if (!dev)
0658 return NULL;
0659 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
0660 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
0661 if (badblocks_init(&dev->badblocks, 0)) {
0662 kfree(dev);
0663 return NULL;
0664 }
0665
0666 dev->size = g_gb * 1024;
0667 dev->completion_nsec = g_completion_nsec;
0668 dev->submit_queues = g_submit_queues;
0669 dev->prev_submit_queues = g_submit_queues;
0670 dev->poll_queues = g_poll_queues;
0671 dev->prev_poll_queues = g_poll_queues;
0672 dev->home_node = g_home_node;
0673 dev->queue_mode = g_queue_mode;
0674 dev->blocksize = g_bs;
0675 dev->max_sectors = g_max_sectors;
0676 dev->irqmode = g_irqmode;
0677 dev->hw_queue_depth = g_hw_queue_depth;
0678 dev->blocking = g_blocking;
0679 dev->memory_backed = g_memory_backed;
0680 dev->discard = g_discard;
0681 dev->cache_size = g_cache_size;
0682 dev->mbps = g_mbps;
0683 dev->use_per_node_hctx = g_use_per_node_hctx;
0684 dev->zoned = g_zoned;
0685 dev->zone_size = g_zone_size;
0686 dev->zone_capacity = g_zone_capacity;
0687 dev->zone_nr_conv = g_zone_nr_conv;
0688 dev->zone_max_open = g_zone_max_open;
0689 dev->zone_max_active = g_zone_max_active;
0690 dev->virt_boundary = g_virt_boundary;
0691 dev->no_sched = g_no_sched;
0692 dev->shared_tag_bitmap = g_shared_tag_bitmap;
0693 return dev;
0694 }
0695
0696 static void null_free_dev(struct nullb_device *dev)
0697 {
0698 if (!dev)
0699 return;
0700
0701 null_free_zoned_dev(dev);
0702 badblocks_exit(&dev->badblocks);
0703 kfree(dev);
0704 }
0705
0706 static void put_tag(struct nullb_queue *nq, unsigned int tag)
0707 {
0708 clear_bit_unlock(tag, nq->tag_map);
0709
0710 if (waitqueue_active(&nq->wait))
0711 wake_up(&nq->wait);
0712 }
0713
0714 static unsigned int get_tag(struct nullb_queue *nq)
0715 {
0716 unsigned int tag;
0717
0718 do {
0719 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
0720 if (tag >= nq->queue_depth)
0721 return -1U;
0722 } while (test_and_set_bit_lock(tag, nq->tag_map));
0723
0724 return tag;
0725 }
0726
0727 static void free_cmd(struct nullb_cmd *cmd)
0728 {
0729 put_tag(cmd->nq, cmd->tag);
0730 }
0731
0732 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
0733
0734 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
0735 {
0736 struct nullb_cmd *cmd;
0737 unsigned int tag;
0738
0739 tag = get_tag(nq);
0740 if (tag != -1U) {
0741 cmd = &nq->cmds[tag];
0742 cmd->tag = tag;
0743 cmd->error = BLK_STS_OK;
0744 cmd->nq = nq;
0745 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
0746 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
0747 HRTIMER_MODE_REL);
0748 cmd->timer.function = null_cmd_timer_expired;
0749 }
0750 return cmd;
0751 }
0752
0753 return NULL;
0754 }
0755
0756 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
0757 {
0758 struct nullb_cmd *cmd;
0759 DEFINE_WAIT(wait);
0760
0761 do {
0762
0763
0764
0765
0766 cmd = __alloc_cmd(nq);
0767 if (cmd) {
0768 cmd->bio = bio;
0769 return cmd;
0770 }
0771 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
0772 io_schedule();
0773 finish_wait(&nq->wait, &wait);
0774 } while (1);
0775 }
0776
0777 static void end_cmd(struct nullb_cmd *cmd)
0778 {
0779 int queue_mode = cmd->nq->dev->queue_mode;
0780
0781 switch (queue_mode) {
0782 case NULL_Q_MQ:
0783 blk_mq_end_request(cmd->rq, cmd->error);
0784 return;
0785 case NULL_Q_BIO:
0786 cmd->bio->bi_status = cmd->error;
0787 bio_endio(cmd->bio);
0788 break;
0789 }
0790
0791 free_cmd(cmd);
0792 }
0793
0794 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
0795 {
0796 end_cmd(container_of(timer, struct nullb_cmd, timer));
0797
0798 return HRTIMER_NORESTART;
0799 }
0800
0801 static void null_cmd_end_timer(struct nullb_cmd *cmd)
0802 {
0803 ktime_t kt = cmd->nq->dev->completion_nsec;
0804
0805 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
0806 }
0807
0808 static void null_complete_rq(struct request *rq)
0809 {
0810 end_cmd(blk_mq_rq_to_pdu(rq));
0811 }
0812
0813 static struct nullb_page *null_alloc_page(void)
0814 {
0815 struct nullb_page *t_page;
0816
0817 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
0818 if (!t_page)
0819 return NULL;
0820
0821 t_page->page = alloc_pages(GFP_NOIO, 0);
0822 if (!t_page->page) {
0823 kfree(t_page);
0824 return NULL;
0825 }
0826
0827 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
0828 return t_page;
0829 }
0830
0831 static void null_free_page(struct nullb_page *t_page)
0832 {
0833 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
0834 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
0835 return;
0836 __free_page(t_page->page);
0837 kfree(t_page);
0838 }
0839
0840 static bool null_page_empty(struct nullb_page *page)
0841 {
0842 int size = MAP_SZ - 2;
0843
0844 return find_first_bit(page->bitmap, size) == size;
0845 }
0846
0847 static void null_free_sector(struct nullb *nullb, sector_t sector,
0848 bool is_cache)
0849 {
0850 unsigned int sector_bit;
0851 u64 idx;
0852 struct nullb_page *t_page, *ret;
0853 struct radix_tree_root *root;
0854
0855 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
0856 idx = sector >> PAGE_SECTORS_SHIFT;
0857 sector_bit = (sector & SECTOR_MASK);
0858
0859 t_page = radix_tree_lookup(root, idx);
0860 if (t_page) {
0861 __clear_bit(sector_bit, t_page->bitmap);
0862
0863 if (null_page_empty(t_page)) {
0864 ret = radix_tree_delete_item(root, idx, t_page);
0865 WARN_ON(ret != t_page);
0866 null_free_page(ret);
0867 if (is_cache)
0868 nullb->dev->curr_cache -= PAGE_SIZE;
0869 }
0870 }
0871 }
0872
0873 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
0874 struct nullb_page *t_page, bool is_cache)
0875 {
0876 struct radix_tree_root *root;
0877
0878 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
0879
0880 if (radix_tree_insert(root, idx, t_page)) {
0881 null_free_page(t_page);
0882 t_page = radix_tree_lookup(root, idx);
0883 WARN_ON(!t_page || t_page->page->index != idx);
0884 } else if (is_cache)
0885 nullb->dev->curr_cache += PAGE_SIZE;
0886
0887 return t_page;
0888 }
0889
0890 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
0891 {
0892 unsigned long pos = 0;
0893 int nr_pages;
0894 struct nullb_page *ret, *t_pages[FREE_BATCH];
0895 struct radix_tree_root *root;
0896
0897 root = is_cache ? &dev->cache : &dev->data;
0898
0899 do {
0900 int i;
0901
0902 nr_pages = radix_tree_gang_lookup(root,
0903 (void **)t_pages, pos, FREE_BATCH);
0904
0905 for (i = 0; i < nr_pages; i++) {
0906 pos = t_pages[i]->page->index;
0907 ret = radix_tree_delete_item(root, pos, t_pages[i]);
0908 WARN_ON(ret != t_pages[i]);
0909 null_free_page(ret);
0910 }
0911
0912 pos++;
0913 } while (nr_pages == FREE_BATCH);
0914
0915 if (is_cache)
0916 dev->curr_cache = 0;
0917 }
0918
0919 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
0920 sector_t sector, bool for_write, bool is_cache)
0921 {
0922 unsigned int sector_bit;
0923 u64 idx;
0924 struct nullb_page *t_page;
0925 struct radix_tree_root *root;
0926
0927 idx = sector >> PAGE_SECTORS_SHIFT;
0928 sector_bit = (sector & SECTOR_MASK);
0929
0930 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
0931 t_page = radix_tree_lookup(root, idx);
0932 WARN_ON(t_page && t_page->page->index != idx);
0933
0934 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
0935 return t_page;
0936
0937 return NULL;
0938 }
0939
0940 static struct nullb_page *null_lookup_page(struct nullb *nullb,
0941 sector_t sector, bool for_write, bool ignore_cache)
0942 {
0943 struct nullb_page *page = NULL;
0944
0945 if (!ignore_cache)
0946 page = __null_lookup_page(nullb, sector, for_write, true);
0947 if (page)
0948 return page;
0949 return __null_lookup_page(nullb, sector, for_write, false);
0950 }
0951
0952 static struct nullb_page *null_insert_page(struct nullb *nullb,
0953 sector_t sector, bool ignore_cache)
0954 __releases(&nullb->lock)
0955 __acquires(&nullb->lock)
0956 {
0957 u64 idx;
0958 struct nullb_page *t_page;
0959
0960 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
0961 if (t_page)
0962 return t_page;
0963
0964 spin_unlock_irq(&nullb->lock);
0965
0966 t_page = null_alloc_page();
0967 if (!t_page)
0968 goto out_lock;
0969
0970 if (radix_tree_preload(GFP_NOIO))
0971 goto out_freepage;
0972
0973 spin_lock_irq(&nullb->lock);
0974 idx = sector >> PAGE_SECTORS_SHIFT;
0975 t_page->page->index = idx;
0976 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
0977 radix_tree_preload_end();
0978
0979 return t_page;
0980 out_freepage:
0981 null_free_page(t_page);
0982 out_lock:
0983 spin_lock_irq(&nullb->lock);
0984 return null_lookup_page(nullb, sector, true, ignore_cache);
0985 }
0986
0987 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
0988 {
0989 int i;
0990 unsigned int offset;
0991 u64 idx;
0992 struct nullb_page *t_page, *ret;
0993 void *dst, *src;
0994
0995 idx = c_page->page->index;
0996
0997 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
0998
0999 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1000 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1001 null_free_page(c_page);
1002 if (t_page && null_page_empty(t_page)) {
1003 ret = radix_tree_delete_item(&nullb->dev->data,
1004 idx, t_page);
1005 null_free_page(t_page);
1006 }
1007 return 0;
1008 }
1009
1010 if (!t_page)
1011 return -ENOMEM;
1012
1013 src = kmap_atomic(c_page->page);
1014 dst = kmap_atomic(t_page->page);
1015
1016 for (i = 0; i < PAGE_SECTORS;
1017 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1018 if (test_bit(i, c_page->bitmap)) {
1019 offset = (i << SECTOR_SHIFT);
1020 memcpy(dst + offset, src + offset,
1021 nullb->dev->blocksize);
1022 __set_bit(i, t_page->bitmap);
1023 }
1024 }
1025
1026 kunmap_atomic(dst);
1027 kunmap_atomic(src);
1028
1029 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1030 null_free_page(ret);
1031 nullb->dev->curr_cache -= PAGE_SIZE;
1032
1033 return 0;
1034 }
1035
1036 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1037 {
1038 int i, err, nr_pages;
1039 struct nullb_page *c_pages[FREE_BATCH];
1040 unsigned long flushed = 0, one_round;
1041
1042 again:
1043 if ((nullb->dev->cache_size * 1024 * 1024) >
1044 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1045 return 0;
1046
1047 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1048 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1049
1050
1051
1052
1053 for (i = 0; i < nr_pages; i++) {
1054 nullb->cache_flush_pos = c_pages[i]->page->index;
1055
1056
1057
1058
1059 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1060 c_pages[i] = NULL;
1061 else
1062 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1063 }
1064
1065 one_round = 0;
1066 for (i = 0; i < nr_pages; i++) {
1067 if (c_pages[i] == NULL)
1068 continue;
1069 err = null_flush_cache_page(nullb, c_pages[i]);
1070 if (err)
1071 return err;
1072 one_round++;
1073 }
1074 flushed += one_round << PAGE_SHIFT;
1075
1076 if (n > flushed) {
1077 if (nr_pages == 0)
1078 nullb->cache_flush_pos = 0;
1079 if (one_round == 0) {
1080
1081 spin_unlock_irq(&nullb->lock);
1082 spin_lock_irq(&nullb->lock);
1083 }
1084 goto again;
1085 }
1086 return 0;
1087 }
1088
1089 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1090 unsigned int off, sector_t sector, size_t n, bool is_fua)
1091 {
1092 size_t temp, count = 0;
1093 unsigned int offset;
1094 struct nullb_page *t_page;
1095 void *dst, *src;
1096
1097 while (count < n) {
1098 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1099
1100 if (null_cache_active(nullb) && !is_fua)
1101 null_make_cache_space(nullb, PAGE_SIZE);
1102
1103 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1104 t_page = null_insert_page(nullb, sector,
1105 !null_cache_active(nullb) || is_fua);
1106 if (!t_page)
1107 return -ENOSPC;
1108
1109 src = kmap_atomic(source);
1110 dst = kmap_atomic(t_page->page);
1111 memcpy(dst + offset, src + off + count, temp);
1112 kunmap_atomic(dst);
1113 kunmap_atomic(src);
1114
1115 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1116
1117 if (is_fua)
1118 null_free_sector(nullb, sector, true);
1119
1120 count += temp;
1121 sector += temp >> SECTOR_SHIFT;
1122 }
1123 return 0;
1124 }
1125
1126 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1127 unsigned int off, sector_t sector, size_t n)
1128 {
1129 size_t temp, count = 0;
1130 unsigned int offset;
1131 struct nullb_page *t_page;
1132 void *dst, *src;
1133
1134 while (count < n) {
1135 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1136
1137 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1138 t_page = null_lookup_page(nullb, sector, false,
1139 !null_cache_active(nullb));
1140
1141 dst = kmap_atomic(dest);
1142 if (!t_page) {
1143 memset(dst + off + count, 0, temp);
1144 goto next;
1145 }
1146 src = kmap_atomic(t_page->page);
1147 memcpy(dst + off + count, src + offset, temp);
1148 kunmap_atomic(src);
1149 next:
1150 kunmap_atomic(dst);
1151
1152 count += temp;
1153 sector += temp >> SECTOR_SHIFT;
1154 }
1155 return 0;
1156 }
1157
1158 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1159 unsigned int len, unsigned int off)
1160 {
1161 void *dst;
1162
1163 dst = kmap_atomic(page);
1164 memset(dst + off, 0xFF, len);
1165 kunmap_atomic(dst);
1166 }
1167
1168 blk_status_t null_handle_discard(struct nullb_device *dev,
1169 sector_t sector, sector_t nr_sectors)
1170 {
1171 struct nullb *nullb = dev->nullb;
1172 size_t n = nr_sectors << SECTOR_SHIFT;
1173 size_t temp;
1174
1175 spin_lock_irq(&nullb->lock);
1176 while (n > 0) {
1177 temp = min_t(size_t, n, dev->blocksize);
1178 null_free_sector(nullb, sector, false);
1179 if (null_cache_active(nullb))
1180 null_free_sector(nullb, sector, true);
1181 sector += temp >> SECTOR_SHIFT;
1182 n -= temp;
1183 }
1184 spin_unlock_irq(&nullb->lock);
1185
1186 return BLK_STS_OK;
1187 }
1188
1189 static int null_handle_flush(struct nullb *nullb)
1190 {
1191 int err;
1192
1193 if (!null_cache_active(nullb))
1194 return 0;
1195
1196 spin_lock_irq(&nullb->lock);
1197 while (true) {
1198 err = null_make_cache_space(nullb,
1199 nullb->dev->cache_size * 1024 * 1024);
1200 if (err || nullb->dev->curr_cache == 0)
1201 break;
1202 }
1203
1204 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1205 spin_unlock_irq(&nullb->lock);
1206 return err;
1207 }
1208
1209 static int null_transfer(struct nullb *nullb, struct page *page,
1210 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1211 bool is_fua)
1212 {
1213 struct nullb_device *dev = nullb->dev;
1214 unsigned int valid_len = len;
1215 int err = 0;
1216
1217 if (!is_write) {
1218 if (dev->zoned)
1219 valid_len = null_zone_valid_read_len(nullb,
1220 sector, len);
1221
1222 if (valid_len) {
1223 err = copy_from_nullb(nullb, page, off,
1224 sector, valid_len);
1225 off += valid_len;
1226 len -= valid_len;
1227 }
1228
1229 if (len)
1230 nullb_fill_pattern(nullb, page, len, off);
1231 flush_dcache_page(page);
1232 } else {
1233 flush_dcache_page(page);
1234 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1235 }
1236
1237 return err;
1238 }
1239
1240 static int null_handle_rq(struct nullb_cmd *cmd)
1241 {
1242 struct request *rq = cmd->rq;
1243 struct nullb *nullb = cmd->nq->dev->nullb;
1244 int err;
1245 unsigned int len;
1246 sector_t sector = blk_rq_pos(rq);
1247 struct req_iterator iter;
1248 struct bio_vec bvec;
1249
1250 spin_lock_irq(&nullb->lock);
1251 rq_for_each_segment(bvec, rq, iter) {
1252 len = bvec.bv_len;
1253 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1254 op_is_write(req_op(rq)), sector,
1255 rq->cmd_flags & REQ_FUA);
1256 if (err) {
1257 spin_unlock_irq(&nullb->lock);
1258 return err;
1259 }
1260 sector += len >> SECTOR_SHIFT;
1261 }
1262 spin_unlock_irq(&nullb->lock);
1263
1264 return 0;
1265 }
1266
1267 static int null_handle_bio(struct nullb_cmd *cmd)
1268 {
1269 struct bio *bio = cmd->bio;
1270 struct nullb *nullb = cmd->nq->dev->nullb;
1271 int err;
1272 unsigned int len;
1273 sector_t sector = bio->bi_iter.bi_sector;
1274 struct bio_vec bvec;
1275 struct bvec_iter iter;
1276
1277 spin_lock_irq(&nullb->lock);
1278 bio_for_each_segment(bvec, bio, iter) {
1279 len = bvec.bv_len;
1280 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1281 op_is_write(bio_op(bio)), sector,
1282 bio->bi_opf & REQ_FUA);
1283 if (err) {
1284 spin_unlock_irq(&nullb->lock);
1285 return err;
1286 }
1287 sector += len >> SECTOR_SHIFT;
1288 }
1289 spin_unlock_irq(&nullb->lock);
1290 return 0;
1291 }
1292
1293 static void null_stop_queue(struct nullb *nullb)
1294 {
1295 struct request_queue *q = nullb->q;
1296
1297 if (nullb->dev->queue_mode == NULL_Q_MQ)
1298 blk_mq_stop_hw_queues(q);
1299 }
1300
1301 static void null_restart_queue_async(struct nullb *nullb)
1302 {
1303 struct request_queue *q = nullb->q;
1304
1305 if (nullb->dev->queue_mode == NULL_Q_MQ)
1306 blk_mq_start_stopped_hw_queues(q, true);
1307 }
1308
1309 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1310 {
1311 struct nullb_device *dev = cmd->nq->dev;
1312 struct nullb *nullb = dev->nullb;
1313 blk_status_t sts = BLK_STS_OK;
1314 struct request *rq = cmd->rq;
1315
1316 if (!hrtimer_active(&nullb->bw_timer))
1317 hrtimer_restart(&nullb->bw_timer);
1318
1319 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1320 null_stop_queue(nullb);
1321
1322 if (atomic_long_read(&nullb->cur_bytes) > 0)
1323 null_restart_queue_async(nullb);
1324
1325 sts = BLK_STS_DEV_RESOURCE;
1326 }
1327 return sts;
1328 }
1329
1330 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1331 sector_t sector,
1332 sector_t nr_sectors)
1333 {
1334 struct badblocks *bb = &cmd->nq->dev->badblocks;
1335 sector_t first_bad;
1336 int bad_sectors;
1337
1338 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1339 return BLK_STS_IOERR;
1340
1341 return BLK_STS_OK;
1342 }
1343
1344 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1345 enum req_op op,
1346 sector_t sector,
1347 sector_t nr_sectors)
1348 {
1349 struct nullb_device *dev = cmd->nq->dev;
1350 int err;
1351
1352 if (op == REQ_OP_DISCARD)
1353 return null_handle_discard(dev, sector, nr_sectors);
1354
1355 if (dev->queue_mode == NULL_Q_BIO)
1356 err = null_handle_bio(cmd);
1357 else
1358 err = null_handle_rq(cmd);
1359
1360 return errno_to_blk_status(err);
1361 }
1362
1363 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1364 {
1365 struct nullb_device *dev = cmd->nq->dev;
1366 struct bio *bio;
1367
1368 if (dev->memory_backed)
1369 return;
1370
1371 if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1372 zero_fill_bio(cmd->bio);
1373 } else if (req_op(cmd->rq) == REQ_OP_READ) {
1374 __rq_for_each_bio(bio, cmd->rq)
1375 zero_fill_bio(bio);
1376 }
1377 }
1378
1379 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1380 {
1381
1382
1383
1384
1385
1386
1387
1388 if (IS_ENABLED(CONFIG_KMSAN))
1389 nullb_zero_read_cmd_buffer(cmd);
1390
1391
1392 switch (cmd->nq->dev->irqmode) {
1393 case NULL_IRQ_SOFTIRQ:
1394 switch (cmd->nq->dev->queue_mode) {
1395 case NULL_Q_MQ:
1396 if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1397 blk_mq_complete_request(cmd->rq);
1398 break;
1399 case NULL_Q_BIO:
1400
1401
1402
1403 end_cmd(cmd);
1404 break;
1405 }
1406 break;
1407 case NULL_IRQ_NONE:
1408 end_cmd(cmd);
1409 break;
1410 case NULL_IRQ_TIMER:
1411 null_cmd_end_timer(cmd);
1412 break;
1413 }
1414 }
1415
1416 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1417 sector_t sector, unsigned int nr_sectors)
1418 {
1419 struct nullb_device *dev = cmd->nq->dev;
1420 blk_status_t ret;
1421
1422 if (dev->badblocks.shift != -1) {
1423 ret = null_handle_badblocks(cmd, sector, nr_sectors);
1424 if (ret != BLK_STS_OK)
1425 return ret;
1426 }
1427
1428 if (dev->memory_backed)
1429 return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1430
1431 return BLK_STS_OK;
1432 }
1433
1434 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1435 sector_t nr_sectors, enum req_op op)
1436 {
1437 struct nullb_device *dev = cmd->nq->dev;
1438 struct nullb *nullb = dev->nullb;
1439 blk_status_t sts;
1440
1441 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1442 sts = null_handle_throttled(cmd);
1443 if (sts != BLK_STS_OK)
1444 return sts;
1445 }
1446
1447 if (op == REQ_OP_FLUSH) {
1448 cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1449 goto out;
1450 }
1451
1452 if (dev->zoned)
1453 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1454 else
1455 sts = null_process_cmd(cmd, op, sector, nr_sectors);
1456
1457
1458 if (cmd->error == BLK_STS_OK)
1459 cmd->error = sts;
1460
1461 out:
1462 nullb_complete_cmd(cmd);
1463 return BLK_STS_OK;
1464 }
1465
1466 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1467 {
1468 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1469 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1470 unsigned int mbps = nullb->dev->mbps;
1471
1472 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1473 return HRTIMER_NORESTART;
1474
1475 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1476 null_restart_queue_async(nullb);
1477
1478 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1479
1480 return HRTIMER_RESTART;
1481 }
1482
1483 static void nullb_setup_bwtimer(struct nullb *nullb)
1484 {
1485 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1486
1487 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1488 nullb->bw_timer.function = nullb_bwtimer_fn;
1489 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1490 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1491 }
1492
1493 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1494 {
1495 int index = 0;
1496
1497 if (nullb->nr_queues != 1)
1498 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1499
1500 return &nullb->queues[index];
1501 }
1502
1503 static void null_submit_bio(struct bio *bio)
1504 {
1505 sector_t sector = bio->bi_iter.bi_sector;
1506 sector_t nr_sectors = bio_sectors(bio);
1507 struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1508 struct nullb_queue *nq = nullb_to_queue(nullb);
1509
1510 null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
1511 }
1512
1513 static bool should_timeout_request(struct request *rq)
1514 {
1515 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1516 if (g_timeout_str[0])
1517 return should_fail(&null_timeout_attr, 1);
1518 #endif
1519 return false;
1520 }
1521
1522 static bool should_requeue_request(struct request *rq)
1523 {
1524 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1525 if (g_requeue_str[0])
1526 return should_fail(&null_requeue_attr, 1);
1527 #endif
1528 return false;
1529 }
1530
1531 static int null_map_queues(struct blk_mq_tag_set *set)
1532 {
1533 struct nullb *nullb = set->driver_data;
1534 int i, qoff;
1535 unsigned int submit_queues = g_submit_queues;
1536 unsigned int poll_queues = g_poll_queues;
1537
1538 if (nullb) {
1539 struct nullb_device *dev = nullb->dev;
1540
1541
1542
1543
1544
1545
1546
1547 if (set->nr_hw_queues ==
1548 dev->submit_queues + dev->poll_queues) {
1549 submit_queues = dev->submit_queues;
1550 poll_queues = dev->poll_queues;
1551 } else if (set->nr_hw_queues ==
1552 dev->prev_submit_queues + dev->prev_poll_queues) {
1553 submit_queues = dev->prev_submit_queues;
1554 poll_queues = dev->prev_poll_queues;
1555 } else {
1556 pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1557 set->nr_hw_queues);
1558 return -EINVAL;
1559 }
1560 }
1561
1562 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1563 struct blk_mq_queue_map *map = &set->map[i];
1564
1565 switch (i) {
1566 case HCTX_TYPE_DEFAULT:
1567 map->nr_queues = submit_queues;
1568 break;
1569 case HCTX_TYPE_READ:
1570 map->nr_queues = 0;
1571 continue;
1572 case HCTX_TYPE_POLL:
1573 map->nr_queues = poll_queues;
1574 break;
1575 }
1576 map->queue_offset = qoff;
1577 qoff += map->nr_queues;
1578 blk_mq_map_queues(map);
1579 }
1580
1581 return 0;
1582 }
1583
1584 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1585 {
1586 struct nullb_queue *nq = hctx->driver_data;
1587 LIST_HEAD(list);
1588 int nr = 0;
1589
1590 spin_lock(&nq->poll_lock);
1591 list_splice_init(&nq->poll_list, &list);
1592 spin_unlock(&nq->poll_lock);
1593
1594 while (!list_empty(&list)) {
1595 struct nullb_cmd *cmd;
1596 struct request *req;
1597
1598 req = list_first_entry(&list, struct request, queuelist);
1599 list_del_init(&req->queuelist);
1600 cmd = blk_mq_rq_to_pdu(req);
1601 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1602 blk_rq_sectors(req));
1603 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1604 blk_mq_end_request_batch))
1605 end_cmd(cmd);
1606 nr++;
1607 }
1608
1609 return nr;
1610 }
1611
1612 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1613 {
1614 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1615 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1616
1617 pr_info("rq %p timed out\n", rq);
1618
1619 if (hctx->type == HCTX_TYPE_POLL) {
1620 struct nullb_queue *nq = hctx->driver_data;
1621
1622 spin_lock(&nq->poll_lock);
1623 list_del_init(&rq->queuelist);
1624 spin_unlock(&nq->poll_lock);
1625 }
1626
1627
1628
1629
1630
1631
1632
1633
1634 cmd->error = BLK_STS_TIMEOUT;
1635 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1636 blk_mq_complete_request(rq);
1637 return BLK_EH_DONE;
1638 }
1639
1640 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1641 const struct blk_mq_queue_data *bd)
1642 {
1643 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1644 struct nullb_queue *nq = hctx->driver_data;
1645 sector_t nr_sectors = blk_rq_sectors(bd->rq);
1646 sector_t sector = blk_rq_pos(bd->rq);
1647 const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1648
1649 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1650
1651 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1652 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1653 cmd->timer.function = null_cmd_timer_expired;
1654 }
1655 cmd->rq = bd->rq;
1656 cmd->error = BLK_STS_OK;
1657 cmd->nq = nq;
1658 cmd->fake_timeout = should_timeout_request(bd->rq);
1659
1660 blk_mq_start_request(bd->rq);
1661
1662 if (should_requeue_request(bd->rq)) {
1663
1664
1665
1666
1667 nq->requeue_selection++;
1668 if (nq->requeue_selection & 1)
1669 return BLK_STS_RESOURCE;
1670 else {
1671 blk_mq_requeue_request(bd->rq, true);
1672 return BLK_STS_OK;
1673 }
1674 }
1675
1676 if (is_poll) {
1677 spin_lock(&nq->poll_lock);
1678 list_add_tail(&bd->rq->queuelist, &nq->poll_list);
1679 spin_unlock(&nq->poll_lock);
1680 return BLK_STS_OK;
1681 }
1682 if (cmd->fake_timeout)
1683 return BLK_STS_OK;
1684
1685 return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1686 }
1687
1688 static void cleanup_queue(struct nullb_queue *nq)
1689 {
1690 bitmap_free(nq->tag_map);
1691 kfree(nq->cmds);
1692 }
1693
1694 static void cleanup_queues(struct nullb *nullb)
1695 {
1696 int i;
1697
1698 for (i = 0; i < nullb->nr_queues; i++)
1699 cleanup_queue(&nullb->queues[i]);
1700
1701 kfree(nullb->queues);
1702 }
1703
1704 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1705 {
1706 struct nullb_queue *nq = hctx->driver_data;
1707 struct nullb *nullb = nq->dev->nullb;
1708
1709 nullb->nr_queues--;
1710 }
1711
1712 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1713 {
1714 init_waitqueue_head(&nq->wait);
1715 nq->queue_depth = nullb->queue_depth;
1716 nq->dev = nullb->dev;
1717 INIT_LIST_HEAD(&nq->poll_list);
1718 spin_lock_init(&nq->poll_lock);
1719 }
1720
1721 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1722 unsigned int hctx_idx)
1723 {
1724 struct nullb *nullb = hctx->queue->queuedata;
1725 struct nullb_queue *nq;
1726
1727 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1728 if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1729 return -EFAULT;
1730 #endif
1731
1732 nq = &nullb->queues[hctx_idx];
1733 hctx->driver_data = nq;
1734 null_init_queue(nullb, nq);
1735 nullb->nr_queues++;
1736
1737 return 0;
1738 }
1739
1740 static const struct blk_mq_ops null_mq_ops = {
1741 .queue_rq = null_queue_rq,
1742 .complete = null_complete_rq,
1743 .timeout = null_timeout_rq,
1744 .poll = null_poll,
1745 .map_queues = null_map_queues,
1746 .init_hctx = null_init_hctx,
1747 .exit_hctx = null_exit_hctx,
1748 };
1749
1750 static void null_del_dev(struct nullb *nullb)
1751 {
1752 struct nullb_device *dev;
1753
1754 if (!nullb)
1755 return;
1756
1757 dev = nullb->dev;
1758
1759 ida_simple_remove(&nullb_indexes, nullb->index);
1760
1761 list_del_init(&nullb->list);
1762
1763 del_gendisk(nullb->disk);
1764
1765 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1766 hrtimer_cancel(&nullb->bw_timer);
1767 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1768 null_restart_queue_async(nullb);
1769 }
1770
1771 put_disk(nullb->disk);
1772 if (dev->queue_mode == NULL_Q_MQ &&
1773 nullb->tag_set == &nullb->__tag_set)
1774 blk_mq_free_tag_set(nullb->tag_set);
1775 cleanup_queues(nullb);
1776 if (null_cache_active(nullb))
1777 null_free_device_storage(nullb->dev, true);
1778 kfree(nullb);
1779 dev->nullb = NULL;
1780 }
1781
1782 static void null_config_discard(struct nullb *nullb)
1783 {
1784 if (nullb->dev->discard == false)
1785 return;
1786
1787 if (!nullb->dev->memory_backed) {
1788 nullb->dev->discard = false;
1789 pr_info("discard option is ignored without memory backing\n");
1790 return;
1791 }
1792
1793 if (nullb->dev->zoned) {
1794 nullb->dev->discard = false;
1795 pr_info("discard option is ignored in zoned mode\n");
1796 return;
1797 }
1798
1799 nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1800 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1801 }
1802
1803 static const struct block_device_operations null_bio_ops = {
1804 .owner = THIS_MODULE,
1805 .submit_bio = null_submit_bio,
1806 .report_zones = null_report_zones,
1807 };
1808
1809 static const struct block_device_operations null_rq_ops = {
1810 .owner = THIS_MODULE,
1811 .report_zones = null_report_zones,
1812 };
1813
1814 static int setup_commands(struct nullb_queue *nq)
1815 {
1816 struct nullb_cmd *cmd;
1817 int i;
1818
1819 nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1820 if (!nq->cmds)
1821 return -ENOMEM;
1822
1823 nq->tag_map = bitmap_zalloc(nq->queue_depth, GFP_KERNEL);
1824 if (!nq->tag_map) {
1825 kfree(nq->cmds);
1826 return -ENOMEM;
1827 }
1828
1829 for (i = 0; i < nq->queue_depth; i++) {
1830 cmd = &nq->cmds[i];
1831 cmd->tag = -1U;
1832 }
1833
1834 return 0;
1835 }
1836
1837 static int setup_queues(struct nullb *nullb)
1838 {
1839 int nqueues = nr_cpu_ids;
1840
1841 if (g_poll_queues)
1842 nqueues += g_poll_queues;
1843
1844 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1845 GFP_KERNEL);
1846 if (!nullb->queues)
1847 return -ENOMEM;
1848
1849 nullb->queue_depth = nullb->dev->hw_queue_depth;
1850 return 0;
1851 }
1852
1853 static int init_driver_queues(struct nullb *nullb)
1854 {
1855 struct nullb_queue *nq;
1856 int i, ret = 0;
1857
1858 for (i = 0; i < nullb->dev->submit_queues; i++) {
1859 nq = &nullb->queues[i];
1860
1861 null_init_queue(nullb, nq);
1862
1863 ret = setup_commands(nq);
1864 if (ret)
1865 return ret;
1866 nullb->nr_queues++;
1867 }
1868 return 0;
1869 }
1870
1871 static int null_gendisk_register(struct nullb *nullb)
1872 {
1873 sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1874 struct gendisk *disk = nullb->disk;
1875
1876 set_capacity(disk, size);
1877
1878 disk->major = null_major;
1879 disk->first_minor = nullb->index;
1880 disk->minors = 1;
1881 if (queue_is_mq(nullb->q))
1882 disk->fops = &null_rq_ops;
1883 else
1884 disk->fops = &null_bio_ops;
1885 disk->private_data = nullb;
1886 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1887
1888 if (nullb->dev->zoned) {
1889 int ret = null_register_zoned_dev(nullb);
1890
1891 if (ret)
1892 return ret;
1893 }
1894
1895 return add_disk(disk);
1896 }
1897
1898 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1899 {
1900 unsigned int flags = BLK_MQ_F_SHOULD_MERGE;
1901 int hw_queues, numa_node;
1902 unsigned int queue_depth;
1903 int poll_queues;
1904
1905 if (nullb) {
1906 hw_queues = nullb->dev->submit_queues;
1907 poll_queues = nullb->dev->poll_queues;
1908 queue_depth = nullb->dev->hw_queue_depth;
1909 numa_node = nullb->dev->home_node;
1910 if (nullb->dev->no_sched)
1911 flags |= BLK_MQ_F_NO_SCHED;
1912 if (nullb->dev->shared_tag_bitmap)
1913 flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1914 if (nullb->dev->blocking)
1915 flags |= BLK_MQ_F_BLOCKING;
1916 } else {
1917 hw_queues = g_submit_queues;
1918 poll_queues = g_poll_queues;
1919 queue_depth = g_hw_queue_depth;
1920 numa_node = g_home_node;
1921 if (g_no_sched)
1922 flags |= BLK_MQ_F_NO_SCHED;
1923 if (g_shared_tag_bitmap)
1924 flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1925 if (g_blocking)
1926 flags |= BLK_MQ_F_BLOCKING;
1927 }
1928
1929 set->ops = &null_mq_ops;
1930 set->cmd_size = sizeof(struct nullb_cmd);
1931 set->flags = flags;
1932 set->driver_data = nullb;
1933 set->nr_hw_queues = hw_queues;
1934 set->queue_depth = queue_depth;
1935 set->numa_node = numa_node;
1936 if (poll_queues) {
1937 set->nr_hw_queues += poll_queues;
1938 set->nr_maps = 3;
1939 } else {
1940 set->nr_maps = 1;
1941 }
1942
1943 return blk_mq_alloc_tag_set(set);
1944 }
1945
1946 static int null_validate_conf(struct nullb_device *dev)
1947 {
1948 dev->blocksize = round_down(dev->blocksize, 512);
1949 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1950
1951 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1952 if (dev->submit_queues != nr_online_nodes)
1953 dev->submit_queues = nr_online_nodes;
1954 } else if (dev->submit_queues > nr_cpu_ids)
1955 dev->submit_queues = nr_cpu_ids;
1956 else if (dev->submit_queues == 0)
1957 dev->submit_queues = 1;
1958 dev->prev_submit_queues = dev->submit_queues;
1959
1960 if (dev->poll_queues > g_poll_queues)
1961 dev->poll_queues = g_poll_queues;
1962 dev->prev_poll_queues = dev->poll_queues;
1963
1964 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1965 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1966
1967
1968 if (dev->memory_backed)
1969 dev->blocking = true;
1970 else
1971 dev->cache_size = 0;
1972 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1973 dev->cache_size);
1974 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1975
1976 if (dev->queue_mode == NULL_Q_BIO)
1977 dev->mbps = 0;
1978
1979 if (dev->zoned &&
1980 (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1981 pr_err("zone_size must be power-of-two\n");
1982 return -EINVAL;
1983 }
1984
1985 return 0;
1986 }
1987
1988 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1989 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1990 {
1991 if (!str[0])
1992 return true;
1993
1994 if (!setup_fault_attr(attr, str))
1995 return false;
1996
1997 attr->verbose = 0;
1998 return true;
1999 }
2000 #endif
2001
2002 static bool null_setup_fault(void)
2003 {
2004 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
2005 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
2006 return false;
2007 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
2008 return false;
2009 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
2010 return false;
2011 #endif
2012 return true;
2013 }
2014
2015 static int null_add_dev(struct nullb_device *dev)
2016 {
2017 struct nullb *nullb;
2018 int rv;
2019
2020 rv = null_validate_conf(dev);
2021 if (rv)
2022 return rv;
2023
2024 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
2025 if (!nullb) {
2026 rv = -ENOMEM;
2027 goto out;
2028 }
2029 nullb->dev = dev;
2030 dev->nullb = nullb;
2031
2032 spin_lock_init(&nullb->lock);
2033
2034 rv = setup_queues(nullb);
2035 if (rv)
2036 goto out_free_nullb;
2037
2038 if (dev->queue_mode == NULL_Q_MQ) {
2039 if (shared_tags) {
2040 nullb->tag_set = &tag_set;
2041 rv = 0;
2042 } else {
2043 nullb->tag_set = &nullb->__tag_set;
2044 rv = null_init_tag_set(nullb, nullb->tag_set);
2045 }
2046
2047 if (rv)
2048 goto out_cleanup_queues;
2049
2050 if (!null_setup_fault())
2051 goto out_cleanup_tags;
2052
2053 nullb->tag_set->timeout = 5 * HZ;
2054 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
2055 if (IS_ERR(nullb->disk)) {
2056 rv = PTR_ERR(nullb->disk);
2057 goto out_cleanup_tags;
2058 }
2059 nullb->q = nullb->disk->queue;
2060 } else if (dev->queue_mode == NULL_Q_BIO) {
2061 rv = -ENOMEM;
2062 nullb->disk = blk_alloc_disk(nullb->dev->home_node);
2063 if (!nullb->disk)
2064 goto out_cleanup_queues;
2065
2066 nullb->q = nullb->disk->queue;
2067 rv = init_driver_queues(nullb);
2068 if (rv)
2069 goto out_cleanup_disk;
2070 }
2071
2072 if (dev->mbps) {
2073 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2074 nullb_setup_bwtimer(nullb);
2075 }
2076
2077 if (dev->cache_size > 0) {
2078 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2079 blk_queue_write_cache(nullb->q, true, true);
2080 }
2081
2082 if (dev->zoned) {
2083 rv = null_init_zoned_dev(dev, nullb->q);
2084 if (rv)
2085 goto out_cleanup_disk;
2086 }
2087
2088 nullb->q->queuedata = nullb;
2089 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
2090 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
2091
2092 mutex_lock(&lock);
2093 rv = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
2094 if (rv < 0) {
2095 mutex_unlock(&lock);
2096 goto out_cleanup_zone;
2097 }
2098 nullb->index = rv;
2099 dev->index = rv;
2100 mutex_unlock(&lock);
2101
2102 blk_queue_logical_block_size(nullb->q, dev->blocksize);
2103 blk_queue_physical_block_size(nullb->q, dev->blocksize);
2104 if (!dev->max_sectors)
2105 dev->max_sectors = queue_max_hw_sectors(nullb->q);
2106 dev->max_sectors = min_t(unsigned int, dev->max_sectors,
2107 BLK_DEF_MAX_SECTORS);
2108 blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
2109
2110 if (dev->virt_boundary)
2111 blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
2112
2113 null_config_discard(nullb);
2114
2115 if (config_item_name(&dev->item)) {
2116
2117 snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2118 "%s", config_item_name(&dev->item));
2119 } else {
2120 sprintf(nullb->disk_name, "nullb%d", nullb->index);
2121 }
2122
2123 rv = null_gendisk_register(nullb);
2124 if (rv)
2125 goto out_ida_free;
2126
2127 mutex_lock(&lock);
2128 list_add_tail(&nullb->list, &nullb_list);
2129 mutex_unlock(&lock);
2130
2131 pr_info("disk %s created\n", nullb->disk_name);
2132
2133 return 0;
2134
2135 out_ida_free:
2136 ida_free(&nullb_indexes, nullb->index);
2137 out_cleanup_zone:
2138 null_free_zoned_dev(dev);
2139 out_cleanup_disk:
2140 put_disk(nullb->disk);
2141 out_cleanup_tags:
2142 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
2143 blk_mq_free_tag_set(nullb->tag_set);
2144 out_cleanup_queues:
2145 cleanup_queues(nullb);
2146 out_free_nullb:
2147 kfree(nullb);
2148 dev->nullb = NULL;
2149 out:
2150 return rv;
2151 }
2152
2153 static struct nullb *null_find_dev_by_name(const char *name)
2154 {
2155 struct nullb *nullb = NULL, *nb;
2156
2157 mutex_lock(&lock);
2158 list_for_each_entry(nb, &nullb_list, list) {
2159 if (strcmp(nb->disk_name, name) == 0) {
2160 nullb = nb;
2161 break;
2162 }
2163 }
2164 mutex_unlock(&lock);
2165
2166 return nullb;
2167 }
2168
2169 static int null_create_dev(void)
2170 {
2171 struct nullb_device *dev;
2172 int ret;
2173
2174 dev = null_alloc_dev();
2175 if (!dev)
2176 return -ENOMEM;
2177
2178 ret = null_add_dev(dev);
2179 if (ret) {
2180 null_free_dev(dev);
2181 return ret;
2182 }
2183
2184 return 0;
2185 }
2186
2187 static void null_destroy_dev(struct nullb *nullb)
2188 {
2189 struct nullb_device *dev = nullb->dev;
2190
2191 null_del_dev(nullb);
2192 null_free_dev(dev);
2193 }
2194
2195 static int __init null_init(void)
2196 {
2197 int ret = 0;
2198 unsigned int i;
2199 struct nullb *nullb;
2200
2201 if (g_bs > PAGE_SIZE) {
2202 pr_warn("invalid block size\n");
2203 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2204 g_bs = PAGE_SIZE;
2205 }
2206
2207 if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
2208 pr_warn("invalid max sectors\n");
2209 pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
2210 g_max_sectors = BLK_DEF_MAX_SECTORS;
2211 }
2212
2213 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2214 pr_err("invalid home_node value\n");
2215 g_home_node = NUMA_NO_NODE;
2216 }
2217
2218 if (g_queue_mode == NULL_Q_RQ) {
2219 pr_err("legacy IO path is no longer available\n");
2220 return -EINVAL;
2221 }
2222
2223 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
2224 if (g_submit_queues != nr_online_nodes) {
2225 pr_warn("submit_queues param is set to %u.\n",
2226 nr_online_nodes);
2227 g_submit_queues = nr_online_nodes;
2228 }
2229 } else if (g_submit_queues > nr_cpu_ids) {
2230 g_submit_queues = nr_cpu_ids;
2231 } else if (g_submit_queues <= 0) {
2232 g_submit_queues = 1;
2233 }
2234
2235 if (g_queue_mode == NULL_Q_MQ && shared_tags) {
2236 ret = null_init_tag_set(NULL, &tag_set);
2237 if (ret)
2238 return ret;
2239 }
2240
2241 config_group_init(&nullb_subsys.su_group);
2242 mutex_init(&nullb_subsys.su_mutex);
2243
2244 ret = configfs_register_subsystem(&nullb_subsys);
2245 if (ret)
2246 goto err_tagset;
2247
2248 mutex_init(&lock);
2249
2250 null_major = register_blkdev(0, "nullb");
2251 if (null_major < 0) {
2252 ret = null_major;
2253 goto err_conf;
2254 }
2255
2256 for (i = 0; i < nr_devices; i++) {
2257 ret = null_create_dev();
2258 if (ret)
2259 goto err_dev;
2260 }
2261
2262 pr_info("module loaded\n");
2263 return 0;
2264
2265 err_dev:
2266 while (!list_empty(&nullb_list)) {
2267 nullb = list_entry(nullb_list.next, struct nullb, list);
2268 null_destroy_dev(nullb);
2269 }
2270 unregister_blkdev(null_major, "nullb");
2271 err_conf:
2272 configfs_unregister_subsystem(&nullb_subsys);
2273 err_tagset:
2274 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2275 blk_mq_free_tag_set(&tag_set);
2276 return ret;
2277 }
2278
2279 static void __exit null_exit(void)
2280 {
2281 struct nullb *nullb;
2282
2283 configfs_unregister_subsystem(&nullb_subsys);
2284
2285 unregister_blkdev(null_major, "nullb");
2286
2287 mutex_lock(&lock);
2288 while (!list_empty(&nullb_list)) {
2289 nullb = list_entry(nullb_list.next, struct nullb, list);
2290 null_destroy_dev(nullb);
2291 }
2292 mutex_unlock(&lock);
2293
2294 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2295 blk_mq_free_tag_set(&tag_set);
2296 }
2297
2298 module_init(null_init);
2299 module_exit(null_exit);
2300
2301 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2302 MODULE_LICENSE("GPL");