Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/amiga/amiflop.c
0004  *
0005  *  Copyright (C) 1993  Greg Harp
0006  *  Portions of this driver are based on code contributed by Brad Pepers
0007  *  
0008  *  revised 28.5.95 by Joerg Dorchain
0009  *  - now no bugs(?) any more for both HD & DD
0010  *  - added support for 40 Track 5.25" drives, 80-track hopefully behaves
0011  *    like 3.5" dd (no way to test - are there any 5.25" drives out there
0012  *    that work on an A4000?)
0013  *  - wrote formatting routine (maybe dirty, but works)
0014  *
0015  *  june/july 1995 added ms-dos support by Joerg Dorchain
0016  *  (portions based on messydos.device and various contributors)
0017  *  - currently only 9 and 18 sector disks
0018  *
0019  *  - fixed a bug with the internal trackbuffer when using multiple 
0020  *    disks the same time
0021  *  - made formatting a bit safer
0022  *  - added command line and machine based default for "silent" df0
0023  *
0024  *  december 1995 adapted for 1.2.13pl4 by Joerg Dorchain
0025  *  - works but I think it's inefficient. (look in redo_fd_request)
0026  *    But the changes were very efficient. (only three and a half lines)
0027  *
0028  *  january 1996 added special ioctl for tracking down read/write problems
0029  *  - usage ioctl(d, RAW_TRACK, ptr); the raw track buffer (MFM-encoded data
0030  *    is copied to area. (area should be large enough since no checking is
0031  *    done - 30K is currently sufficient). return the actual size of the
0032  *    trackbuffer
0033  *  - replaced udelays() by a timer (CIAA timer B) for the waits 
0034  *    needed for the disk mechanic.
0035  *
0036  *  february 1996 fixed error recovery and multiple disk access
0037  *  - both got broken the first time I tampered with the driver :-(
0038  *  - still not safe, but better than before
0039  *
0040  *  revised Marts 3rd, 1996 by Jes Sorensen for use in the 1.3.28 kernel.
0041  *  - Minor changes to accept the kdev_t.
0042  *  - Replaced some more udelays with ms_delays. Udelay is just a loop,
0043  *    and so the delay will be different depending on the given
0044  *    processor :-(
0045  *  - The driver could use a major cleanup because of the new
0046  *    major/minor handling that came with kdev_t. It seems to work for
0047  *    the time being, but I can't guarantee that it will stay like
0048  *    that when we start using 16 (24?) bit minors.
0049  *
0050  * restructured jan 1997 by Joerg Dorchain
0051  * - Fixed Bug accessing multiple disks
0052  * - some code cleanup
0053  * - added trackbuffer for each drive to speed things up
0054  * - fixed some race conditions (who finds the next may send it to me ;-)
0055  */
0056 
0057 #include <linux/module.h>
0058 #include <linux/slab.h>
0059 
0060 #include <linux/fd.h>
0061 #include <linux/hdreg.h>
0062 #include <linux/delay.h>
0063 #include <linux/init.h>
0064 #include <linux/major.h>
0065 #include <linux/mutex.h>
0066 #include <linux/fs.h>
0067 #include <linux/blk-mq.h>
0068 #include <linux/interrupt.h>
0069 #include <linux/platform_device.h>
0070 
0071 #include <asm/setup.h>
0072 #include <linux/uaccess.h>
0073 #include <asm/amigahw.h>
0074 #include <asm/amigaints.h>
0075 #include <asm/irq.h>
0076 
0077 #undef DEBUG /* print _LOTS_ of infos */
0078 
0079 #define RAW_IOCTL
0080 #ifdef RAW_IOCTL
0081 #define IOCTL_RAW_TRACK 0x5254524B  /* 'RTRK' */
0082 #endif
0083 
0084 /*
0085  *  Defines
0086  */
0087 
0088 /*
0089  * CIAAPRA bits (read only)
0090  */
0091 
0092 #define DSKRDY      (0x1<<5)        /* disk ready when low */
0093 #define DSKTRACK0   (0x1<<4)        /* head at track zero when low */
0094 #define DSKPROT     (0x1<<3)        /* disk protected when low */
0095 #define DSKCHANGE   (0x1<<2)        /* low when disk removed */
0096 
0097 /*
0098  * CIAAPRB bits (read/write)
0099  */
0100 
0101 #define DSKMOTOR    (0x1<<7)        /* motor on when low */
0102 #define DSKSEL3     (0x1<<6)        /* select drive 3 when low */
0103 #define DSKSEL2     (0x1<<5)        /* select drive 2 when low */
0104 #define DSKSEL1     (0x1<<4)        /* select drive 1 when low */
0105 #define DSKSEL0     (0x1<<3)        /* select drive 0 when low */
0106 #define DSKSIDE     (0x1<<2)        /* side selection: 0 = upper, 1 = lower */
0107 #define DSKDIREC    (0x1<<1)        /* step direction: 0=in, 1=out (to trk 0) */
0108 #define DSKSTEP     (0x1)           /* pulse low to step head 1 track */
0109 
0110 /*
0111  * DSKBYTR bits (read only)
0112  */
0113 
0114 #define DSKBYT      (1<<15)         /* register contains valid byte when set */
0115 #define DMAON       (1<<14)         /* disk DMA enabled */
0116 #define DISKWRITE   (1<<13)         /* disk write bit in DSKLEN enabled */
0117 #define WORDEQUAL   (1<<12)         /* DSKSYNC register match when true */
0118 /* bits 7-0 are data */
0119 
0120 /*
0121  * ADKCON/ADKCONR bits
0122  */
0123 
0124 #ifndef SETCLR
0125 #define ADK_SETCLR      (1<<15)     /* control bit */
0126 #endif
0127 #define ADK_PRECOMP1    (1<<14)     /* precompensation selection */
0128 #define ADK_PRECOMP0    (1<<13)     /* 00=none, 01=140ns, 10=280ns, 11=500ns */
0129 #define ADK_MFMPREC     (1<<12)     /* 0=GCR precomp., 1=MFM precomp. */
0130 #define ADK_WORDSYNC    (1<<10)     /* enable DSKSYNC auto DMA */
0131 #define ADK_MSBSYNC     (1<<9)      /* when 1, enable sync on MSbit (for GCR) */
0132 #define ADK_FAST        (1<<8)      /* bit cell: 0=2us (GCR), 1=1us (MFM) */
0133 
0134 /*
0135  * DSKLEN bits
0136  */
0137 
0138 #define DSKLEN_DMAEN    (1<<15)
0139 #define DSKLEN_WRITE    (1<<14)
0140 
0141 /*
0142  * INTENA/INTREQ bits
0143  */
0144 
0145 #define DSKINDEX    (0x1<<4)        /* DSKINDEX bit */
0146 
0147 /*
0148  * Misc
0149  */
0150 
0151 #define MFM_SYNC    0x4489          /* standard MFM sync value */
0152 
0153 /* Values for FD_COMMAND */
0154 #define FD_RECALIBRATE      0x07    /* move to track 0 */
0155 #define FD_SEEK         0x0F    /* seek track */
0156 #define FD_READ         0xE6    /* read with MT, MFM, SKip deleted */
0157 #define FD_WRITE        0xC5    /* write with MT, MFM */
0158 #define FD_SENSEI       0x08    /* Sense Interrupt Status */
0159 #define FD_SPECIFY      0x03    /* specify HUT etc */
0160 #define FD_FORMAT       0x4D    /* format one track */
0161 #define FD_VERSION      0x10    /* get version code */
0162 #define FD_CONFIGURE        0x13    /* configure FIFO operation */
0163 #define FD_PERPENDICULAR    0x12    /* perpendicular r/w mode */
0164 
0165 #define FD_MAX_UNITS    4   /* Max. Number of drives */
0166 #define FLOPPY_MAX_SECTORS  22  /* Max. Number of sectors per track */
0167 
0168 struct fd_data_type {
0169     char *name;     /* description of data type */
0170     int sects;      /* sectors per track */
0171     int (*read_fkt)(int);   /* read whole track */
0172     void (*write_fkt)(int); /* write whole track */
0173 };
0174 
0175 struct fd_drive_type {
0176     unsigned long code;     /* code returned from drive */
0177     char *name;         /* description of drive */
0178     unsigned int tracks;    /* number of tracks */
0179     unsigned int heads;     /* number of heads */
0180     unsigned int read_size; /* raw read size for one track */
0181     unsigned int write_size;    /* raw write size for one track */
0182     unsigned int sect_mult; /* sectors and gap multiplier (HD = 2) */
0183     unsigned int precomp1;  /* start track for precomp 1 */
0184     unsigned int precomp2;  /* start track for precomp 2 */
0185     unsigned int step_delay;    /* time (in ms) for delay after step */
0186     unsigned int settle_time;   /* time to settle after dir change */
0187     unsigned int side_time; /* time needed to change sides */
0188 };
0189 
0190 struct amiga_floppy_struct {
0191     struct fd_drive_type *type; /* type of floppy for this unit */
0192     struct fd_data_type *dtype; /* type of floppy for this unit */
0193     int track;          /* current track (-1 == unknown) */
0194     unsigned char *trackbuf;    /* current track (kmaloc()'d */
0195 
0196     int blocks;         /* total # blocks on disk */
0197 
0198     int changed;            /* true when not known */
0199     int disk;           /* disk in drive (-1 == unknown) */
0200     int motor;          /* true when motor is at speed */
0201     int busy;           /* true when drive is active */
0202     int dirty;          /* true when trackbuf is not on disk */
0203     int status;         /* current error code for unit */
0204     struct gendisk *gendisk[2];
0205     struct blk_mq_tag_set tag_set;
0206 };
0207 
0208 /*
0209  *  Error codes
0210  */
0211 #define FD_OK       0   /* operation succeeded */
0212 #define FD_ERROR    -1  /* general error (seek, read, write, etc) */
0213 #define FD_NOUNIT   1   /* unit does not exist */
0214 #define FD_UNITBUSY 2   /* unit already active */
0215 #define FD_NOTACTIVE    3   /* unit is not active */
0216 #define FD_NOTREADY 4   /* unit is not ready (motor not on/no disk) */
0217 
0218 #define MFM_NOSYNC  1
0219 #define MFM_HEADER  2
0220 #define MFM_DATA    3
0221 #define MFM_TRACK   4
0222 
0223 /*
0224  *  Floppy ID values
0225  */
0226 #define FD_NODRIVE  0x00000000  /* response when no unit is present */
0227 #define FD_DD_3     0xffffffff  /* double-density 3.5" (880K) drive */
0228 #define FD_HD_3     0x55555555  /* high-density 3.5" (1760K) drive */
0229 #define FD_DD_5     0xaaaaaaaa  /* double-density 5.25" (440K) drive */
0230 
0231 static DEFINE_MUTEX(amiflop_mutex);
0232 static unsigned long int fd_def_df0 = FD_DD_3;     /* default for df0 if it doesn't identify */
0233 
0234 module_param(fd_def_df0, ulong, 0);
0235 MODULE_LICENSE("GPL");
0236 
0237 /*
0238  *  Macros
0239  */
0240 #define MOTOR_ON    (ciab.prb &= ~DSKMOTOR)
0241 #define MOTOR_OFF   (ciab.prb |= DSKMOTOR)
0242 #define SELECT(mask)    (ciab.prb &= ~mask)
0243 #define DESELECT(mask)  (ciab.prb |= mask)
0244 #define SELMASK(drive)  (1 << (3 + (drive & 3)))
0245 
0246 static struct fd_drive_type drive_types[] = {
0247 /*  code    name       tr he   rdsz   wrsz sm pc1 pc2 sd  st st*/
0248 /*  warning: times are now in milliseconds (ms)                    */
0249 { FD_DD_3,  "DD 3.5",  80, 2, 14716, 13630, 1, 80,161, 3, 18, 1},
0250 { FD_HD_3,  "HD 3.5",  80, 2, 28344, 27258, 2, 80,161, 3, 18, 1},
0251 { FD_DD_5,  "DD 5.25", 40, 2, 14716, 13630, 1, 40, 81, 6, 30, 2},
0252 { FD_NODRIVE, "No Drive", 0, 0,     0,     0, 0,  0,  0,  0,  0, 0}
0253 };
0254 static int num_dr_types = ARRAY_SIZE(drive_types);
0255 
0256 static int amiga_read(int), dos_read(int);
0257 static void amiga_write(int), dos_write(int);
0258 static struct fd_data_type data_types[] = {
0259     { "Amiga", 11 , amiga_read, amiga_write},
0260     { "MS-Dos", 9, dos_read, dos_write}
0261 };
0262 
0263 /* current info on each unit */
0264 static struct amiga_floppy_struct unit[FD_MAX_UNITS];
0265 
0266 static struct timer_list flush_track_timer[FD_MAX_UNITS];
0267 static struct timer_list post_write_timer;
0268 static unsigned long post_write_timer_drive;
0269 static struct timer_list motor_on_timer;
0270 static struct timer_list motor_off_timer[FD_MAX_UNITS];
0271 static int on_attempts;
0272 
0273 /* Synchronization of FDC access */
0274 /* request loop (trackbuffer) */
0275 static volatile int fdc_busy = -1;
0276 static volatile int fdc_nested;
0277 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
0278  
0279 static DECLARE_COMPLETION(motor_on_completion);
0280 
0281 static volatile int selected = -1;  /* currently selected drive */
0282 
0283 static int writepending;
0284 static int writefromint;
0285 static char *raw_buf;
0286 
0287 static DEFINE_SPINLOCK(amiflop_lock);
0288 
0289 #define RAW_BUF_SIZE 30000  /* size of raw disk data */
0290 
0291 /*
0292  * These are global variables, as that's the easiest way to give
0293  * information to interrupts. They are the data used for the current
0294  * request.
0295  */
0296 static volatile char block_flag;
0297 static DECLARE_WAIT_QUEUE_HEAD(wait_fd_block);
0298 
0299 /* MS-Dos MFM Coding tables (should go quick and easy) */
0300 static unsigned char mfmencode[16]={
0301     0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15,
0302     0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55
0303 };
0304 static unsigned char mfmdecode[128];
0305 
0306 /* floppy internal millisecond timer stuff */
0307 static DECLARE_COMPLETION(ms_wait_completion);
0308 #define MS_TICKS ((amiga_eclock+50)/1000)
0309 
0310 /*
0311  * Note that MAX_ERRORS=X doesn't imply that we retry every bad read
0312  * max X times - some types of errors increase the errorcount by 2 or
0313  * even 3, so we might actually retry only X/2 times before giving up.
0314  */
0315 #define MAX_ERRORS 12
0316 
0317 #define custom amiga_custom
0318 
0319 /* Prevent "aliased" accesses. */
0320 static int fd_ref[4] = { 0,0,0,0 };
0321 static int fd_device[4] = { 0, 0, 0, 0 };
0322 
0323 /*
0324  * Here come the actual hardware access and helper functions.
0325  * They are not reentrant and single threaded because all drives
0326  * share the same hardware and the same trackbuffer.
0327  */
0328 
0329 /* Milliseconds timer */
0330 
0331 static irqreturn_t ms_isr(int irq, void *dummy)
0332 {
0333     complete(&ms_wait_completion);
0334     return IRQ_HANDLED;
0335 }
0336 
0337 /* all waits are queued up 
0338    A more generic routine would do a schedule a la timer.device */
0339 static void ms_delay(int ms)
0340 {
0341     int ticks;
0342     static DEFINE_MUTEX(mutex);
0343 
0344     if (ms > 0) {
0345         mutex_lock(&mutex);
0346         ticks = MS_TICKS*ms-1;
0347         ciaa.tblo=ticks%256;
0348         ciaa.tbhi=ticks/256;
0349         ciaa.crb=0x19; /*count eclock, force load, one-shoot, start */
0350         wait_for_completion(&ms_wait_completion);
0351         mutex_unlock(&mutex);
0352     }
0353 }
0354 
0355 /* Hardware semaphore */
0356 
0357 /* returns true when we would get the semaphore */
0358 static inline int try_fdc(int drive)
0359 {
0360     drive &= 3;
0361     return ((fdc_busy < 0) || (fdc_busy == drive));
0362 }
0363 
0364 static void get_fdc(int drive)
0365 {
0366     unsigned long flags;
0367 
0368     drive &= 3;
0369 #ifdef DEBUG
0370     printk("get_fdc: drive %d  fdc_busy %d  fdc_nested %d\n",drive,fdc_busy,fdc_nested);
0371 #endif
0372     local_irq_save(flags);
0373     wait_event(fdc_wait, try_fdc(drive));
0374     fdc_busy = drive;
0375     fdc_nested++;
0376     local_irq_restore(flags);
0377 }
0378 
0379 static inline void rel_fdc(void)
0380 {
0381 #ifdef DEBUG
0382     if (fdc_nested == 0)
0383         printk("fd: unmatched rel_fdc\n");
0384     printk("rel_fdc: fdc_busy %d fdc_nested %d\n",fdc_busy,fdc_nested);
0385 #endif
0386     fdc_nested--;
0387     if (fdc_nested == 0) {
0388         fdc_busy = -1;
0389         wake_up(&fdc_wait);
0390     }
0391 }
0392 
0393 static void fd_select (int drive)
0394 {
0395     unsigned char prb = ~0;
0396 
0397     drive&=3;
0398 #ifdef DEBUG
0399     printk("selecting %d\n",drive);
0400 #endif
0401     if (drive == selected)
0402         return;
0403     get_fdc(drive);
0404     selected = drive;
0405 
0406     if (unit[drive].track % 2 != 0)
0407         prb &= ~DSKSIDE;
0408     if (unit[drive].motor == 1)
0409         prb &= ~DSKMOTOR;
0410     ciab.prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3));
0411     ciab.prb = prb;
0412     prb &= ~SELMASK(drive);
0413     ciab.prb = prb;
0414     rel_fdc();
0415 }
0416 
0417 static void fd_deselect (int drive)
0418 {
0419     unsigned char prb;
0420     unsigned long flags;
0421 
0422     drive&=3;
0423 #ifdef DEBUG
0424     printk("deselecting %d\n",drive);
0425 #endif
0426     if (drive != selected) {
0427         printk(KERN_WARNING "Deselecting drive %d while %d was selected!\n",drive,selected);
0428         return;
0429     }
0430 
0431     get_fdc(drive);
0432     local_irq_save(flags);
0433 
0434     selected = -1;
0435 
0436     prb = ciab.prb;
0437     prb |= (SELMASK(0)|SELMASK(1)|SELMASK(2)|SELMASK(3));
0438     ciab.prb = prb;
0439 
0440     local_irq_restore (flags);
0441     rel_fdc();
0442 
0443 }
0444 
0445 static void motor_on_callback(struct timer_list *unused)
0446 {
0447     if (!(ciaa.pra & DSKRDY) || --on_attempts == 0) {
0448         complete_all(&motor_on_completion);
0449     } else {
0450         motor_on_timer.expires = jiffies + HZ/10;
0451         add_timer(&motor_on_timer);
0452     }
0453 }
0454 
0455 static int fd_motor_on(int nr)
0456 {
0457     nr &= 3;
0458 
0459     del_timer(motor_off_timer + nr);
0460 
0461     if (!unit[nr].motor) {
0462         unit[nr].motor = 1;
0463         fd_select(nr);
0464 
0465         reinit_completion(&motor_on_completion);
0466         mod_timer(&motor_on_timer, jiffies + HZ/2);
0467 
0468         on_attempts = 10;
0469         wait_for_completion(&motor_on_completion);
0470         fd_deselect(nr);
0471     }
0472 
0473     if (on_attempts == 0) {
0474         on_attempts = -1;
0475 #if 0
0476         printk (KERN_ERR "motor_on failed, turning motor off\n");
0477         fd_motor_off (motor_off_timer + nr);
0478         return 0;
0479 #else
0480         printk (KERN_WARNING "DSKRDY not set after 1.5 seconds - assuming drive is spinning notwithstanding\n");
0481 #endif
0482     }
0483 
0484     return 1;
0485 }
0486 
0487 static void fd_motor_off(struct timer_list *timer)
0488 {
0489     unsigned long drive = ((unsigned long)timer -
0490                    (unsigned long)&motor_off_timer[0]) /
0491                     sizeof(motor_off_timer[0]);
0492 
0493     drive&=3;
0494     if (!try_fdc(drive)) {
0495         /* We would be blocked in an interrupt, so try again later */
0496         timer->expires = jiffies + 1;
0497         add_timer(timer);
0498         return;
0499     }
0500     unit[drive].motor = 0;
0501     fd_select(drive);
0502     udelay (1);
0503     fd_deselect(drive);
0504 }
0505 
0506 static void floppy_off (unsigned int nr)
0507 {
0508     int drive;
0509 
0510     drive = nr & 3;
0511     mod_timer(motor_off_timer + drive, jiffies + 3*HZ);
0512 }
0513 
0514 static int fd_calibrate(int drive)
0515 {
0516     unsigned char prb;
0517     int n;
0518 
0519     drive &= 3;
0520     get_fdc(drive);
0521     if (!fd_motor_on (drive))
0522         return 0;
0523     fd_select (drive);
0524     prb = ciab.prb;
0525     prb |= DSKSIDE;
0526     prb &= ~DSKDIREC;
0527     ciab.prb = prb;
0528     for (n = unit[drive].type->tracks/2; n != 0; --n) {
0529         if (ciaa.pra & DSKTRACK0)
0530             break;
0531         prb &= ~DSKSTEP;
0532         ciab.prb = prb;
0533         prb |= DSKSTEP;
0534         udelay (2);
0535         ciab.prb = prb;
0536         ms_delay(unit[drive].type->step_delay);
0537     }
0538     ms_delay (unit[drive].type->settle_time);
0539     prb |= DSKDIREC;
0540     n = unit[drive].type->tracks + 20;
0541     for (;;) {
0542         prb &= ~DSKSTEP;
0543         ciab.prb = prb;
0544         prb |= DSKSTEP;
0545         udelay (2);
0546         ciab.prb = prb;
0547         ms_delay(unit[drive].type->step_delay + 1);
0548         if ((ciaa.pra & DSKTRACK0) == 0)
0549             break;
0550         if (--n == 0) {
0551             printk (KERN_ERR "fd%d: calibrate failed, turning motor off\n", drive);
0552             fd_motor_off (motor_off_timer + drive);
0553             unit[drive].track = -1;
0554             rel_fdc();
0555             return 0;
0556         }
0557     }
0558     unit[drive].track = 0;
0559     ms_delay(unit[drive].type->settle_time);
0560 
0561     rel_fdc();
0562     fd_deselect(drive);
0563     return 1;
0564 }
0565 
0566 static int fd_seek(int drive, int track)
0567 {
0568     unsigned char prb;
0569     int cnt;
0570 
0571 #ifdef DEBUG
0572     printk("seeking drive %d to track %d\n",drive,track);
0573 #endif
0574     drive &= 3;
0575     get_fdc(drive);
0576     if (unit[drive].track == track) {
0577         rel_fdc();
0578         return 1;
0579     }
0580     if (!fd_motor_on(drive)) {
0581         rel_fdc();
0582         return 0;
0583     }
0584     if (unit[drive].track < 0 && !fd_calibrate(drive)) {
0585         rel_fdc();
0586         return 0;
0587     }
0588 
0589     fd_select (drive);
0590     cnt = unit[drive].track/2 - track/2;
0591     prb = ciab.prb;
0592     prb |= DSKSIDE | DSKDIREC;
0593     if (track % 2 != 0)
0594         prb &= ~DSKSIDE;
0595     if (cnt < 0) {
0596         cnt = - cnt;
0597         prb &= ~DSKDIREC;
0598     }
0599     ciab.prb = prb;
0600     if (track % 2 != unit[drive].track % 2)
0601         ms_delay (unit[drive].type->side_time);
0602     unit[drive].track = track;
0603     if (cnt == 0) {
0604         rel_fdc();
0605         fd_deselect(drive);
0606         return 1;
0607     }
0608     do {
0609         prb &= ~DSKSTEP;
0610         ciab.prb = prb;
0611         prb |= DSKSTEP;
0612         udelay (1);
0613         ciab.prb = prb;
0614         ms_delay (unit[drive].type->step_delay);
0615     } while (--cnt != 0);
0616     ms_delay (unit[drive].type->settle_time);
0617 
0618     rel_fdc();
0619     fd_deselect(drive);
0620     return 1;
0621 }
0622 
0623 static unsigned long fd_get_drive_id(int drive)
0624 {
0625     int i;
0626     ulong id = 0;
0627 
0628     drive&=3;
0629     get_fdc(drive);
0630     /* set up for ID */
0631     MOTOR_ON;
0632     udelay(2);
0633     SELECT(SELMASK(drive));
0634     udelay(2);
0635     DESELECT(SELMASK(drive));
0636     udelay(2);
0637     MOTOR_OFF;
0638     udelay(2);
0639     SELECT(SELMASK(drive));
0640     udelay(2);
0641     DESELECT(SELMASK(drive));
0642     udelay(2);
0643 
0644     /* loop and read disk ID */
0645     for (i=0; i<32; i++) {
0646         SELECT(SELMASK(drive));
0647         udelay(2);
0648 
0649         /* read and store value of DSKRDY */
0650         id <<= 1;
0651         id |= (ciaa.pra & DSKRDY) ? 0 : 1;  /* cia regs are low-active! */
0652 
0653         DESELECT(SELMASK(drive));
0654     }
0655 
0656     rel_fdc();
0657 
0658         /*
0659          * RB: At least A500/A2000's df0: don't identify themselves.
0660          * As every (real) Amiga has at least a 3.5" DD drive as df0:
0661          * we default to that if df0: doesn't identify as a certain
0662          * type.
0663          */
0664         if(drive == 0 && id == FD_NODRIVE)
0665     {
0666                 id = fd_def_df0;
0667                 printk(KERN_NOTICE "fd: drive 0 didn't identify, setting default %08lx\n", (ulong)fd_def_df0);
0668     }
0669     /* return the ID value */
0670     return (id);
0671 }
0672 
0673 static irqreturn_t fd_block_done(int irq, void *dummy)
0674 {
0675     if (block_flag)
0676         custom.dsklen = 0x4000;
0677 
0678     if (block_flag == 2) { /* writing */
0679         writepending = 2;
0680         post_write_timer.expires = jiffies + 1; /* at least 2 ms */
0681         post_write_timer_drive = selected;
0682         add_timer(&post_write_timer);
0683     }
0684     else {                /* reading */
0685         block_flag = 0;
0686         wake_up (&wait_fd_block);
0687     }
0688     return IRQ_HANDLED;
0689 }
0690 
0691 static void raw_read(int drive)
0692 {
0693     drive&=3;
0694     get_fdc(drive);
0695     wait_event(wait_fd_block, !block_flag);
0696     fd_select(drive);
0697     /* setup adkcon bits correctly */
0698     custom.adkcon = ADK_MSBSYNC;
0699     custom.adkcon = ADK_SETCLR|ADK_WORDSYNC|ADK_FAST;
0700 
0701     custom.dsksync = MFM_SYNC;
0702 
0703     custom.dsklen = 0;
0704     custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf);
0705     custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN;
0706     custom.dsklen = unit[drive].type->read_size/sizeof(short) | DSKLEN_DMAEN;
0707 
0708     block_flag = 1;
0709 
0710     wait_event(wait_fd_block, !block_flag);
0711 
0712     custom.dsklen = 0;
0713     fd_deselect(drive);
0714     rel_fdc();
0715 }
0716 
0717 static int raw_write(int drive)
0718 {
0719     ushort adk;
0720 
0721     drive&=3;
0722     get_fdc(drive); /* corresponds to rel_fdc() in post_write() */
0723     if ((ciaa.pra & DSKPROT) == 0) {
0724         rel_fdc();
0725         return 0;
0726     }
0727     wait_event(wait_fd_block, !block_flag);
0728     fd_select(drive);
0729     /* clear adkcon bits */
0730     custom.adkcon = ADK_PRECOMP1|ADK_PRECOMP0|ADK_WORDSYNC|ADK_MSBSYNC;
0731     /* set appropriate adkcon bits */
0732     adk = ADK_SETCLR|ADK_FAST;
0733     if ((ulong)unit[drive].track >= unit[drive].type->precomp2)
0734         adk |= ADK_PRECOMP1;
0735     else if ((ulong)unit[drive].track >= unit[drive].type->precomp1)
0736         adk |= ADK_PRECOMP0;
0737     custom.adkcon = adk;
0738 
0739     custom.dsklen = DSKLEN_WRITE;
0740     custom.dskptr = (u_char *)ZTWO_PADDR((u_char *)raw_buf);
0741     custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE;
0742     custom.dsklen = unit[drive].type->write_size/sizeof(short) | DSKLEN_DMAEN|DSKLEN_WRITE;
0743 
0744     block_flag = 2;
0745     return 1;
0746 }
0747 
0748 /*
0749  * to be called at least 2ms after the write has finished but before any
0750  * other access to the hardware.
0751  */
0752 static void post_write (unsigned long drive)
0753 {
0754 #ifdef DEBUG
0755     printk("post_write for drive %ld\n",drive);
0756 #endif
0757     drive &= 3;
0758     custom.dsklen = 0;
0759     block_flag = 0;
0760     writepending = 0;
0761     writefromint = 0;
0762     unit[drive].dirty = 0;
0763     wake_up(&wait_fd_block);
0764     fd_deselect(drive);
0765     rel_fdc(); /* corresponds to get_fdc() in raw_write */
0766 }
0767 
0768 static void post_write_callback(struct timer_list *timer)
0769 {
0770     post_write(post_write_timer_drive);
0771 }
0772 
0773 /*
0774  * The following functions are to convert the block contents into raw data
0775  * written to disk and vice versa.
0776  * (Add other formats here ;-))
0777  */
0778 
0779 static unsigned long scan_sync(unsigned long raw, unsigned long end)
0780 {
0781     ushort *ptr = (ushort *)raw, *endp = (ushort *)end;
0782 
0783     while (ptr < endp && *ptr++ != 0x4489)
0784         ;
0785     if (ptr < endp) {
0786         while (*ptr == 0x4489 && ptr < endp)
0787             ptr++;
0788         return (ulong)ptr;
0789     }
0790     return 0;
0791 }
0792 
0793 static inline unsigned long checksum(unsigned long *addr, int len)
0794 {
0795     unsigned long csum = 0;
0796 
0797     len /= sizeof(*addr);
0798     while (len-- > 0)
0799         csum ^= *addr++;
0800     csum = ((csum>>1) & 0x55555555)  ^  (csum & 0x55555555);
0801 
0802     return csum;
0803 }
0804 
0805 static unsigned long decode (unsigned long *data, unsigned long *raw,
0806                  int len)
0807 {
0808     ulong *odd, *even;
0809 
0810     /* convert length from bytes to longwords */
0811     len >>= 2;
0812     odd = raw;
0813     even = odd + len;
0814 
0815     /* prepare return pointer */
0816     raw += len * 2;
0817 
0818     do {
0819         *data++ = ((*odd++ & 0x55555555) << 1) | (*even++ & 0x55555555);
0820     } while (--len != 0);
0821 
0822     return (ulong)raw;
0823 }
0824 
0825 struct header {
0826     unsigned char magic;
0827     unsigned char track;
0828     unsigned char sect;
0829     unsigned char ord;
0830     unsigned char labels[16];
0831     unsigned long hdrchk;
0832     unsigned long datachk;
0833 };
0834 
0835 static int amiga_read(int drive)
0836 {
0837     unsigned long raw;
0838     unsigned long end;
0839     int scnt;
0840     unsigned long csum;
0841     struct header hdr;
0842 
0843     drive&=3;
0844     raw = (long) raw_buf;
0845     end = raw + unit[drive].type->read_size;
0846 
0847     for (scnt = 0;scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) {
0848         if (!(raw = scan_sync(raw, end))) {
0849             printk (KERN_INFO "can't find sync for sector %d\n", scnt);
0850             return MFM_NOSYNC;
0851         }
0852 
0853         raw = decode ((ulong *)&hdr.magic, (ulong *)raw, 4);
0854         raw = decode ((ulong *)&hdr.labels, (ulong *)raw, 16);
0855         raw = decode ((ulong *)&hdr.hdrchk, (ulong *)raw, 4);
0856         raw = decode ((ulong *)&hdr.datachk, (ulong *)raw, 4);
0857         csum = checksum((ulong *)&hdr,
0858                 (char *)&hdr.hdrchk-(char *)&hdr);
0859 
0860 #ifdef DEBUG
0861         printk ("(%x,%d,%d,%d) (%lx,%lx,%lx,%lx) %lx %lx\n",
0862             hdr.magic, hdr.track, hdr.sect, hdr.ord,
0863             *(ulong *)&hdr.labels[0], *(ulong *)&hdr.labels[4],
0864             *(ulong *)&hdr.labels[8], *(ulong *)&hdr.labels[12],
0865             hdr.hdrchk, hdr.datachk);
0866 #endif
0867 
0868         if (hdr.hdrchk != csum) {
0869             printk(KERN_INFO "MFM_HEADER: %08lx,%08lx\n", hdr.hdrchk, csum);
0870             return MFM_HEADER;
0871         }
0872 
0873         /* verify track */
0874         if (hdr.track != unit[drive].track) {
0875             printk(KERN_INFO "MFM_TRACK: %d, %d\n", hdr.track, unit[drive].track);
0876             return MFM_TRACK;
0877         }
0878 
0879         raw = decode ((ulong *)(unit[drive].trackbuf + hdr.sect*512),
0880                   (ulong *)raw, 512);
0881         csum = checksum((ulong *)(unit[drive].trackbuf + hdr.sect*512), 512);
0882 
0883         if (hdr.datachk != csum) {
0884             printk(KERN_INFO "MFM_DATA: (%x:%d:%d:%d) sc=%d %lx, %lx\n",
0885                    hdr.magic, hdr.track, hdr.sect, hdr.ord, scnt,
0886                    hdr.datachk, csum);
0887             printk (KERN_INFO "data=(%lx,%lx,%lx,%lx)\n",
0888                 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[0],
0889                 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[1],
0890                 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[2],
0891                 ((ulong *)(unit[drive].trackbuf+hdr.sect*512))[3]);
0892             return MFM_DATA;
0893         }
0894     }
0895 
0896     return 0;
0897 }
0898 
0899 static void encode(unsigned long data, unsigned long *dest)
0900 {
0901     unsigned long data2;
0902 
0903     data &= 0x55555555;
0904     data2 = data ^ 0x55555555;
0905     data |= ((data2 >> 1) | 0x80000000) & (data2 << 1);
0906 
0907     if (*(dest - 1) & 0x00000001)
0908         data &= 0x7FFFFFFF;
0909 
0910     *dest = data;
0911 }
0912 
0913 static void encode_block(unsigned long *dest, unsigned long *src, int len)
0914 {
0915     int cnt, to_cnt = 0;
0916     unsigned long data;
0917 
0918     /* odd bits */
0919     for (cnt = 0; cnt < len / 4; cnt++) {
0920         data = src[cnt] >> 1;
0921         encode(data, dest + to_cnt++);
0922     }
0923 
0924     /* even bits */
0925     for (cnt = 0; cnt < len / 4; cnt++) {
0926         data = src[cnt];
0927         encode(data, dest + to_cnt++);
0928     }
0929 }
0930 
0931 static unsigned long *putsec(int disk, unsigned long *raw, int cnt)
0932 {
0933     struct header hdr;
0934     int i;
0935 
0936     disk&=3;
0937     *raw = (raw[-1]&1) ? 0x2AAAAAAA : 0xAAAAAAAA;
0938     raw++;
0939     *raw++ = 0x44894489;
0940 
0941     hdr.magic = 0xFF;
0942     hdr.track = unit[disk].track;
0943     hdr.sect = cnt;
0944     hdr.ord = unit[disk].dtype->sects * unit[disk].type->sect_mult - cnt;
0945     for (i = 0; i < 16; i++)
0946         hdr.labels[i] = 0;
0947     hdr.hdrchk = checksum((ulong *)&hdr,
0948                   (char *)&hdr.hdrchk-(char *)&hdr);
0949     hdr.datachk = checksum((ulong *)(unit[disk].trackbuf+cnt*512), 512);
0950 
0951     encode_block(raw, (ulong *)&hdr.magic, 4);
0952     raw += 2;
0953     encode_block(raw, (ulong *)&hdr.labels, 16);
0954     raw += 8;
0955     encode_block(raw, (ulong *)&hdr.hdrchk, 4);
0956     raw += 2;
0957     encode_block(raw, (ulong *)&hdr.datachk, 4);
0958     raw += 2;
0959     encode_block(raw, (ulong *)(unit[disk].trackbuf+cnt*512), 512);
0960     raw += 256;
0961 
0962     return raw;
0963 }
0964 
0965 static void amiga_write(int disk)
0966 {
0967     unsigned int cnt;
0968     unsigned long *ptr = (unsigned long *)raw_buf;
0969 
0970     disk&=3;
0971     /* gap space */
0972     for (cnt = 0; cnt < 415 * unit[disk].type->sect_mult; cnt++)
0973         *ptr++ = 0xaaaaaaaa;
0974 
0975     /* sectors */
0976     for (cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++)
0977         ptr = putsec (disk, ptr, cnt);
0978     *(ushort *)ptr = (ptr[-1]&1) ? 0x2AA8 : 0xAAA8;
0979 }
0980 
0981 
0982 struct dos_header {
0983     unsigned char track,   /* 0-80 */
0984         side,    /* 0-1 */
0985         sec,     /* 0-...*/
0986         len_desc;/* 2 */
0987     unsigned short crc;     /* on 68000 we got an alignment problem, 
0988                    but this compiler solves it  by adding silently 
0989                    adding a pad byte so data won't fit
0990                    and this took about 3h to discover.... */
0991     unsigned char gap1[22];     /* for longword-alignedness (0x4e) */
0992 };
0993 
0994 /* crc routines are borrowed from the messydos-handler  */
0995 
0996 /* excerpt from the messydos-device           
0997 ; The CRC is computed not only over the actual data, but including
0998 ; the SYNC mark (3 * $a1) and the 'ID/DATA - Address Mark' ($fe/$fb).
0999 ; As we don't read or encode these fields into our buffers, we have to
1000 ; preload the registers containing the CRC with the values they would have
1001 ; after stepping over these fields.
1002 ;
1003 ; How CRCs "really" work:
1004 ;
1005 ; First, you should regard a bitstring as a series of coefficients of
1006 ; polynomials. We calculate with these polynomials in modulo-2
1007 ; arithmetic, in which both add and subtract are done the same as
1008 ; exclusive-or. Now, we modify our data (a very long polynomial) in
1009 ; such a way that it becomes divisible by the CCITT-standard 16-bit
1010 ;        16   12   5
1011 ; polynomial:   x  + x  + x + 1, represented by $11021. The easiest
1012 ; way to do this would be to multiply (using proper arithmetic) our
1013 ; datablock with $11021. So we have:
1014 ;   data * $11021        =
1015 ;   data * ($10000 + $1021)      =
1016 ;   data * $10000 + data * $1021
1017 ; The left part of this is simple: Just add two 0 bytes. But then
1018 ; the right part (data $1021) remains difficult and even could have
1019 ; a carry into the left part. The solution is to use a modified
1020 ; multiplication, which has a result that is not correct, but with
1021 ; a difference of any multiple of $11021. We then only need to keep
1022 ; the 16 least significant bits of the result.
1023 ;
1024 ; The following algorithm does this for us:
1025 ;
1026 ;   unsigned char *data, c, crclo, crchi;
1027 ;   while (not done) {
1028 ;   c = *data++ + crchi;
1029 ;   crchi = (@ c) >> 8 + crclo;
1030 ;   crclo = @ c;
1031 ;   }
1032 ;
1033 ; Remember, + is done with EOR, the @ operator is in two tables (high
1034 ; and low byte separately), which is calculated as
1035 ;
1036 ;      $1021 * (c & $F0)
1037 ;  xor $1021 * (c & $0F)
1038 ;  xor $1021 * (c >> 4)         (* is regular multiplication)
1039 ;
1040 ;
1041 ; Anyway, the end result is the same as the remainder of the division of
1042 ; the data by $11021. I am afraid I need to study theory a bit more...
1043 
1044 
1045 my only works was to code this from manx to C....
1046 
1047 */
1048 
1049 static ushort dos_crc(void * data_a3, int data_d0, int data_d1, int data_d3)
1050 {
1051     static unsigned char CRCTable1[] = {
1052         0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x81,0x91,0xa1,0xb1,0xc1,0xd1,0xe1,0xf1,
1053         0x12,0x02,0x32,0x22,0x52,0x42,0x72,0x62,0x93,0x83,0xb3,0xa3,0xd3,0xc3,0xf3,0xe3,
1054         0x24,0x34,0x04,0x14,0x64,0x74,0x44,0x54,0xa5,0xb5,0x85,0x95,0xe5,0xf5,0xc5,0xd5,
1055         0x36,0x26,0x16,0x06,0x76,0x66,0x56,0x46,0xb7,0xa7,0x97,0x87,0xf7,0xe7,0xd7,0xc7,
1056         0x48,0x58,0x68,0x78,0x08,0x18,0x28,0x38,0xc9,0xd9,0xe9,0xf9,0x89,0x99,0xa9,0xb9,
1057         0x5a,0x4a,0x7a,0x6a,0x1a,0x0a,0x3a,0x2a,0xdb,0xcb,0xfb,0xeb,0x9b,0x8b,0xbb,0xab,
1058         0x6c,0x7c,0x4c,0x5c,0x2c,0x3c,0x0c,0x1c,0xed,0xfd,0xcd,0xdd,0xad,0xbd,0x8d,0x9d,
1059         0x7e,0x6e,0x5e,0x4e,0x3e,0x2e,0x1e,0x0e,0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f,
1060         0x91,0x81,0xb1,0xa1,0xd1,0xc1,0xf1,0xe1,0x10,0x00,0x30,0x20,0x50,0x40,0x70,0x60,
1061         0x83,0x93,0xa3,0xb3,0xc3,0xd3,0xe3,0xf3,0x02,0x12,0x22,0x32,0x42,0x52,0x62,0x72,
1062         0xb5,0xa5,0x95,0x85,0xf5,0xe5,0xd5,0xc5,0x34,0x24,0x14,0x04,0x74,0x64,0x54,0x44,
1063         0xa7,0xb7,0x87,0x97,0xe7,0xf7,0xc7,0xd7,0x26,0x36,0x06,0x16,0x66,0x76,0x46,0x56,
1064         0xd9,0xc9,0xf9,0xe9,0x99,0x89,0xb9,0xa9,0x58,0x48,0x78,0x68,0x18,0x08,0x38,0x28,
1065         0xcb,0xdb,0xeb,0xfb,0x8b,0x9b,0xab,0xbb,0x4a,0x5a,0x6a,0x7a,0x0a,0x1a,0x2a,0x3a,
1066         0xfd,0xed,0xdd,0xcd,0xbd,0xad,0x9d,0x8d,0x7c,0x6c,0x5c,0x4c,0x3c,0x2c,0x1c,0x0c,
1067         0xef,0xff,0xcf,0xdf,0xaf,0xbf,0x8f,0x9f,0x6e,0x7e,0x4e,0x5e,0x2e,0x3e,0x0e,0x1e
1068     };
1069 
1070     static unsigned char CRCTable2[] = {
1071         0x00,0x21,0x42,0x63,0x84,0xa5,0xc6,0xe7,0x08,0x29,0x4a,0x6b,0x8c,0xad,0xce,0xef,
1072         0x31,0x10,0x73,0x52,0xb5,0x94,0xf7,0xd6,0x39,0x18,0x7b,0x5a,0xbd,0x9c,0xff,0xde,
1073         0x62,0x43,0x20,0x01,0xe6,0xc7,0xa4,0x85,0x6a,0x4b,0x28,0x09,0xee,0xcf,0xac,0x8d,
1074         0x53,0x72,0x11,0x30,0xd7,0xf6,0x95,0xb4,0x5b,0x7a,0x19,0x38,0xdf,0xfe,0x9d,0xbc,
1075         0xc4,0xe5,0x86,0xa7,0x40,0x61,0x02,0x23,0xcc,0xed,0x8e,0xaf,0x48,0x69,0x0a,0x2b,
1076         0xf5,0xd4,0xb7,0x96,0x71,0x50,0x33,0x12,0xfd,0xdc,0xbf,0x9e,0x79,0x58,0x3b,0x1a,
1077         0xa6,0x87,0xe4,0xc5,0x22,0x03,0x60,0x41,0xae,0x8f,0xec,0xcd,0x2a,0x0b,0x68,0x49,
1078         0x97,0xb6,0xd5,0xf4,0x13,0x32,0x51,0x70,0x9f,0xbe,0xdd,0xfc,0x1b,0x3a,0x59,0x78,
1079         0x88,0xa9,0xca,0xeb,0x0c,0x2d,0x4e,0x6f,0x80,0xa1,0xc2,0xe3,0x04,0x25,0x46,0x67,
1080         0xb9,0x98,0xfb,0xda,0x3d,0x1c,0x7f,0x5e,0xb1,0x90,0xf3,0xd2,0x35,0x14,0x77,0x56,
1081         0xea,0xcb,0xa8,0x89,0x6e,0x4f,0x2c,0x0d,0xe2,0xc3,0xa0,0x81,0x66,0x47,0x24,0x05,
1082         0xdb,0xfa,0x99,0xb8,0x5f,0x7e,0x1d,0x3c,0xd3,0xf2,0x91,0xb0,0x57,0x76,0x15,0x34,
1083         0x4c,0x6d,0x0e,0x2f,0xc8,0xe9,0x8a,0xab,0x44,0x65,0x06,0x27,0xc0,0xe1,0x82,0xa3,
1084         0x7d,0x5c,0x3f,0x1e,0xf9,0xd8,0xbb,0x9a,0x75,0x54,0x37,0x16,0xf1,0xd0,0xb3,0x92,
1085         0x2e,0x0f,0x6c,0x4d,0xaa,0x8b,0xe8,0xc9,0x26,0x07,0x64,0x45,0xa2,0x83,0xe0,0xc1,
1086         0x1f,0x3e,0x5d,0x7c,0x9b,0xba,0xd9,0xf8,0x17,0x36,0x55,0x74,0x93,0xb2,0xd1,0xf0
1087     };
1088 
1089 /* look at the asm-code - what looks in C a bit strange is almost as good as handmade */
1090     register int i;
1091     register unsigned char *CRCT1, *CRCT2, *data, c, crch, crcl;
1092 
1093     CRCT1=CRCTable1;
1094     CRCT2=CRCTable2;
1095     data=data_a3;
1096     crcl=data_d1;
1097     crch=data_d0;
1098     for (i=data_d3; i>=0; i--) {
1099         c = (*data++) ^ crch;
1100         crch = CRCT1[c] ^ crcl;
1101         crcl = CRCT2[c];
1102     }
1103     return (crch<<8)|crcl;
1104 }
1105 
1106 static inline ushort dos_hdr_crc (struct dos_header *hdr)
1107 {
1108     return dos_crc(&(hdr->track), 0xb2, 0x30, 3); /* precomputed magic */
1109 }
1110 
1111 static inline ushort dos_data_crc(unsigned char *data)
1112 {
1113     return dos_crc(data, 0xe2, 0x95 ,511); /* precomputed magic */
1114 }
1115 
1116 static inline unsigned char dos_decode_byte(ushort word)
1117 {
1118     register ushort w2;
1119     register unsigned char byte;
1120     register unsigned char *dec = mfmdecode;
1121 
1122     w2=word;
1123     w2>>=8;
1124     w2&=127;
1125     byte = dec[w2];
1126     byte <<= 4;
1127     w2 = word & 127;
1128     byte |= dec[w2];
1129     return byte;
1130 }
1131 
1132 static unsigned long dos_decode(unsigned char *data, unsigned short *raw, int len)
1133 {
1134     int i;
1135 
1136     for (i = 0; i < len; i++)
1137         *data++=dos_decode_byte(*raw++);
1138     return ((ulong)raw);
1139 }
1140 
1141 #ifdef DEBUG
1142 static void dbg(unsigned long ptr)
1143 {
1144     printk("raw data @%08lx: %08lx, %08lx ,%08lx, %08lx\n", ptr,
1145            ((ulong *)ptr)[0], ((ulong *)ptr)[1],
1146            ((ulong *)ptr)[2], ((ulong *)ptr)[3]);
1147 }
1148 #endif
1149 
1150 static int dos_read(int drive)
1151 {
1152     unsigned long end;
1153     unsigned long raw;
1154     int scnt;
1155     unsigned short crc,data_crc[2];
1156     struct dos_header hdr;
1157 
1158     drive&=3;
1159     raw = (long) raw_buf;
1160     end = raw + unit[drive].type->read_size;
1161 
1162     for (scnt=0; scnt < unit[drive].dtype->sects * unit[drive].type->sect_mult; scnt++) {
1163         do { /* search for the right sync of each sec-hdr */
1164             if (!(raw = scan_sync (raw, end))) {
1165                 printk(KERN_INFO "dos_read: no hdr sync on "
1166                        "track %d, unit %d for sector %d\n",
1167                        unit[drive].track,drive,scnt);
1168                 return MFM_NOSYNC;
1169             }
1170 #ifdef DEBUG
1171             dbg(raw);
1172 #endif
1173         } while (*((ushort *)raw)!=0x5554); /* loop usually only once done */
1174         raw+=2; /* skip over headermark */
1175         raw = dos_decode((unsigned char *)&hdr,(ushort *) raw,8);
1176         crc = dos_hdr_crc(&hdr);
1177 
1178 #ifdef DEBUG
1179         printk("(%3d,%d,%2d,%d) %x\n", hdr.track, hdr.side,
1180                hdr.sec, hdr.len_desc, hdr.crc);
1181 #endif
1182 
1183         if (crc != hdr.crc) {
1184             printk(KERN_INFO "dos_read: MFM_HEADER %04x,%04x\n",
1185                    hdr.crc, crc);
1186             return MFM_HEADER;
1187         }
1188         if (hdr.track != unit[drive].track/unit[drive].type->heads) {
1189             printk(KERN_INFO "dos_read: MFM_TRACK %d, %d\n",
1190                    hdr.track,
1191                    unit[drive].track/unit[drive].type->heads);
1192             return MFM_TRACK;
1193         }
1194 
1195         if (hdr.side != unit[drive].track%unit[drive].type->heads) {
1196             printk(KERN_INFO "dos_read: MFM_SIDE %d, %d\n",
1197                    hdr.side,
1198                    unit[drive].track%unit[drive].type->heads);
1199             return MFM_TRACK;
1200         }
1201 
1202         if (hdr.len_desc != 2) {
1203             printk(KERN_INFO "dos_read: unknown sector len "
1204                    "descriptor %d\n", hdr.len_desc);
1205             return MFM_DATA;
1206         }
1207 #ifdef DEBUG
1208         printk("hdr accepted\n");
1209 #endif
1210         if (!(raw = scan_sync (raw, end))) {
1211             printk(KERN_INFO "dos_read: no data sync on track "
1212                    "%d, unit %d for sector%d, disk sector %d\n",
1213                    unit[drive].track, drive, scnt, hdr.sec);
1214             return MFM_NOSYNC;
1215         }
1216 #ifdef DEBUG
1217         dbg(raw);
1218 #endif
1219 
1220         if (*((ushort *)raw)!=0x5545) {
1221             printk(KERN_INFO "dos_read: no data mark after "
1222                    "sync (%d,%d,%d,%d) sc=%d\n",
1223                    hdr.track,hdr.side,hdr.sec,hdr.len_desc,scnt);
1224             return MFM_NOSYNC;
1225         }
1226 
1227         raw+=2;  /* skip data mark (included in checksum) */
1228         raw = dos_decode((unsigned char *)(unit[drive].trackbuf + (hdr.sec - 1) * 512), (ushort *) raw, 512);
1229         raw = dos_decode((unsigned char  *)data_crc,(ushort *) raw,4);
1230         crc = dos_data_crc(unit[drive].trackbuf + (hdr.sec - 1) * 512);
1231 
1232         if (crc != data_crc[0]) {
1233             printk(KERN_INFO "dos_read: MFM_DATA (%d,%d,%d,%d) "
1234                    "sc=%d, %x %x\n", hdr.track, hdr.side,
1235                    hdr.sec, hdr.len_desc, scnt,data_crc[0], crc);
1236             printk(KERN_INFO "data=(%lx,%lx,%lx,%lx,...)\n",
1237                    ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[0],
1238                    ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[1],
1239                    ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[2],
1240                    ((ulong *)(unit[drive].trackbuf+(hdr.sec-1)*512))[3]);
1241             return MFM_DATA;
1242         }
1243     }
1244     return 0;
1245 }
1246 
1247 static inline ushort dos_encode_byte(unsigned char byte)
1248 {
1249     register unsigned char *enc, b2, b1;
1250     register ushort word;
1251 
1252     enc=mfmencode;
1253     b1=byte;
1254     b2=b1>>4;
1255     b1&=15;
1256     word=enc[b2] <<8 | enc [b1];
1257     return (word|((word&(256|64)) ? 0: 128));
1258 }
1259 
1260 static void dos_encode_block(ushort *dest, unsigned char *src, int len)
1261 {
1262     int i;
1263 
1264     for (i = 0; i < len; i++) {
1265         *dest=dos_encode_byte(*src++);
1266         *dest|=((dest[-1]&1)||(*dest&0x4000))? 0: 0x8000;
1267         dest++;
1268     }
1269 }
1270 
1271 static unsigned long *ms_putsec(int drive, unsigned long *raw, int cnt)
1272 {
1273     static struct dos_header hdr={0,0,0,2,0,
1274       {78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78}};
1275     int i;
1276     static ushort crc[2]={0,0x4e4e};
1277 
1278     drive&=3;
1279 /* id gap 1 */
1280 /* the MFM word before is always 9254 */
1281     for(i=0;i<6;i++)
1282         *raw++=0xaaaaaaaa;
1283 /* 3 sync + 1 headermark */
1284     *raw++=0x44894489;
1285     *raw++=0x44895554;
1286 
1287 /* fill in the variable parts of the header */
1288     hdr.track=unit[drive].track/unit[drive].type->heads;
1289     hdr.side=unit[drive].track%unit[drive].type->heads;
1290     hdr.sec=cnt+1;
1291     hdr.crc=dos_hdr_crc(&hdr);
1292 
1293 /* header (without "magic") and id gap 2*/
1294     dos_encode_block((ushort *)raw,(unsigned char *) &hdr.track,28);
1295     raw+=14;
1296 
1297 /*id gap 3 */
1298     for(i=0;i<6;i++)
1299         *raw++=0xaaaaaaaa;
1300 
1301 /* 3 syncs and 1 datamark */
1302     *raw++=0x44894489;
1303     *raw++=0x44895545;
1304 
1305 /* data */
1306     dos_encode_block((ushort *)raw,
1307              (unsigned char *)unit[drive].trackbuf+cnt*512,512);
1308     raw+=256;
1309 
1310 /*data crc + jd's special gap (long words :-/) */
1311     crc[0]=dos_data_crc(unit[drive].trackbuf+cnt*512);
1312     dos_encode_block((ushort *) raw,(unsigned char *)crc,4);
1313     raw+=2;
1314 
1315 /* data gap */
1316     for(i=0;i<38;i++)
1317         *raw++=0x92549254;
1318 
1319     return raw; /* wrote 652 MFM words */
1320 }
1321 
1322 static void dos_write(int disk)
1323 {
1324     int cnt;
1325     unsigned long raw = (unsigned long) raw_buf;
1326     unsigned long *ptr=(unsigned long *)raw;
1327 
1328     disk&=3;
1329 /* really gap4 + indexgap , but we write it first and round it up */
1330     for (cnt=0;cnt<425;cnt++)
1331         *ptr++=0x92549254;
1332 
1333 /* the following is just guessed */
1334     if (unit[disk].type->sect_mult==2)  /* check for HD-Disks */
1335         for(cnt=0;cnt<473;cnt++)
1336             *ptr++=0x92549254;
1337 
1338 /* now the index marks...*/
1339     for (cnt=0;cnt<20;cnt++)
1340         *ptr++=0x92549254;
1341     for (cnt=0;cnt<6;cnt++)
1342         *ptr++=0xaaaaaaaa;
1343     *ptr++=0x52245224;
1344     *ptr++=0x52245552;
1345     for (cnt=0;cnt<20;cnt++)
1346         *ptr++=0x92549254;
1347 
1348 /* sectors */
1349     for(cnt = 0; cnt < unit[disk].dtype->sects * unit[disk].type->sect_mult; cnt++)
1350         ptr=ms_putsec(disk,ptr,cnt);
1351 
1352     *(ushort *)ptr = 0xaaa8; /* MFM word before is always 0x9254 */
1353 }
1354 
1355 /*
1356  * Here comes the high level stuff (i.e. the filesystem interface)
1357  * and helper functions.
1358  * Normally this should be the only part that has to be adapted to
1359  * different kernel versions.
1360  */
1361 
1362 /* FIXME: this assumes the drive is still spinning -
1363  * which is only true if we complete writing a track within three seconds
1364  */
1365 static void flush_track_callback(struct timer_list *timer)
1366 {
1367     unsigned long nr = ((unsigned long)timer -
1368                    (unsigned long)&flush_track_timer[0]) /
1369                     sizeof(flush_track_timer[0]);
1370 
1371     nr&=3;
1372     writefromint = 1;
1373     if (!try_fdc(nr)) {
1374         /* we might block in an interrupt, so try again later */
1375         flush_track_timer[nr].expires = jiffies + 1;
1376         add_timer(flush_track_timer + nr);
1377         return;
1378     }
1379     get_fdc(nr);
1380     (*unit[nr].dtype->write_fkt)(nr);
1381     if (!raw_write(nr)) {
1382         printk (KERN_NOTICE "floppy disk write protected\n");
1383         writefromint = 0;
1384         writepending = 0;
1385     }
1386     rel_fdc();
1387 }
1388 
1389 static int non_int_flush_track (unsigned long nr)
1390 {
1391     unsigned long flags;
1392 
1393     nr&=3;
1394     writefromint = 0;
1395     del_timer(&post_write_timer);
1396     get_fdc(nr);
1397     if (!fd_motor_on(nr)) {
1398         writepending = 0;
1399         rel_fdc();
1400         return 0;
1401     }
1402     local_irq_save(flags);
1403     if (writepending != 2) {
1404         local_irq_restore(flags);
1405         (*unit[nr].dtype->write_fkt)(nr);
1406         if (!raw_write(nr)) {
1407             printk (KERN_NOTICE "floppy disk write protected "
1408                 "in write!\n");
1409             writepending = 0;
1410             return 0;
1411         }
1412         wait_event(wait_fd_block, block_flag != 2);
1413     }
1414     else {
1415         local_irq_restore(flags);
1416         ms_delay(2); /* 2 ms post_write delay */
1417         post_write(nr);
1418     }
1419     rel_fdc();
1420     return 1;
1421 }
1422 
1423 static int get_track(int drive, int track)
1424 {
1425     int error, errcnt;
1426 
1427     drive&=3;
1428     if (unit[drive].track == track)
1429         return 0;
1430     get_fdc(drive);
1431     if (!fd_motor_on(drive)) {
1432         rel_fdc();
1433         return -1;
1434     }
1435 
1436     if (unit[drive].dirty == 1) {
1437         del_timer (flush_track_timer + drive);
1438         non_int_flush_track (drive);
1439     }
1440     errcnt = 0;
1441     while (errcnt < MAX_ERRORS) {
1442         if (!fd_seek(drive, track))
1443             return -1;
1444         raw_read(drive);
1445         error = (*unit[drive].dtype->read_fkt)(drive);
1446         if (error == 0) {
1447             rel_fdc();
1448             return 0;
1449         }
1450         /* Read Error Handling: recalibrate and try again */
1451         unit[drive].track = -1;
1452         errcnt++;
1453     }
1454     rel_fdc();
1455     return -1;
1456 }
1457 
1458 static blk_status_t amiflop_rw_cur_segment(struct amiga_floppy_struct *floppy,
1459                        struct request *rq)
1460 {
1461     int drive = floppy - unit;
1462     unsigned int cnt, block, track, sector;
1463     char *data;
1464 
1465     for (cnt = 0; cnt < blk_rq_cur_sectors(rq); cnt++) {
1466 #ifdef DEBUG
1467         printk("fd: sector %ld + %d requested for %s\n",
1468                blk_rq_pos(rq), cnt,
1469                (rq_data_dir(rq) == READ) ? "read" : "write");
1470 #endif
1471         block = blk_rq_pos(rq) + cnt;
1472         track = block / (floppy->dtype->sects * floppy->type->sect_mult);
1473         sector = block % (floppy->dtype->sects * floppy->type->sect_mult);
1474         data = bio_data(rq->bio) + 512 * cnt;
1475 #ifdef DEBUG
1476         printk("access to track %d, sector %d, with buffer at "
1477                "0x%08lx\n", track, sector, data);
1478 #endif
1479 
1480         if (get_track(drive, track) == -1)
1481             return BLK_STS_IOERR;
1482 
1483         if (rq_data_dir(rq) == READ) {
1484             memcpy(data, floppy->trackbuf + sector * 512, 512);
1485         } else {
1486             memcpy(floppy->trackbuf + sector * 512, data, 512);
1487 
1488             /* keep the drive spinning while writes are scheduled */
1489             if (!fd_motor_on(drive))
1490                 return BLK_STS_IOERR;
1491             /*
1492              * setup a callback to write the track buffer
1493              * after a short (1 tick) delay.
1494              */
1495             floppy->dirty = 1;
1496                 /* reset the timer */
1497             mod_timer (flush_track_timer + drive, jiffies + 1);
1498         }
1499     }
1500 
1501     return BLK_STS_OK;
1502 }
1503 
1504 static blk_status_t amiflop_queue_rq(struct blk_mq_hw_ctx *hctx,
1505                      const struct blk_mq_queue_data *bd)
1506 {
1507     struct request *rq = bd->rq;
1508     struct amiga_floppy_struct *floppy = rq->q->disk->private_data;
1509     blk_status_t err;
1510 
1511     if (!spin_trylock_irq(&amiflop_lock))
1512         return BLK_STS_DEV_RESOURCE;
1513 
1514     blk_mq_start_request(rq);
1515 
1516     do {
1517         err = amiflop_rw_cur_segment(floppy, rq);
1518     } while (blk_update_request(rq, err, blk_rq_cur_bytes(rq)));
1519     blk_mq_end_request(rq, err);
1520 
1521     spin_unlock_irq(&amiflop_lock);
1522     return BLK_STS_OK;
1523 }
1524 
1525 static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1526 {
1527     int drive = MINOR(bdev->bd_dev) & 3;
1528 
1529     geo->heads = unit[drive].type->heads;
1530     geo->sectors = unit[drive].dtype->sects * unit[drive].type->sect_mult;
1531     geo->cylinders = unit[drive].type->tracks;
1532     return 0;
1533 }
1534 
1535 static int fd_locked_ioctl(struct block_device *bdev, fmode_t mode,
1536             unsigned int cmd, unsigned long param)
1537 {
1538     struct amiga_floppy_struct *p = bdev->bd_disk->private_data;
1539     int drive = p - unit;
1540     static struct floppy_struct getprm;
1541     void __user *argp = (void __user *)param;
1542 
1543     switch(cmd){
1544     case FDFMTBEG:
1545         get_fdc(drive);
1546         if (fd_ref[drive] > 1) {
1547             rel_fdc();
1548             return -EBUSY;
1549         }
1550         fsync_bdev(bdev);
1551         if (fd_motor_on(drive) == 0) {
1552             rel_fdc();
1553             return -ENODEV;
1554         }
1555         if (fd_calibrate(drive) == 0) {
1556             rel_fdc();
1557             return -ENXIO;
1558         }
1559         floppy_off(drive);
1560         rel_fdc();
1561         break;
1562     case FDFMTTRK:
1563         if (param < p->type->tracks * p->type->heads)
1564         {
1565             get_fdc(drive);
1566             if (fd_seek(drive,param) != 0){
1567                 memset(p->trackbuf, FD_FILL_BYTE,
1568                        p->dtype->sects * p->type->sect_mult * 512);
1569                 non_int_flush_track(drive);
1570             }
1571             floppy_off(drive);
1572             rel_fdc();
1573         }
1574         else
1575             return -EINVAL;
1576         break;
1577     case FDFMTEND:
1578         floppy_off(drive);
1579         invalidate_bdev(bdev);
1580         break;
1581     case FDGETPRM:
1582         memset((void *)&getprm, 0, sizeof (getprm));
1583         getprm.track=p->type->tracks;
1584         getprm.head=p->type->heads;
1585         getprm.sect=p->dtype->sects * p->type->sect_mult;
1586         getprm.size=p->blocks;
1587         if (copy_to_user(argp, &getprm, sizeof(struct floppy_struct)))
1588             return -EFAULT;
1589         break;
1590     case FDSETPRM:
1591     case FDDEFPRM:
1592         return -EINVAL;
1593     case FDFLUSH: /* unconditionally, even if not needed */
1594         del_timer (flush_track_timer + drive);
1595         non_int_flush_track(drive);
1596         break;
1597 #ifdef RAW_IOCTL
1598     case IOCTL_RAW_TRACK:
1599         if (copy_to_user(argp, raw_buf, p->type->read_size))
1600             return -EFAULT;
1601         else
1602             return p->type->read_size;
1603 #endif
1604     default:
1605         return -ENOSYS;
1606     }
1607     return 0;
1608 }
1609 
1610 static int fd_ioctl(struct block_device *bdev, fmode_t mode,
1611                  unsigned int cmd, unsigned long param)
1612 {
1613     int ret;
1614 
1615     mutex_lock(&amiflop_mutex);
1616     ret = fd_locked_ioctl(bdev, mode, cmd, param);
1617     mutex_unlock(&amiflop_mutex);
1618 
1619     return ret;
1620 }
1621 
1622 static void fd_probe(int dev)
1623 {
1624     unsigned long code;
1625     int type;
1626     int drive;
1627 
1628     drive = dev & 3;
1629     code = fd_get_drive_id(drive);
1630 
1631     /* get drive type */
1632     for (type = 0; type < num_dr_types; type++)
1633         if (drive_types[type].code == code)
1634             break;
1635 
1636     if (type >= num_dr_types) {
1637         printk(KERN_WARNING "fd_probe: unsupported drive type "
1638                "%08lx found\n", code);
1639         unit[drive].type = &drive_types[num_dr_types-1]; /* FD_NODRIVE */
1640         return;
1641     }
1642 
1643     unit[drive].type = drive_types + type;
1644     unit[drive].track = -1;
1645 
1646     unit[drive].disk = -1;
1647     unit[drive].motor = 0;
1648     unit[drive].busy = 0;
1649     unit[drive].status = -1;
1650 }
1651 
1652 /*
1653  * floppy_open check for aliasing (/dev/fd0 can be the same as
1654  * /dev/PS0 etc), and disallows simultaneous access to the same
1655  * drive with different device numbers.
1656  */
1657 static int floppy_open(struct block_device *bdev, fmode_t mode)
1658 {
1659     int drive = MINOR(bdev->bd_dev) & 3;
1660     int system =  (MINOR(bdev->bd_dev) & 4) >> 2;
1661     int old_dev;
1662     unsigned long flags;
1663 
1664     mutex_lock(&amiflop_mutex);
1665     old_dev = fd_device[drive];
1666 
1667     if (fd_ref[drive] && old_dev != system) {
1668         mutex_unlock(&amiflop_mutex);
1669         return -EBUSY;
1670     }
1671 
1672     if (unit[drive].type->code == FD_NODRIVE) {
1673         mutex_unlock(&amiflop_mutex);
1674         return -ENXIO;
1675     }
1676 
1677     if (mode & (FMODE_READ|FMODE_WRITE)) {
1678         bdev_check_media_change(bdev);
1679         if (mode & FMODE_WRITE) {
1680             int wrprot;
1681 
1682             get_fdc(drive);
1683             fd_select (drive);
1684             wrprot = !(ciaa.pra & DSKPROT);
1685             fd_deselect (drive);
1686             rel_fdc();
1687 
1688             if (wrprot) {
1689                 mutex_unlock(&amiflop_mutex);
1690                 return -EROFS;
1691             }
1692         }
1693     }
1694 
1695     local_irq_save(flags);
1696     fd_ref[drive]++;
1697     fd_device[drive] = system;
1698     local_irq_restore(flags);
1699 
1700     unit[drive].dtype=&data_types[system];
1701     unit[drive].blocks=unit[drive].type->heads*unit[drive].type->tracks*
1702         data_types[system].sects*unit[drive].type->sect_mult;
1703     set_capacity(unit[drive].gendisk[system], unit[drive].blocks);
1704 
1705     printk(KERN_INFO "fd%d: accessing %s-disk with %s-layout\n",drive,
1706            unit[drive].type->name, data_types[system].name);
1707 
1708     mutex_unlock(&amiflop_mutex);
1709     return 0;
1710 }
1711 
1712 static void floppy_release(struct gendisk *disk, fmode_t mode)
1713 {
1714     struct amiga_floppy_struct *p = disk->private_data;
1715     int drive = p - unit;
1716 
1717     mutex_lock(&amiflop_mutex);
1718     if (unit[drive].dirty == 1) {
1719         del_timer (flush_track_timer + drive);
1720         non_int_flush_track (drive);
1721     }
1722   
1723     if (!fd_ref[drive]--) {
1724         printk(KERN_CRIT "floppy_release with fd_ref == 0");
1725         fd_ref[drive] = 0;
1726     }
1727 #ifdef MODULE
1728     floppy_off (drive);
1729 #endif
1730     mutex_unlock(&amiflop_mutex);
1731 }
1732 
1733 /*
1734  * check_events is never called from an interrupt, so we can relax a bit
1735  * here, sleep etc. Note that floppy-on tries to set current_DOR to point
1736  * to the desired drive, but it will probably not survive the sleep if
1737  * several floppies are used at the same time: thus the loop.
1738  */
1739 static unsigned amiga_check_events(struct gendisk *disk, unsigned int clearing)
1740 {
1741     struct amiga_floppy_struct *p = disk->private_data;
1742     int drive = p - unit;
1743     int changed;
1744     static int first_time = 1;
1745 
1746     if (first_time)
1747         changed = first_time--;
1748     else {
1749         get_fdc(drive);
1750         fd_select (drive);
1751         changed = !(ciaa.pra & DSKCHANGE);
1752         fd_deselect (drive);
1753         rel_fdc();
1754     }
1755 
1756     if (changed) {
1757         fd_probe(drive);
1758         p->track = -1;
1759         p->dirty = 0;
1760         writepending = 0; /* if this was true before, too bad! */
1761         writefromint = 0;
1762         return DISK_EVENT_MEDIA_CHANGE;
1763     }
1764     return 0;
1765 }
1766 
1767 static const struct block_device_operations floppy_fops = {
1768     .owner      = THIS_MODULE,
1769     .open       = floppy_open,
1770     .release    = floppy_release,
1771     .ioctl      = fd_ioctl,
1772     .getgeo     = fd_getgeo,
1773     .check_events   = amiga_check_events,
1774 };
1775 
1776 static const struct blk_mq_ops amiflop_mq_ops = {
1777     .queue_rq = amiflop_queue_rq,
1778 };
1779 
1780 static int fd_alloc_disk(int drive, int system)
1781 {
1782     struct gendisk *disk;
1783     int err;
1784 
1785     disk = blk_mq_alloc_disk(&unit[drive].tag_set, NULL);
1786     if (IS_ERR(disk))
1787         return PTR_ERR(disk);
1788 
1789     disk->major = FLOPPY_MAJOR;
1790     disk->first_minor = drive + system;
1791     disk->minors = 1;
1792     disk->fops = &floppy_fops;
1793     disk->flags |= GENHD_FL_NO_PART;
1794     disk->events = DISK_EVENT_MEDIA_CHANGE;
1795     if (system)
1796         sprintf(disk->disk_name, "fd%d_msdos", drive);
1797     else
1798         sprintf(disk->disk_name, "fd%d", drive);
1799     disk->private_data = &unit[drive];
1800     set_capacity(disk, 880 * 2);
1801 
1802     unit[drive].gendisk[system] = disk;
1803     err = add_disk(disk);
1804     if (err)
1805         put_disk(disk);
1806     return err;
1807 }
1808 
1809 static int fd_alloc_drive(int drive)
1810 {
1811     unit[drive].trackbuf = kmalloc(FLOPPY_MAX_SECTORS * 512, GFP_KERNEL);
1812     if (!unit[drive].trackbuf)
1813         goto out;
1814 
1815     memset(&unit[drive].tag_set, 0, sizeof(unit[drive].tag_set));
1816     unit[drive].tag_set.ops = &amiflop_mq_ops;
1817     unit[drive].tag_set.nr_hw_queues = 1;
1818     unit[drive].tag_set.nr_maps = 1;
1819     unit[drive].tag_set.queue_depth = 2;
1820     unit[drive].tag_set.numa_node = NUMA_NO_NODE;
1821     unit[drive].tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1822     if (blk_mq_alloc_tag_set(&unit[drive].tag_set))
1823         goto out_cleanup_trackbuf;
1824 
1825     pr_cont(" fd%d", drive);
1826 
1827     if (fd_alloc_disk(drive, 0) || fd_alloc_disk(drive, 1))
1828         goto out_cleanup_tagset;
1829     return 0;
1830 
1831 out_cleanup_tagset:
1832     blk_mq_free_tag_set(&unit[drive].tag_set);
1833 out_cleanup_trackbuf:
1834     kfree(unit[drive].trackbuf);
1835 out:
1836     unit[drive].type->code = FD_NODRIVE;
1837     return -ENOMEM;
1838 }
1839 
1840 static int __init fd_probe_drives(void)
1841 {
1842     int drive,drives,nomem;
1843 
1844     pr_info("FD: probing units\nfound");
1845     drives=0;
1846     nomem=0;
1847     for(drive=0;drive<FD_MAX_UNITS;drive++) {
1848         fd_probe(drive);
1849         if (unit[drive].type->code == FD_NODRIVE)
1850             continue;
1851 
1852         if (fd_alloc_drive(drive) < 0) {
1853             pr_cont(" no mem for fd%d", drive);
1854             nomem = 1;
1855             continue;
1856         }
1857         drives++;
1858     }
1859     if ((drives > 0) || (nomem == 0)) {
1860         if (drives == 0)
1861             pr_cont(" no drives");
1862         pr_cont("\n");
1863         return drives;
1864     }
1865     pr_cont("\n");
1866     return -ENOMEM;
1867 }
1868  
1869 static int __init amiga_floppy_probe(struct platform_device *pdev)
1870 {
1871     int i, ret;
1872 
1873     if (register_blkdev(FLOPPY_MAJOR,"fd"))
1874         return -EBUSY;
1875 
1876     ret = -ENOMEM;
1877     raw_buf = amiga_chip_alloc(RAW_BUF_SIZE, "Floppy");
1878     if (!raw_buf) {
1879         printk("fd: cannot get chip mem buffer\n");
1880         goto out_blkdev;
1881     }
1882 
1883     ret = -EBUSY;
1884     if (request_irq(IRQ_AMIGA_DSKBLK, fd_block_done, 0, "floppy_dma", NULL)) {
1885         printk("fd: cannot get irq for dma\n");
1886         goto out_irq;
1887     }
1888 
1889     if (request_irq(IRQ_AMIGA_CIAA_TB, ms_isr, 0, "floppy_timer", NULL)) {
1890         printk("fd: cannot get irq for timer\n");
1891         goto out_irq2;
1892     }
1893 
1894     ret = -ENODEV;
1895     if (fd_probe_drives() < 1) /* No usable drives */
1896         goto out_probe;
1897 
1898     /* initialize variables */
1899     timer_setup(&motor_on_timer, motor_on_callback, 0);
1900     motor_on_timer.expires = 0;
1901     for (i = 0; i < FD_MAX_UNITS; i++) {
1902         timer_setup(&motor_off_timer[i], fd_motor_off, 0);
1903         motor_off_timer[i].expires = 0;
1904         timer_setup(&flush_track_timer[i], flush_track_callback, 0);
1905         flush_track_timer[i].expires = 0;
1906 
1907         unit[i].track = -1;
1908     }
1909 
1910     timer_setup(&post_write_timer, post_write_callback, 0);
1911     post_write_timer.expires = 0;
1912   
1913     for (i = 0; i < 128; i++)
1914         mfmdecode[i]=255;
1915     for (i = 0; i < 16; i++)
1916         mfmdecode[mfmencode[i]]=i;
1917 
1918     /* make sure that disk DMA is enabled */
1919     custom.dmacon = DMAF_SETCLR | DMAF_DISK;
1920 
1921     /* init ms timer */
1922     ciaa.crb = 8; /* one-shot, stop */
1923     return 0;
1924 
1925 out_probe:
1926     free_irq(IRQ_AMIGA_CIAA_TB, NULL);
1927 out_irq2:
1928     free_irq(IRQ_AMIGA_DSKBLK, NULL);
1929 out_irq:
1930     amiga_chip_free(raw_buf);
1931 out_blkdev:
1932     unregister_blkdev(FLOPPY_MAJOR,"fd");
1933     return ret;
1934 }
1935 
1936 static struct platform_driver amiga_floppy_driver = {
1937     .driver   = {
1938         .name   = "amiga-floppy",
1939     },
1940 };
1941 
1942 static int __init amiga_floppy_init(void)
1943 {
1944     return platform_driver_probe(&amiga_floppy_driver, amiga_floppy_probe);
1945 }
1946 
1947 module_init(amiga_floppy_init);
1948 
1949 #ifndef MODULE
1950 static int __init amiga_floppy_setup (char *str)
1951 {
1952     int n;
1953     if (!MACH_IS_AMIGA)
1954         return 0;
1955     if (!get_option(&str, &n))
1956         return 0;
1957     printk (KERN_INFO "amiflop: Setting default df0 to %x\n", n);
1958     fd_def_df0 = n;
1959     return 1;
1960 }
1961 
1962 __setup("floppy=", amiga_floppy_setup);
1963 #endif
1964 
1965 MODULE_ALIAS("platform:amiga-floppy");