Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * main.c - Multi purpose firmware loading support
0004  *
0005  * Copyright (c) 2003 Manuel Estrada Sainz
0006  *
0007  * Please see Documentation/driver-api/firmware/ for more information.
0008  *
0009  */
0010 
0011 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0012 
0013 #include <linux/capability.h>
0014 #include <linux/device.h>
0015 #include <linux/kernel_read_file.h>
0016 #include <linux/module.h>
0017 #include <linux/init.h>
0018 #include <linux/initrd.h>
0019 #include <linux/timer.h>
0020 #include <linux/vmalloc.h>
0021 #include <linux/interrupt.h>
0022 #include <linux/bitops.h>
0023 #include <linux/mutex.h>
0024 #include <linux/workqueue.h>
0025 #include <linux/highmem.h>
0026 #include <linux/firmware.h>
0027 #include <linux/slab.h>
0028 #include <linux/sched.h>
0029 #include <linux/file.h>
0030 #include <linux/list.h>
0031 #include <linux/fs.h>
0032 #include <linux/async.h>
0033 #include <linux/pm.h>
0034 #include <linux/suspend.h>
0035 #include <linux/syscore_ops.h>
0036 #include <linux/reboot.h>
0037 #include <linux/security.h>
0038 #include <linux/zstd.h>
0039 #include <linux/xz.h>
0040 
0041 #include <generated/utsrelease.h>
0042 
0043 #include "../base.h"
0044 #include "firmware.h"
0045 #include "fallback.h"
0046 
0047 MODULE_AUTHOR("Manuel Estrada Sainz");
0048 MODULE_DESCRIPTION("Multi purpose firmware loading support");
0049 MODULE_LICENSE("GPL");
0050 
0051 struct firmware_cache {
0052     /* firmware_buf instance will be added into the below list */
0053     spinlock_t lock;
0054     struct list_head head;
0055     int state;
0056 
0057 #ifdef CONFIG_FW_CACHE
0058     /*
0059      * Names of firmware images which have been cached successfully
0060      * will be added into the below list so that device uncache
0061      * helper can trace which firmware images have been cached
0062      * before.
0063      */
0064     spinlock_t name_lock;
0065     struct list_head fw_names;
0066 
0067     struct delayed_work work;
0068 
0069     struct notifier_block   pm_notify;
0070 #endif
0071 };
0072 
0073 struct fw_cache_entry {
0074     struct list_head list;
0075     const char *name;
0076 };
0077 
0078 struct fw_name_devm {
0079     unsigned long magic;
0080     const char *name;
0081 };
0082 
0083 static inline struct fw_priv *to_fw_priv(struct kref *ref)
0084 {
0085     return container_of(ref, struct fw_priv, ref);
0086 }
0087 
0088 #define FW_LOADER_NO_CACHE  0
0089 #define FW_LOADER_START_CACHE   1
0090 
0091 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
0092  * guarding for corner cases a global lock should be OK */
0093 DEFINE_MUTEX(fw_lock);
0094 
0095 struct firmware_cache fw_cache;
0096 
0097 void fw_state_init(struct fw_priv *fw_priv)
0098 {
0099     struct fw_state *fw_st = &fw_priv->fw_st;
0100 
0101     init_completion(&fw_st->completion);
0102     fw_st->status = FW_STATUS_UNKNOWN;
0103 }
0104 
0105 static inline int fw_state_wait(struct fw_priv *fw_priv)
0106 {
0107     return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
0108 }
0109 
0110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
0111 
0112 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
0113                       struct firmware_cache *fwc,
0114                       void *dbuf,
0115                       size_t size,
0116                       size_t offset,
0117                       u32 opt_flags)
0118 {
0119     struct fw_priv *fw_priv;
0120 
0121     /* For a partial read, the buffer must be preallocated. */
0122     if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
0123         return NULL;
0124 
0125     /* Only partial reads are allowed to use an offset. */
0126     if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
0127         return NULL;
0128 
0129     fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
0130     if (!fw_priv)
0131         return NULL;
0132 
0133     fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
0134     if (!fw_priv->fw_name) {
0135         kfree(fw_priv);
0136         return NULL;
0137     }
0138 
0139     kref_init(&fw_priv->ref);
0140     fw_priv->fwc = fwc;
0141     fw_priv->data = dbuf;
0142     fw_priv->allocated_size = size;
0143     fw_priv->offset = offset;
0144     fw_priv->opt_flags = opt_flags;
0145     fw_state_init(fw_priv);
0146 #ifdef CONFIG_FW_LOADER_USER_HELPER
0147     INIT_LIST_HEAD(&fw_priv->pending_list);
0148 #endif
0149 
0150     pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
0151 
0152     return fw_priv;
0153 }
0154 
0155 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
0156 {
0157     struct fw_priv *tmp;
0158     struct firmware_cache *fwc = &fw_cache;
0159 
0160     list_for_each_entry(tmp, &fwc->head, list)
0161         if (!strcmp(tmp->fw_name, fw_name))
0162             return tmp;
0163     return NULL;
0164 }
0165 
0166 /* Returns 1 for batching firmware requests with the same name */
0167 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
0168              struct fw_priv **fw_priv, void *dbuf, size_t size,
0169              size_t offset, u32 opt_flags)
0170 {
0171     struct fw_priv *tmp;
0172 
0173     spin_lock(&fwc->lock);
0174     /*
0175      * Do not merge requests that are marked to be non-cached or
0176      * are performing partial reads.
0177      */
0178     if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
0179         tmp = __lookup_fw_priv(fw_name);
0180         if (tmp) {
0181             kref_get(&tmp->ref);
0182             spin_unlock(&fwc->lock);
0183             *fw_priv = tmp;
0184             pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
0185             return 1;
0186         }
0187     }
0188 
0189     tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
0190     if (tmp) {
0191         INIT_LIST_HEAD(&tmp->list);
0192         if (!(opt_flags & FW_OPT_NOCACHE))
0193             list_add(&tmp->list, &fwc->head);
0194     }
0195     spin_unlock(&fwc->lock);
0196 
0197     *fw_priv = tmp;
0198 
0199     return tmp ? 0 : -ENOMEM;
0200 }
0201 
0202 static void __free_fw_priv(struct kref *ref)
0203     __releases(&fwc->lock)
0204 {
0205     struct fw_priv *fw_priv = to_fw_priv(ref);
0206     struct firmware_cache *fwc = fw_priv->fwc;
0207 
0208     pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
0209          __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
0210          (unsigned int)fw_priv->size);
0211 
0212     list_del(&fw_priv->list);
0213     spin_unlock(&fwc->lock);
0214 
0215     if (fw_is_paged_buf(fw_priv))
0216         fw_free_paged_buf(fw_priv);
0217     else if (!fw_priv->allocated_size)
0218         vfree(fw_priv->data);
0219 
0220     kfree_const(fw_priv->fw_name);
0221     kfree(fw_priv);
0222 }
0223 
0224 void free_fw_priv(struct fw_priv *fw_priv)
0225 {
0226     struct firmware_cache *fwc = fw_priv->fwc;
0227     spin_lock(&fwc->lock);
0228     if (!kref_put(&fw_priv->ref, __free_fw_priv))
0229         spin_unlock(&fwc->lock);
0230 }
0231 
0232 #ifdef CONFIG_FW_LOADER_PAGED_BUF
0233 bool fw_is_paged_buf(struct fw_priv *fw_priv)
0234 {
0235     return fw_priv->is_paged_buf;
0236 }
0237 
0238 void fw_free_paged_buf(struct fw_priv *fw_priv)
0239 {
0240     int i;
0241 
0242     if (!fw_priv->pages)
0243         return;
0244 
0245     vunmap(fw_priv->data);
0246 
0247     for (i = 0; i < fw_priv->nr_pages; i++)
0248         __free_page(fw_priv->pages[i]);
0249     kvfree(fw_priv->pages);
0250     fw_priv->pages = NULL;
0251     fw_priv->page_array_size = 0;
0252     fw_priv->nr_pages = 0;
0253     fw_priv->data = NULL;
0254     fw_priv->size = 0;
0255 }
0256 
0257 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
0258 {
0259     /* If the array of pages is too small, grow it */
0260     if (fw_priv->page_array_size < pages_needed) {
0261         int new_array_size = max(pages_needed,
0262                      fw_priv->page_array_size * 2);
0263         struct page **new_pages;
0264 
0265         new_pages = kvmalloc_array(new_array_size, sizeof(void *),
0266                        GFP_KERNEL);
0267         if (!new_pages)
0268             return -ENOMEM;
0269         memcpy(new_pages, fw_priv->pages,
0270                fw_priv->page_array_size * sizeof(void *));
0271         memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
0272                (new_array_size - fw_priv->page_array_size));
0273         kvfree(fw_priv->pages);
0274         fw_priv->pages = new_pages;
0275         fw_priv->page_array_size = new_array_size;
0276     }
0277 
0278     while (fw_priv->nr_pages < pages_needed) {
0279         fw_priv->pages[fw_priv->nr_pages] =
0280             alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
0281 
0282         if (!fw_priv->pages[fw_priv->nr_pages])
0283             return -ENOMEM;
0284         fw_priv->nr_pages++;
0285     }
0286 
0287     return 0;
0288 }
0289 
0290 int fw_map_paged_buf(struct fw_priv *fw_priv)
0291 {
0292     /* one pages buffer should be mapped/unmapped only once */
0293     if (!fw_priv->pages)
0294         return 0;
0295 
0296     vunmap(fw_priv->data);
0297     fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
0298                  PAGE_KERNEL_RO);
0299     if (!fw_priv->data)
0300         return -ENOMEM;
0301 
0302     return 0;
0303 }
0304 #endif
0305 
0306 /*
0307  * ZSTD-compressed firmware support
0308  */
0309 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
0310 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
0311                   size_t in_size, const void *in_buffer)
0312 {
0313     size_t len, out_size, workspace_size;
0314     void *workspace, *out_buf;
0315     zstd_dctx *ctx;
0316     int err;
0317 
0318     if (fw_priv->allocated_size) {
0319         out_size = fw_priv->allocated_size;
0320         out_buf = fw_priv->data;
0321     } else {
0322         zstd_frame_header params;
0323 
0324         if (zstd_get_frame_header(&params, in_buffer, in_size) ||
0325             params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
0326             dev_dbg(dev, "%s: invalid zstd header\n", __func__);
0327             return -EINVAL;
0328         }
0329         out_size = params.frameContentSize;
0330         out_buf = vzalloc(out_size);
0331         if (!out_buf)
0332             return -ENOMEM;
0333     }
0334 
0335     workspace_size = zstd_dctx_workspace_bound();
0336     workspace = kvzalloc(workspace_size, GFP_KERNEL);
0337     if (!workspace) {
0338         err = -ENOMEM;
0339         goto error;
0340     }
0341 
0342     ctx = zstd_init_dctx(workspace, workspace_size);
0343     if (!ctx) {
0344         dev_dbg(dev, "%s: failed to initialize context\n", __func__);
0345         err = -EINVAL;
0346         goto error;
0347     }
0348 
0349     len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
0350     if (zstd_is_error(len)) {
0351         dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
0352             zstd_get_error_code(len));
0353         err = -EINVAL;
0354         goto error;
0355     }
0356 
0357     if (!fw_priv->allocated_size)
0358         fw_priv->data = out_buf;
0359     fw_priv->size = len;
0360     err = 0;
0361 
0362  error:
0363     kvfree(workspace);
0364     if (err && !fw_priv->allocated_size)
0365         vfree(out_buf);
0366     return err;
0367 }
0368 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
0369 
0370 /*
0371  * XZ-compressed firmware support
0372  */
0373 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
0374 /* show an error and return the standard error code */
0375 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
0376 {
0377     if (xz_ret != XZ_STREAM_END) {
0378         dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
0379         return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
0380     }
0381     return 0;
0382 }
0383 
0384 /* single-shot decompression onto the pre-allocated buffer */
0385 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
0386                    size_t in_size, const void *in_buffer)
0387 {
0388     struct xz_dec *xz_dec;
0389     struct xz_buf xz_buf;
0390     enum xz_ret xz_ret;
0391 
0392     xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
0393     if (!xz_dec)
0394         return -ENOMEM;
0395 
0396     xz_buf.in_size = in_size;
0397     xz_buf.in = in_buffer;
0398     xz_buf.in_pos = 0;
0399     xz_buf.out_size = fw_priv->allocated_size;
0400     xz_buf.out = fw_priv->data;
0401     xz_buf.out_pos = 0;
0402 
0403     xz_ret = xz_dec_run(xz_dec, &xz_buf);
0404     xz_dec_end(xz_dec);
0405 
0406     fw_priv->size = xz_buf.out_pos;
0407     return fw_decompress_xz_error(dev, xz_ret);
0408 }
0409 
0410 /* decompression on paged buffer and map it */
0411 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
0412                   size_t in_size, const void *in_buffer)
0413 {
0414     struct xz_dec *xz_dec;
0415     struct xz_buf xz_buf;
0416     enum xz_ret xz_ret;
0417     struct page *page;
0418     int err = 0;
0419 
0420     xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
0421     if (!xz_dec)
0422         return -ENOMEM;
0423 
0424     xz_buf.in_size = in_size;
0425     xz_buf.in = in_buffer;
0426     xz_buf.in_pos = 0;
0427 
0428     fw_priv->is_paged_buf = true;
0429     fw_priv->size = 0;
0430     do {
0431         if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
0432             err = -ENOMEM;
0433             goto out;
0434         }
0435 
0436         /* decompress onto the new allocated page */
0437         page = fw_priv->pages[fw_priv->nr_pages - 1];
0438         xz_buf.out = kmap_local_page(page);
0439         xz_buf.out_pos = 0;
0440         xz_buf.out_size = PAGE_SIZE;
0441         xz_ret = xz_dec_run(xz_dec, &xz_buf);
0442         kunmap_local(xz_buf.out);
0443         fw_priv->size += xz_buf.out_pos;
0444         /* partial decompression means either end or error */
0445         if (xz_buf.out_pos != PAGE_SIZE)
0446             break;
0447     } while (xz_ret == XZ_OK);
0448 
0449     err = fw_decompress_xz_error(dev, xz_ret);
0450     if (!err)
0451         err = fw_map_paged_buf(fw_priv);
0452 
0453  out:
0454     xz_dec_end(xz_dec);
0455     return err;
0456 }
0457 
0458 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
0459                 size_t in_size, const void *in_buffer)
0460 {
0461     /* if the buffer is pre-allocated, we can perform in single-shot mode */
0462     if (fw_priv->data)
0463         return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
0464     else
0465         return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
0466 }
0467 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
0468 
0469 /* direct firmware loading support */
0470 static char fw_path_para[256];
0471 static const char * const fw_path[] = {
0472     fw_path_para,
0473     "/lib/firmware/updates/" UTS_RELEASE,
0474     "/lib/firmware/updates",
0475     "/lib/firmware/" UTS_RELEASE,
0476     "/lib/firmware"
0477 };
0478 
0479 /*
0480  * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
0481  * from kernel command line because firmware_class is generally built in
0482  * kernel instead of module.
0483  */
0484 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
0485 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
0486 
0487 static int
0488 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
0489                const char *suffix,
0490                int (*decompress)(struct device *dev,
0491                          struct fw_priv *fw_priv,
0492                          size_t in_size,
0493                          const void *in_buffer))
0494 {
0495     size_t size;
0496     int i, len;
0497     int rc = -ENOENT;
0498     char *path;
0499     size_t msize = INT_MAX;
0500     void *buffer = NULL;
0501 
0502     /* Already populated data member means we're loading into a buffer */
0503     if (!decompress && fw_priv->data) {
0504         buffer = fw_priv->data;
0505         msize = fw_priv->allocated_size;
0506     }
0507 
0508     path = __getname();
0509     if (!path)
0510         return -ENOMEM;
0511 
0512     wait_for_initramfs();
0513     for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
0514         size_t file_size = 0;
0515         size_t *file_size_ptr = NULL;
0516 
0517         /* skip the unset customized path */
0518         if (!fw_path[i][0])
0519             continue;
0520 
0521         len = snprintf(path, PATH_MAX, "%s/%s%s",
0522                    fw_path[i], fw_priv->fw_name, suffix);
0523         if (len >= PATH_MAX) {
0524             rc = -ENAMETOOLONG;
0525             break;
0526         }
0527 
0528         fw_priv->size = 0;
0529 
0530         /*
0531          * The total file size is only examined when doing a partial
0532          * read; the "full read" case needs to fail if the whole
0533          * firmware was not completely loaded.
0534          */
0535         if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
0536             file_size_ptr = &file_size;
0537 
0538         /* load firmware files from the mount namespace of init */
0539         rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
0540                                &buffer, msize,
0541                                file_size_ptr,
0542                                READING_FIRMWARE);
0543         if (rc < 0) {
0544             if (rc != -ENOENT)
0545                 dev_warn(device, "loading %s failed with error %d\n",
0546                      path, rc);
0547             else
0548                 dev_dbg(device, "loading %s failed for no such file or directory.\n",
0549                      path);
0550             continue;
0551         }
0552         size = rc;
0553         rc = 0;
0554 
0555         dev_dbg(device, "Loading firmware from %s\n", path);
0556         if (decompress) {
0557             dev_dbg(device, "f/w decompressing %s\n",
0558                 fw_priv->fw_name);
0559             rc = decompress(device, fw_priv, size, buffer);
0560             /* discard the superfluous original content */
0561             vfree(buffer);
0562             buffer = NULL;
0563             if (rc) {
0564                 fw_free_paged_buf(fw_priv);
0565                 continue;
0566             }
0567         } else {
0568             dev_dbg(device, "direct-loading %s\n",
0569                 fw_priv->fw_name);
0570             if (!fw_priv->data)
0571                 fw_priv->data = buffer;
0572             fw_priv->size = size;
0573         }
0574         fw_state_done(fw_priv);
0575         break;
0576     }
0577     __putname(path);
0578 
0579     return rc;
0580 }
0581 
0582 /* firmware holds the ownership of pages */
0583 static void firmware_free_data(const struct firmware *fw)
0584 {
0585     /* Loaded directly? */
0586     if (!fw->priv) {
0587         vfree(fw->data);
0588         return;
0589     }
0590     free_fw_priv(fw->priv);
0591 }
0592 
0593 /* store the pages buffer info firmware from buf */
0594 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
0595 {
0596     fw->priv = fw_priv;
0597     fw->size = fw_priv->size;
0598     fw->data = fw_priv->data;
0599 
0600     pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
0601          __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
0602          (unsigned int)fw_priv->size);
0603 }
0604 
0605 #ifdef CONFIG_FW_CACHE
0606 static void fw_name_devm_release(struct device *dev, void *res)
0607 {
0608     struct fw_name_devm *fwn = res;
0609 
0610     if (fwn->magic == (unsigned long)&fw_cache)
0611         pr_debug("%s: fw_name-%s devm-%p released\n",
0612                 __func__, fwn->name, res);
0613     kfree_const(fwn->name);
0614 }
0615 
0616 static int fw_devm_match(struct device *dev, void *res,
0617         void *match_data)
0618 {
0619     struct fw_name_devm *fwn = res;
0620 
0621     return (fwn->magic == (unsigned long)&fw_cache) &&
0622         !strcmp(fwn->name, match_data);
0623 }
0624 
0625 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
0626         const char *name)
0627 {
0628     struct fw_name_devm *fwn;
0629 
0630     fwn = devres_find(dev, fw_name_devm_release,
0631               fw_devm_match, (void *)name);
0632     return fwn;
0633 }
0634 
0635 static bool fw_cache_is_setup(struct device *dev, const char *name)
0636 {
0637     struct fw_name_devm *fwn;
0638 
0639     fwn = fw_find_devm_name(dev, name);
0640     if (fwn)
0641         return true;
0642 
0643     return false;
0644 }
0645 
0646 /* add firmware name into devres list */
0647 static int fw_add_devm_name(struct device *dev, const char *name)
0648 {
0649     struct fw_name_devm *fwn;
0650 
0651     if (fw_cache_is_setup(dev, name))
0652         return 0;
0653 
0654     fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
0655                GFP_KERNEL);
0656     if (!fwn)
0657         return -ENOMEM;
0658     fwn->name = kstrdup_const(name, GFP_KERNEL);
0659     if (!fwn->name) {
0660         devres_free(fwn);
0661         return -ENOMEM;
0662     }
0663 
0664     fwn->magic = (unsigned long)&fw_cache;
0665     devres_add(dev, fwn);
0666 
0667     return 0;
0668 }
0669 #else
0670 static bool fw_cache_is_setup(struct device *dev, const char *name)
0671 {
0672     return false;
0673 }
0674 
0675 static int fw_add_devm_name(struct device *dev, const char *name)
0676 {
0677     return 0;
0678 }
0679 #endif
0680 
0681 int assign_fw(struct firmware *fw, struct device *device)
0682 {
0683     struct fw_priv *fw_priv = fw->priv;
0684     int ret;
0685 
0686     mutex_lock(&fw_lock);
0687     if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
0688         mutex_unlock(&fw_lock);
0689         return -ENOENT;
0690     }
0691 
0692     /*
0693      * add firmware name into devres list so that we can auto cache
0694      * and uncache firmware for device.
0695      *
0696      * device may has been deleted already, but the problem
0697      * should be fixed in devres or driver core.
0698      */
0699     /* don't cache firmware handled without uevent */
0700     if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
0701         !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
0702         ret = fw_add_devm_name(device, fw_priv->fw_name);
0703         if (ret) {
0704             mutex_unlock(&fw_lock);
0705             return ret;
0706         }
0707     }
0708 
0709     /*
0710      * After caching firmware image is started, let it piggyback
0711      * on request firmware.
0712      */
0713     if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
0714         fw_priv->fwc->state == FW_LOADER_START_CACHE)
0715         fw_cache_piggyback_on_request(fw_priv);
0716 
0717     /* pass the pages buffer to driver at the last minute */
0718     fw_set_page_data(fw_priv, fw);
0719     mutex_unlock(&fw_lock);
0720     return 0;
0721 }
0722 
0723 /* prepare firmware and firmware_buf structs;
0724  * return 0 if a firmware is already assigned, 1 if need to load one,
0725  * or a negative error code
0726  */
0727 static int
0728 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
0729               struct device *device, void *dbuf, size_t size,
0730               size_t offset, u32 opt_flags)
0731 {
0732     struct firmware *firmware;
0733     struct fw_priv *fw_priv;
0734     int ret;
0735 
0736     *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
0737     if (!firmware) {
0738         dev_err(device, "%s: kmalloc(struct firmware) failed\n",
0739             __func__);
0740         return -ENOMEM;
0741     }
0742 
0743     if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
0744         dev_dbg(device, "using built-in %s\n", name);
0745         return 0; /* assigned */
0746     }
0747 
0748     ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
0749                    offset, opt_flags);
0750 
0751     /*
0752      * bind with 'priv' now to avoid warning in failure path
0753      * of requesting firmware.
0754      */
0755     firmware->priv = fw_priv;
0756 
0757     if (ret > 0) {
0758         ret = fw_state_wait(fw_priv);
0759         if (!ret) {
0760             fw_set_page_data(fw_priv, firmware);
0761             return 0; /* assigned */
0762         }
0763     }
0764 
0765     if (ret < 0)
0766         return ret;
0767     return 1; /* need to load */
0768 }
0769 
0770 /*
0771  * Batched requests need only one wake, we need to do this step last due to the
0772  * fallback mechanism. The buf is protected with kref_get(), and it won't be
0773  * released until the last user calls release_firmware().
0774  *
0775  * Failed batched requests are possible as well, in such cases we just share
0776  * the struct fw_priv and won't release it until all requests are woken
0777  * and have gone through this same path.
0778  */
0779 static void fw_abort_batch_reqs(struct firmware *fw)
0780 {
0781     struct fw_priv *fw_priv;
0782 
0783     /* Loaded directly? */
0784     if (!fw || !fw->priv)
0785         return;
0786 
0787     fw_priv = fw->priv;
0788     mutex_lock(&fw_lock);
0789     if (!fw_state_is_aborted(fw_priv))
0790         fw_state_aborted(fw_priv);
0791     mutex_unlock(&fw_lock);
0792 }
0793 
0794 /* called from request_firmware() and request_firmware_work_func() */
0795 static int
0796 _request_firmware(const struct firmware **firmware_p, const char *name,
0797           struct device *device, void *buf, size_t size,
0798           size_t offset, u32 opt_flags)
0799 {
0800     struct firmware *fw = NULL;
0801     struct cred *kern_cred = NULL;
0802     const struct cred *old_cred;
0803     bool nondirect = false;
0804     int ret;
0805 
0806     if (!firmware_p)
0807         return -EINVAL;
0808 
0809     if (!name || name[0] == '\0') {
0810         ret = -EINVAL;
0811         goto out;
0812     }
0813 
0814     ret = _request_firmware_prepare(&fw, name, device, buf, size,
0815                     offset, opt_flags);
0816     if (ret <= 0) /* error or already assigned */
0817         goto out;
0818 
0819     /*
0820      * We are about to try to access the firmware file. Because we may have been
0821      * called by a driver when serving an unrelated request from userland, we use
0822      * the kernel credentials to read the file.
0823      */
0824     kern_cred = prepare_kernel_cred(NULL);
0825     if (!kern_cred) {
0826         ret = -ENOMEM;
0827         goto out;
0828     }
0829     old_cred = override_creds(kern_cred);
0830 
0831     ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
0832 
0833     /* Only full reads can support decompression, platform, and sysfs. */
0834     if (!(opt_flags & FW_OPT_PARTIAL))
0835         nondirect = true;
0836 
0837 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
0838     if (ret == -ENOENT && nondirect)
0839         ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
0840                          fw_decompress_zstd);
0841 #endif
0842 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
0843     if (ret == -ENOENT && nondirect)
0844         ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
0845                          fw_decompress_xz);
0846 #endif
0847     if (ret == -ENOENT && nondirect)
0848         ret = firmware_fallback_platform(fw->priv);
0849 
0850     if (ret) {
0851         if (!(opt_flags & FW_OPT_NO_WARN))
0852             dev_warn(device,
0853                  "Direct firmware load for %s failed with error %d\n",
0854                  name, ret);
0855         if (nondirect)
0856             ret = firmware_fallback_sysfs(fw, name, device,
0857                               opt_flags, ret);
0858     } else
0859         ret = assign_fw(fw, device);
0860 
0861     revert_creds(old_cred);
0862     put_cred(kern_cred);
0863 
0864  out:
0865     if (ret < 0) {
0866         fw_abort_batch_reqs(fw);
0867         release_firmware(fw);
0868         fw = NULL;
0869     }
0870 
0871     *firmware_p = fw;
0872     return ret;
0873 }
0874 
0875 /**
0876  * request_firmware() - send firmware request and wait for it
0877  * @firmware_p: pointer to firmware image
0878  * @name: name of firmware file
0879  * @device: device for which firmware is being loaded
0880  *
0881  *      @firmware_p will be used to return a firmware image by the name
0882  *      of @name for device @device.
0883  *
0884  *      Should be called from user context where sleeping is allowed.
0885  *
0886  *      @name will be used as $FIRMWARE in the uevent environment and
0887  *      should be distinctive enough not to be confused with any other
0888  *      firmware image for this or any other device.
0889  *
0890  *  Caller must hold the reference count of @device.
0891  *
0892  *  The function can be called safely inside device's suspend and
0893  *  resume callback.
0894  **/
0895 int
0896 request_firmware(const struct firmware **firmware_p, const char *name,
0897          struct device *device)
0898 {
0899     int ret;
0900 
0901     /* Need to pin this module until return */
0902     __module_get(THIS_MODULE);
0903     ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
0904                 FW_OPT_UEVENT);
0905     module_put(THIS_MODULE);
0906     return ret;
0907 }
0908 EXPORT_SYMBOL(request_firmware);
0909 
0910 /**
0911  * firmware_request_nowarn() - request for an optional fw module
0912  * @firmware: pointer to firmware image
0913  * @name: name of firmware file
0914  * @device: device for which firmware is being loaded
0915  *
0916  * This function is similar in behaviour to request_firmware(), except it
0917  * doesn't produce warning messages when the file is not found. The sysfs
0918  * fallback mechanism is enabled if direct filesystem lookup fails. However,
0919  * failures to find the firmware file with it are still suppressed. It is
0920  * therefore up to the driver to check for the return value of this call and to
0921  * decide when to inform the users of errors.
0922  **/
0923 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
0924                 struct device *device)
0925 {
0926     int ret;
0927 
0928     /* Need to pin this module until return */
0929     __module_get(THIS_MODULE);
0930     ret = _request_firmware(firmware, name, device, NULL, 0, 0,
0931                 FW_OPT_UEVENT | FW_OPT_NO_WARN);
0932     module_put(THIS_MODULE);
0933     return ret;
0934 }
0935 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
0936 
0937 /**
0938  * request_firmware_direct() - load firmware directly without usermode helper
0939  * @firmware_p: pointer to firmware image
0940  * @name: name of firmware file
0941  * @device: device for which firmware is being loaded
0942  *
0943  * This function works pretty much like request_firmware(), but this doesn't
0944  * fall back to usermode helper even if the firmware couldn't be loaded
0945  * directly from fs.  Hence it's useful for loading optional firmwares, which
0946  * aren't always present, without extra long timeouts of udev.
0947  **/
0948 int request_firmware_direct(const struct firmware **firmware_p,
0949                 const char *name, struct device *device)
0950 {
0951     int ret;
0952 
0953     __module_get(THIS_MODULE);
0954     ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
0955                 FW_OPT_UEVENT | FW_OPT_NO_WARN |
0956                 FW_OPT_NOFALLBACK_SYSFS);
0957     module_put(THIS_MODULE);
0958     return ret;
0959 }
0960 EXPORT_SYMBOL_GPL(request_firmware_direct);
0961 
0962 /**
0963  * firmware_request_platform() - request firmware with platform-fw fallback
0964  * @firmware: pointer to firmware image
0965  * @name: name of firmware file
0966  * @device: device for which firmware is being loaded
0967  *
0968  * This function is similar in behaviour to request_firmware, except that if
0969  * direct filesystem lookup fails, it will fallback to looking for a copy of the
0970  * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
0971  **/
0972 int firmware_request_platform(const struct firmware **firmware,
0973                   const char *name, struct device *device)
0974 {
0975     int ret;
0976 
0977     /* Need to pin this module until return */
0978     __module_get(THIS_MODULE);
0979     ret = _request_firmware(firmware, name, device, NULL, 0, 0,
0980                 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
0981     module_put(THIS_MODULE);
0982     return ret;
0983 }
0984 EXPORT_SYMBOL_GPL(firmware_request_platform);
0985 
0986 /**
0987  * firmware_request_cache() - cache firmware for suspend so resume can use it
0988  * @name: name of firmware file
0989  * @device: device for which firmware should be cached for
0990  *
0991  * There are some devices with an optimization that enables the device to not
0992  * require loading firmware on system reboot. This optimization may still
0993  * require the firmware present on resume from suspend. This routine can be
0994  * used to ensure the firmware is present on resume from suspend in these
0995  * situations. This helper is not compatible with drivers which use
0996  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
0997  **/
0998 int firmware_request_cache(struct device *device, const char *name)
0999 {
1000     int ret;
1001 
1002     mutex_lock(&fw_lock);
1003     ret = fw_add_devm_name(device, name);
1004     mutex_unlock(&fw_lock);
1005 
1006     return ret;
1007 }
1008 EXPORT_SYMBOL_GPL(firmware_request_cache);
1009 
1010 /**
1011  * request_firmware_into_buf() - load firmware into a previously allocated buffer
1012  * @firmware_p: pointer to firmware image
1013  * @name: name of firmware file
1014  * @device: device for which firmware is being loaded and DMA region allocated
1015  * @buf: address of buffer to load firmware into
1016  * @size: size of buffer
1017  *
1018  * This function works pretty much like request_firmware(), but it doesn't
1019  * allocate a buffer to hold the firmware data. Instead, the firmware
1020  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1021  * data member is pointed at @buf.
1022  *
1023  * This function doesn't cache firmware either.
1024  */
1025 int
1026 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1027               struct device *device, void *buf, size_t size)
1028 {
1029     int ret;
1030 
1031     if (fw_cache_is_setup(device, name))
1032         return -EOPNOTSUPP;
1033 
1034     __module_get(THIS_MODULE);
1035     ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1036                 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1037     module_put(THIS_MODULE);
1038     return ret;
1039 }
1040 EXPORT_SYMBOL(request_firmware_into_buf);
1041 
1042 /**
1043  * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1044  * @firmware_p: pointer to firmware image
1045  * @name: name of firmware file
1046  * @device: device for which firmware is being loaded and DMA region allocated
1047  * @buf: address of buffer to load firmware into
1048  * @size: size of buffer
1049  * @offset: offset into file to read
1050  *
1051  * This function works pretty much like request_firmware_into_buf except
1052  * it allows a partial read of the file.
1053  */
1054 int
1055 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1056                   const char *name, struct device *device,
1057                   void *buf, size_t size, size_t offset)
1058 {
1059     int ret;
1060 
1061     if (fw_cache_is_setup(device, name))
1062         return -EOPNOTSUPP;
1063 
1064     __module_get(THIS_MODULE);
1065     ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1066                 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1067                 FW_OPT_PARTIAL);
1068     module_put(THIS_MODULE);
1069     return ret;
1070 }
1071 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1072 
1073 /**
1074  * release_firmware() - release the resource associated with a firmware image
1075  * @fw: firmware resource to release
1076  **/
1077 void release_firmware(const struct firmware *fw)
1078 {
1079     if (fw) {
1080         if (!firmware_is_builtin(fw))
1081             firmware_free_data(fw);
1082         kfree(fw);
1083     }
1084 }
1085 EXPORT_SYMBOL(release_firmware);
1086 
1087 /* Async support */
1088 struct firmware_work {
1089     struct work_struct work;
1090     struct module *module;
1091     const char *name;
1092     struct device *device;
1093     void *context;
1094     void (*cont)(const struct firmware *fw, void *context);
1095     u32 opt_flags;
1096 };
1097 
1098 static void request_firmware_work_func(struct work_struct *work)
1099 {
1100     struct firmware_work *fw_work;
1101     const struct firmware *fw;
1102 
1103     fw_work = container_of(work, struct firmware_work, work);
1104 
1105     _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1106               fw_work->opt_flags);
1107     fw_work->cont(fw, fw_work->context);
1108     put_device(fw_work->device); /* taken in request_firmware_nowait() */
1109 
1110     module_put(fw_work->module);
1111     kfree_const(fw_work->name);
1112     kfree(fw_work);
1113 }
1114 
1115 /**
1116  * request_firmware_nowait() - asynchronous version of request_firmware
1117  * @module: module requesting the firmware
1118  * @uevent: sends uevent to copy the firmware image if this flag
1119  *  is non-zero else the firmware copy must be done manually.
1120  * @name: name of firmware file
1121  * @device: device for which firmware is being loaded
1122  * @gfp: allocation flags
1123  * @context: will be passed over to @cont, and
1124  *  @fw may be %NULL if firmware request fails.
1125  * @cont: function will be called asynchronously when the firmware
1126  *  request is over.
1127  *
1128  *  Caller must hold the reference count of @device.
1129  *
1130  *  Asynchronous variant of request_firmware() for user contexts:
1131  *      - sleep for as small periods as possible since it may
1132  *        increase kernel boot time of built-in device drivers
1133  *        requesting firmware in their ->probe() methods, if
1134  *        @gfp is GFP_KERNEL.
1135  *
1136  *      - can't sleep at all if @gfp is GFP_ATOMIC.
1137  **/
1138 int
1139 request_firmware_nowait(
1140     struct module *module, bool uevent,
1141     const char *name, struct device *device, gfp_t gfp, void *context,
1142     void (*cont)(const struct firmware *fw, void *context))
1143 {
1144     struct firmware_work *fw_work;
1145 
1146     fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1147     if (!fw_work)
1148         return -ENOMEM;
1149 
1150     fw_work->module = module;
1151     fw_work->name = kstrdup_const(name, gfp);
1152     if (!fw_work->name) {
1153         kfree(fw_work);
1154         return -ENOMEM;
1155     }
1156     fw_work->device = device;
1157     fw_work->context = context;
1158     fw_work->cont = cont;
1159     fw_work->opt_flags = FW_OPT_NOWAIT |
1160         (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1161 
1162     if (!uevent && fw_cache_is_setup(device, name)) {
1163         kfree_const(fw_work->name);
1164         kfree(fw_work);
1165         return -EOPNOTSUPP;
1166     }
1167 
1168     if (!try_module_get(module)) {
1169         kfree_const(fw_work->name);
1170         kfree(fw_work);
1171         return -EFAULT;
1172     }
1173 
1174     get_device(fw_work->device);
1175     INIT_WORK(&fw_work->work, request_firmware_work_func);
1176     schedule_work(&fw_work->work);
1177     return 0;
1178 }
1179 EXPORT_SYMBOL(request_firmware_nowait);
1180 
1181 #ifdef CONFIG_FW_CACHE
1182 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1183 
1184 /**
1185  * cache_firmware() - cache one firmware image in kernel memory space
1186  * @fw_name: the firmware image name
1187  *
1188  * Cache firmware in kernel memory so that drivers can use it when
1189  * system isn't ready for them to request firmware image from userspace.
1190  * Once it returns successfully, driver can use request_firmware or its
1191  * nowait version to get the cached firmware without any interacting
1192  * with userspace
1193  *
1194  * Return 0 if the firmware image has been cached successfully
1195  * Return !0 otherwise
1196  *
1197  */
1198 static int cache_firmware(const char *fw_name)
1199 {
1200     int ret;
1201     const struct firmware *fw;
1202 
1203     pr_debug("%s: %s\n", __func__, fw_name);
1204 
1205     ret = request_firmware(&fw, fw_name, NULL);
1206     if (!ret)
1207         kfree(fw);
1208 
1209     pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1210 
1211     return ret;
1212 }
1213 
1214 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1215 {
1216     struct fw_priv *tmp;
1217     struct firmware_cache *fwc = &fw_cache;
1218 
1219     spin_lock(&fwc->lock);
1220     tmp = __lookup_fw_priv(fw_name);
1221     spin_unlock(&fwc->lock);
1222 
1223     return tmp;
1224 }
1225 
1226 /**
1227  * uncache_firmware() - remove one cached firmware image
1228  * @fw_name: the firmware image name
1229  *
1230  * Uncache one firmware image which has been cached successfully
1231  * before.
1232  *
1233  * Return 0 if the firmware cache has been removed successfully
1234  * Return !0 otherwise
1235  *
1236  */
1237 static int uncache_firmware(const char *fw_name)
1238 {
1239     struct fw_priv *fw_priv;
1240     struct firmware fw;
1241 
1242     pr_debug("%s: %s\n", __func__, fw_name);
1243 
1244     if (firmware_request_builtin(&fw, fw_name))
1245         return 0;
1246 
1247     fw_priv = lookup_fw_priv(fw_name);
1248     if (fw_priv) {
1249         free_fw_priv(fw_priv);
1250         return 0;
1251     }
1252 
1253     return -EINVAL;
1254 }
1255 
1256 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1257 {
1258     struct fw_cache_entry *fce;
1259 
1260     fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1261     if (!fce)
1262         goto exit;
1263 
1264     fce->name = kstrdup_const(name, GFP_ATOMIC);
1265     if (!fce->name) {
1266         kfree(fce);
1267         fce = NULL;
1268         goto exit;
1269     }
1270 exit:
1271     return fce;
1272 }
1273 
1274 static int __fw_entry_found(const char *name)
1275 {
1276     struct firmware_cache *fwc = &fw_cache;
1277     struct fw_cache_entry *fce;
1278 
1279     list_for_each_entry(fce, &fwc->fw_names, list) {
1280         if (!strcmp(fce->name, name))
1281             return 1;
1282     }
1283     return 0;
1284 }
1285 
1286 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1287 {
1288     const char *name = fw_priv->fw_name;
1289     struct firmware_cache *fwc = fw_priv->fwc;
1290     struct fw_cache_entry *fce;
1291 
1292     spin_lock(&fwc->name_lock);
1293     if (__fw_entry_found(name))
1294         goto found;
1295 
1296     fce = alloc_fw_cache_entry(name);
1297     if (fce) {
1298         list_add(&fce->list, &fwc->fw_names);
1299         kref_get(&fw_priv->ref);
1300         pr_debug("%s: fw: %s\n", __func__, name);
1301     }
1302 found:
1303     spin_unlock(&fwc->name_lock);
1304 }
1305 
1306 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1307 {
1308     kfree_const(fce->name);
1309     kfree(fce);
1310 }
1311 
1312 static void __async_dev_cache_fw_image(void *fw_entry,
1313                        async_cookie_t cookie)
1314 {
1315     struct fw_cache_entry *fce = fw_entry;
1316     struct firmware_cache *fwc = &fw_cache;
1317     int ret;
1318 
1319     ret = cache_firmware(fce->name);
1320     if (ret) {
1321         spin_lock(&fwc->name_lock);
1322         list_del(&fce->list);
1323         spin_unlock(&fwc->name_lock);
1324 
1325         free_fw_cache_entry(fce);
1326     }
1327 }
1328 
1329 /* called with dev->devres_lock held */
1330 static void dev_create_fw_entry(struct device *dev, void *res,
1331                 void *data)
1332 {
1333     struct fw_name_devm *fwn = res;
1334     const char *fw_name = fwn->name;
1335     struct list_head *head = data;
1336     struct fw_cache_entry *fce;
1337 
1338     fce = alloc_fw_cache_entry(fw_name);
1339     if (fce)
1340         list_add(&fce->list, head);
1341 }
1342 
1343 static int devm_name_match(struct device *dev, void *res,
1344                void *match_data)
1345 {
1346     struct fw_name_devm *fwn = res;
1347     return (fwn->magic == (unsigned long)match_data);
1348 }
1349 
1350 static void dev_cache_fw_image(struct device *dev, void *data)
1351 {
1352     LIST_HEAD(todo);
1353     struct fw_cache_entry *fce;
1354     struct fw_cache_entry *fce_next;
1355     struct firmware_cache *fwc = &fw_cache;
1356 
1357     devres_for_each_res(dev, fw_name_devm_release,
1358                 devm_name_match, &fw_cache,
1359                 dev_create_fw_entry, &todo);
1360 
1361     list_for_each_entry_safe(fce, fce_next, &todo, list) {
1362         list_del(&fce->list);
1363 
1364         spin_lock(&fwc->name_lock);
1365         /* only one cache entry for one firmware */
1366         if (!__fw_entry_found(fce->name)) {
1367             list_add(&fce->list, &fwc->fw_names);
1368         } else {
1369             free_fw_cache_entry(fce);
1370             fce = NULL;
1371         }
1372         spin_unlock(&fwc->name_lock);
1373 
1374         if (fce)
1375             async_schedule_domain(__async_dev_cache_fw_image,
1376                           (void *)fce,
1377                           &fw_cache_domain);
1378     }
1379 }
1380 
1381 static void __device_uncache_fw_images(void)
1382 {
1383     struct firmware_cache *fwc = &fw_cache;
1384     struct fw_cache_entry *fce;
1385 
1386     spin_lock(&fwc->name_lock);
1387     while (!list_empty(&fwc->fw_names)) {
1388         fce = list_entry(fwc->fw_names.next,
1389                 struct fw_cache_entry, list);
1390         list_del(&fce->list);
1391         spin_unlock(&fwc->name_lock);
1392 
1393         uncache_firmware(fce->name);
1394         free_fw_cache_entry(fce);
1395 
1396         spin_lock(&fwc->name_lock);
1397     }
1398     spin_unlock(&fwc->name_lock);
1399 }
1400 
1401 /**
1402  * device_cache_fw_images() - cache devices' firmware
1403  *
1404  * If one device called request_firmware or its nowait version
1405  * successfully before, the firmware names are recored into the
1406  * device's devres link list, so device_cache_fw_images can call
1407  * cache_firmware() to cache these firmwares for the device,
1408  * then the device driver can load its firmwares easily at
1409  * time when system is not ready to complete loading firmware.
1410  */
1411 static void device_cache_fw_images(void)
1412 {
1413     struct firmware_cache *fwc = &fw_cache;
1414     DEFINE_WAIT(wait);
1415 
1416     pr_debug("%s\n", __func__);
1417 
1418     /* cancel uncache work */
1419     cancel_delayed_work_sync(&fwc->work);
1420 
1421     fw_fallback_set_cache_timeout();
1422 
1423     mutex_lock(&fw_lock);
1424     fwc->state = FW_LOADER_START_CACHE;
1425     dpm_for_each_dev(NULL, dev_cache_fw_image);
1426     mutex_unlock(&fw_lock);
1427 
1428     /* wait for completion of caching firmware for all devices */
1429     async_synchronize_full_domain(&fw_cache_domain);
1430 
1431     fw_fallback_set_default_timeout();
1432 }
1433 
1434 /**
1435  * device_uncache_fw_images() - uncache devices' firmware
1436  *
1437  * uncache all firmwares which have been cached successfully
1438  * by device_uncache_fw_images earlier
1439  */
1440 static void device_uncache_fw_images(void)
1441 {
1442     pr_debug("%s\n", __func__);
1443     __device_uncache_fw_images();
1444 }
1445 
1446 static void device_uncache_fw_images_work(struct work_struct *work)
1447 {
1448     device_uncache_fw_images();
1449 }
1450 
1451 /**
1452  * device_uncache_fw_images_delay() - uncache devices firmwares
1453  * @delay: number of milliseconds to delay uncache device firmwares
1454  *
1455  * uncache all devices's firmwares which has been cached successfully
1456  * by device_cache_fw_images after @delay milliseconds.
1457  */
1458 static void device_uncache_fw_images_delay(unsigned long delay)
1459 {
1460     queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1461                msecs_to_jiffies(delay));
1462 }
1463 
1464 static int fw_pm_notify(struct notifier_block *notify_block,
1465             unsigned long mode, void *unused)
1466 {
1467     switch (mode) {
1468     case PM_HIBERNATION_PREPARE:
1469     case PM_SUSPEND_PREPARE:
1470     case PM_RESTORE_PREPARE:
1471         /*
1472          * kill pending fallback requests with a custom fallback
1473          * to avoid stalling suspend.
1474          */
1475         kill_pending_fw_fallback_reqs(true);
1476         device_cache_fw_images();
1477         break;
1478 
1479     case PM_POST_SUSPEND:
1480     case PM_POST_HIBERNATION:
1481     case PM_POST_RESTORE:
1482         /*
1483          * In case that system sleep failed and syscore_suspend is
1484          * not called.
1485          */
1486         mutex_lock(&fw_lock);
1487         fw_cache.state = FW_LOADER_NO_CACHE;
1488         mutex_unlock(&fw_lock);
1489 
1490         device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1491         break;
1492     }
1493 
1494     return 0;
1495 }
1496 
1497 /* stop caching firmware once syscore_suspend is reached */
1498 static int fw_suspend(void)
1499 {
1500     fw_cache.state = FW_LOADER_NO_CACHE;
1501     return 0;
1502 }
1503 
1504 static struct syscore_ops fw_syscore_ops = {
1505     .suspend = fw_suspend,
1506 };
1507 
1508 static int __init register_fw_pm_ops(void)
1509 {
1510     int ret;
1511 
1512     spin_lock_init(&fw_cache.name_lock);
1513     INIT_LIST_HEAD(&fw_cache.fw_names);
1514 
1515     INIT_DELAYED_WORK(&fw_cache.work,
1516               device_uncache_fw_images_work);
1517 
1518     fw_cache.pm_notify.notifier_call = fw_pm_notify;
1519     ret = register_pm_notifier(&fw_cache.pm_notify);
1520     if (ret)
1521         return ret;
1522 
1523     register_syscore_ops(&fw_syscore_ops);
1524 
1525     return ret;
1526 }
1527 
1528 static inline void unregister_fw_pm_ops(void)
1529 {
1530     unregister_syscore_ops(&fw_syscore_ops);
1531     unregister_pm_notifier(&fw_cache.pm_notify);
1532 }
1533 #else
1534 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1535 {
1536 }
1537 static inline int register_fw_pm_ops(void)
1538 {
1539     return 0;
1540 }
1541 static inline void unregister_fw_pm_ops(void)
1542 {
1543 }
1544 #endif
1545 
1546 static void __init fw_cache_init(void)
1547 {
1548     spin_lock_init(&fw_cache.lock);
1549     INIT_LIST_HEAD(&fw_cache.head);
1550     fw_cache.state = FW_LOADER_NO_CACHE;
1551 }
1552 
1553 static int fw_shutdown_notify(struct notifier_block *unused1,
1554                   unsigned long unused2, void *unused3)
1555 {
1556     /*
1557      * Kill all pending fallback requests to avoid both stalling shutdown,
1558      * and avoid a deadlock with the usermode_lock.
1559      */
1560     kill_pending_fw_fallback_reqs(false);
1561 
1562     return NOTIFY_DONE;
1563 }
1564 
1565 static struct notifier_block fw_shutdown_nb = {
1566     .notifier_call = fw_shutdown_notify,
1567 };
1568 
1569 static int __init firmware_class_init(void)
1570 {
1571     int ret;
1572 
1573     /* No need to unfold these on exit */
1574     fw_cache_init();
1575 
1576     ret = register_fw_pm_ops();
1577     if (ret)
1578         return ret;
1579 
1580     ret = register_reboot_notifier(&fw_shutdown_nb);
1581     if (ret)
1582         goto out;
1583 
1584     return register_sysfs_loader();
1585 
1586 out:
1587     unregister_fw_pm_ops();
1588     return ret;
1589 }
1590 
1591 static void __exit firmware_class_exit(void)
1592 {
1593     unregister_fw_pm_ops();
1594     unregister_reboot_notifier(&fw_shutdown_nb);
1595     unregister_sysfs_loader();
1596 }
1597 
1598 fs_initcall(firmware_class_init);
1599 module_exit(firmware_class_exit);