Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003    drbd.c
0004 
0005    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
0006 
0007    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
0008    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
0009    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
0010 
0011    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
0012    from Logicworks, Inc. for making SDP replication support possible.
0013 
0014 
0015  */
0016 
0017 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0018 
0019 #include <linux/module.h>
0020 #include <linux/jiffies.h>
0021 #include <linux/drbd.h>
0022 #include <linux/uaccess.h>
0023 #include <asm/types.h>
0024 #include <net/sock.h>
0025 #include <linux/ctype.h>
0026 #include <linux/mutex.h>
0027 #include <linux/fs.h>
0028 #include <linux/file.h>
0029 #include <linux/proc_fs.h>
0030 #include <linux/init.h>
0031 #include <linux/mm.h>
0032 #include <linux/memcontrol.h>
0033 #include <linux/mm_inline.h>
0034 #include <linux/slab.h>
0035 #include <linux/random.h>
0036 #include <linux/reboot.h>
0037 #include <linux/notifier.h>
0038 #include <linux/kthread.h>
0039 #include <linux/workqueue.h>
0040 #define __KERNEL_SYSCALLS__
0041 #include <linux/unistd.h>
0042 #include <linux/vmalloc.h>
0043 #include <linux/sched/signal.h>
0044 
0045 #include <linux/drbd_limits.h>
0046 #include "drbd_int.h"
0047 #include "drbd_protocol.h"
0048 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
0049 #include "drbd_vli.h"
0050 #include "drbd_debugfs.h"
0051 
0052 static DEFINE_MUTEX(drbd_main_mutex);
0053 static int drbd_open(struct block_device *bdev, fmode_t mode);
0054 static void drbd_release(struct gendisk *gd, fmode_t mode);
0055 static void md_sync_timer_fn(struct timer_list *t);
0056 static int w_bitmap_io(struct drbd_work *w, int unused);
0057 
0058 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
0059           "Lars Ellenberg <lars@linbit.com>");
0060 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
0061 MODULE_VERSION(REL_VERSION);
0062 MODULE_LICENSE("GPL");
0063 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
0064          __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
0065 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
0066 
0067 #include <linux/moduleparam.h>
0068 /* thanks to these macros, if compiled into the kernel (not-module),
0069  * these become boot parameters (e.g., drbd.minor_count) */
0070 
0071 #ifdef CONFIG_DRBD_FAULT_INJECTION
0072 int drbd_enable_faults;
0073 int drbd_fault_rate;
0074 static int drbd_fault_count;
0075 static int drbd_fault_devs;
0076 /* bitmap of enabled faults */
0077 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
0078 /* fault rate % value - applies to all enabled faults */
0079 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
0080 /* count of faults inserted */
0081 module_param_named(fault_count, drbd_fault_count, int, 0664);
0082 /* bitmap of devices to insert faults on */
0083 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
0084 #endif
0085 
0086 /* module parameters we can keep static */
0087 static bool drbd_allow_oos; /* allow_open_on_secondary */
0088 static bool drbd_disable_sendpage;
0089 MODULE_PARM_DESC(allow_oos, "DONT USE!");
0090 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
0091 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
0092 
0093 /* module parameters we share */
0094 int drbd_proc_details; /* Detail level in proc drbd*/
0095 module_param_named(proc_details, drbd_proc_details, int, 0644);
0096 /* module parameters shared with defaults */
0097 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
0098 /* Module parameter for setting the user mode helper program
0099  * to run. Default is /sbin/drbdadm */
0100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
0101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
0102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
0103 
0104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
0105  * as member "struct gendisk *vdisk;"
0106  */
0107 struct idr drbd_devices;
0108 struct list_head drbd_resources;
0109 struct mutex resources_mutex;
0110 
0111 struct kmem_cache *drbd_request_cache;
0112 struct kmem_cache *drbd_ee_cache;   /* peer requests */
0113 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
0114 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
0115 mempool_t drbd_request_mempool;
0116 mempool_t drbd_ee_mempool;
0117 mempool_t drbd_md_io_page_pool;
0118 struct bio_set drbd_md_io_bio_set;
0119 struct bio_set drbd_io_bio_set;
0120 
0121 /* I do not use a standard mempool, because:
0122    1) I want to hand out the pre-allocated objects first.
0123    2) I want to be able to interrupt sleeping allocation with a signal.
0124    Note: This is a single linked list, the next pointer is the private
0125      member of struct page.
0126  */
0127 struct page *drbd_pp_pool;
0128 DEFINE_SPINLOCK(drbd_pp_lock);
0129 int          drbd_pp_vacant;
0130 wait_queue_head_t drbd_pp_wait;
0131 
0132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
0133 
0134 static const struct block_device_operations drbd_ops = {
0135     .owner      = THIS_MODULE,
0136     .submit_bio = drbd_submit_bio,
0137     .open       = drbd_open,
0138     .release    = drbd_release,
0139 };
0140 
0141 #ifdef __CHECKER__
0142 /* When checking with sparse, and this is an inline function, sparse will
0143    give tons of false positives. When this is a real functions sparse works.
0144  */
0145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
0146 {
0147     int io_allowed;
0148 
0149     atomic_inc(&device->local_cnt);
0150     io_allowed = (device->state.disk >= mins);
0151     if (!io_allowed) {
0152         if (atomic_dec_and_test(&device->local_cnt))
0153             wake_up(&device->misc_wait);
0154     }
0155     return io_allowed;
0156 }
0157 
0158 #endif
0159 
0160 /**
0161  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
0162  * @connection: DRBD connection.
0163  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
0164  * @set_size:   Expected number of requests before that barrier.
0165  *
0166  * In case the passed barrier_nr or set_size does not match the oldest
0167  * epoch of not yet barrier-acked requests, this function will cause a
0168  * termination of the connection.
0169  */
0170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
0171         unsigned int set_size)
0172 {
0173     struct drbd_request *r;
0174     struct drbd_request *req = NULL, *tmp = NULL;
0175     int expect_epoch = 0;
0176     int expect_size = 0;
0177 
0178     spin_lock_irq(&connection->resource->req_lock);
0179 
0180     /* find oldest not yet barrier-acked write request,
0181      * count writes in its epoch. */
0182     list_for_each_entry(r, &connection->transfer_log, tl_requests) {
0183         const unsigned s = r->rq_state;
0184         if (!req) {
0185             if (!(s & RQ_WRITE))
0186                 continue;
0187             if (!(s & RQ_NET_MASK))
0188                 continue;
0189             if (s & RQ_NET_DONE)
0190                 continue;
0191             req = r;
0192             expect_epoch = req->epoch;
0193             expect_size ++;
0194         } else {
0195             if (r->epoch != expect_epoch)
0196                 break;
0197             if (!(s & RQ_WRITE))
0198                 continue;
0199             /* if (s & RQ_DONE): not expected */
0200             /* if (!(s & RQ_NET_MASK)): not expected */
0201             expect_size++;
0202         }
0203     }
0204 
0205     /* first some paranoia code */
0206     if (req == NULL) {
0207         drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
0208              barrier_nr);
0209         goto bail;
0210     }
0211     if (expect_epoch != barrier_nr) {
0212         drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
0213              barrier_nr, expect_epoch);
0214         goto bail;
0215     }
0216 
0217     if (expect_size != set_size) {
0218         drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
0219              barrier_nr, set_size, expect_size);
0220         goto bail;
0221     }
0222 
0223     /* Clean up list of requests processed during current epoch. */
0224     /* this extra list walk restart is paranoia,
0225      * to catch requests being barrier-acked "unexpectedly".
0226      * It usually should find the same req again, or some READ preceding it. */
0227     list_for_each_entry(req, &connection->transfer_log, tl_requests)
0228         if (req->epoch == expect_epoch) {
0229             tmp = req;
0230             break;
0231         }
0232     req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
0233     list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
0234         if (req->epoch != expect_epoch)
0235             break;
0236         _req_mod(req, BARRIER_ACKED);
0237     }
0238     spin_unlock_irq(&connection->resource->req_lock);
0239 
0240     return;
0241 
0242 bail:
0243     spin_unlock_irq(&connection->resource->req_lock);
0244     conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
0245 }
0246 
0247 
0248 /**
0249  * _tl_restart() - Walks the transfer log, and applies an action to all requests
0250  * @connection: DRBD connection to operate on.
0251  * @what:       The action/event to perform with all request objects
0252  *
0253  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
0254  * RESTART_FROZEN_DISK_IO.
0255  */
0256 /* must hold resource->req_lock */
0257 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
0258 {
0259     struct drbd_request *req, *r;
0260 
0261     list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
0262         _req_mod(req, what);
0263 }
0264 
0265 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
0266 {
0267     spin_lock_irq(&connection->resource->req_lock);
0268     _tl_restart(connection, what);
0269     spin_unlock_irq(&connection->resource->req_lock);
0270 }
0271 
0272 /**
0273  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
0274  * @connection: DRBD connection.
0275  *
0276  * This is called after the connection to the peer was lost. The storage covered
0277  * by the requests on the transfer gets marked as our of sync. Called from the
0278  * receiver thread and the worker thread.
0279  */
0280 void tl_clear(struct drbd_connection *connection)
0281 {
0282     tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
0283 }
0284 
0285 /**
0286  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
0287  * @device: DRBD device.
0288  */
0289 void tl_abort_disk_io(struct drbd_device *device)
0290 {
0291     struct drbd_connection *connection = first_peer_device(device)->connection;
0292     struct drbd_request *req, *r;
0293 
0294     spin_lock_irq(&connection->resource->req_lock);
0295     list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
0296         if (!(req->rq_state & RQ_LOCAL_PENDING))
0297             continue;
0298         if (req->device != device)
0299             continue;
0300         _req_mod(req, ABORT_DISK_IO);
0301     }
0302     spin_unlock_irq(&connection->resource->req_lock);
0303 }
0304 
0305 static int drbd_thread_setup(void *arg)
0306 {
0307     struct drbd_thread *thi = (struct drbd_thread *) arg;
0308     struct drbd_resource *resource = thi->resource;
0309     unsigned long flags;
0310     int retval;
0311 
0312     snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
0313          thi->name[0],
0314          resource->name);
0315 
0316     allow_kernel_signal(DRBD_SIGKILL);
0317     allow_kernel_signal(SIGXCPU);
0318 restart:
0319     retval = thi->function(thi);
0320 
0321     spin_lock_irqsave(&thi->t_lock, flags);
0322 
0323     /* if the receiver has been "EXITING", the last thing it did
0324      * was set the conn state to "StandAlone",
0325      * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
0326      * and receiver thread will be "started".
0327      * drbd_thread_start needs to set "RESTARTING" in that case.
0328      * t_state check and assignment needs to be within the same spinlock,
0329      * so either thread_start sees EXITING, and can remap to RESTARTING,
0330      * or thread_start see NONE, and can proceed as normal.
0331      */
0332 
0333     if (thi->t_state == RESTARTING) {
0334         drbd_info(resource, "Restarting %s thread\n", thi->name);
0335         thi->t_state = RUNNING;
0336         spin_unlock_irqrestore(&thi->t_lock, flags);
0337         goto restart;
0338     }
0339 
0340     thi->task = NULL;
0341     thi->t_state = NONE;
0342     smp_mb();
0343     complete_all(&thi->stop);
0344     spin_unlock_irqrestore(&thi->t_lock, flags);
0345 
0346     drbd_info(resource, "Terminating %s\n", current->comm);
0347 
0348     /* Release mod reference taken when thread was started */
0349 
0350     if (thi->connection)
0351         kref_put(&thi->connection->kref, drbd_destroy_connection);
0352     kref_put(&resource->kref, drbd_destroy_resource);
0353     module_put(THIS_MODULE);
0354     return retval;
0355 }
0356 
0357 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
0358                  int (*func) (struct drbd_thread *), const char *name)
0359 {
0360     spin_lock_init(&thi->t_lock);
0361     thi->task    = NULL;
0362     thi->t_state = NONE;
0363     thi->function = func;
0364     thi->resource = resource;
0365     thi->connection = NULL;
0366     thi->name = name;
0367 }
0368 
0369 int drbd_thread_start(struct drbd_thread *thi)
0370 {
0371     struct drbd_resource *resource = thi->resource;
0372     struct task_struct *nt;
0373     unsigned long flags;
0374 
0375     /* is used from state engine doing drbd_thread_stop_nowait,
0376      * while holding the req lock irqsave */
0377     spin_lock_irqsave(&thi->t_lock, flags);
0378 
0379     switch (thi->t_state) {
0380     case NONE:
0381         drbd_info(resource, "Starting %s thread (from %s [%d])\n",
0382              thi->name, current->comm, current->pid);
0383 
0384         /* Get ref on module for thread - this is released when thread exits */
0385         if (!try_module_get(THIS_MODULE)) {
0386             drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
0387             spin_unlock_irqrestore(&thi->t_lock, flags);
0388             return false;
0389         }
0390 
0391         kref_get(&resource->kref);
0392         if (thi->connection)
0393             kref_get(&thi->connection->kref);
0394 
0395         init_completion(&thi->stop);
0396         thi->reset_cpu_mask = 1;
0397         thi->t_state = RUNNING;
0398         spin_unlock_irqrestore(&thi->t_lock, flags);
0399         flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
0400 
0401         nt = kthread_create(drbd_thread_setup, (void *) thi,
0402                     "drbd_%c_%s", thi->name[0], thi->resource->name);
0403 
0404         if (IS_ERR(nt)) {
0405             drbd_err(resource, "Couldn't start thread\n");
0406 
0407             if (thi->connection)
0408                 kref_put(&thi->connection->kref, drbd_destroy_connection);
0409             kref_put(&resource->kref, drbd_destroy_resource);
0410             module_put(THIS_MODULE);
0411             return false;
0412         }
0413         spin_lock_irqsave(&thi->t_lock, flags);
0414         thi->task = nt;
0415         thi->t_state = RUNNING;
0416         spin_unlock_irqrestore(&thi->t_lock, flags);
0417         wake_up_process(nt);
0418         break;
0419     case EXITING:
0420         thi->t_state = RESTARTING;
0421         drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
0422                 thi->name, current->comm, current->pid);
0423         fallthrough;
0424     case RUNNING:
0425     case RESTARTING:
0426     default:
0427         spin_unlock_irqrestore(&thi->t_lock, flags);
0428         break;
0429     }
0430 
0431     return true;
0432 }
0433 
0434 
0435 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
0436 {
0437     unsigned long flags;
0438 
0439     enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
0440 
0441     /* may be called from state engine, holding the req lock irqsave */
0442     spin_lock_irqsave(&thi->t_lock, flags);
0443 
0444     if (thi->t_state == NONE) {
0445         spin_unlock_irqrestore(&thi->t_lock, flags);
0446         if (restart)
0447             drbd_thread_start(thi);
0448         return;
0449     }
0450 
0451     if (thi->t_state != ns) {
0452         if (thi->task == NULL) {
0453             spin_unlock_irqrestore(&thi->t_lock, flags);
0454             return;
0455         }
0456 
0457         thi->t_state = ns;
0458         smp_mb();
0459         init_completion(&thi->stop);
0460         if (thi->task != current)
0461             send_sig(DRBD_SIGKILL, thi->task, 1);
0462     }
0463 
0464     spin_unlock_irqrestore(&thi->t_lock, flags);
0465 
0466     if (wait)
0467         wait_for_completion(&thi->stop);
0468 }
0469 
0470 int conn_lowest_minor(struct drbd_connection *connection)
0471 {
0472     struct drbd_peer_device *peer_device;
0473     int vnr = 0, minor = -1;
0474 
0475     rcu_read_lock();
0476     peer_device = idr_get_next(&connection->peer_devices, &vnr);
0477     if (peer_device)
0478         minor = device_to_minor(peer_device->device);
0479     rcu_read_unlock();
0480 
0481     return minor;
0482 }
0483 
0484 #ifdef CONFIG_SMP
0485 /*
0486  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
0487  *
0488  * Forces all threads of a resource onto the same CPU. This is beneficial for
0489  * DRBD's performance. May be overwritten by user's configuration.
0490  */
0491 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
0492 {
0493     unsigned int *resources_per_cpu, min_index = ~0;
0494 
0495     resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
0496                     GFP_KERNEL);
0497     if (resources_per_cpu) {
0498         struct drbd_resource *resource;
0499         unsigned int cpu, min = ~0;
0500 
0501         rcu_read_lock();
0502         for_each_resource_rcu(resource, &drbd_resources) {
0503             for_each_cpu(cpu, resource->cpu_mask)
0504                 resources_per_cpu[cpu]++;
0505         }
0506         rcu_read_unlock();
0507         for_each_online_cpu(cpu) {
0508             if (resources_per_cpu[cpu] < min) {
0509                 min = resources_per_cpu[cpu];
0510                 min_index = cpu;
0511             }
0512         }
0513         kfree(resources_per_cpu);
0514     }
0515     if (min_index == ~0) {
0516         cpumask_setall(*cpu_mask);
0517         return;
0518     }
0519     cpumask_set_cpu(min_index, *cpu_mask);
0520 }
0521 
0522 /**
0523  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
0524  * @thi:    drbd_thread object
0525  *
0526  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
0527  * prematurely.
0528  */
0529 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
0530 {
0531     struct drbd_resource *resource = thi->resource;
0532     struct task_struct *p = current;
0533 
0534     if (!thi->reset_cpu_mask)
0535         return;
0536     thi->reset_cpu_mask = 0;
0537     set_cpus_allowed_ptr(p, resource->cpu_mask);
0538 }
0539 #else
0540 #define drbd_calc_cpu_mask(A) ({})
0541 #endif
0542 
0543 /*
0544  * drbd_header_size  -  size of a packet header
0545  *
0546  * The header size is a multiple of 8, so any payload following the header is
0547  * word aligned on 64-bit architectures.  (The bitmap send and receive code
0548  * relies on this.)
0549  */
0550 unsigned int drbd_header_size(struct drbd_connection *connection)
0551 {
0552     if (connection->agreed_pro_version >= 100) {
0553         BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
0554         return sizeof(struct p_header100);
0555     } else {
0556         BUILD_BUG_ON(sizeof(struct p_header80) !=
0557                  sizeof(struct p_header95));
0558         BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
0559         return sizeof(struct p_header80);
0560     }
0561 }
0562 
0563 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
0564 {
0565     h->magic   = cpu_to_be32(DRBD_MAGIC);
0566     h->command = cpu_to_be16(cmd);
0567     h->length  = cpu_to_be16(size);
0568     return sizeof(struct p_header80);
0569 }
0570 
0571 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
0572 {
0573     h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
0574     h->command = cpu_to_be16(cmd);
0575     h->length = cpu_to_be32(size);
0576     return sizeof(struct p_header95);
0577 }
0578 
0579 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
0580                       int size, int vnr)
0581 {
0582     h->magic = cpu_to_be32(DRBD_MAGIC_100);
0583     h->volume = cpu_to_be16(vnr);
0584     h->command = cpu_to_be16(cmd);
0585     h->length = cpu_to_be32(size);
0586     h->pad = 0;
0587     return sizeof(struct p_header100);
0588 }
0589 
0590 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
0591                    void *buffer, enum drbd_packet cmd, int size)
0592 {
0593     if (connection->agreed_pro_version >= 100)
0594         return prepare_header100(buffer, cmd, size, vnr);
0595     else if (connection->agreed_pro_version >= 95 &&
0596          size > DRBD_MAX_SIZE_H80_PACKET)
0597         return prepare_header95(buffer, cmd, size);
0598     else
0599         return prepare_header80(buffer, cmd, size);
0600 }
0601 
0602 static void *__conn_prepare_command(struct drbd_connection *connection,
0603                     struct drbd_socket *sock)
0604 {
0605     if (!sock->socket)
0606         return NULL;
0607     return sock->sbuf + drbd_header_size(connection);
0608 }
0609 
0610 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
0611 {
0612     void *p;
0613 
0614     mutex_lock(&sock->mutex);
0615     p = __conn_prepare_command(connection, sock);
0616     if (!p)
0617         mutex_unlock(&sock->mutex);
0618 
0619     return p;
0620 }
0621 
0622 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
0623 {
0624     return conn_prepare_command(peer_device->connection, sock);
0625 }
0626 
0627 static int __send_command(struct drbd_connection *connection, int vnr,
0628               struct drbd_socket *sock, enum drbd_packet cmd,
0629               unsigned int header_size, void *data,
0630               unsigned int size)
0631 {
0632     int msg_flags;
0633     int err;
0634 
0635     /*
0636      * Called with @data == NULL and the size of the data blocks in @size
0637      * for commands that send data blocks.  For those commands, omit the
0638      * MSG_MORE flag: this will increase the likelihood that data blocks
0639      * which are page aligned on the sender will end up page aligned on the
0640      * receiver.
0641      */
0642     msg_flags = data ? MSG_MORE : 0;
0643 
0644     header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
0645                       header_size + size);
0646     err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
0647                 msg_flags);
0648     if (data && !err)
0649         err = drbd_send_all(connection, sock->socket, data, size, 0);
0650     /* DRBD protocol "pings" are latency critical.
0651      * This is supposed to trigger tcp_push_pending_frames() */
0652     if (!err && (cmd == P_PING || cmd == P_PING_ACK))
0653         tcp_sock_set_nodelay(sock->socket->sk);
0654 
0655     return err;
0656 }
0657 
0658 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
0659                    enum drbd_packet cmd, unsigned int header_size,
0660                    void *data, unsigned int size)
0661 {
0662     return __send_command(connection, 0, sock, cmd, header_size, data, size);
0663 }
0664 
0665 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
0666               enum drbd_packet cmd, unsigned int header_size,
0667               void *data, unsigned int size)
0668 {
0669     int err;
0670 
0671     err = __conn_send_command(connection, sock, cmd, header_size, data, size);
0672     mutex_unlock(&sock->mutex);
0673     return err;
0674 }
0675 
0676 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
0677               enum drbd_packet cmd, unsigned int header_size,
0678               void *data, unsigned int size)
0679 {
0680     int err;
0681 
0682     err = __send_command(peer_device->connection, peer_device->device->vnr,
0683                  sock, cmd, header_size, data, size);
0684     mutex_unlock(&sock->mutex);
0685     return err;
0686 }
0687 
0688 int drbd_send_ping(struct drbd_connection *connection)
0689 {
0690     struct drbd_socket *sock;
0691 
0692     sock = &connection->meta;
0693     if (!conn_prepare_command(connection, sock))
0694         return -EIO;
0695     return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
0696 }
0697 
0698 int drbd_send_ping_ack(struct drbd_connection *connection)
0699 {
0700     struct drbd_socket *sock;
0701 
0702     sock = &connection->meta;
0703     if (!conn_prepare_command(connection, sock))
0704         return -EIO;
0705     return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
0706 }
0707 
0708 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
0709 {
0710     struct drbd_socket *sock;
0711     struct p_rs_param_95 *p;
0712     int size;
0713     const int apv = peer_device->connection->agreed_pro_version;
0714     enum drbd_packet cmd;
0715     struct net_conf *nc;
0716     struct disk_conf *dc;
0717 
0718     sock = &peer_device->connection->data;
0719     p = drbd_prepare_command(peer_device, sock);
0720     if (!p)
0721         return -EIO;
0722 
0723     rcu_read_lock();
0724     nc = rcu_dereference(peer_device->connection->net_conf);
0725 
0726     size = apv <= 87 ? sizeof(struct p_rs_param)
0727         : apv == 88 ? sizeof(struct p_rs_param)
0728             + strlen(nc->verify_alg) + 1
0729         : apv <= 94 ? sizeof(struct p_rs_param_89)
0730         : /* apv >= 95 */ sizeof(struct p_rs_param_95);
0731 
0732     cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
0733 
0734     /* initialize verify_alg and csums_alg */
0735     BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
0736     memset(&p->algs, 0, sizeof(p->algs));
0737 
0738     if (get_ldev(peer_device->device)) {
0739         dc = rcu_dereference(peer_device->device->ldev->disk_conf);
0740         p->resync_rate = cpu_to_be32(dc->resync_rate);
0741         p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
0742         p->c_delay_target = cpu_to_be32(dc->c_delay_target);
0743         p->c_fill_target = cpu_to_be32(dc->c_fill_target);
0744         p->c_max_rate = cpu_to_be32(dc->c_max_rate);
0745         put_ldev(peer_device->device);
0746     } else {
0747         p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
0748         p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
0749         p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
0750         p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
0751         p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
0752     }
0753 
0754     if (apv >= 88)
0755         strcpy(p->verify_alg, nc->verify_alg);
0756     if (apv >= 89)
0757         strcpy(p->csums_alg, nc->csums_alg);
0758     rcu_read_unlock();
0759 
0760     return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
0761 }
0762 
0763 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
0764 {
0765     struct drbd_socket *sock;
0766     struct p_protocol *p;
0767     struct net_conf *nc;
0768     int size, cf;
0769 
0770     sock = &connection->data;
0771     p = __conn_prepare_command(connection, sock);
0772     if (!p)
0773         return -EIO;
0774 
0775     rcu_read_lock();
0776     nc = rcu_dereference(connection->net_conf);
0777 
0778     if (nc->tentative && connection->agreed_pro_version < 92) {
0779         rcu_read_unlock();
0780         drbd_err(connection, "--dry-run is not supported by peer");
0781         return -EOPNOTSUPP;
0782     }
0783 
0784     size = sizeof(*p);
0785     if (connection->agreed_pro_version >= 87)
0786         size += strlen(nc->integrity_alg) + 1;
0787 
0788     p->protocol      = cpu_to_be32(nc->wire_protocol);
0789     p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
0790     p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
0791     p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
0792     p->two_primaries = cpu_to_be32(nc->two_primaries);
0793     cf = 0;
0794     if (nc->discard_my_data)
0795         cf |= CF_DISCARD_MY_DATA;
0796     if (nc->tentative)
0797         cf |= CF_DRY_RUN;
0798     p->conn_flags    = cpu_to_be32(cf);
0799 
0800     if (connection->agreed_pro_version >= 87)
0801         strcpy(p->integrity_alg, nc->integrity_alg);
0802     rcu_read_unlock();
0803 
0804     return __conn_send_command(connection, sock, cmd, size, NULL, 0);
0805 }
0806 
0807 int drbd_send_protocol(struct drbd_connection *connection)
0808 {
0809     int err;
0810 
0811     mutex_lock(&connection->data.mutex);
0812     err = __drbd_send_protocol(connection, P_PROTOCOL);
0813     mutex_unlock(&connection->data.mutex);
0814 
0815     return err;
0816 }
0817 
0818 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
0819 {
0820     struct drbd_device *device = peer_device->device;
0821     struct drbd_socket *sock;
0822     struct p_uuids *p;
0823     int i;
0824 
0825     if (!get_ldev_if_state(device, D_NEGOTIATING))
0826         return 0;
0827 
0828     sock = &peer_device->connection->data;
0829     p = drbd_prepare_command(peer_device, sock);
0830     if (!p) {
0831         put_ldev(device);
0832         return -EIO;
0833     }
0834     spin_lock_irq(&device->ldev->md.uuid_lock);
0835     for (i = UI_CURRENT; i < UI_SIZE; i++)
0836         p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
0837     spin_unlock_irq(&device->ldev->md.uuid_lock);
0838 
0839     device->comm_bm_set = drbd_bm_total_weight(device);
0840     p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
0841     rcu_read_lock();
0842     uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
0843     rcu_read_unlock();
0844     uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
0845     uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
0846     p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
0847 
0848     put_ldev(device);
0849     return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
0850 }
0851 
0852 int drbd_send_uuids(struct drbd_peer_device *peer_device)
0853 {
0854     return _drbd_send_uuids(peer_device, 0);
0855 }
0856 
0857 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
0858 {
0859     return _drbd_send_uuids(peer_device, 8);
0860 }
0861 
0862 void drbd_print_uuids(struct drbd_device *device, const char *text)
0863 {
0864     if (get_ldev_if_state(device, D_NEGOTIATING)) {
0865         u64 *uuid = device->ldev->md.uuid;
0866         drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
0867              text,
0868              (unsigned long long)uuid[UI_CURRENT],
0869              (unsigned long long)uuid[UI_BITMAP],
0870              (unsigned long long)uuid[UI_HISTORY_START],
0871              (unsigned long long)uuid[UI_HISTORY_END]);
0872         put_ldev(device);
0873     } else {
0874         drbd_info(device, "%s effective data uuid: %016llX\n",
0875                 text,
0876                 (unsigned long long)device->ed_uuid);
0877     }
0878 }
0879 
0880 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
0881 {
0882     struct drbd_device *device = peer_device->device;
0883     struct drbd_socket *sock;
0884     struct p_rs_uuid *p;
0885     u64 uuid;
0886 
0887     D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
0888 
0889     uuid = device->ldev->md.uuid[UI_BITMAP];
0890     if (uuid && uuid != UUID_JUST_CREATED)
0891         uuid = uuid + UUID_NEW_BM_OFFSET;
0892     else
0893         get_random_bytes(&uuid, sizeof(u64));
0894     drbd_uuid_set(device, UI_BITMAP, uuid);
0895     drbd_print_uuids(device, "updated sync UUID");
0896     drbd_md_sync(device);
0897 
0898     sock = &peer_device->connection->data;
0899     p = drbd_prepare_command(peer_device, sock);
0900     if (p) {
0901         p->uuid = cpu_to_be64(uuid);
0902         drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
0903     }
0904 }
0905 
0906 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
0907 {
0908     struct drbd_device *device = peer_device->device;
0909     struct drbd_socket *sock;
0910     struct p_sizes *p;
0911     sector_t d_size, u_size;
0912     int q_order_type;
0913     unsigned int max_bio_size;
0914     unsigned int packet_size;
0915 
0916     sock = &peer_device->connection->data;
0917     p = drbd_prepare_command(peer_device, sock);
0918     if (!p)
0919         return -EIO;
0920 
0921     packet_size = sizeof(*p);
0922     if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
0923         packet_size += sizeof(p->qlim[0]);
0924 
0925     memset(p, 0, packet_size);
0926     if (get_ldev_if_state(device, D_NEGOTIATING)) {
0927         struct block_device *bdev = device->ldev->backing_bdev;
0928         struct request_queue *q = bdev_get_queue(bdev);
0929 
0930         d_size = drbd_get_max_capacity(device->ldev);
0931         rcu_read_lock();
0932         u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
0933         rcu_read_unlock();
0934         q_order_type = drbd_queue_order_type(device);
0935         max_bio_size = queue_max_hw_sectors(q) << 9;
0936         max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
0937         p->qlim->physical_block_size =
0938             cpu_to_be32(bdev_physical_block_size(bdev));
0939         p->qlim->logical_block_size =
0940             cpu_to_be32(bdev_logical_block_size(bdev));
0941         p->qlim->alignment_offset =
0942             cpu_to_be32(bdev_alignment_offset(bdev));
0943         p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev));
0944         p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev));
0945         p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev);
0946         put_ldev(device);
0947     } else {
0948         struct request_queue *q = device->rq_queue;
0949 
0950         p->qlim->physical_block_size =
0951             cpu_to_be32(queue_physical_block_size(q));
0952         p->qlim->logical_block_size =
0953             cpu_to_be32(queue_logical_block_size(q));
0954         p->qlim->alignment_offset = 0;
0955         p->qlim->io_min = cpu_to_be32(queue_io_min(q));
0956         p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
0957         p->qlim->discard_enabled = 0;
0958 
0959         d_size = 0;
0960         u_size = 0;
0961         q_order_type = QUEUE_ORDERED_NONE;
0962         max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
0963     }
0964 
0965     if (peer_device->connection->agreed_pro_version <= 94)
0966         max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
0967     else if (peer_device->connection->agreed_pro_version < 100)
0968         max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
0969 
0970     p->d_size = cpu_to_be64(d_size);
0971     p->u_size = cpu_to_be64(u_size);
0972     if (trigger_reply)
0973         p->c_size = 0;
0974     else
0975         p->c_size = cpu_to_be64(get_capacity(device->vdisk));
0976     p->max_bio_size = cpu_to_be32(max_bio_size);
0977     p->queue_order_type = cpu_to_be16(q_order_type);
0978     p->dds_flags = cpu_to_be16(flags);
0979 
0980     return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
0981 }
0982 
0983 /**
0984  * drbd_send_current_state() - Sends the drbd state to the peer
0985  * @peer_device:    DRBD peer device.
0986  */
0987 int drbd_send_current_state(struct drbd_peer_device *peer_device)
0988 {
0989     struct drbd_socket *sock;
0990     struct p_state *p;
0991 
0992     sock = &peer_device->connection->data;
0993     p = drbd_prepare_command(peer_device, sock);
0994     if (!p)
0995         return -EIO;
0996     p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
0997     return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
0998 }
0999 
1000 /**
1001  * drbd_send_state() - After a state change, sends the new state to the peer
1002  * @peer_device:      DRBD peer device.
1003  * @state:     the state to send, not necessarily the current state.
1004  *
1005  * Each state change queues an "after_state_ch" work, which will eventually
1006  * send the resulting new state to the peer. If more state changes happen
1007  * between queuing and processing of the after_state_ch work, we still
1008  * want to send each intermediary state in the order it occurred.
1009  */
1010 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1011 {
1012     struct drbd_socket *sock;
1013     struct p_state *p;
1014 
1015     sock = &peer_device->connection->data;
1016     p = drbd_prepare_command(peer_device, sock);
1017     if (!p)
1018         return -EIO;
1019     p->state = cpu_to_be32(state.i); /* Within the send mutex */
1020     return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1021 }
1022 
1023 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1024 {
1025     struct drbd_socket *sock;
1026     struct p_req_state *p;
1027 
1028     sock = &peer_device->connection->data;
1029     p = drbd_prepare_command(peer_device, sock);
1030     if (!p)
1031         return -EIO;
1032     p->mask = cpu_to_be32(mask.i);
1033     p->val = cpu_to_be32(val.i);
1034     return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1035 }
1036 
1037 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1038 {
1039     enum drbd_packet cmd;
1040     struct drbd_socket *sock;
1041     struct p_req_state *p;
1042 
1043     cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1044     sock = &connection->data;
1045     p = conn_prepare_command(connection, sock);
1046     if (!p)
1047         return -EIO;
1048     p->mask = cpu_to_be32(mask.i);
1049     p->val = cpu_to_be32(val.i);
1050     return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1051 }
1052 
1053 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1054 {
1055     struct drbd_socket *sock;
1056     struct p_req_state_reply *p;
1057 
1058     sock = &peer_device->connection->meta;
1059     p = drbd_prepare_command(peer_device, sock);
1060     if (p) {
1061         p->retcode = cpu_to_be32(retcode);
1062         drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1063     }
1064 }
1065 
1066 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1067 {
1068     struct drbd_socket *sock;
1069     struct p_req_state_reply *p;
1070     enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1071 
1072     sock = &connection->meta;
1073     p = conn_prepare_command(connection, sock);
1074     if (p) {
1075         p->retcode = cpu_to_be32(retcode);
1076         conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1077     }
1078 }
1079 
1080 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1081 {
1082     BUG_ON(code & ~0xf);
1083     p->encoding = (p->encoding & ~0xf) | code;
1084 }
1085 
1086 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1087 {
1088     p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1089 }
1090 
1091 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1092 {
1093     BUG_ON(n & ~0x7);
1094     p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1095 }
1096 
1097 static int fill_bitmap_rle_bits(struct drbd_device *device,
1098              struct p_compressed_bm *p,
1099              unsigned int size,
1100              struct bm_xfer_ctx *c)
1101 {
1102     struct bitstream bs;
1103     unsigned long plain_bits;
1104     unsigned long tmp;
1105     unsigned long rl;
1106     unsigned len;
1107     unsigned toggle;
1108     int bits, use_rle;
1109 
1110     /* may we use this feature? */
1111     rcu_read_lock();
1112     use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1113     rcu_read_unlock();
1114     if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1115         return 0;
1116 
1117     if (c->bit_offset >= c->bm_bits)
1118         return 0; /* nothing to do. */
1119 
1120     /* use at most thus many bytes */
1121     bitstream_init(&bs, p->code, size, 0);
1122     memset(p->code, 0, size);
1123     /* plain bits covered in this code string */
1124     plain_bits = 0;
1125 
1126     /* p->encoding & 0x80 stores whether the first run length is set.
1127      * bit offset is implicit.
1128      * start with toggle == 2 to be able to tell the first iteration */
1129     toggle = 2;
1130 
1131     /* see how much plain bits we can stuff into one packet
1132      * using RLE and VLI. */
1133     do {
1134         tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1135                     : _drbd_bm_find_next(device, c->bit_offset);
1136         if (tmp == -1UL)
1137             tmp = c->bm_bits;
1138         rl = tmp - c->bit_offset;
1139 
1140         if (toggle == 2) { /* first iteration */
1141             if (rl == 0) {
1142                 /* the first checked bit was set,
1143                  * store start value, */
1144                 dcbp_set_start(p, 1);
1145                 /* but skip encoding of zero run length */
1146                 toggle = !toggle;
1147                 continue;
1148             }
1149             dcbp_set_start(p, 0);
1150         }
1151 
1152         /* paranoia: catch zero runlength.
1153          * can only happen if bitmap is modified while we scan it. */
1154         if (rl == 0) {
1155             drbd_err(device, "unexpected zero runlength while encoding bitmap "
1156                 "t:%u bo:%lu\n", toggle, c->bit_offset);
1157             return -1;
1158         }
1159 
1160         bits = vli_encode_bits(&bs, rl);
1161         if (bits == -ENOBUFS) /* buffer full */
1162             break;
1163         if (bits <= 0) {
1164             drbd_err(device, "error while encoding bitmap: %d\n", bits);
1165             return 0;
1166         }
1167 
1168         toggle = !toggle;
1169         plain_bits += rl;
1170         c->bit_offset = tmp;
1171     } while (c->bit_offset < c->bm_bits);
1172 
1173     len = bs.cur.b - p->code + !!bs.cur.bit;
1174 
1175     if (plain_bits < (len << 3)) {
1176         /* incompressible with this method.
1177          * we need to rewind both word and bit position. */
1178         c->bit_offset -= plain_bits;
1179         bm_xfer_ctx_bit_to_word_offset(c);
1180         c->bit_offset = c->word_offset * BITS_PER_LONG;
1181         return 0;
1182     }
1183 
1184     /* RLE + VLI was able to compress it just fine.
1185      * update c->word_offset. */
1186     bm_xfer_ctx_bit_to_word_offset(c);
1187 
1188     /* store pad_bits */
1189     dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1190 
1191     return len;
1192 }
1193 
1194 /*
1195  * send_bitmap_rle_or_plain
1196  *
1197  * Return 0 when done, 1 when another iteration is needed, and a negative error
1198  * code upon failure.
1199  */
1200 static int
1201 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1202 {
1203     struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1204     unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1205     struct p_compressed_bm *p = sock->sbuf + header_size;
1206     int len, err;
1207 
1208     len = fill_bitmap_rle_bits(device, p,
1209             DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1210     if (len < 0)
1211         return -EIO;
1212 
1213     if (len) {
1214         dcbp_set_code(p, RLE_VLI_Bits);
1215         err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1216                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1217                      NULL, 0);
1218         c->packets[0]++;
1219         c->bytes[0] += header_size + sizeof(*p) + len;
1220 
1221         if (c->bit_offset >= c->bm_bits)
1222             len = 0; /* DONE */
1223     } else {
1224         /* was not compressible.
1225          * send a buffer full of plain text bits instead. */
1226         unsigned int data_size;
1227         unsigned long num_words;
1228         unsigned long *p = sock->sbuf + header_size;
1229 
1230         data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1231         num_words = min_t(size_t, data_size / sizeof(*p),
1232                   c->bm_words - c->word_offset);
1233         len = num_words * sizeof(*p);
1234         if (len)
1235             drbd_bm_get_lel(device, c->word_offset, num_words, p);
1236         err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1237         c->word_offset += num_words;
1238         c->bit_offset = c->word_offset * BITS_PER_LONG;
1239 
1240         c->packets[1]++;
1241         c->bytes[1] += header_size + len;
1242 
1243         if (c->bit_offset > c->bm_bits)
1244             c->bit_offset = c->bm_bits;
1245     }
1246     if (!err) {
1247         if (len == 0) {
1248             INFO_bm_xfer_stats(device, "send", c);
1249             return 0;
1250         } else
1251             return 1;
1252     }
1253     return -EIO;
1254 }
1255 
1256 /* See the comment at receive_bitmap() */
1257 static int _drbd_send_bitmap(struct drbd_device *device)
1258 {
1259     struct bm_xfer_ctx c;
1260     int err;
1261 
1262     if (!expect(device->bitmap))
1263         return false;
1264 
1265     if (get_ldev(device)) {
1266         if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1267             drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1268             drbd_bm_set_all(device);
1269             if (drbd_bm_write(device)) {
1270                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1271                  * but otherwise process as per normal - need to tell other
1272                  * side that a full resync is required! */
1273                 drbd_err(device, "Failed to write bitmap to disk!\n");
1274             } else {
1275                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1276                 drbd_md_sync(device);
1277             }
1278         }
1279         put_ldev(device);
1280     }
1281 
1282     c = (struct bm_xfer_ctx) {
1283         .bm_bits = drbd_bm_bits(device),
1284         .bm_words = drbd_bm_words(device),
1285     };
1286 
1287     do {
1288         err = send_bitmap_rle_or_plain(device, &c);
1289     } while (err > 0);
1290 
1291     return err == 0;
1292 }
1293 
1294 int drbd_send_bitmap(struct drbd_device *device)
1295 {
1296     struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1297     int err = -1;
1298 
1299     mutex_lock(&sock->mutex);
1300     if (sock->socket)
1301         err = !_drbd_send_bitmap(device);
1302     mutex_unlock(&sock->mutex);
1303     return err;
1304 }
1305 
1306 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1307 {
1308     struct drbd_socket *sock;
1309     struct p_barrier_ack *p;
1310 
1311     if (connection->cstate < C_WF_REPORT_PARAMS)
1312         return;
1313 
1314     sock = &connection->meta;
1315     p = conn_prepare_command(connection, sock);
1316     if (!p)
1317         return;
1318     p->barrier = barrier_nr;
1319     p->set_size = cpu_to_be32(set_size);
1320     conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1321 }
1322 
1323 /**
1324  * _drbd_send_ack() - Sends an ack packet
1325  * @peer_device:    DRBD peer device.
1326  * @cmd:        Packet command code.
1327  * @sector:     sector, needs to be in big endian byte order
1328  * @blksize:        size in byte, needs to be in big endian byte order
1329  * @block_id:       Id, big endian byte order
1330  */
1331 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1332               u64 sector, u32 blksize, u64 block_id)
1333 {
1334     struct drbd_socket *sock;
1335     struct p_block_ack *p;
1336 
1337     if (peer_device->device->state.conn < C_CONNECTED)
1338         return -EIO;
1339 
1340     sock = &peer_device->connection->meta;
1341     p = drbd_prepare_command(peer_device, sock);
1342     if (!p)
1343         return -EIO;
1344     p->sector = sector;
1345     p->block_id = block_id;
1346     p->blksize = blksize;
1347     p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1348     return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1349 }
1350 
1351 /* dp->sector and dp->block_id already/still in network byte order,
1352  * data_size is payload size according to dp->head,
1353  * and may need to be corrected for digest size. */
1354 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1355               struct p_data *dp, int data_size)
1356 {
1357     if (peer_device->connection->peer_integrity_tfm)
1358         data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1359     _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1360                dp->block_id);
1361 }
1362 
1363 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1364               struct p_block_req *rp)
1365 {
1366     _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1367 }
1368 
1369 /**
1370  * drbd_send_ack() - Sends an ack packet
1371  * @peer_device:    DRBD peer device
1372  * @cmd:        packet command code
1373  * @peer_req:       peer request
1374  */
1375 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1376           struct drbd_peer_request *peer_req)
1377 {
1378     return _drbd_send_ack(peer_device, cmd,
1379                   cpu_to_be64(peer_req->i.sector),
1380                   cpu_to_be32(peer_req->i.size),
1381                   peer_req->block_id);
1382 }
1383 
1384 /* This function misuses the block_id field to signal if the blocks
1385  * are is sync or not. */
1386 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1387              sector_t sector, int blksize, u64 block_id)
1388 {
1389     return _drbd_send_ack(peer_device, cmd,
1390                   cpu_to_be64(sector),
1391                   cpu_to_be32(blksize),
1392                   cpu_to_be64(block_id));
1393 }
1394 
1395 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1396                  struct drbd_peer_request *peer_req)
1397 {
1398     struct drbd_socket *sock;
1399     struct p_block_desc *p;
1400 
1401     sock = &peer_device->connection->data;
1402     p = drbd_prepare_command(peer_device, sock);
1403     if (!p)
1404         return -EIO;
1405     p->sector = cpu_to_be64(peer_req->i.sector);
1406     p->blksize = cpu_to_be32(peer_req->i.size);
1407     p->pad = 0;
1408     return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1409 }
1410 
1411 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1412                sector_t sector, int size, u64 block_id)
1413 {
1414     struct drbd_socket *sock;
1415     struct p_block_req *p;
1416 
1417     sock = &peer_device->connection->data;
1418     p = drbd_prepare_command(peer_device, sock);
1419     if (!p)
1420         return -EIO;
1421     p->sector = cpu_to_be64(sector);
1422     p->block_id = block_id;
1423     p->blksize = cpu_to_be32(size);
1424     return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1425 }
1426 
1427 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1428                 void *digest, int digest_size, enum drbd_packet cmd)
1429 {
1430     struct drbd_socket *sock;
1431     struct p_block_req *p;
1432 
1433     /* FIXME: Put the digest into the preallocated socket buffer.  */
1434 
1435     sock = &peer_device->connection->data;
1436     p = drbd_prepare_command(peer_device, sock);
1437     if (!p)
1438         return -EIO;
1439     p->sector = cpu_to_be64(sector);
1440     p->block_id = ID_SYNCER /* unused */;
1441     p->blksize = cpu_to_be32(size);
1442     return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1443 }
1444 
1445 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1446 {
1447     struct drbd_socket *sock;
1448     struct p_block_req *p;
1449 
1450     sock = &peer_device->connection->data;
1451     p = drbd_prepare_command(peer_device, sock);
1452     if (!p)
1453         return -EIO;
1454     p->sector = cpu_to_be64(sector);
1455     p->block_id = ID_SYNCER /* unused */;
1456     p->blksize = cpu_to_be32(size);
1457     return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1458 }
1459 
1460 /* called on sndtimeo
1461  * returns false if we should retry,
1462  * true if we think connection is dead
1463  */
1464 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1465 {
1466     int drop_it;
1467     /* long elapsed = (long)(jiffies - device->last_received); */
1468 
1469     drop_it =   connection->meta.socket == sock
1470         || !connection->ack_receiver.task
1471         || get_t_state(&connection->ack_receiver) != RUNNING
1472         || connection->cstate < C_WF_REPORT_PARAMS;
1473 
1474     if (drop_it)
1475         return true;
1476 
1477     drop_it = !--connection->ko_count;
1478     if (!drop_it) {
1479         drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1480              current->comm, current->pid, connection->ko_count);
1481         request_ping(connection);
1482     }
1483 
1484     return drop_it; /* && (device->state == R_PRIMARY) */;
1485 }
1486 
1487 static void drbd_update_congested(struct drbd_connection *connection)
1488 {
1489     struct sock *sk = connection->data.socket->sk;
1490     if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1491         set_bit(NET_CONGESTED, &connection->flags);
1492 }
1493 
1494 /* The idea of sendpage seems to be to put some kind of reference
1495  * to the page into the skb, and to hand it over to the NIC. In
1496  * this process get_page() gets called.
1497  *
1498  * As soon as the page was really sent over the network put_page()
1499  * gets called by some part of the network layer. [ NIC driver? ]
1500  *
1501  * [ get_page() / put_page() increment/decrement the count. If count
1502  *   reaches 0 the page will be freed. ]
1503  *
1504  * This works nicely with pages from FSs.
1505  * But this means that in protocol A we might signal IO completion too early!
1506  *
1507  * In order not to corrupt data during a resync we must make sure
1508  * that we do not reuse our own buffer pages (EEs) to early, therefore
1509  * we have the net_ee list.
1510  *
1511  * XFS seems to have problems, still, it submits pages with page_count == 0!
1512  * As a workaround, we disable sendpage on pages
1513  * with page_count == 0 or PageSlab.
1514  */
1515 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1516                   int offset, size_t size, unsigned msg_flags)
1517 {
1518     struct socket *socket;
1519     void *addr;
1520     int err;
1521 
1522     socket = peer_device->connection->data.socket;
1523     addr = kmap(page) + offset;
1524     err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1525     kunmap(page);
1526     if (!err)
1527         peer_device->device->send_cnt += size >> 9;
1528     return err;
1529 }
1530 
1531 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1532             int offset, size_t size, unsigned msg_flags)
1533 {
1534     struct socket *socket = peer_device->connection->data.socket;
1535     int len = size;
1536     int err = -EIO;
1537 
1538     /* e.g. XFS meta- & log-data is in slab pages, which have a
1539      * page_count of 0 and/or have PageSlab() set.
1540      * we cannot use send_page for those, as that does get_page();
1541      * put_page(); and would cause either a VM_BUG directly, or
1542      * __page_cache_release a page that would actually still be referenced
1543      * by someone, leading to some obscure delayed Oops somewhere else. */
1544     if (drbd_disable_sendpage || !sendpage_ok(page))
1545         return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1546 
1547     msg_flags |= MSG_NOSIGNAL;
1548     drbd_update_congested(peer_device->connection);
1549     do {
1550         int sent;
1551 
1552         sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1553         if (sent <= 0) {
1554             if (sent == -EAGAIN) {
1555                 if (we_should_drop_the_connection(peer_device->connection, socket))
1556                     break;
1557                 continue;
1558             }
1559             drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1560                  __func__, (int)size, len, sent);
1561             if (sent < 0)
1562                 err = sent;
1563             break;
1564         }
1565         len    -= sent;
1566         offset += sent;
1567     } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1568     clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1569 
1570     if (len == 0) {
1571         err = 0;
1572         peer_device->device->send_cnt += size >> 9;
1573     }
1574     return err;
1575 }
1576 
1577 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1578 {
1579     struct bio_vec bvec;
1580     struct bvec_iter iter;
1581 
1582     /* hint all but last page with MSG_MORE */
1583     bio_for_each_segment(bvec, bio, iter) {
1584         int err;
1585 
1586         err = _drbd_no_send_page(peer_device, bvec.bv_page,
1587                      bvec.bv_offset, bvec.bv_len,
1588                      bio_iter_last(bvec, iter)
1589                      ? 0 : MSG_MORE);
1590         if (err)
1591             return err;
1592     }
1593     return 0;
1594 }
1595 
1596 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1597 {
1598     struct bio_vec bvec;
1599     struct bvec_iter iter;
1600 
1601     /* hint all but last page with MSG_MORE */
1602     bio_for_each_segment(bvec, bio, iter) {
1603         int err;
1604 
1605         err = _drbd_send_page(peer_device, bvec.bv_page,
1606                       bvec.bv_offset, bvec.bv_len,
1607                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1608         if (err)
1609             return err;
1610     }
1611     return 0;
1612 }
1613 
1614 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1615                 struct drbd_peer_request *peer_req)
1616 {
1617     struct page *page = peer_req->pages;
1618     unsigned len = peer_req->i.size;
1619     int err;
1620 
1621     /* hint all but last page with MSG_MORE */
1622     page_chain_for_each(page) {
1623         unsigned l = min_t(unsigned, len, PAGE_SIZE);
1624 
1625         err = _drbd_send_page(peer_device, page, 0, l,
1626                       page_chain_next(page) ? MSG_MORE : 0);
1627         if (err)
1628             return err;
1629         len -= l;
1630     }
1631     return 0;
1632 }
1633 
1634 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1635                  struct bio *bio)
1636 {
1637     if (connection->agreed_pro_version >= 95)
1638         return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1639             (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1640             (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1641             (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1642             (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1643               ((connection->agreed_features & DRBD_FF_WZEROES) ?
1644                (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1645                : DP_DISCARD)
1646             : 0);
1647     else
1648         return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1649 }
1650 
1651 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1652  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1653  */
1654 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1655 {
1656     struct drbd_device *device = peer_device->device;
1657     struct drbd_socket *sock;
1658     struct p_data *p;
1659     void *digest_out;
1660     unsigned int dp_flags = 0;
1661     int digest_size;
1662     int err;
1663 
1664     sock = &peer_device->connection->data;
1665     p = drbd_prepare_command(peer_device, sock);
1666     digest_size = peer_device->connection->integrity_tfm ?
1667               crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1668 
1669     if (!p)
1670         return -EIO;
1671     p->sector = cpu_to_be64(req->i.sector);
1672     p->block_id = (unsigned long)req;
1673     p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1674     dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1675     if (device->state.conn >= C_SYNC_SOURCE &&
1676         device->state.conn <= C_PAUSED_SYNC_T)
1677         dp_flags |= DP_MAY_SET_IN_SYNC;
1678     if (peer_device->connection->agreed_pro_version >= 100) {
1679         if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1680             dp_flags |= DP_SEND_RECEIVE_ACK;
1681         /* During resync, request an explicit write ack,
1682          * even in protocol != C */
1683         if (req->rq_state & RQ_EXP_WRITE_ACK
1684         || (dp_flags & DP_MAY_SET_IN_SYNC))
1685             dp_flags |= DP_SEND_WRITE_ACK;
1686     }
1687     p->dp_flags = cpu_to_be32(dp_flags);
1688 
1689     if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1690         enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1691         struct p_trim *t = (struct p_trim*)p;
1692         t->size = cpu_to_be32(req->i.size);
1693         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1694         goto out;
1695     }
1696     digest_out = p + 1;
1697 
1698     /* our digest is still only over the payload.
1699      * TRIM does not carry any payload. */
1700     if (digest_size)
1701         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1702     err = __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1703                  sizeof(*p) + digest_size, NULL, req->i.size);
1704     if (!err) {
1705         /* For protocol A, we have to memcpy the payload into
1706          * socket buffers, as we may complete right away
1707          * as soon as we handed it over to tcp, at which point the data
1708          * pages may become invalid.
1709          *
1710          * For data-integrity enabled, we copy it as well, so we can be
1711          * sure that even if the bio pages may still be modified, it
1712          * won't change the data on the wire, thus if the digest checks
1713          * out ok after sending on this side, but does not fit on the
1714          * receiving side, we sure have detected corruption elsewhere.
1715          */
1716         if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1717             err = _drbd_send_bio(peer_device, req->master_bio);
1718         else
1719             err = _drbd_send_zc_bio(peer_device, req->master_bio);
1720 
1721         /* double check digest, sometimes buffers have been modified in flight. */
1722         if (digest_size > 0 && digest_size <= 64) {
1723             /* 64 byte, 512 bit, is the largest digest size
1724              * currently supported in kernel crypto. */
1725             unsigned char digest[64];
1726             drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1727             if (memcmp(p + 1, digest, digest_size)) {
1728                 drbd_warn(device,
1729                     "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1730                     (unsigned long long)req->i.sector, req->i.size);
1731             }
1732         } /* else if (digest_size > 64) {
1733              ... Be noisy about digest too large ...
1734         } */
1735     }
1736 out:
1737     mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1738 
1739     return err;
1740 }
1741 
1742 /* answer packet, used to send data back for read requests:
1743  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1744  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1745  */
1746 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1747             struct drbd_peer_request *peer_req)
1748 {
1749     struct drbd_device *device = peer_device->device;
1750     struct drbd_socket *sock;
1751     struct p_data *p;
1752     int err;
1753     int digest_size;
1754 
1755     sock = &peer_device->connection->data;
1756     p = drbd_prepare_command(peer_device, sock);
1757 
1758     digest_size = peer_device->connection->integrity_tfm ?
1759               crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1760 
1761     if (!p)
1762         return -EIO;
1763     p->sector = cpu_to_be64(peer_req->i.sector);
1764     p->block_id = peer_req->block_id;
1765     p->seq_num = 0;  /* unused */
1766     p->dp_flags = 0;
1767     if (digest_size)
1768         drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1769     err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1770     if (!err)
1771         err = _drbd_send_zc_ee(peer_device, peer_req);
1772     mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1773 
1774     return err;
1775 }
1776 
1777 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1778 {
1779     struct drbd_socket *sock;
1780     struct p_block_desc *p;
1781 
1782     sock = &peer_device->connection->data;
1783     p = drbd_prepare_command(peer_device, sock);
1784     if (!p)
1785         return -EIO;
1786     p->sector = cpu_to_be64(req->i.sector);
1787     p->blksize = cpu_to_be32(req->i.size);
1788     return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1789 }
1790 
1791 /*
1792   drbd_send distinguishes two cases:
1793 
1794   Packets sent via the data socket "sock"
1795   and packets sent via the meta data socket "msock"
1796 
1797             sock                      msock
1798   -----------------+-------------------------+------------------------------
1799   timeout           conf.timeout / 2          conf.timeout / 2
1800   timeout action    send a ping via msock     Abort communication
1801                           and close all sockets
1802 */
1803 
1804 /*
1805  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1806  */
1807 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1808           void *buf, size_t size, unsigned msg_flags)
1809 {
1810     struct kvec iov = {.iov_base = buf, .iov_len = size};
1811     struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1812     int rv, sent = 0;
1813 
1814     if (!sock)
1815         return -EBADR;
1816 
1817     /* THINK  if (signal_pending) return ... ? */
1818 
1819     iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1820 
1821     if (sock == connection->data.socket) {
1822         rcu_read_lock();
1823         connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1824         rcu_read_unlock();
1825         drbd_update_congested(connection);
1826     }
1827     do {
1828         rv = sock_sendmsg(sock, &msg);
1829         if (rv == -EAGAIN) {
1830             if (we_should_drop_the_connection(connection, sock))
1831                 break;
1832             else
1833                 continue;
1834         }
1835         if (rv == -EINTR) {
1836             flush_signals(current);
1837             rv = 0;
1838         }
1839         if (rv < 0)
1840             break;
1841         sent += rv;
1842     } while (sent < size);
1843 
1844     if (sock == connection->data.socket)
1845         clear_bit(NET_CONGESTED, &connection->flags);
1846 
1847     if (rv <= 0) {
1848         if (rv != -EAGAIN) {
1849             drbd_err(connection, "%s_sendmsg returned %d\n",
1850                  sock == connection->meta.socket ? "msock" : "sock",
1851                  rv);
1852             conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1853         } else
1854             conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1855     }
1856 
1857     return sent;
1858 }
1859 
1860 /*
1861  * drbd_send_all  -  Send an entire buffer
1862  *
1863  * Returns 0 upon success and a negative error value otherwise.
1864  */
1865 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1866           size_t size, unsigned msg_flags)
1867 {
1868     int err;
1869 
1870     err = drbd_send(connection, sock, buffer, size, msg_flags);
1871     if (err < 0)
1872         return err;
1873     if (err != size)
1874         return -EIO;
1875     return 0;
1876 }
1877 
1878 static int drbd_open(struct block_device *bdev, fmode_t mode)
1879 {
1880     struct drbd_device *device = bdev->bd_disk->private_data;
1881     unsigned long flags;
1882     int rv = 0;
1883 
1884     mutex_lock(&drbd_main_mutex);
1885     spin_lock_irqsave(&device->resource->req_lock, flags);
1886     /* to have a stable device->state.role
1887      * and no race with updating open_cnt */
1888 
1889     if (device->state.role != R_PRIMARY) {
1890         if (mode & FMODE_WRITE)
1891             rv = -EROFS;
1892         else if (!drbd_allow_oos)
1893             rv = -EMEDIUMTYPE;
1894     }
1895 
1896     if (!rv)
1897         device->open_cnt++;
1898     spin_unlock_irqrestore(&device->resource->req_lock, flags);
1899     mutex_unlock(&drbd_main_mutex);
1900 
1901     return rv;
1902 }
1903 
1904 static void drbd_release(struct gendisk *gd, fmode_t mode)
1905 {
1906     struct drbd_device *device = gd->private_data;
1907     mutex_lock(&drbd_main_mutex);
1908     device->open_cnt--;
1909     mutex_unlock(&drbd_main_mutex);
1910 }
1911 
1912 /* need to hold resource->req_lock */
1913 void drbd_queue_unplug(struct drbd_device *device)
1914 {
1915     if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1916         D_ASSERT(device, device->state.role == R_PRIMARY);
1917         if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1918             drbd_queue_work_if_unqueued(
1919                 &first_peer_device(device)->connection->sender_work,
1920                 &device->unplug_work);
1921         }
1922     }
1923 }
1924 
1925 static void drbd_set_defaults(struct drbd_device *device)
1926 {
1927     /* Beware! The actual layout differs
1928      * between big endian and little endian */
1929     device->state = (union drbd_dev_state) {
1930         { .role = R_SECONDARY,
1931           .peer = R_UNKNOWN,
1932           .conn = C_STANDALONE,
1933           .disk = D_DISKLESS,
1934           .pdsk = D_UNKNOWN,
1935         } };
1936 }
1937 
1938 void drbd_init_set_defaults(struct drbd_device *device)
1939 {
1940     /* the memset(,0,) did most of this.
1941      * note: only assignments, no allocation in here */
1942 
1943     drbd_set_defaults(device);
1944 
1945     atomic_set(&device->ap_bio_cnt, 0);
1946     atomic_set(&device->ap_actlog_cnt, 0);
1947     atomic_set(&device->ap_pending_cnt, 0);
1948     atomic_set(&device->rs_pending_cnt, 0);
1949     atomic_set(&device->unacked_cnt, 0);
1950     atomic_set(&device->local_cnt, 0);
1951     atomic_set(&device->pp_in_use_by_net, 0);
1952     atomic_set(&device->rs_sect_in, 0);
1953     atomic_set(&device->rs_sect_ev, 0);
1954     atomic_set(&device->ap_in_flight, 0);
1955     atomic_set(&device->md_io.in_use, 0);
1956 
1957     mutex_init(&device->own_state_mutex);
1958     device->state_mutex = &device->own_state_mutex;
1959 
1960     spin_lock_init(&device->al_lock);
1961     spin_lock_init(&device->peer_seq_lock);
1962 
1963     INIT_LIST_HEAD(&device->active_ee);
1964     INIT_LIST_HEAD(&device->sync_ee);
1965     INIT_LIST_HEAD(&device->done_ee);
1966     INIT_LIST_HEAD(&device->read_ee);
1967     INIT_LIST_HEAD(&device->net_ee);
1968     INIT_LIST_HEAD(&device->resync_reads);
1969     INIT_LIST_HEAD(&device->resync_work.list);
1970     INIT_LIST_HEAD(&device->unplug_work.list);
1971     INIT_LIST_HEAD(&device->bm_io_work.w.list);
1972     INIT_LIST_HEAD(&device->pending_master_completion[0]);
1973     INIT_LIST_HEAD(&device->pending_master_completion[1]);
1974     INIT_LIST_HEAD(&device->pending_completion[0]);
1975     INIT_LIST_HEAD(&device->pending_completion[1]);
1976 
1977     device->resync_work.cb  = w_resync_timer;
1978     device->unplug_work.cb  = w_send_write_hint;
1979     device->bm_io_work.w.cb = w_bitmap_io;
1980 
1981     timer_setup(&device->resync_timer, resync_timer_fn, 0);
1982     timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1983     timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1984     timer_setup(&device->request_timer, request_timer_fn, 0);
1985 
1986     init_waitqueue_head(&device->misc_wait);
1987     init_waitqueue_head(&device->state_wait);
1988     init_waitqueue_head(&device->ee_wait);
1989     init_waitqueue_head(&device->al_wait);
1990     init_waitqueue_head(&device->seq_wait);
1991 
1992     device->resync_wenr = LC_FREE;
1993     device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1994     device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1995 }
1996 
1997 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
1998 {
1999     char ppb[10];
2000 
2001     set_capacity_and_notify(device->vdisk, size);
2002 
2003     drbd_info(device, "size = %s (%llu KB)\n",
2004         ppsize(ppb, size>>1), (unsigned long long)size>>1);
2005 }
2006 
2007 void drbd_device_cleanup(struct drbd_device *device)
2008 {
2009     int i;
2010     if (first_peer_device(device)->connection->receiver.t_state != NONE)
2011         drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2012                 first_peer_device(device)->connection->receiver.t_state);
2013 
2014     device->al_writ_cnt  =
2015     device->bm_writ_cnt  =
2016     device->read_cnt     =
2017     device->recv_cnt     =
2018     device->send_cnt     =
2019     device->writ_cnt     =
2020     device->p_size       =
2021     device->rs_start     =
2022     device->rs_total     =
2023     device->rs_failed    = 0;
2024     device->rs_last_events = 0;
2025     device->rs_last_sect_ev = 0;
2026     for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2027         device->rs_mark_left[i] = 0;
2028         device->rs_mark_time[i] = 0;
2029     }
2030     D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2031 
2032     set_capacity_and_notify(device->vdisk, 0);
2033     if (device->bitmap) {
2034         /* maybe never allocated. */
2035         drbd_bm_resize(device, 0, 1);
2036         drbd_bm_cleanup(device);
2037     }
2038 
2039     drbd_backing_dev_free(device, device->ldev);
2040     device->ldev = NULL;
2041 
2042     clear_bit(AL_SUSPENDED, &device->flags);
2043 
2044     D_ASSERT(device, list_empty(&device->active_ee));
2045     D_ASSERT(device, list_empty(&device->sync_ee));
2046     D_ASSERT(device, list_empty(&device->done_ee));
2047     D_ASSERT(device, list_empty(&device->read_ee));
2048     D_ASSERT(device, list_empty(&device->net_ee));
2049     D_ASSERT(device, list_empty(&device->resync_reads));
2050     D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2051     D_ASSERT(device, list_empty(&device->resync_work.list));
2052     D_ASSERT(device, list_empty(&device->unplug_work.list));
2053 
2054     drbd_set_defaults(device);
2055 }
2056 
2057 
2058 static void drbd_destroy_mempools(void)
2059 {
2060     struct page *page;
2061 
2062     while (drbd_pp_pool) {
2063         page = drbd_pp_pool;
2064         drbd_pp_pool = (struct page *)page_private(page);
2065         __free_page(page);
2066         drbd_pp_vacant--;
2067     }
2068 
2069     /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2070 
2071     bioset_exit(&drbd_io_bio_set);
2072     bioset_exit(&drbd_md_io_bio_set);
2073     mempool_exit(&drbd_md_io_page_pool);
2074     mempool_exit(&drbd_ee_mempool);
2075     mempool_exit(&drbd_request_mempool);
2076     kmem_cache_destroy(drbd_ee_cache);
2077     kmem_cache_destroy(drbd_request_cache);
2078     kmem_cache_destroy(drbd_bm_ext_cache);
2079     kmem_cache_destroy(drbd_al_ext_cache);
2080 
2081     drbd_ee_cache        = NULL;
2082     drbd_request_cache   = NULL;
2083     drbd_bm_ext_cache    = NULL;
2084     drbd_al_ext_cache    = NULL;
2085 
2086     return;
2087 }
2088 
2089 static int drbd_create_mempools(void)
2090 {
2091     struct page *page;
2092     const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2093     int i, ret;
2094 
2095     /* caches */
2096     drbd_request_cache = kmem_cache_create(
2097         "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2098     if (drbd_request_cache == NULL)
2099         goto Enomem;
2100 
2101     drbd_ee_cache = kmem_cache_create(
2102         "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2103     if (drbd_ee_cache == NULL)
2104         goto Enomem;
2105 
2106     drbd_bm_ext_cache = kmem_cache_create(
2107         "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2108     if (drbd_bm_ext_cache == NULL)
2109         goto Enomem;
2110 
2111     drbd_al_ext_cache = kmem_cache_create(
2112         "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2113     if (drbd_al_ext_cache == NULL)
2114         goto Enomem;
2115 
2116     /* mempools */
2117     ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2118     if (ret)
2119         goto Enomem;
2120 
2121     ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2122               BIOSET_NEED_BVECS);
2123     if (ret)
2124         goto Enomem;
2125 
2126     ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2127     if (ret)
2128         goto Enomem;
2129 
2130     ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2131                      drbd_request_cache);
2132     if (ret)
2133         goto Enomem;
2134 
2135     ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2136     if (ret)
2137         goto Enomem;
2138 
2139     for (i = 0; i < number; i++) {
2140         page = alloc_page(GFP_HIGHUSER);
2141         if (!page)
2142             goto Enomem;
2143         set_page_private(page, (unsigned long)drbd_pp_pool);
2144         drbd_pp_pool = page;
2145     }
2146     drbd_pp_vacant = number;
2147 
2148     return 0;
2149 
2150 Enomem:
2151     drbd_destroy_mempools(); /* in case we allocated some */
2152     return -ENOMEM;
2153 }
2154 
2155 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2156 {
2157     int rr;
2158 
2159     rr = drbd_free_peer_reqs(device, &device->active_ee);
2160     if (rr)
2161         drbd_err(device, "%d EEs in active list found!\n", rr);
2162 
2163     rr = drbd_free_peer_reqs(device, &device->sync_ee);
2164     if (rr)
2165         drbd_err(device, "%d EEs in sync list found!\n", rr);
2166 
2167     rr = drbd_free_peer_reqs(device, &device->read_ee);
2168     if (rr)
2169         drbd_err(device, "%d EEs in read list found!\n", rr);
2170 
2171     rr = drbd_free_peer_reqs(device, &device->done_ee);
2172     if (rr)
2173         drbd_err(device, "%d EEs in done list found!\n", rr);
2174 
2175     rr = drbd_free_peer_reqs(device, &device->net_ee);
2176     if (rr)
2177         drbd_err(device, "%d EEs in net list found!\n", rr);
2178 }
2179 
2180 /* caution. no locking. */
2181 void drbd_destroy_device(struct kref *kref)
2182 {
2183     struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2184     struct drbd_resource *resource = device->resource;
2185     struct drbd_peer_device *peer_device, *tmp_peer_device;
2186 
2187     del_timer_sync(&device->request_timer);
2188 
2189     /* paranoia asserts */
2190     D_ASSERT(device, device->open_cnt == 0);
2191     /* end paranoia asserts */
2192 
2193     /* cleanup stuff that may have been allocated during
2194      * device (re-)configuration or state changes */
2195 
2196     drbd_backing_dev_free(device, device->ldev);
2197     device->ldev = NULL;
2198 
2199     drbd_release_all_peer_reqs(device);
2200 
2201     lc_destroy(device->act_log);
2202     lc_destroy(device->resync);
2203 
2204     kfree(device->p_uuid);
2205     /* device->p_uuid = NULL; */
2206 
2207     if (device->bitmap) /* should no longer be there. */
2208         drbd_bm_cleanup(device);
2209     __free_page(device->md_io.page);
2210     put_disk(device->vdisk);
2211     kfree(device->rs_plan_s);
2212 
2213     /* not for_each_connection(connection, resource):
2214      * those may have been cleaned up and disassociated already.
2215      */
2216     for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2217         kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2218         kfree(peer_device);
2219     }
2220     memset(device, 0xfd, sizeof(*device));
2221     kfree(device);
2222     kref_put(&resource->kref, drbd_destroy_resource);
2223 }
2224 
2225 /* One global retry thread, if we need to push back some bio and have it
2226  * reinserted through our make request function.
2227  */
2228 static struct retry_worker {
2229     struct workqueue_struct *wq;
2230     struct work_struct worker;
2231 
2232     spinlock_t lock;
2233     struct list_head writes;
2234 } retry;
2235 
2236 static void do_retry(struct work_struct *ws)
2237 {
2238     struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2239     LIST_HEAD(writes);
2240     struct drbd_request *req, *tmp;
2241 
2242     spin_lock_irq(&retry->lock);
2243     list_splice_init(&retry->writes, &writes);
2244     spin_unlock_irq(&retry->lock);
2245 
2246     list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2247         struct drbd_device *device = req->device;
2248         struct bio *bio = req->master_bio;
2249         bool expected;
2250 
2251         expected =
2252             expect(atomic_read(&req->completion_ref) == 0) &&
2253             expect(req->rq_state & RQ_POSTPONED) &&
2254             expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2255                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2256 
2257         if (!expected)
2258             drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2259                 req, atomic_read(&req->completion_ref),
2260                 req->rq_state);
2261 
2262         /* We still need to put one kref associated with the
2263          * "completion_ref" going zero in the code path that queued it
2264          * here.  The request object may still be referenced by a
2265          * frozen local req->private_bio, in case we force-detached.
2266          */
2267         kref_put(&req->kref, drbd_req_destroy);
2268 
2269         /* A single suspended or otherwise blocking device may stall
2270          * all others as well.  Fortunately, this code path is to
2271          * recover from a situation that "should not happen":
2272          * concurrent writes in multi-primary setup.
2273          * In a "normal" lifecycle, this workqueue is supposed to be
2274          * destroyed without ever doing anything.
2275          * If it turns out to be an issue anyways, we can do per
2276          * resource (replication group) or per device (minor) retry
2277          * workqueues instead.
2278          */
2279 
2280         /* We are not just doing submit_bio_noacct(),
2281          * as we want to keep the start_time information. */
2282         inc_ap_bio(device);
2283         __drbd_make_request(device, bio);
2284     }
2285 }
2286 
2287 /* called via drbd_req_put_completion_ref(),
2288  * holds resource->req_lock */
2289 void drbd_restart_request(struct drbd_request *req)
2290 {
2291     unsigned long flags;
2292     spin_lock_irqsave(&retry.lock, flags);
2293     list_move_tail(&req->tl_requests, &retry.writes);
2294     spin_unlock_irqrestore(&retry.lock, flags);
2295 
2296     /* Drop the extra reference that would otherwise
2297      * have been dropped by complete_master_bio.
2298      * do_retry() needs to grab a new one. */
2299     dec_ap_bio(req->device);
2300 
2301     queue_work(retry.wq, &retry.worker);
2302 }
2303 
2304 void drbd_destroy_resource(struct kref *kref)
2305 {
2306     struct drbd_resource *resource =
2307         container_of(kref, struct drbd_resource, kref);
2308 
2309     idr_destroy(&resource->devices);
2310     free_cpumask_var(resource->cpu_mask);
2311     kfree(resource->name);
2312     memset(resource, 0xf2, sizeof(*resource));
2313     kfree(resource);
2314 }
2315 
2316 void drbd_free_resource(struct drbd_resource *resource)
2317 {
2318     struct drbd_connection *connection, *tmp;
2319 
2320     for_each_connection_safe(connection, tmp, resource) {
2321         list_del(&connection->connections);
2322         drbd_debugfs_connection_cleanup(connection);
2323         kref_put(&connection->kref, drbd_destroy_connection);
2324     }
2325     drbd_debugfs_resource_cleanup(resource);
2326     kref_put(&resource->kref, drbd_destroy_resource);
2327 }
2328 
2329 static void drbd_cleanup(void)
2330 {
2331     unsigned int i;
2332     struct drbd_device *device;
2333     struct drbd_resource *resource, *tmp;
2334 
2335     /* first remove proc,
2336      * drbdsetup uses it's presence to detect
2337      * whether DRBD is loaded.
2338      * If we would get stuck in proc removal,
2339      * but have netlink already deregistered,
2340      * some drbdsetup commands may wait forever
2341      * for an answer.
2342      */
2343     if (drbd_proc)
2344         remove_proc_entry("drbd", NULL);
2345 
2346     if (retry.wq)
2347         destroy_workqueue(retry.wq);
2348 
2349     drbd_genl_unregister();
2350 
2351     idr_for_each_entry(&drbd_devices, device, i)
2352         drbd_delete_device(device);
2353 
2354     /* not _rcu since, no other updater anymore. Genl already unregistered */
2355     for_each_resource_safe(resource, tmp, &drbd_resources) {
2356         list_del(&resource->resources);
2357         drbd_free_resource(resource);
2358     }
2359 
2360     drbd_debugfs_cleanup();
2361 
2362     drbd_destroy_mempools();
2363     unregister_blkdev(DRBD_MAJOR, "drbd");
2364 
2365     idr_destroy(&drbd_devices);
2366 
2367     pr_info("module cleanup done.\n");
2368 }
2369 
2370 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2371 {
2372     spin_lock_init(&wq->q_lock);
2373     INIT_LIST_HEAD(&wq->q);
2374     init_waitqueue_head(&wq->q_wait);
2375 }
2376 
2377 struct completion_work {
2378     struct drbd_work w;
2379     struct completion done;
2380 };
2381 
2382 static int w_complete(struct drbd_work *w, int cancel)
2383 {
2384     struct completion_work *completion_work =
2385         container_of(w, struct completion_work, w);
2386 
2387     complete(&completion_work->done);
2388     return 0;
2389 }
2390 
2391 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2392 {
2393     struct completion_work completion_work;
2394 
2395     completion_work.w.cb = w_complete;
2396     init_completion(&completion_work.done);
2397     drbd_queue_work(work_queue, &completion_work.w);
2398     wait_for_completion(&completion_work.done);
2399 }
2400 
2401 struct drbd_resource *drbd_find_resource(const char *name)
2402 {
2403     struct drbd_resource *resource;
2404 
2405     if (!name || !name[0])
2406         return NULL;
2407 
2408     rcu_read_lock();
2409     for_each_resource_rcu(resource, &drbd_resources) {
2410         if (!strcmp(resource->name, name)) {
2411             kref_get(&resource->kref);
2412             goto found;
2413         }
2414     }
2415     resource = NULL;
2416 found:
2417     rcu_read_unlock();
2418     return resource;
2419 }
2420 
2421 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2422                      void *peer_addr, int peer_addr_len)
2423 {
2424     struct drbd_resource *resource;
2425     struct drbd_connection *connection;
2426 
2427     rcu_read_lock();
2428     for_each_resource_rcu(resource, &drbd_resources) {
2429         for_each_connection_rcu(connection, resource) {
2430             if (connection->my_addr_len == my_addr_len &&
2431                 connection->peer_addr_len == peer_addr_len &&
2432                 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2433                 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2434                 kref_get(&connection->kref);
2435                 goto found;
2436             }
2437         }
2438     }
2439     connection = NULL;
2440 found:
2441     rcu_read_unlock();
2442     return connection;
2443 }
2444 
2445 static int drbd_alloc_socket(struct drbd_socket *socket)
2446 {
2447     socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2448     if (!socket->rbuf)
2449         return -ENOMEM;
2450     socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2451     if (!socket->sbuf)
2452         return -ENOMEM;
2453     return 0;
2454 }
2455 
2456 static void drbd_free_socket(struct drbd_socket *socket)
2457 {
2458     free_page((unsigned long) socket->sbuf);
2459     free_page((unsigned long) socket->rbuf);
2460 }
2461 
2462 void conn_free_crypto(struct drbd_connection *connection)
2463 {
2464     drbd_free_sock(connection);
2465 
2466     crypto_free_shash(connection->csums_tfm);
2467     crypto_free_shash(connection->verify_tfm);
2468     crypto_free_shash(connection->cram_hmac_tfm);
2469     crypto_free_shash(connection->integrity_tfm);
2470     crypto_free_shash(connection->peer_integrity_tfm);
2471     kfree(connection->int_dig_in);
2472     kfree(connection->int_dig_vv);
2473 
2474     connection->csums_tfm = NULL;
2475     connection->verify_tfm = NULL;
2476     connection->cram_hmac_tfm = NULL;
2477     connection->integrity_tfm = NULL;
2478     connection->peer_integrity_tfm = NULL;
2479     connection->int_dig_in = NULL;
2480     connection->int_dig_vv = NULL;
2481 }
2482 
2483 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2484 {
2485     struct drbd_connection *connection;
2486     cpumask_var_t new_cpu_mask;
2487     int err;
2488 
2489     if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2490         return -ENOMEM;
2491 
2492     /* silently ignore cpu mask on UP kernel */
2493     if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2494         err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2495                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2496         if (err == -EOVERFLOW) {
2497             /* So what. mask it out. */
2498             cpumask_var_t tmp_cpu_mask;
2499             if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2500                 cpumask_setall(tmp_cpu_mask);
2501                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2502                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2503                     res_opts->cpu_mask,
2504                     strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2505                     nr_cpu_ids);
2506                 free_cpumask_var(tmp_cpu_mask);
2507                 err = 0;
2508             }
2509         }
2510         if (err) {
2511             drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2512             /* retcode = ERR_CPU_MASK_PARSE; */
2513             goto fail;
2514         }
2515     }
2516     resource->res_opts = *res_opts;
2517     if (cpumask_empty(new_cpu_mask))
2518         drbd_calc_cpu_mask(&new_cpu_mask);
2519     if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2520         cpumask_copy(resource->cpu_mask, new_cpu_mask);
2521         for_each_connection_rcu(connection, resource) {
2522             connection->receiver.reset_cpu_mask = 1;
2523             connection->ack_receiver.reset_cpu_mask = 1;
2524             connection->worker.reset_cpu_mask = 1;
2525         }
2526     }
2527     err = 0;
2528 
2529 fail:
2530     free_cpumask_var(new_cpu_mask);
2531     return err;
2532 
2533 }
2534 
2535 struct drbd_resource *drbd_create_resource(const char *name)
2536 {
2537     struct drbd_resource *resource;
2538 
2539     resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2540     if (!resource)
2541         goto fail;
2542     resource->name = kstrdup(name, GFP_KERNEL);
2543     if (!resource->name)
2544         goto fail_free_resource;
2545     if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2546         goto fail_free_name;
2547     kref_init(&resource->kref);
2548     idr_init(&resource->devices);
2549     INIT_LIST_HEAD(&resource->connections);
2550     resource->write_ordering = WO_BDEV_FLUSH;
2551     list_add_tail_rcu(&resource->resources, &drbd_resources);
2552     mutex_init(&resource->conf_update);
2553     mutex_init(&resource->adm_mutex);
2554     spin_lock_init(&resource->req_lock);
2555     drbd_debugfs_resource_add(resource);
2556     return resource;
2557 
2558 fail_free_name:
2559     kfree(resource->name);
2560 fail_free_resource:
2561     kfree(resource);
2562 fail:
2563     return NULL;
2564 }
2565 
2566 /* caller must be under adm_mutex */
2567 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2568 {
2569     struct drbd_resource *resource;
2570     struct drbd_connection *connection;
2571 
2572     connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2573     if (!connection)
2574         return NULL;
2575 
2576     if (drbd_alloc_socket(&connection->data))
2577         goto fail;
2578     if (drbd_alloc_socket(&connection->meta))
2579         goto fail;
2580 
2581     connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2582     if (!connection->current_epoch)
2583         goto fail;
2584 
2585     INIT_LIST_HEAD(&connection->transfer_log);
2586 
2587     INIT_LIST_HEAD(&connection->current_epoch->list);
2588     connection->epochs = 1;
2589     spin_lock_init(&connection->epoch_lock);
2590 
2591     connection->send.seen_any_write_yet = false;
2592     connection->send.current_epoch_nr = 0;
2593     connection->send.current_epoch_writes = 0;
2594 
2595     resource = drbd_create_resource(name);
2596     if (!resource)
2597         goto fail;
2598 
2599     connection->cstate = C_STANDALONE;
2600     mutex_init(&connection->cstate_mutex);
2601     init_waitqueue_head(&connection->ping_wait);
2602     idr_init(&connection->peer_devices);
2603 
2604     drbd_init_workqueue(&connection->sender_work);
2605     mutex_init(&connection->data.mutex);
2606     mutex_init(&connection->meta.mutex);
2607 
2608     drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2609     connection->receiver.connection = connection;
2610     drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2611     connection->worker.connection = connection;
2612     drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2613     connection->ack_receiver.connection = connection;
2614 
2615     kref_init(&connection->kref);
2616 
2617     connection->resource = resource;
2618 
2619     if (set_resource_options(resource, res_opts))
2620         goto fail_resource;
2621 
2622     kref_get(&resource->kref);
2623     list_add_tail_rcu(&connection->connections, &resource->connections);
2624     drbd_debugfs_connection_add(connection);
2625     return connection;
2626 
2627 fail_resource:
2628     list_del(&resource->resources);
2629     drbd_free_resource(resource);
2630 fail:
2631     kfree(connection->current_epoch);
2632     drbd_free_socket(&connection->meta);
2633     drbd_free_socket(&connection->data);
2634     kfree(connection);
2635     return NULL;
2636 }
2637 
2638 void drbd_destroy_connection(struct kref *kref)
2639 {
2640     struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2641     struct drbd_resource *resource = connection->resource;
2642 
2643     if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2644         drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2645     kfree(connection->current_epoch);
2646 
2647     idr_destroy(&connection->peer_devices);
2648 
2649     drbd_free_socket(&connection->meta);
2650     drbd_free_socket(&connection->data);
2651     kfree(connection->int_dig_in);
2652     kfree(connection->int_dig_vv);
2653     memset(connection, 0xfc, sizeof(*connection));
2654     kfree(connection);
2655     kref_put(&resource->kref, drbd_destroy_resource);
2656 }
2657 
2658 static int init_submitter(struct drbd_device *device)
2659 {
2660     /* opencoded create_singlethread_workqueue(),
2661      * to be able to say "drbd%d", ..., minor */
2662     device->submit.wq =
2663         alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2664     if (!device->submit.wq)
2665         return -ENOMEM;
2666 
2667     INIT_WORK(&device->submit.worker, do_submit);
2668     INIT_LIST_HEAD(&device->submit.writes);
2669     return 0;
2670 }
2671 
2672 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2673 {
2674     struct drbd_resource *resource = adm_ctx->resource;
2675     struct drbd_connection *connection;
2676     struct drbd_device *device;
2677     struct drbd_peer_device *peer_device, *tmp_peer_device;
2678     struct gendisk *disk;
2679     int id;
2680     int vnr = adm_ctx->volume;
2681     enum drbd_ret_code err = ERR_NOMEM;
2682 
2683     device = minor_to_device(minor);
2684     if (device)
2685         return ERR_MINOR_OR_VOLUME_EXISTS;
2686 
2687     /* GFP_KERNEL, we are outside of all write-out paths */
2688     device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2689     if (!device)
2690         return ERR_NOMEM;
2691     kref_init(&device->kref);
2692 
2693     kref_get(&resource->kref);
2694     device->resource = resource;
2695     device->minor = minor;
2696     device->vnr = vnr;
2697 
2698     drbd_init_set_defaults(device);
2699 
2700     disk = blk_alloc_disk(NUMA_NO_NODE);
2701     if (!disk)
2702         goto out_no_disk;
2703 
2704     device->vdisk = disk;
2705     device->rq_queue = disk->queue;
2706 
2707     set_disk_ro(disk, true);
2708 
2709     disk->major = DRBD_MAJOR;
2710     disk->first_minor = minor;
2711     disk->minors = 1;
2712     disk->fops = &drbd_ops;
2713     disk->flags |= GENHD_FL_NO_PART;
2714     sprintf(disk->disk_name, "drbd%d", minor);
2715     disk->private_data = device;
2716 
2717     blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue);
2718     blk_queue_write_cache(disk->queue, true, true);
2719     /* Setting the max_hw_sectors to an odd value of 8kibyte here
2720        This triggers a max_bio_size message upon first attach or connect */
2721     blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2722 
2723     device->md_io.page = alloc_page(GFP_KERNEL);
2724     if (!device->md_io.page)
2725         goto out_no_io_page;
2726 
2727     if (drbd_bm_init(device))
2728         goto out_no_bitmap;
2729     device->read_requests = RB_ROOT;
2730     device->write_requests = RB_ROOT;
2731 
2732     id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2733     if (id < 0) {
2734         if (id == -ENOSPC)
2735             err = ERR_MINOR_OR_VOLUME_EXISTS;
2736         goto out_no_minor_idr;
2737     }
2738     kref_get(&device->kref);
2739 
2740     id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2741     if (id < 0) {
2742         if (id == -ENOSPC)
2743             err = ERR_MINOR_OR_VOLUME_EXISTS;
2744         goto out_idr_remove_minor;
2745     }
2746     kref_get(&device->kref);
2747 
2748     INIT_LIST_HEAD(&device->peer_devices);
2749     INIT_LIST_HEAD(&device->pending_bitmap_io);
2750     for_each_connection(connection, resource) {
2751         peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2752         if (!peer_device)
2753             goto out_idr_remove_from_resource;
2754         peer_device->connection = connection;
2755         peer_device->device = device;
2756 
2757         list_add(&peer_device->peer_devices, &device->peer_devices);
2758         kref_get(&device->kref);
2759 
2760         id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2761         if (id < 0) {
2762             if (id == -ENOSPC)
2763                 err = ERR_INVALID_REQUEST;
2764             goto out_idr_remove_from_resource;
2765         }
2766         kref_get(&connection->kref);
2767         INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2768     }
2769 
2770     if (init_submitter(device)) {
2771         err = ERR_NOMEM;
2772         goto out_idr_remove_from_resource;
2773     }
2774 
2775     err = add_disk(disk);
2776     if (err)
2777         goto out_idr_remove_from_resource;
2778 
2779     /* inherit the connection state */
2780     device->state.conn = first_connection(resource)->cstate;
2781     if (device->state.conn == C_WF_REPORT_PARAMS) {
2782         for_each_peer_device(peer_device, device)
2783             drbd_connected(peer_device);
2784     }
2785     /* move to create_peer_device() */
2786     for_each_peer_device(peer_device, device)
2787         drbd_debugfs_peer_device_add(peer_device);
2788     drbd_debugfs_device_add(device);
2789     return NO_ERROR;
2790 
2791 out_idr_remove_from_resource:
2792     for_each_connection(connection, resource) {
2793         peer_device = idr_remove(&connection->peer_devices, vnr);
2794         if (peer_device)
2795             kref_put(&connection->kref, drbd_destroy_connection);
2796     }
2797     for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2798         list_del(&peer_device->peer_devices);
2799         kfree(peer_device);
2800     }
2801     idr_remove(&resource->devices, vnr);
2802 out_idr_remove_minor:
2803     idr_remove(&drbd_devices, minor);
2804     synchronize_rcu();
2805 out_no_minor_idr:
2806     drbd_bm_cleanup(device);
2807 out_no_bitmap:
2808     __free_page(device->md_io.page);
2809 out_no_io_page:
2810     put_disk(disk);
2811 out_no_disk:
2812     kref_put(&resource->kref, drbd_destroy_resource);
2813     kfree(device);
2814     return err;
2815 }
2816 
2817 void drbd_delete_device(struct drbd_device *device)
2818 {
2819     struct drbd_resource *resource = device->resource;
2820     struct drbd_connection *connection;
2821     struct drbd_peer_device *peer_device;
2822 
2823     /* move to free_peer_device() */
2824     for_each_peer_device(peer_device, device)
2825         drbd_debugfs_peer_device_cleanup(peer_device);
2826     drbd_debugfs_device_cleanup(device);
2827     for_each_connection(connection, resource) {
2828         idr_remove(&connection->peer_devices, device->vnr);
2829         kref_put(&device->kref, drbd_destroy_device);
2830     }
2831     idr_remove(&resource->devices, device->vnr);
2832     kref_put(&device->kref, drbd_destroy_device);
2833     idr_remove(&drbd_devices, device_to_minor(device));
2834     kref_put(&device->kref, drbd_destroy_device);
2835     del_gendisk(device->vdisk);
2836     synchronize_rcu();
2837     kref_put(&device->kref, drbd_destroy_device);
2838 }
2839 
2840 static int __init drbd_init(void)
2841 {
2842     int err;
2843 
2844     if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2845         pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2846 #ifdef MODULE
2847         return -EINVAL;
2848 #else
2849         drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2850 #endif
2851     }
2852 
2853     err = register_blkdev(DRBD_MAJOR, "drbd");
2854     if (err) {
2855         pr_err("unable to register block device major %d\n",
2856                DRBD_MAJOR);
2857         return err;
2858     }
2859 
2860     /*
2861      * allocate all necessary structs
2862      */
2863     init_waitqueue_head(&drbd_pp_wait);
2864 
2865     drbd_proc = NULL; /* play safe for drbd_cleanup */
2866     idr_init(&drbd_devices);
2867 
2868     mutex_init(&resources_mutex);
2869     INIT_LIST_HEAD(&drbd_resources);
2870 
2871     err = drbd_genl_register();
2872     if (err) {
2873         pr_err("unable to register generic netlink family\n");
2874         goto fail;
2875     }
2876 
2877     err = drbd_create_mempools();
2878     if (err)
2879         goto fail;
2880 
2881     err = -ENOMEM;
2882     drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2883     if (!drbd_proc) {
2884         pr_err("unable to register proc file\n");
2885         goto fail;
2886     }
2887 
2888     retry.wq = create_singlethread_workqueue("drbd-reissue");
2889     if (!retry.wq) {
2890         pr_err("unable to create retry workqueue\n");
2891         goto fail;
2892     }
2893     INIT_WORK(&retry.worker, do_retry);
2894     spin_lock_init(&retry.lock);
2895     INIT_LIST_HEAD(&retry.writes);
2896 
2897     drbd_debugfs_init();
2898 
2899     pr_info("initialized. "
2900            "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2901            API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2902     pr_info("%s\n", drbd_buildtag());
2903     pr_info("registered as block device major %d\n", DRBD_MAJOR);
2904     return 0; /* Success! */
2905 
2906 fail:
2907     drbd_cleanup();
2908     if (err == -ENOMEM)
2909         pr_err("ran out of memory\n");
2910     else
2911         pr_err("initialization failure\n");
2912     return err;
2913 }
2914 
2915 static void drbd_free_one_sock(struct drbd_socket *ds)
2916 {
2917     struct socket *s;
2918     mutex_lock(&ds->mutex);
2919     s = ds->socket;
2920     ds->socket = NULL;
2921     mutex_unlock(&ds->mutex);
2922     if (s) {
2923         /* so debugfs does not need to mutex_lock() */
2924         synchronize_rcu();
2925         kernel_sock_shutdown(s, SHUT_RDWR);
2926         sock_release(s);
2927     }
2928 }
2929 
2930 void drbd_free_sock(struct drbd_connection *connection)
2931 {
2932     if (connection->data.socket)
2933         drbd_free_one_sock(&connection->data);
2934     if (connection->meta.socket)
2935         drbd_free_one_sock(&connection->meta);
2936 }
2937 
2938 /* meta data management */
2939 
2940 void conn_md_sync(struct drbd_connection *connection)
2941 {
2942     struct drbd_peer_device *peer_device;
2943     int vnr;
2944 
2945     rcu_read_lock();
2946     idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2947         struct drbd_device *device = peer_device->device;
2948 
2949         kref_get(&device->kref);
2950         rcu_read_unlock();
2951         drbd_md_sync(device);
2952         kref_put(&device->kref, drbd_destroy_device);
2953         rcu_read_lock();
2954     }
2955     rcu_read_unlock();
2956 }
2957 
2958 /* aligned 4kByte */
2959 struct meta_data_on_disk {
2960     u64 la_size_sect;      /* last agreed size. */
2961     u64 uuid[UI_SIZE];   /* UUIDs. */
2962     u64 device_uuid;
2963     u64 reserved_u64_1;
2964     u32 flags;             /* MDF */
2965     u32 magic;
2966     u32 md_size_sect;
2967     u32 al_offset;         /* offset to this block */
2968     u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2969           /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2970     u32 bm_offset;         /* offset to the bitmap, from here */
2971     u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2972     u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2973 
2974     /* see al_tr_number_to_on_disk_sector() */
2975     u32 al_stripes;
2976     u32 al_stripe_size_4k;
2977 
2978     u8 reserved_u8[4096 - (7*8 + 10*4)];
2979 } __packed;
2980 
2981 
2982 
2983 void drbd_md_write(struct drbd_device *device, void *b)
2984 {
2985     struct meta_data_on_disk *buffer = b;
2986     sector_t sector;
2987     int i;
2988 
2989     memset(buffer, 0, sizeof(*buffer));
2990 
2991     buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
2992     for (i = UI_CURRENT; i < UI_SIZE; i++)
2993         buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
2994     buffer->flags = cpu_to_be32(device->ldev->md.flags);
2995     buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
2996 
2997     buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
2998     buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
2999     buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3000     buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3001     buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3002 
3003     buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3004     buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3005 
3006     buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3007     buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3008 
3009     D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3010     sector = device->ldev->md.md_offset;
3011 
3012     if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3013         /* this was a try anyways ... */
3014         drbd_err(device, "meta data update failed!\n");
3015         drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3016     }
3017 }
3018 
3019 /**
3020  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3021  * @device: DRBD device.
3022  */
3023 void drbd_md_sync(struct drbd_device *device)
3024 {
3025     struct meta_data_on_disk *buffer;
3026 
3027     /* Don't accidentally change the DRBD meta data layout. */
3028     BUILD_BUG_ON(UI_SIZE != 4);
3029     BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3030 
3031     del_timer(&device->md_sync_timer);
3032     /* timer may be rearmed by drbd_md_mark_dirty() now. */
3033     if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3034         return;
3035 
3036     /* We use here D_FAILED and not D_ATTACHING because we try to write
3037      * metadata even if we detach due to a disk failure! */
3038     if (!get_ldev_if_state(device, D_FAILED))
3039         return;
3040 
3041     buffer = drbd_md_get_buffer(device, __func__);
3042     if (!buffer)
3043         goto out;
3044 
3045     drbd_md_write(device, buffer);
3046 
3047     /* Update device->ldev->md.la_size_sect,
3048      * since we updated it on metadata. */
3049     device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3050 
3051     drbd_md_put_buffer(device);
3052 out:
3053     put_ldev(device);
3054 }
3055 
3056 static int check_activity_log_stripe_size(struct drbd_device *device,
3057         struct meta_data_on_disk *on_disk,
3058         struct drbd_md *in_core)
3059 {
3060     u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3061     u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3062     u64 al_size_4k;
3063 
3064     /* both not set: default to old fixed size activity log */
3065     if (al_stripes == 0 && al_stripe_size_4k == 0) {
3066         al_stripes = 1;
3067         al_stripe_size_4k = MD_32kB_SECT/8;
3068     }
3069 
3070     /* some paranoia plausibility checks */
3071 
3072     /* we need both values to be set */
3073     if (al_stripes == 0 || al_stripe_size_4k == 0)
3074         goto err;
3075 
3076     al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3077 
3078     /* Upper limit of activity log area, to avoid potential overflow
3079      * problems in al_tr_number_to_on_disk_sector(). As right now, more
3080      * than 72 * 4k blocks total only increases the amount of history,
3081      * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3082     if (al_size_4k > (16 * 1024 * 1024/4))
3083         goto err;
3084 
3085     /* Lower limit: we need at least 8 transaction slots (32kB)
3086      * to not break existing setups */
3087     if (al_size_4k < MD_32kB_SECT/8)
3088         goto err;
3089 
3090     in_core->al_stripe_size_4k = al_stripe_size_4k;
3091     in_core->al_stripes = al_stripes;
3092     in_core->al_size_4k = al_size_4k;
3093 
3094     return 0;
3095 err:
3096     drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3097             al_stripes, al_stripe_size_4k);
3098     return -EINVAL;
3099 }
3100 
3101 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3102 {
3103     sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3104     struct drbd_md *in_core = &bdev->md;
3105     s32 on_disk_al_sect;
3106     s32 on_disk_bm_sect;
3107 
3108     /* The on-disk size of the activity log, calculated from offsets, and
3109      * the size of the activity log calculated from the stripe settings,
3110      * should match.
3111      * Though we could relax this a bit: it is ok, if the striped activity log
3112      * fits in the available on-disk activity log size.
3113      * Right now, that would break how resize is implemented.
3114      * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3115      * of possible unused padding space in the on disk layout. */
3116     if (in_core->al_offset < 0) {
3117         if (in_core->bm_offset > in_core->al_offset)
3118             goto err;
3119         on_disk_al_sect = -in_core->al_offset;
3120         on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3121     } else {
3122         if (in_core->al_offset != MD_4kB_SECT)
3123             goto err;
3124         if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3125             goto err;
3126 
3127         on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3128         on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3129     }
3130 
3131     /* old fixed size meta data is exactly that: fixed. */
3132     if (in_core->meta_dev_idx >= 0) {
3133         if (in_core->md_size_sect != MD_128MB_SECT
3134         ||  in_core->al_offset != MD_4kB_SECT
3135         ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3136         ||  in_core->al_stripes != 1
3137         ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3138             goto err;
3139     }
3140 
3141     if (capacity < in_core->md_size_sect)
3142         goto err;
3143     if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3144         goto err;
3145 
3146     /* should be aligned, and at least 32k */
3147     if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3148         goto err;
3149 
3150     /* should fit (for now: exactly) into the available on-disk space;
3151      * overflow prevention is in check_activity_log_stripe_size() above. */
3152     if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3153         goto err;
3154 
3155     /* again, should be aligned */
3156     if (in_core->bm_offset & 7)
3157         goto err;
3158 
3159     /* FIXME check for device grow with flex external meta data? */
3160 
3161     /* can the available bitmap space cover the last agreed device size? */
3162     if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3163         goto err;
3164 
3165     return 0;
3166 
3167 err:
3168     drbd_err(device, "meta data offsets don't make sense: idx=%d "
3169             "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3170             "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3171             in_core->meta_dev_idx,
3172             in_core->al_stripes, in_core->al_stripe_size_4k,
3173             in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3174             (unsigned long long)in_core->la_size_sect,
3175             (unsigned long long)capacity);
3176 
3177     return -EINVAL;
3178 }
3179 
3180 
3181 /**
3182  * drbd_md_read() - Reads in the meta data super block
3183  * @device: DRBD device.
3184  * @bdev:   Device from which the meta data should be read in.
3185  *
3186  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3187  * something goes wrong.
3188  *
3189  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3190  * even before @bdev is assigned to @device->ldev.
3191  */
3192 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3193 {
3194     struct meta_data_on_disk *buffer;
3195     u32 magic, flags;
3196     int i, rv = NO_ERROR;
3197 
3198     if (device->state.disk != D_DISKLESS)
3199         return ERR_DISK_CONFIGURED;
3200 
3201     buffer = drbd_md_get_buffer(device, __func__);
3202     if (!buffer)
3203         return ERR_NOMEM;
3204 
3205     /* First, figure out where our meta data superblock is located,
3206      * and read it. */
3207     bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3208     bdev->md.md_offset = drbd_md_ss(bdev);
3209     /* Even for (flexible or indexed) external meta data,
3210      * initially restrict us to the 4k superblock for now.
3211      * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3212     bdev->md.md_size_sect = 8;
3213 
3214     if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3215                  REQ_OP_READ)) {
3216         /* NOTE: can't do normal error processing here as this is
3217            called BEFORE disk is attached */
3218         drbd_err(device, "Error while reading metadata.\n");
3219         rv = ERR_IO_MD_DISK;
3220         goto err;
3221     }
3222 
3223     magic = be32_to_cpu(buffer->magic);
3224     flags = be32_to_cpu(buffer->flags);
3225     if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3226         (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3227             /* btw: that's Activity Log clean, not "all" clean. */
3228         drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3229         rv = ERR_MD_UNCLEAN;
3230         goto err;
3231     }
3232 
3233     rv = ERR_MD_INVALID;
3234     if (magic != DRBD_MD_MAGIC_08) {
3235         if (magic == DRBD_MD_MAGIC_07)
3236             drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3237         else
3238             drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3239         goto err;
3240     }
3241 
3242     if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3243         drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3244             be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3245         goto err;
3246     }
3247 
3248 
3249     /* convert to in_core endian */
3250     bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3251     for (i = UI_CURRENT; i < UI_SIZE; i++)
3252         bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3253     bdev->md.flags = be32_to_cpu(buffer->flags);
3254     bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3255 
3256     bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3257     bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3258     bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3259 
3260     if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3261         goto err;
3262     if (check_offsets_and_sizes(device, bdev))
3263         goto err;
3264 
3265     if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3266         drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3267             be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3268         goto err;
3269     }
3270     if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3271         drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3272             be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3273         goto err;
3274     }
3275 
3276     rv = NO_ERROR;
3277 
3278     spin_lock_irq(&device->resource->req_lock);
3279     if (device->state.conn < C_CONNECTED) {
3280         unsigned int peer;
3281         peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3282         peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3283         device->peer_max_bio_size = peer;
3284     }
3285     spin_unlock_irq(&device->resource->req_lock);
3286 
3287  err:
3288     drbd_md_put_buffer(device);
3289 
3290     return rv;
3291 }
3292 
3293 /**
3294  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3295  * @device: DRBD device.
3296  *
3297  * Call this function if you change anything that should be written to
3298  * the meta-data super block. This function sets MD_DIRTY, and starts a
3299  * timer that ensures that within five seconds you have to call drbd_md_sync().
3300  */
3301 void drbd_md_mark_dirty(struct drbd_device *device)
3302 {
3303     if (!test_and_set_bit(MD_DIRTY, &device->flags))
3304         mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3305 }
3306 
3307 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3308 {
3309     int i;
3310 
3311     for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3312         device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3313 }
3314 
3315 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3316 {
3317     if (idx == UI_CURRENT) {
3318         if (device->state.role == R_PRIMARY)
3319             val |= 1;
3320         else
3321             val &= ~((u64)1);
3322 
3323         drbd_set_ed_uuid(device, val);
3324     }
3325 
3326     device->ldev->md.uuid[idx] = val;
3327     drbd_md_mark_dirty(device);
3328 }
3329 
3330 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3331 {
3332     unsigned long flags;
3333     spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3334     __drbd_uuid_set(device, idx, val);
3335     spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3336 }
3337 
3338 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3339 {
3340     unsigned long flags;
3341     spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3342     if (device->ldev->md.uuid[idx]) {
3343         drbd_uuid_move_history(device);
3344         device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3345     }
3346     __drbd_uuid_set(device, idx, val);
3347     spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3348 }
3349 
3350 /**
3351  * drbd_uuid_new_current() - Creates a new current UUID
3352  * @device: DRBD device.
3353  *
3354  * Creates a new current UUID, and rotates the old current UUID into
3355  * the bitmap slot. Causes an incremental resync upon next connect.
3356  */
3357 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3358 {
3359     u64 val;
3360     unsigned long long bm_uuid;
3361 
3362     get_random_bytes(&val, sizeof(u64));
3363 
3364     spin_lock_irq(&device->ldev->md.uuid_lock);
3365     bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3366 
3367     if (bm_uuid)
3368         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3369 
3370     device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3371     __drbd_uuid_set(device, UI_CURRENT, val);
3372     spin_unlock_irq(&device->ldev->md.uuid_lock);
3373 
3374     drbd_print_uuids(device, "new current UUID");
3375     /* get it to stable storage _now_ */
3376     drbd_md_sync(device);
3377 }
3378 
3379 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3380 {
3381     unsigned long flags;
3382     if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3383         return;
3384 
3385     spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3386     if (val == 0) {
3387         drbd_uuid_move_history(device);
3388         device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3389         device->ldev->md.uuid[UI_BITMAP] = 0;
3390     } else {
3391         unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3392         if (bm_uuid)
3393             drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3394 
3395         device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3396     }
3397     spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3398 
3399     drbd_md_mark_dirty(device);
3400 }
3401 
3402 /**
3403  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3404  * @device: DRBD device.
3405  *
3406  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3407  */
3408 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3409 {
3410     int rv = -EIO;
3411 
3412     drbd_md_set_flag(device, MDF_FULL_SYNC);
3413     drbd_md_sync(device);
3414     drbd_bm_set_all(device);
3415 
3416     rv = drbd_bm_write(device);
3417 
3418     if (!rv) {
3419         drbd_md_clear_flag(device, MDF_FULL_SYNC);
3420         drbd_md_sync(device);
3421     }
3422 
3423     return rv;
3424 }
3425 
3426 /**
3427  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3428  * @device: DRBD device.
3429  *
3430  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3431  */
3432 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3433 {
3434     drbd_resume_al(device);
3435     drbd_bm_clear_all(device);
3436     return drbd_bm_write(device);
3437 }
3438 
3439 static int w_bitmap_io(struct drbd_work *w, int unused)
3440 {
3441     struct drbd_device *device =
3442         container_of(w, struct drbd_device, bm_io_work.w);
3443     struct bm_io_work *work = &device->bm_io_work;
3444     int rv = -EIO;
3445 
3446     if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3447         int cnt = atomic_read(&device->ap_bio_cnt);
3448         if (cnt)
3449             drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3450                     cnt, work->why);
3451     }
3452 
3453     if (get_ldev(device)) {
3454         drbd_bm_lock(device, work->why, work->flags);
3455         rv = work->io_fn(device);
3456         drbd_bm_unlock(device);
3457         put_ldev(device);
3458     }
3459 
3460     clear_bit_unlock(BITMAP_IO, &device->flags);
3461     wake_up(&device->misc_wait);
3462 
3463     if (work->done)
3464         work->done(device, rv);
3465 
3466     clear_bit(BITMAP_IO_QUEUED, &device->flags);
3467     work->why = NULL;
3468     work->flags = 0;
3469 
3470     return 0;
3471 }
3472 
3473 /**
3474  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3475  * @device: DRBD device.
3476  * @io_fn:  IO callback to be called when bitmap IO is possible
3477  * @done:   callback to be called after the bitmap IO was performed
3478  * @why:    Descriptive text of the reason for doing the IO
3479  * @flags:  Bitmap flags
3480  *
3481  * While IO on the bitmap happens we freeze application IO thus we ensure
3482  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3483  * called from worker context. It MUST NOT be used while a previous such
3484  * work is still pending!
3485  *
3486  * Its worker function encloses the call of io_fn() by get_ldev() and
3487  * put_ldev().
3488  */
3489 void drbd_queue_bitmap_io(struct drbd_device *device,
3490               int (*io_fn)(struct drbd_device *),
3491               void (*done)(struct drbd_device *, int),
3492               char *why, enum bm_flag flags)
3493 {
3494     D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3495 
3496     D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3497     D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3498     D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3499     if (device->bm_io_work.why)
3500         drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3501             why, device->bm_io_work.why);
3502 
3503     device->bm_io_work.io_fn = io_fn;
3504     device->bm_io_work.done = done;
3505     device->bm_io_work.why = why;
3506     device->bm_io_work.flags = flags;
3507 
3508     spin_lock_irq(&device->resource->req_lock);
3509     set_bit(BITMAP_IO, &device->flags);
3510     /* don't wait for pending application IO if the caller indicates that
3511      * application IO does not conflict anyways. */
3512     if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3513         if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3514             drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3515                     &device->bm_io_work.w);
3516     }
3517     spin_unlock_irq(&device->resource->req_lock);
3518 }
3519 
3520 /**
3521  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3522  * @device: DRBD device.
3523  * @io_fn:  IO callback to be called when bitmap IO is possible
3524  * @why:    Descriptive text of the reason for doing the IO
3525  * @flags:  Bitmap flags
3526  *
3527  * freezes application IO while that the actual IO operations runs. This
3528  * functions MAY NOT be called from worker context.
3529  */
3530 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3531         char *why, enum bm_flag flags)
3532 {
3533     /* Only suspend io, if some operation is supposed to be locked out */
3534     const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3535     int rv;
3536 
3537     D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3538 
3539     if (do_suspend_io)
3540         drbd_suspend_io(device);
3541 
3542     drbd_bm_lock(device, why, flags);
3543     rv = io_fn(device);
3544     drbd_bm_unlock(device);
3545 
3546     if (do_suspend_io)
3547         drbd_resume_io(device);
3548 
3549     return rv;
3550 }
3551 
3552 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3553 {
3554     if ((device->ldev->md.flags & flag) != flag) {
3555         drbd_md_mark_dirty(device);
3556         device->ldev->md.flags |= flag;
3557     }
3558 }
3559 
3560 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3561 {
3562     if ((device->ldev->md.flags & flag) != 0) {
3563         drbd_md_mark_dirty(device);
3564         device->ldev->md.flags &= ~flag;
3565     }
3566 }
3567 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3568 {
3569     return (bdev->md.flags & flag) != 0;
3570 }
3571 
3572 static void md_sync_timer_fn(struct timer_list *t)
3573 {
3574     struct drbd_device *device = from_timer(device, t, md_sync_timer);
3575     drbd_device_post_work(device, MD_SYNC);
3576 }
3577 
3578 const char *cmdname(enum drbd_packet cmd)
3579 {
3580     /* THINK may need to become several global tables
3581      * when we want to support more than
3582      * one PRO_VERSION */
3583     static const char *cmdnames[] = {
3584 
3585         [P_DATA]            = "Data",
3586         [P_DATA_REPLY]          = "DataReply",
3587         [P_RS_DATA_REPLY]   = "RSDataReply",
3588         [P_BARRIER]         = "Barrier",
3589         [P_BITMAP]          = "ReportBitMap",
3590         [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3591         [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3592         [P_UNPLUG_REMOTE]   = "UnplugRemote",
3593         [P_DATA_REQUEST]    = "DataRequest",
3594         [P_RS_DATA_REQUEST]     = "RSDataRequest",
3595         [P_SYNC_PARAM]          = "SyncParam",
3596         [P_PROTOCOL]            = "ReportProtocol",
3597         [P_UUIDS]           = "ReportUUIDs",
3598         [P_SIZES]           = "ReportSizes",
3599         [P_STATE]           = "ReportState",
3600         [P_SYNC_UUID]           = "ReportSyncUUID",
3601         [P_AUTH_CHALLENGE]      = "AuthChallenge",
3602         [P_AUTH_RESPONSE]   = "AuthResponse",
3603         [P_STATE_CHG_REQ]       = "StateChgRequest",
3604         [P_PING]        = "Ping",
3605         [P_PING_ACK]            = "PingAck",
3606         [P_RECV_ACK]            = "RecvAck",
3607         [P_WRITE_ACK]           = "WriteAck",
3608         [P_RS_WRITE_ACK]    = "RSWriteAck",
3609         [P_SUPERSEDED]          = "Superseded",
3610         [P_NEG_ACK]         = "NegAck",
3611         [P_NEG_DREPLY]          = "NegDReply",
3612         [P_NEG_RS_DREPLY]   = "NegRSDReply",
3613         [P_BARRIER_ACK]         = "BarrierAck",
3614         [P_STATE_CHG_REPLY]     = "StateChgReply",
3615         [P_OV_REQUEST]          = "OVRequest",
3616         [P_OV_REPLY]            = "OVReply",
3617         [P_OV_RESULT]           = "OVResult",
3618         [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3619         [P_RS_IS_IN_SYNC]   = "CsumRSIsInSync",
3620         [P_SYNC_PARAM89]    = "SyncParam89",
3621         [P_COMPRESSED_BITMAP]   = "CBitmap",
3622         [P_DELAY_PROBE]         = "DelayProbe",
3623         [P_OUT_OF_SYNC]     = "OutOfSync",
3624         [P_RS_CANCEL]       = "RSCancel",
3625         [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3626         [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3627         [P_PROTOCOL_UPDATE] = "protocol_update",
3628         [P_TRIM]            = "Trim",
3629         [P_RS_THIN_REQ]         = "rs_thin_req",
3630         [P_RS_DEALLOCATED]      = "rs_deallocated",
3631         [P_WSAME]           = "WriteSame",
3632         [P_ZEROES]      = "Zeroes",
3633 
3634         /* enum drbd_packet, but not commands - obsoleted flags:
3635          *  P_MAY_IGNORE
3636          *  P_MAX_OPT_CMD
3637          */
3638     };
3639 
3640     /* too big for the array: 0xfffX */
3641     if (cmd == P_INITIAL_META)
3642         return "InitialMeta";
3643     if (cmd == P_INITIAL_DATA)
3644         return "InitialData";
3645     if (cmd == P_CONNECTION_FEATURES)
3646         return "ConnectionFeatures";
3647     if (cmd >= ARRAY_SIZE(cmdnames))
3648         return "Unknown";
3649     return cmdnames[cmd];
3650 }
3651 
3652 /**
3653  * drbd_wait_misc  -  wait for a request to make progress
3654  * @device: device associated with the request
3655  * @i:      the struct drbd_interval embedded in struct drbd_request or
3656  *      struct drbd_peer_request
3657  */
3658 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3659 {
3660     struct net_conf *nc;
3661     DEFINE_WAIT(wait);
3662     long timeout;
3663 
3664     rcu_read_lock();
3665     nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3666     if (!nc) {
3667         rcu_read_unlock();
3668         return -ETIMEDOUT;
3669     }
3670     timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3671     rcu_read_unlock();
3672 
3673     /* Indicate to wake up device->misc_wait on progress.  */
3674     i->waiting = true;
3675     prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3676     spin_unlock_irq(&device->resource->req_lock);
3677     timeout = schedule_timeout(timeout);
3678     finish_wait(&device->misc_wait, &wait);
3679     spin_lock_irq(&device->resource->req_lock);
3680     if (!timeout || device->state.conn < C_CONNECTED)
3681         return -ETIMEDOUT;
3682     if (signal_pending(current))
3683         return -ERESTARTSYS;
3684     return 0;
3685 }
3686 
3687 void lock_all_resources(void)
3688 {
3689     struct drbd_resource *resource;
3690     int __maybe_unused i = 0;
3691 
3692     mutex_lock(&resources_mutex);
3693     local_irq_disable();
3694     for_each_resource(resource, &drbd_resources)
3695         spin_lock_nested(&resource->req_lock, i++);
3696 }
3697 
3698 void unlock_all_resources(void)
3699 {
3700     struct drbd_resource *resource;
3701 
3702     for_each_resource(resource, &drbd_resources)
3703         spin_unlock(&resource->req_lock);
3704     local_irq_enable();
3705     mutex_unlock(&resources_mutex);
3706 }
3707 
3708 #ifdef CONFIG_DRBD_FAULT_INJECTION
3709 /* Fault insertion support including random number generator shamelessly
3710  * stolen from kernel/rcutorture.c */
3711 struct fault_random_state {
3712     unsigned long state;
3713     unsigned long count;
3714 };
3715 
3716 #define FAULT_RANDOM_MULT 39916801  /* prime */
3717 #define FAULT_RANDOM_ADD    479001701 /* prime */
3718 #define FAULT_RANDOM_REFRESH 10000
3719 
3720 /*
3721  * Crude but fast random-number generator.  Uses a linear congruential
3722  * generator, with occasional help from get_random_bytes().
3723  */
3724 static unsigned long
3725 _drbd_fault_random(struct fault_random_state *rsp)
3726 {
3727     long refresh;
3728 
3729     if (!rsp->count--) {
3730         get_random_bytes(&refresh, sizeof(refresh));
3731         rsp->state += refresh;
3732         rsp->count = FAULT_RANDOM_REFRESH;
3733     }
3734     rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3735     return swahw32(rsp->state);
3736 }
3737 
3738 static char *
3739 _drbd_fault_str(unsigned int type) {
3740     static char *_faults[] = {
3741         [DRBD_FAULT_MD_WR] = "Meta-data write",
3742         [DRBD_FAULT_MD_RD] = "Meta-data read",
3743         [DRBD_FAULT_RS_WR] = "Resync write",
3744         [DRBD_FAULT_RS_RD] = "Resync read",
3745         [DRBD_FAULT_DT_WR] = "Data write",
3746         [DRBD_FAULT_DT_RD] = "Data read",
3747         [DRBD_FAULT_DT_RA] = "Data read ahead",
3748         [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3749         [DRBD_FAULT_AL_EE] = "EE allocation",
3750         [DRBD_FAULT_RECEIVE] = "receive data corruption",
3751     };
3752 
3753     return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3754 }
3755 
3756 unsigned int
3757 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3758 {
3759     static struct fault_random_state rrs = {0, 0};
3760 
3761     unsigned int ret = (
3762         (drbd_fault_devs == 0 ||
3763             ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3764         (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3765 
3766     if (ret) {
3767         drbd_fault_count++;
3768 
3769         if (__ratelimit(&drbd_ratelimit_state))
3770             drbd_warn(device, "***Simulating %s failure\n",
3771                 _drbd_fault_str(type));
3772     }
3773 
3774     return ret;
3775 }
3776 #endif
3777 
3778 const char *drbd_buildtag(void)
3779 {
3780     /* DRBD built from external sources has here a reference to the
3781        git hash of the source code. */
3782 
3783     static char buildtag[38] = "\0uilt-in";
3784 
3785     if (buildtag[0] == 0) {
3786 #ifdef MODULE
3787         sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3788 #else
3789         buildtag[0] = 'b';
3790 #endif
3791     }
3792 
3793     return buildtag;
3794 }
3795 
3796 module_init(drbd_init)
3797 module_exit(drbd_cleanup)
3798 
3799 EXPORT_SYMBOL(drbd_conn_str);
3800 EXPORT_SYMBOL(drbd_role_str);
3801 EXPORT_SYMBOL(drbd_disk_str);
3802 EXPORT_SYMBOL(drbd_set_st_err_str);