Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * drivers/base/core.c - core driver model code (device registration, etc)
0004  *
0005  * Copyright (c) 2002-3 Patrick Mochel
0006  * Copyright (c) 2002-3 Open Source Development Labs
0007  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
0008  * Copyright (c) 2006 Novell, Inc.
0009  */
0010 
0011 #include <linux/acpi.h>
0012 #include <linux/cpufreq.h>
0013 #include <linux/device.h>
0014 #include <linux/err.h>
0015 #include <linux/fwnode.h>
0016 #include <linux/init.h>
0017 #include <linux/module.h>
0018 #include <linux/slab.h>
0019 #include <linux/string.h>
0020 #include <linux/kdev_t.h>
0021 #include <linux/notifier.h>
0022 #include <linux/of.h>
0023 #include <linux/of_device.h>
0024 #include <linux/blkdev.h>
0025 #include <linux/mutex.h>
0026 #include <linux/pm_runtime.h>
0027 #include <linux/netdevice.h>
0028 #include <linux/sched/signal.h>
0029 #include <linux/sched/mm.h>
0030 #include <linux/swiotlb.h>
0031 #include <linux/sysfs.h>
0032 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
0033 
0034 #include "base.h"
0035 #include "physical_location.h"
0036 #include "power/power.h"
0037 
0038 #ifdef CONFIG_SYSFS_DEPRECATED
0039 #ifdef CONFIG_SYSFS_DEPRECATED_V2
0040 long sysfs_deprecated = 1;
0041 #else
0042 long sysfs_deprecated = 0;
0043 #endif
0044 static int __init sysfs_deprecated_setup(char *arg)
0045 {
0046     return kstrtol(arg, 10, &sysfs_deprecated);
0047 }
0048 early_param("sysfs.deprecated", sysfs_deprecated_setup);
0049 #endif
0050 
0051 /* Device links support. */
0052 static LIST_HEAD(deferred_sync);
0053 static unsigned int defer_sync_state_count = 1;
0054 static DEFINE_MUTEX(fwnode_link_lock);
0055 static bool fw_devlink_is_permissive(void);
0056 static bool fw_devlink_drv_reg_done;
0057 static bool fw_devlink_best_effort;
0058 
0059 /**
0060  * fwnode_link_add - Create a link between two fwnode_handles.
0061  * @con: Consumer end of the link.
0062  * @sup: Supplier end of the link.
0063  *
0064  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
0065  * represents the detail that the firmware lists @sup fwnode as supplying a
0066  * resource to @con.
0067  *
0068  * The driver core will use the fwnode link to create a device link between the
0069  * two device objects corresponding to @con and @sup when they are created. The
0070  * driver core will automatically delete the fwnode link between @con and @sup
0071  * after doing that.
0072  *
0073  * Attempts to create duplicate links between the same pair of fwnode handles
0074  * are ignored and there is no reference counting.
0075  */
0076 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
0077 {
0078     struct fwnode_link *link;
0079     int ret = 0;
0080 
0081     mutex_lock(&fwnode_link_lock);
0082 
0083     list_for_each_entry(link, &sup->consumers, s_hook)
0084         if (link->consumer == con)
0085             goto out;
0086 
0087     link = kzalloc(sizeof(*link), GFP_KERNEL);
0088     if (!link) {
0089         ret = -ENOMEM;
0090         goto out;
0091     }
0092 
0093     link->supplier = sup;
0094     INIT_LIST_HEAD(&link->s_hook);
0095     link->consumer = con;
0096     INIT_LIST_HEAD(&link->c_hook);
0097 
0098     list_add(&link->s_hook, &sup->consumers);
0099     list_add(&link->c_hook, &con->suppliers);
0100     pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
0101          con, sup);
0102 out:
0103     mutex_unlock(&fwnode_link_lock);
0104 
0105     return ret;
0106 }
0107 
0108 /**
0109  * __fwnode_link_del - Delete a link between two fwnode_handles.
0110  * @link: the fwnode_link to be deleted
0111  *
0112  * The fwnode_link_lock needs to be held when this function is called.
0113  */
0114 static void __fwnode_link_del(struct fwnode_link *link)
0115 {
0116     pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
0117          link->consumer, link->supplier);
0118     list_del(&link->s_hook);
0119     list_del(&link->c_hook);
0120     kfree(link);
0121 }
0122 
0123 /**
0124  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
0125  * @fwnode: fwnode whose supplier links need to be deleted
0126  *
0127  * Deletes all supplier links connecting directly to @fwnode.
0128  */
0129 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
0130 {
0131     struct fwnode_link *link, *tmp;
0132 
0133     mutex_lock(&fwnode_link_lock);
0134     list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
0135         __fwnode_link_del(link);
0136     mutex_unlock(&fwnode_link_lock);
0137 }
0138 
0139 /**
0140  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
0141  * @fwnode: fwnode whose consumer links need to be deleted
0142  *
0143  * Deletes all consumer links connecting directly to @fwnode.
0144  */
0145 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
0146 {
0147     struct fwnode_link *link, *tmp;
0148 
0149     mutex_lock(&fwnode_link_lock);
0150     list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
0151         __fwnode_link_del(link);
0152     mutex_unlock(&fwnode_link_lock);
0153 }
0154 
0155 /**
0156  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
0157  * @fwnode: fwnode whose links needs to be deleted
0158  *
0159  * Deletes all links connecting directly to a fwnode.
0160  */
0161 void fwnode_links_purge(struct fwnode_handle *fwnode)
0162 {
0163     fwnode_links_purge_suppliers(fwnode);
0164     fwnode_links_purge_consumers(fwnode);
0165 }
0166 
0167 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
0168 {
0169     struct fwnode_handle *child;
0170 
0171     /* Don't purge consumer links of an added child */
0172     if (fwnode->dev)
0173         return;
0174 
0175     fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
0176     fwnode_links_purge_consumers(fwnode);
0177 
0178     fwnode_for_each_available_child_node(fwnode, child)
0179         fw_devlink_purge_absent_suppliers(child);
0180 }
0181 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
0182 
0183 #ifdef CONFIG_SRCU
0184 static DEFINE_MUTEX(device_links_lock);
0185 DEFINE_STATIC_SRCU(device_links_srcu);
0186 
0187 static inline void device_links_write_lock(void)
0188 {
0189     mutex_lock(&device_links_lock);
0190 }
0191 
0192 static inline void device_links_write_unlock(void)
0193 {
0194     mutex_unlock(&device_links_lock);
0195 }
0196 
0197 int device_links_read_lock(void) __acquires(&device_links_srcu)
0198 {
0199     return srcu_read_lock(&device_links_srcu);
0200 }
0201 
0202 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
0203 {
0204     srcu_read_unlock(&device_links_srcu, idx);
0205 }
0206 
0207 int device_links_read_lock_held(void)
0208 {
0209     return srcu_read_lock_held(&device_links_srcu);
0210 }
0211 
0212 static void device_link_synchronize_removal(void)
0213 {
0214     synchronize_srcu(&device_links_srcu);
0215 }
0216 
0217 static void device_link_remove_from_lists(struct device_link *link)
0218 {
0219     list_del_rcu(&link->s_node);
0220     list_del_rcu(&link->c_node);
0221 }
0222 #else /* !CONFIG_SRCU */
0223 static DECLARE_RWSEM(device_links_lock);
0224 
0225 static inline void device_links_write_lock(void)
0226 {
0227     down_write(&device_links_lock);
0228 }
0229 
0230 static inline void device_links_write_unlock(void)
0231 {
0232     up_write(&device_links_lock);
0233 }
0234 
0235 int device_links_read_lock(void)
0236 {
0237     down_read(&device_links_lock);
0238     return 0;
0239 }
0240 
0241 void device_links_read_unlock(int not_used)
0242 {
0243     up_read(&device_links_lock);
0244 }
0245 
0246 #ifdef CONFIG_DEBUG_LOCK_ALLOC
0247 int device_links_read_lock_held(void)
0248 {
0249     return lockdep_is_held(&device_links_lock);
0250 }
0251 #endif
0252 
0253 static inline void device_link_synchronize_removal(void)
0254 {
0255 }
0256 
0257 static void device_link_remove_from_lists(struct device_link *link)
0258 {
0259     list_del(&link->s_node);
0260     list_del(&link->c_node);
0261 }
0262 #endif /* !CONFIG_SRCU */
0263 
0264 static bool device_is_ancestor(struct device *dev, struct device *target)
0265 {
0266     while (target->parent) {
0267         target = target->parent;
0268         if (dev == target)
0269             return true;
0270     }
0271     return false;
0272 }
0273 
0274 /**
0275  * device_is_dependent - Check if one device depends on another one
0276  * @dev: Device to check dependencies for.
0277  * @target: Device to check against.
0278  *
0279  * Check if @target depends on @dev or any device dependent on it (its child or
0280  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
0281  */
0282 int device_is_dependent(struct device *dev, void *target)
0283 {
0284     struct device_link *link;
0285     int ret;
0286 
0287     /*
0288      * The "ancestors" check is needed to catch the case when the target
0289      * device has not been completely initialized yet and it is still
0290      * missing from the list of children of its parent device.
0291      */
0292     if (dev == target || device_is_ancestor(dev, target))
0293         return 1;
0294 
0295     ret = device_for_each_child(dev, target, device_is_dependent);
0296     if (ret)
0297         return ret;
0298 
0299     list_for_each_entry(link, &dev->links.consumers, s_node) {
0300         if ((link->flags & ~DL_FLAG_INFERRED) ==
0301             (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
0302             continue;
0303 
0304         if (link->consumer == target)
0305             return 1;
0306 
0307         ret = device_is_dependent(link->consumer, target);
0308         if (ret)
0309             break;
0310     }
0311     return ret;
0312 }
0313 
0314 static void device_link_init_status(struct device_link *link,
0315                     struct device *consumer,
0316                     struct device *supplier)
0317 {
0318     switch (supplier->links.status) {
0319     case DL_DEV_PROBING:
0320         switch (consumer->links.status) {
0321         case DL_DEV_PROBING:
0322             /*
0323              * A consumer driver can create a link to a supplier
0324              * that has not completed its probing yet as long as it
0325              * knows that the supplier is already functional (for
0326              * example, it has just acquired some resources from the
0327              * supplier).
0328              */
0329             link->status = DL_STATE_CONSUMER_PROBE;
0330             break;
0331         default:
0332             link->status = DL_STATE_DORMANT;
0333             break;
0334         }
0335         break;
0336     case DL_DEV_DRIVER_BOUND:
0337         switch (consumer->links.status) {
0338         case DL_DEV_PROBING:
0339             link->status = DL_STATE_CONSUMER_PROBE;
0340             break;
0341         case DL_DEV_DRIVER_BOUND:
0342             link->status = DL_STATE_ACTIVE;
0343             break;
0344         default:
0345             link->status = DL_STATE_AVAILABLE;
0346             break;
0347         }
0348         break;
0349     case DL_DEV_UNBINDING:
0350         link->status = DL_STATE_SUPPLIER_UNBIND;
0351         break;
0352     default:
0353         link->status = DL_STATE_DORMANT;
0354         break;
0355     }
0356 }
0357 
0358 static int device_reorder_to_tail(struct device *dev, void *not_used)
0359 {
0360     struct device_link *link;
0361 
0362     /*
0363      * Devices that have not been registered yet will be put to the ends
0364      * of the lists during the registration, so skip them here.
0365      */
0366     if (device_is_registered(dev))
0367         devices_kset_move_last(dev);
0368 
0369     if (device_pm_initialized(dev))
0370         device_pm_move_last(dev);
0371 
0372     device_for_each_child(dev, NULL, device_reorder_to_tail);
0373     list_for_each_entry(link, &dev->links.consumers, s_node) {
0374         if ((link->flags & ~DL_FLAG_INFERRED) ==
0375             (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
0376             continue;
0377         device_reorder_to_tail(link->consumer, NULL);
0378     }
0379 
0380     return 0;
0381 }
0382 
0383 /**
0384  * device_pm_move_to_tail - Move set of devices to the end of device lists
0385  * @dev: Device to move
0386  *
0387  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
0388  *
0389  * It moves the @dev along with all of its children and all of its consumers
0390  * to the ends of the device_kset and dpm_list, recursively.
0391  */
0392 void device_pm_move_to_tail(struct device *dev)
0393 {
0394     int idx;
0395 
0396     idx = device_links_read_lock();
0397     device_pm_lock();
0398     device_reorder_to_tail(dev, NULL);
0399     device_pm_unlock();
0400     device_links_read_unlock(idx);
0401 }
0402 
0403 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
0404 
0405 static ssize_t status_show(struct device *dev,
0406                struct device_attribute *attr, char *buf)
0407 {
0408     const char *output;
0409 
0410     switch (to_devlink(dev)->status) {
0411     case DL_STATE_NONE:
0412         output = "not tracked";
0413         break;
0414     case DL_STATE_DORMANT:
0415         output = "dormant";
0416         break;
0417     case DL_STATE_AVAILABLE:
0418         output = "available";
0419         break;
0420     case DL_STATE_CONSUMER_PROBE:
0421         output = "consumer probing";
0422         break;
0423     case DL_STATE_ACTIVE:
0424         output = "active";
0425         break;
0426     case DL_STATE_SUPPLIER_UNBIND:
0427         output = "supplier unbinding";
0428         break;
0429     default:
0430         output = "unknown";
0431         break;
0432     }
0433 
0434     return sysfs_emit(buf, "%s\n", output);
0435 }
0436 static DEVICE_ATTR_RO(status);
0437 
0438 static ssize_t auto_remove_on_show(struct device *dev,
0439                    struct device_attribute *attr, char *buf)
0440 {
0441     struct device_link *link = to_devlink(dev);
0442     const char *output;
0443 
0444     if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
0445         output = "supplier unbind";
0446     else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
0447         output = "consumer unbind";
0448     else
0449         output = "never";
0450 
0451     return sysfs_emit(buf, "%s\n", output);
0452 }
0453 static DEVICE_ATTR_RO(auto_remove_on);
0454 
0455 static ssize_t runtime_pm_show(struct device *dev,
0456                    struct device_attribute *attr, char *buf)
0457 {
0458     struct device_link *link = to_devlink(dev);
0459 
0460     return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
0461 }
0462 static DEVICE_ATTR_RO(runtime_pm);
0463 
0464 static ssize_t sync_state_only_show(struct device *dev,
0465                     struct device_attribute *attr, char *buf)
0466 {
0467     struct device_link *link = to_devlink(dev);
0468 
0469     return sysfs_emit(buf, "%d\n",
0470               !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
0471 }
0472 static DEVICE_ATTR_RO(sync_state_only);
0473 
0474 static struct attribute *devlink_attrs[] = {
0475     &dev_attr_status.attr,
0476     &dev_attr_auto_remove_on.attr,
0477     &dev_attr_runtime_pm.attr,
0478     &dev_attr_sync_state_only.attr,
0479     NULL,
0480 };
0481 ATTRIBUTE_GROUPS(devlink);
0482 
0483 static void device_link_release_fn(struct work_struct *work)
0484 {
0485     struct device_link *link = container_of(work, struct device_link, rm_work);
0486 
0487     /* Ensure that all references to the link object have been dropped. */
0488     device_link_synchronize_removal();
0489 
0490     pm_runtime_release_supplier(link);
0491     /*
0492      * If supplier_preactivated is set, the link has been dropped between
0493      * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
0494      * in __driver_probe_device().  In that case, drop the supplier's
0495      * PM-runtime usage counter to remove the reference taken by
0496      * pm_runtime_get_suppliers().
0497      */
0498     if (link->supplier_preactivated)
0499         pm_runtime_put_noidle(link->supplier);
0500 
0501     pm_request_idle(link->supplier);
0502 
0503     put_device(link->consumer);
0504     put_device(link->supplier);
0505     kfree(link);
0506 }
0507 
0508 static void devlink_dev_release(struct device *dev)
0509 {
0510     struct device_link *link = to_devlink(dev);
0511 
0512     INIT_WORK(&link->rm_work, device_link_release_fn);
0513     /*
0514      * It may take a while to complete this work because of the SRCU
0515      * synchronization in device_link_release_fn() and if the consumer or
0516      * supplier devices get deleted when it runs, so put it into the "long"
0517      * workqueue.
0518      */
0519     queue_work(system_long_wq, &link->rm_work);
0520 }
0521 
0522 static struct class devlink_class = {
0523     .name = "devlink",
0524     .owner = THIS_MODULE,
0525     .dev_groups = devlink_groups,
0526     .dev_release = devlink_dev_release,
0527 };
0528 
0529 static int devlink_add_symlinks(struct device *dev,
0530                 struct class_interface *class_intf)
0531 {
0532     int ret;
0533     size_t len;
0534     struct device_link *link = to_devlink(dev);
0535     struct device *sup = link->supplier;
0536     struct device *con = link->consumer;
0537     char *buf;
0538 
0539     len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
0540           strlen(dev_bus_name(con)) + strlen(dev_name(con)));
0541     len += strlen(":");
0542     len += strlen("supplier:") + 1;
0543     buf = kzalloc(len, GFP_KERNEL);
0544     if (!buf)
0545         return -ENOMEM;
0546 
0547     ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
0548     if (ret)
0549         goto out;
0550 
0551     ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
0552     if (ret)
0553         goto err_con;
0554 
0555     snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
0556     ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
0557     if (ret)
0558         goto err_con_dev;
0559 
0560     snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
0561     ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
0562     if (ret)
0563         goto err_sup_dev;
0564 
0565     goto out;
0566 
0567 err_sup_dev:
0568     snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
0569     sysfs_remove_link(&sup->kobj, buf);
0570 err_con_dev:
0571     sysfs_remove_link(&link->link_dev.kobj, "consumer");
0572 err_con:
0573     sysfs_remove_link(&link->link_dev.kobj, "supplier");
0574 out:
0575     kfree(buf);
0576     return ret;
0577 }
0578 
0579 static void devlink_remove_symlinks(struct device *dev,
0580                    struct class_interface *class_intf)
0581 {
0582     struct device_link *link = to_devlink(dev);
0583     size_t len;
0584     struct device *sup = link->supplier;
0585     struct device *con = link->consumer;
0586     char *buf;
0587 
0588     sysfs_remove_link(&link->link_dev.kobj, "consumer");
0589     sysfs_remove_link(&link->link_dev.kobj, "supplier");
0590 
0591     len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
0592           strlen(dev_bus_name(con)) + strlen(dev_name(con)));
0593     len += strlen(":");
0594     len += strlen("supplier:") + 1;
0595     buf = kzalloc(len, GFP_KERNEL);
0596     if (!buf) {
0597         WARN(1, "Unable to properly free device link symlinks!\n");
0598         return;
0599     }
0600 
0601     if (device_is_registered(con)) {
0602         snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
0603         sysfs_remove_link(&con->kobj, buf);
0604     }
0605     snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
0606     sysfs_remove_link(&sup->kobj, buf);
0607     kfree(buf);
0608 }
0609 
0610 static struct class_interface devlink_class_intf = {
0611     .class = &devlink_class,
0612     .add_dev = devlink_add_symlinks,
0613     .remove_dev = devlink_remove_symlinks,
0614 };
0615 
0616 static int __init devlink_class_init(void)
0617 {
0618     int ret;
0619 
0620     ret = class_register(&devlink_class);
0621     if (ret)
0622         return ret;
0623 
0624     ret = class_interface_register(&devlink_class_intf);
0625     if (ret)
0626         class_unregister(&devlink_class);
0627 
0628     return ret;
0629 }
0630 postcore_initcall(devlink_class_init);
0631 
0632 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
0633                    DL_FLAG_AUTOREMOVE_SUPPLIER | \
0634                    DL_FLAG_AUTOPROBE_CONSUMER  | \
0635                    DL_FLAG_SYNC_STATE_ONLY | \
0636                    DL_FLAG_INFERRED)
0637 
0638 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
0639                 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
0640 
0641 /**
0642  * device_link_add - Create a link between two devices.
0643  * @consumer: Consumer end of the link.
0644  * @supplier: Supplier end of the link.
0645  * @flags: Link flags.
0646  *
0647  * The caller is responsible for the proper synchronization of the link creation
0648  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
0649  * runtime PM framework to take the link into account.  Second, if the
0650  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
0651  * be forced into the active meta state and reference-counted upon the creation
0652  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
0653  * ignored.
0654  *
0655  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
0656  * expected to release the link returned by it directly with the help of either
0657  * device_link_del() or device_link_remove().
0658  *
0659  * If that flag is not set, however, the caller of this function is handing the
0660  * management of the link over to the driver core entirely and its return value
0661  * can only be used to check whether or not the link is present.  In that case,
0662  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
0663  * flags can be used to indicate to the driver core when the link can be safely
0664  * deleted.  Namely, setting one of them in @flags indicates to the driver core
0665  * that the link is not going to be used (by the given caller of this function)
0666  * after unbinding the consumer or supplier driver, respectively, from its
0667  * device, so the link can be deleted at that point.  If none of them is set,
0668  * the link will be maintained until one of the devices pointed to by it (either
0669  * the consumer or the supplier) is unregistered.
0670  *
0671  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
0672  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
0673  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
0674  * be used to request the driver core to automatically probe for a consumer
0675  * driver after successfully binding a driver to the supplier device.
0676  *
0677  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
0678  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
0679  * the same time is invalid and will cause NULL to be returned upfront.
0680  * However, if a device link between the given @consumer and @supplier pair
0681  * exists already when this function is called for them, the existing link will
0682  * be returned regardless of its current type and status (the link's flags may
0683  * be modified then).  The caller of this function is then expected to treat
0684  * the link as though it has just been created, so (in particular) if
0685  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
0686  * explicitly when not needed any more (as stated above).
0687  *
0688  * A side effect of the link creation is re-ordering of dpm_list and the
0689  * devices_kset list by moving the consumer device and all devices depending
0690  * on it to the ends of these lists (that does not happen to devices that have
0691  * not been registered when this function is called).
0692  *
0693  * The supplier device is required to be registered when this function is called
0694  * and NULL will be returned if that is not the case.  The consumer device need
0695  * not be registered, however.
0696  */
0697 struct device_link *device_link_add(struct device *consumer,
0698                     struct device *supplier, u32 flags)
0699 {
0700     struct device_link *link;
0701 
0702     if (!consumer || !supplier || consumer == supplier ||
0703         flags & ~DL_ADD_VALID_FLAGS ||
0704         (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
0705         (flags & DL_FLAG_SYNC_STATE_ONLY &&
0706          (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
0707         (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
0708          flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
0709               DL_FLAG_AUTOREMOVE_SUPPLIER)))
0710         return NULL;
0711 
0712     if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
0713         if (pm_runtime_get_sync(supplier) < 0) {
0714             pm_runtime_put_noidle(supplier);
0715             return NULL;
0716         }
0717     }
0718 
0719     if (!(flags & DL_FLAG_STATELESS))
0720         flags |= DL_FLAG_MANAGED;
0721 
0722     device_links_write_lock();
0723     device_pm_lock();
0724 
0725     /*
0726      * If the supplier has not been fully registered yet or there is a
0727      * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
0728      * the supplier already in the graph, return NULL. If the link is a
0729      * SYNC_STATE_ONLY link, we don't check for reverse dependencies
0730      * because it only affects sync_state() callbacks.
0731      */
0732     if (!device_pm_initialized(supplier)
0733         || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
0734           device_is_dependent(consumer, supplier))) {
0735         link = NULL;
0736         goto out;
0737     }
0738 
0739     /*
0740      * SYNC_STATE_ONLY links are useless once a consumer device has probed.
0741      * So, only create it if the consumer hasn't probed yet.
0742      */
0743     if (flags & DL_FLAG_SYNC_STATE_ONLY &&
0744         consumer->links.status != DL_DEV_NO_DRIVER &&
0745         consumer->links.status != DL_DEV_PROBING) {
0746         link = NULL;
0747         goto out;
0748     }
0749 
0750     /*
0751      * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
0752      * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
0753      * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
0754      */
0755     if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
0756         flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
0757 
0758     list_for_each_entry(link, &supplier->links.consumers, s_node) {
0759         if (link->consumer != consumer)
0760             continue;
0761 
0762         if (link->flags & DL_FLAG_INFERRED &&
0763             !(flags & DL_FLAG_INFERRED))
0764             link->flags &= ~DL_FLAG_INFERRED;
0765 
0766         if (flags & DL_FLAG_PM_RUNTIME) {
0767             if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
0768                 pm_runtime_new_link(consumer);
0769                 link->flags |= DL_FLAG_PM_RUNTIME;
0770             }
0771             if (flags & DL_FLAG_RPM_ACTIVE)
0772                 refcount_inc(&link->rpm_active);
0773         }
0774 
0775         if (flags & DL_FLAG_STATELESS) {
0776             kref_get(&link->kref);
0777             if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
0778                 !(link->flags & DL_FLAG_STATELESS)) {
0779                 link->flags |= DL_FLAG_STATELESS;
0780                 goto reorder;
0781             } else {
0782                 link->flags |= DL_FLAG_STATELESS;
0783                 goto out;
0784             }
0785         }
0786 
0787         /*
0788          * If the life time of the link following from the new flags is
0789          * longer than indicated by the flags of the existing link,
0790          * update the existing link to stay around longer.
0791          */
0792         if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
0793             if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
0794                 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
0795                 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
0796             }
0797         } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
0798             link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
0799                      DL_FLAG_AUTOREMOVE_SUPPLIER);
0800         }
0801         if (!(link->flags & DL_FLAG_MANAGED)) {
0802             kref_get(&link->kref);
0803             link->flags |= DL_FLAG_MANAGED;
0804             device_link_init_status(link, consumer, supplier);
0805         }
0806         if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
0807             !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
0808             link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
0809             goto reorder;
0810         }
0811 
0812         goto out;
0813     }
0814 
0815     link = kzalloc(sizeof(*link), GFP_KERNEL);
0816     if (!link)
0817         goto out;
0818 
0819     refcount_set(&link->rpm_active, 1);
0820 
0821     get_device(supplier);
0822     link->supplier = supplier;
0823     INIT_LIST_HEAD(&link->s_node);
0824     get_device(consumer);
0825     link->consumer = consumer;
0826     INIT_LIST_HEAD(&link->c_node);
0827     link->flags = flags;
0828     kref_init(&link->kref);
0829 
0830     link->link_dev.class = &devlink_class;
0831     device_set_pm_not_required(&link->link_dev);
0832     dev_set_name(&link->link_dev, "%s:%s--%s:%s",
0833              dev_bus_name(supplier), dev_name(supplier),
0834              dev_bus_name(consumer), dev_name(consumer));
0835     if (device_register(&link->link_dev)) {
0836         put_device(&link->link_dev);
0837         link = NULL;
0838         goto out;
0839     }
0840 
0841     if (flags & DL_FLAG_PM_RUNTIME) {
0842         if (flags & DL_FLAG_RPM_ACTIVE)
0843             refcount_inc(&link->rpm_active);
0844 
0845         pm_runtime_new_link(consumer);
0846     }
0847 
0848     /* Determine the initial link state. */
0849     if (flags & DL_FLAG_STATELESS)
0850         link->status = DL_STATE_NONE;
0851     else
0852         device_link_init_status(link, consumer, supplier);
0853 
0854     /*
0855      * Some callers expect the link creation during consumer driver probe to
0856      * resume the supplier even without DL_FLAG_RPM_ACTIVE.
0857      */
0858     if (link->status == DL_STATE_CONSUMER_PROBE &&
0859         flags & DL_FLAG_PM_RUNTIME)
0860         pm_runtime_resume(supplier);
0861 
0862     list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
0863     list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
0864 
0865     if (flags & DL_FLAG_SYNC_STATE_ONLY) {
0866         dev_dbg(consumer,
0867             "Linked as a sync state only consumer to %s\n",
0868             dev_name(supplier));
0869         goto out;
0870     }
0871 
0872 reorder:
0873     /*
0874      * Move the consumer and all of the devices depending on it to the end
0875      * of dpm_list and the devices_kset list.
0876      *
0877      * It is necessary to hold dpm_list locked throughout all that or else
0878      * we may end up suspending with a wrong ordering of it.
0879      */
0880     device_reorder_to_tail(consumer, NULL);
0881 
0882     dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
0883 
0884 out:
0885     device_pm_unlock();
0886     device_links_write_unlock();
0887 
0888     if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
0889         pm_runtime_put(supplier);
0890 
0891     return link;
0892 }
0893 EXPORT_SYMBOL_GPL(device_link_add);
0894 
0895 static void __device_link_del(struct kref *kref)
0896 {
0897     struct device_link *link = container_of(kref, struct device_link, kref);
0898 
0899     dev_dbg(link->consumer, "Dropping the link to %s\n",
0900         dev_name(link->supplier));
0901 
0902     pm_runtime_drop_link(link);
0903 
0904     device_link_remove_from_lists(link);
0905     device_unregister(&link->link_dev);
0906 }
0907 
0908 static void device_link_put_kref(struct device_link *link)
0909 {
0910     if (link->flags & DL_FLAG_STATELESS)
0911         kref_put(&link->kref, __device_link_del);
0912     else if (!device_is_registered(link->consumer))
0913         __device_link_del(&link->kref);
0914     else
0915         WARN(1, "Unable to drop a managed device link reference\n");
0916 }
0917 
0918 /**
0919  * device_link_del - Delete a stateless link between two devices.
0920  * @link: Device link to delete.
0921  *
0922  * The caller must ensure proper synchronization of this function with runtime
0923  * PM.  If the link was added multiple times, it needs to be deleted as often.
0924  * Care is required for hotplugged devices:  Their links are purged on removal
0925  * and calling device_link_del() is then no longer allowed.
0926  */
0927 void device_link_del(struct device_link *link)
0928 {
0929     device_links_write_lock();
0930     device_link_put_kref(link);
0931     device_links_write_unlock();
0932 }
0933 EXPORT_SYMBOL_GPL(device_link_del);
0934 
0935 /**
0936  * device_link_remove - Delete a stateless link between two devices.
0937  * @consumer: Consumer end of the link.
0938  * @supplier: Supplier end of the link.
0939  *
0940  * The caller must ensure proper synchronization of this function with runtime
0941  * PM.
0942  */
0943 void device_link_remove(void *consumer, struct device *supplier)
0944 {
0945     struct device_link *link;
0946 
0947     if (WARN_ON(consumer == supplier))
0948         return;
0949 
0950     device_links_write_lock();
0951 
0952     list_for_each_entry(link, &supplier->links.consumers, s_node) {
0953         if (link->consumer == consumer) {
0954             device_link_put_kref(link);
0955             break;
0956         }
0957     }
0958 
0959     device_links_write_unlock();
0960 }
0961 EXPORT_SYMBOL_GPL(device_link_remove);
0962 
0963 static void device_links_missing_supplier(struct device *dev)
0964 {
0965     struct device_link *link;
0966 
0967     list_for_each_entry(link, &dev->links.suppliers, c_node) {
0968         if (link->status != DL_STATE_CONSUMER_PROBE)
0969             continue;
0970 
0971         if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
0972             WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
0973         } else {
0974             WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
0975             WRITE_ONCE(link->status, DL_STATE_DORMANT);
0976         }
0977     }
0978 }
0979 
0980 static bool dev_is_best_effort(struct device *dev)
0981 {
0982     return (fw_devlink_best_effort && dev->can_match) ||
0983         (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
0984 }
0985 
0986 /**
0987  * device_links_check_suppliers - Check presence of supplier drivers.
0988  * @dev: Consumer device.
0989  *
0990  * Check links from this device to any suppliers.  Walk the list of the device's
0991  * links to suppliers and see if all of them are available.  If not, simply
0992  * return -EPROBE_DEFER.
0993  *
0994  * We need to guarantee that the supplier will not go away after the check has
0995  * been positive here.  It only can go away in __device_release_driver() and
0996  * that function  checks the device's links to consumers.  This means we need to
0997  * mark the link as "consumer probe in progress" to make the supplier removal
0998  * wait for us to complete (or bad things may happen).
0999  *
1000  * Links without the DL_FLAG_MANAGED flag set are ignored.
1001  */
1002 int device_links_check_suppliers(struct device *dev)
1003 {
1004     struct device_link *link;
1005     int ret = 0, fwnode_ret = 0;
1006     struct fwnode_handle *sup_fw;
1007 
1008     /*
1009      * Device waiting for supplier to become available is not allowed to
1010      * probe.
1011      */
1012     mutex_lock(&fwnode_link_lock);
1013     if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1014         !fw_devlink_is_permissive()) {
1015         sup_fw = list_first_entry(&dev->fwnode->suppliers,
1016                       struct fwnode_link,
1017                       c_hook)->supplier;
1018         if (!dev_is_best_effort(dev)) {
1019             fwnode_ret = -EPROBE_DEFER;
1020             dev_err_probe(dev, -EPROBE_DEFER,
1021                     "wait for supplier %pfwP\n", sup_fw);
1022         } else {
1023             fwnode_ret = -EAGAIN;
1024         }
1025     }
1026     mutex_unlock(&fwnode_link_lock);
1027     if (fwnode_ret == -EPROBE_DEFER)
1028         return fwnode_ret;
1029 
1030     device_links_write_lock();
1031 
1032     list_for_each_entry(link, &dev->links.suppliers, c_node) {
1033         if (!(link->flags & DL_FLAG_MANAGED))
1034             continue;
1035 
1036         if (link->status != DL_STATE_AVAILABLE &&
1037             !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1038 
1039             if (dev_is_best_effort(dev) &&
1040                 link->flags & DL_FLAG_INFERRED &&
1041                 !link->supplier->can_match) {
1042                 ret = -EAGAIN;
1043                 continue;
1044             }
1045 
1046             device_links_missing_supplier(dev);
1047             dev_err_probe(dev, -EPROBE_DEFER,
1048                       "supplier %s not ready\n",
1049                       dev_name(link->supplier));
1050             ret = -EPROBE_DEFER;
1051             break;
1052         }
1053         WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1054     }
1055     dev->links.status = DL_DEV_PROBING;
1056 
1057     device_links_write_unlock();
1058 
1059     return ret ? ret : fwnode_ret;
1060 }
1061 
1062 /**
1063  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1064  * @dev: Device to call sync_state() on
1065  * @list: List head to queue the @dev on
1066  *
1067  * Queues a device for a sync_state() callback when the device links write lock
1068  * isn't held. This allows the sync_state() execution flow to use device links
1069  * APIs.  The caller must ensure this function is called with
1070  * device_links_write_lock() held.
1071  *
1072  * This function does a get_device() to make sure the device is not freed while
1073  * on this list.
1074  *
1075  * So the caller must also ensure that device_links_flush_sync_list() is called
1076  * as soon as the caller releases device_links_write_lock().  This is necessary
1077  * to make sure the sync_state() is called in a timely fashion and the
1078  * put_device() is called on this device.
1079  */
1080 static void __device_links_queue_sync_state(struct device *dev,
1081                         struct list_head *list)
1082 {
1083     struct device_link *link;
1084 
1085     if (!dev_has_sync_state(dev))
1086         return;
1087     if (dev->state_synced)
1088         return;
1089 
1090     list_for_each_entry(link, &dev->links.consumers, s_node) {
1091         if (!(link->flags & DL_FLAG_MANAGED))
1092             continue;
1093         if (link->status != DL_STATE_ACTIVE)
1094             return;
1095     }
1096 
1097     /*
1098      * Set the flag here to avoid adding the same device to a list more
1099      * than once. This can happen if new consumers get added to the device
1100      * and probed before the list is flushed.
1101      */
1102     dev->state_synced = true;
1103 
1104     if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1105         return;
1106 
1107     get_device(dev);
1108     list_add_tail(&dev->links.defer_sync, list);
1109 }
1110 
1111 /**
1112  * device_links_flush_sync_list - Call sync_state() on a list of devices
1113  * @list: List of devices to call sync_state() on
1114  * @dont_lock_dev: Device for which lock is already held by the caller
1115  *
1116  * Calls sync_state() on all the devices that have been queued for it. This
1117  * function is used in conjunction with __device_links_queue_sync_state(). The
1118  * @dont_lock_dev parameter is useful when this function is called from a
1119  * context where a device lock is already held.
1120  */
1121 static void device_links_flush_sync_list(struct list_head *list,
1122                      struct device *dont_lock_dev)
1123 {
1124     struct device *dev, *tmp;
1125 
1126     list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1127         list_del_init(&dev->links.defer_sync);
1128 
1129         if (dev != dont_lock_dev)
1130             device_lock(dev);
1131 
1132         if (dev->bus->sync_state)
1133             dev->bus->sync_state(dev);
1134         else if (dev->driver && dev->driver->sync_state)
1135             dev->driver->sync_state(dev);
1136 
1137         if (dev != dont_lock_dev)
1138             device_unlock(dev);
1139 
1140         put_device(dev);
1141     }
1142 }
1143 
1144 void device_links_supplier_sync_state_pause(void)
1145 {
1146     device_links_write_lock();
1147     defer_sync_state_count++;
1148     device_links_write_unlock();
1149 }
1150 
1151 void device_links_supplier_sync_state_resume(void)
1152 {
1153     struct device *dev, *tmp;
1154     LIST_HEAD(sync_list);
1155 
1156     device_links_write_lock();
1157     if (!defer_sync_state_count) {
1158         WARN(true, "Unmatched sync_state pause/resume!");
1159         goto out;
1160     }
1161     defer_sync_state_count--;
1162     if (defer_sync_state_count)
1163         goto out;
1164 
1165     list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1166         /*
1167          * Delete from deferred_sync list before queuing it to
1168          * sync_list because defer_sync is used for both lists.
1169          */
1170         list_del_init(&dev->links.defer_sync);
1171         __device_links_queue_sync_state(dev, &sync_list);
1172     }
1173 out:
1174     device_links_write_unlock();
1175 
1176     device_links_flush_sync_list(&sync_list, NULL);
1177 }
1178 
1179 static int sync_state_resume_initcall(void)
1180 {
1181     device_links_supplier_sync_state_resume();
1182     return 0;
1183 }
1184 late_initcall(sync_state_resume_initcall);
1185 
1186 static void __device_links_supplier_defer_sync(struct device *sup)
1187 {
1188     if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1189         list_add_tail(&sup->links.defer_sync, &deferred_sync);
1190 }
1191 
1192 static void device_link_drop_managed(struct device_link *link)
1193 {
1194     link->flags &= ~DL_FLAG_MANAGED;
1195     WRITE_ONCE(link->status, DL_STATE_NONE);
1196     kref_put(&link->kref, __device_link_del);
1197 }
1198 
1199 static ssize_t waiting_for_supplier_show(struct device *dev,
1200                      struct device_attribute *attr,
1201                      char *buf)
1202 {
1203     bool val;
1204 
1205     device_lock(dev);
1206     val = !list_empty(&dev->fwnode->suppliers);
1207     device_unlock(dev);
1208     return sysfs_emit(buf, "%u\n", val);
1209 }
1210 static DEVICE_ATTR_RO(waiting_for_supplier);
1211 
1212 /**
1213  * device_links_force_bind - Prepares device to be force bound
1214  * @dev: Consumer device.
1215  *
1216  * device_bind_driver() force binds a device to a driver without calling any
1217  * driver probe functions. So the consumer really isn't going to wait for any
1218  * supplier before it's bound to the driver. We still want the device link
1219  * states to be sensible when this happens.
1220  *
1221  * In preparation for device_bind_driver(), this function goes through each
1222  * supplier device links and checks if the supplier is bound. If it is, then
1223  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1224  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1225  */
1226 void device_links_force_bind(struct device *dev)
1227 {
1228     struct device_link *link, *ln;
1229 
1230     device_links_write_lock();
1231 
1232     list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1233         if (!(link->flags & DL_FLAG_MANAGED))
1234             continue;
1235 
1236         if (link->status != DL_STATE_AVAILABLE) {
1237             device_link_drop_managed(link);
1238             continue;
1239         }
1240         WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1241     }
1242     dev->links.status = DL_DEV_PROBING;
1243 
1244     device_links_write_unlock();
1245 }
1246 
1247 /**
1248  * device_links_driver_bound - Update device links after probing its driver.
1249  * @dev: Device to update the links for.
1250  *
1251  * The probe has been successful, so update links from this device to any
1252  * consumers by changing their status to "available".
1253  *
1254  * Also change the status of @dev's links to suppliers to "active".
1255  *
1256  * Links without the DL_FLAG_MANAGED flag set are ignored.
1257  */
1258 void device_links_driver_bound(struct device *dev)
1259 {
1260     struct device_link *link, *ln;
1261     LIST_HEAD(sync_list);
1262 
1263     /*
1264      * If a device binds successfully, it's expected to have created all
1265      * the device links it needs to or make new device links as it needs
1266      * them. So, fw_devlink no longer needs to create device links to any
1267      * of the device's suppliers.
1268      *
1269      * Also, if a child firmware node of this bound device is not added as
1270      * a device by now, assume it is never going to be added and make sure
1271      * other devices don't defer probe indefinitely by waiting for such a
1272      * child device.
1273      */
1274     if (dev->fwnode && dev->fwnode->dev == dev) {
1275         struct fwnode_handle *child;
1276         fwnode_links_purge_suppliers(dev->fwnode);
1277         fwnode_for_each_available_child_node(dev->fwnode, child)
1278             fw_devlink_purge_absent_suppliers(child);
1279     }
1280     device_remove_file(dev, &dev_attr_waiting_for_supplier);
1281 
1282     device_links_write_lock();
1283 
1284     list_for_each_entry(link, &dev->links.consumers, s_node) {
1285         if (!(link->flags & DL_FLAG_MANAGED))
1286             continue;
1287 
1288         /*
1289          * Links created during consumer probe may be in the "consumer
1290          * probe" state to start with if the supplier is still probing
1291          * when they are created and they may become "active" if the
1292          * consumer probe returns first.  Skip them here.
1293          */
1294         if (link->status == DL_STATE_CONSUMER_PROBE ||
1295             link->status == DL_STATE_ACTIVE)
1296             continue;
1297 
1298         WARN_ON(link->status != DL_STATE_DORMANT);
1299         WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1300 
1301         if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1302             driver_deferred_probe_add(link->consumer);
1303     }
1304 
1305     if (defer_sync_state_count)
1306         __device_links_supplier_defer_sync(dev);
1307     else
1308         __device_links_queue_sync_state(dev, &sync_list);
1309 
1310     list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1311         struct device *supplier;
1312 
1313         if (!(link->flags & DL_FLAG_MANAGED))
1314             continue;
1315 
1316         supplier = link->supplier;
1317         if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1318             /*
1319              * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1320              * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1321              * save to drop the managed link completely.
1322              */
1323             device_link_drop_managed(link);
1324         } else if (dev_is_best_effort(dev) &&
1325                link->flags & DL_FLAG_INFERRED &&
1326                link->status != DL_STATE_CONSUMER_PROBE &&
1327                !link->supplier->can_match) {
1328             /*
1329              * When dev_is_best_effort() is true, we ignore device
1330              * links to suppliers that don't have a driver.  If the
1331              * consumer device still managed to probe, there's no
1332              * point in maintaining a device link in a weird state
1333              * (consumer probed before supplier). So delete it.
1334              */
1335             device_link_drop_managed(link);
1336         } else {
1337             WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1338             WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1339         }
1340 
1341         /*
1342          * This needs to be done even for the deleted
1343          * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1344          * device link that was preventing the supplier from getting a
1345          * sync_state() call.
1346          */
1347         if (defer_sync_state_count)
1348             __device_links_supplier_defer_sync(supplier);
1349         else
1350             __device_links_queue_sync_state(supplier, &sync_list);
1351     }
1352 
1353     dev->links.status = DL_DEV_DRIVER_BOUND;
1354 
1355     device_links_write_unlock();
1356 
1357     device_links_flush_sync_list(&sync_list, dev);
1358 }
1359 
1360 /**
1361  * __device_links_no_driver - Update links of a device without a driver.
1362  * @dev: Device without a drvier.
1363  *
1364  * Delete all non-persistent links from this device to any suppliers.
1365  *
1366  * Persistent links stay around, but their status is changed to "available",
1367  * unless they already are in the "supplier unbind in progress" state in which
1368  * case they need not be updated.
1369  *
1370  * Links without the DL_FLAG_MANAGED flag set are ignored.
1371  */
1372 static void __device_links_no_driver(struct device *dev)
1373 {
1374     struct device_link *link, *ln;
1375 
1376     list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1377         if (!(link->flags & DL_FLAG_MANAGED))
1378             continue;
1379 
1380         if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1381             device_link_drop_managed(link);
1382             continue;
1383         }
1384 
1385         if (link->status != DL_STATE_CONSUMER_PROBE &&
1386             link->status != DL_STATE_ACTIVE)
1387             continue;
1388 
1389         if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1390             WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1391         } else {
1392             WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1393             WRITE_ONCE(link->status, DL_STATE_DORMANT);
1394         }
1395     }
1396 
1397     dev->links.status = DL_DEV_NO_DRIVER;
1398 }
1399 
1400 /**
1401  * device_links_no_driver - Update links after failing driver probe.
1402  * @dev: Device whose driver has just failed to probe.
1403  *
1404  * Clean up leftover links to consumers for @dev and invoke
1405  * %__device_links_no_driver() to update links to suppliers for it as
1406  * appropriate.
1407  *
1408  * Links without the DL_FLAG_MANAGED flag set are ignored.
1409  */
1410 void device_links_no_driver(struct device *dev)
1411 {
1412     struct device_link *link;
1413 
1414     device_links_write_lock();
1415 
1416     list_for_each_entry(link, &dev->links.consumers, s_node) {
1417         if (!(link->flags & DL_FLAG_MANAGED))
1418             continue;
1419 
1420         /*
1421          * The probe has failed, so if the status of the link is
1422          * "consumer probe" or "active", it must have been added by
1423          * a probing consumer while this device was still probing.
1424          * Change its state to "dormant", as it represents a valid
1425          * relationship, but it is not functionally meaningful.
1426          */
1427         if (link->status == DL_STATE_CONSUMER_PROBE ||
1428             link->status == DL_STATE_ACTIVE)
1429             WRITE_ONCE(link->status, DL_STATE_DORMANT);
1430     }
1431 
1432     __device_links_no_driver(dev);
1433 
1434     device_links_write_unlock();
1435 }
1436 
1437 /**
1438  * device_links_driver_cleanup - Update links after driver removal.
1439  * @dev: Device whose driver has just gone away.
1440  *
1441  * Update links to consumers for @dev by changing their status to "dormant" and
1442  * invoke %__device_links_no_driver() to update links to suppliers for it as
1443  * appropriate.
1444  *
1445  * Links without the DL_FLAG_MANAGED flag set are ignored.
1446  */
1447 void device_links_driver_cleanup(struct device *dev)
1448 {
1449     struct device_link *link, *ln;
1450 
1451     device_links_write_lock();
1452 
1453     list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1454         if (!(link->flags & DL_FLAG_MANAGED))
1455             continue;
1456 
1457         WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1458         WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1459 
1460         /*
1461          * autoremove the links between this @dev and its consumer
1462          * devices that are not active, i.e. where the link state
1463          * has moved to DL_STATE_SUPPLIER_UNBIND.
1464          */
1465         if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1466             link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1467             device_link_drop_managed(link);
1468 
1469         WRITE_ONCE(link->status, DL_STATE_DORMANT);
1470     }
1471 
1472     list_del_init(&dev->links.defer_sync);
1473     __device_links_no_driver(dev);
1474 
1475     device_links_write_unlock();
1476 }
1477 
1478 /**
1479  * device_links_busy - Check if there are any busy links to consumers.
1480  * @dev: Device to check.
1481  *
1482  * Check each consumer of the device and return 'true' if its link's status
1483  * is one of "consumer probe" or "active" (meaning that the given consumer is
1484  * probing right now or its driver is present).  Otherwise, change the link
1485  * state to "supplier unbind" to prevent the consumer from being probed
1486  * successfully going forward.
1487  *
1488  * Return 'false' if there are no probing or active consumers.
1489  *
1490  * Links without the DL_FLAG_MANAGED flag set are ignored.
1491  */
1492 bool device_links_busy(struct device *dev)
1493 {
1494     struct device_link *link;
1495     bool ret = false;
1496 
1497     device_links_write_lock();
1498 
1499     list_for_each_entry(link, &dev->links.consumers, s_node) {
1500         if (!(link->flags & DL_FLAG_MANAGED))
1501             continue;
1502 
1503         if (link->status == DL_STATE_CONSUMER_PROBE
1504             || link->status == DL_STATE_ACTIVE) {
1505             ret = true;
1506             break;
1507         }
1508         WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1509     }
1510 
1511     dev->links.status = DL_DEV_UNBINDING;
1512 
1513     device_links_write_unlock();
1514     return ret;
1515 }
1516 
1517 /**
1518  * device_links_unbind_consumers - Force unbind consumers of the given device.
1519  * @dev: Device to unbind the consumers of.
1520  *
1521  * Walk the list of links to consumers for @dev and if any of them is in the
1522  * "consumer probe" state, wait for all device probes in progress to complete
1523  * and start over.
1524  *
1525  * If that's not the case, change the status of the link to "supplier unbind"
1526  * and check if the link was in the "active" state.  If so, force the consumer
1527  * driver to unbind and start over (the consumer will not re-probe as we have
1528  * changed the state of the link already).
1529  *
1530  * Links without the DL_FLAG_MANAGED flag set are ignored.
1531  */
1532 void device_links_unbind_consumers(struct device *dev)
1533 {
1534     struct device_link *link;
1535 
1536  start:
1537     device_links_write_lock();
1538 
1539     list_for_each_entry(link, &dev->links.consumers, s_node) {
1540         enum device_link_state status;
1541 
1542         if (!(link->flags & DL_FLAG_MANAGED) ||
1543             link->flags & DL_FLAG_SYNC_STATE_ONLY)
1544             continue;
1545 
1546         status = link->status;
1547         if (status == DL_STATE_CONSUMER_PROBE) {
1548             device_links_write_unlock();
1549 
1550             wait_for_device_probe();
1551             goto start;
1552         }
1553         WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1554         if (status == DL_STATE_ACTIVE) {
1555             struct device *consumer = link->consumer;
1556 
1557             get_device(consumer);
1558 
1559             device_links_write_unlock();
1560 
1561             device_release_driver_internal(consumer, NULL,
1562                                consumer->parent);
1563             put_device(consumer);
1564             goto start;
1565         }
1566     }
1567 
1568     device_links_write_unlock();
1569 }
1570 
1571 /**
1572  * device_links_purge - Delete existing links to other devices.
1573  * @dev: Target device.
1574  */
1575 static void device_links_purge(struct device *dev)
1576 {
1577     struct device_link *link, *ln;
1578 
1579     if (dev->class == &devlink_class)
1580         return;
1581 
1582     /*
1583      * Delete all of the remaining links from this device to any other
1584      * devices (either consumers or suppliers).
1585      */
1586     device_links_write_lock();
1587 
1588     list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1589         WARN_ON(link->status == DL_STATE_ACTIVE);
1590         __device_link_del(&link->kref);
1591     }
1592 
1593     list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1594         WARN_ON(link->status != DL_STATE_DORMANT &&
1595             link->status != DL_STATE_NONE);
1596         __device_link_del(&link->kref);
1597     }
1598 
1599     device_links_write_unlock();
1600 }
1601 
1602 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1603                      DL_FLAG_SYNC_STATE_ONLY)
1604 #define FW_DEVLINK_FLAGS_ON     (DL_FLAG_INFERRED | \
1605                      DL_FLAG_AUTOPROBE_CONSUMER)
1606 #define FW_DEVLINK_FLAGS_RPM        (FW_DEVLINK_FLAGS_ON | \
1607                      DL_FLAG_PM_RUNTIME)
1608 
1609 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1610 static int __init fw_devlink_setup(char *arg)
1611 {
1612     if (!arg)
1613         return -EINVAL;
1614 
1615     if (strcmp(arg, "off") == 0) {
1616         fw_devlink_flags = 0;
1617     } else if (strcmp(arg, "permissive") == 0) {
1618         fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1619     } else if (strcmp(arg, "on") == 0) {
1620         fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1621     } else if (strcmp(arg, "rpm") == 0) {
1622         fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1623     }
1624     return 0;
1625 }
1626 early_param("fw_devlink", fw_devlink_setup);
1627 
1628 static bool fw_devlink_strict;
1629 static int __init fw_devlink_strict_setup(char *arg)
1630 {
1631     return strtobool(arg, &fw_devlink_strict);
1632 }
1633 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1634 
1635 u32 fw_devlink_get_flags(void)
1636 {
1637     return fw_devlink_flags;
1638 }
1639 
1640 static bool fw_devlink_is_permissive(void)
1641 {
1642     return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1643 }
1644 
1645 bool fw_devlink_is_strict(void)
1646 {
1647     return fw_devlink_strict && !fw_devlink_is_permissive();
1648 }
1649 
1650 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1651 {
1652     if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1653         return;
1654 
1655     fwnode_call_int_op(fwnode, add_links);
1656     fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1657 }
1658 
1659 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1660 {
1661     struct fwnode_handle *child = NULL;
1662 
1663     fw_devlink_parse_fwnode(fwnode);
1664 
1665     while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1666         fw_devlink_parse_fwtree(child);
1667 }
1668 
1669 static void fw_devlink_relax_link(struct device_link *link)
1670 {
1671     if (!(link->flags & DL_FLAG_INFERRED))
1672         return;
1673 
1674     if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1675         return;
1676 
1677     pm_runtime_drop_link(link);
1678     link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1679     dev_dbg(link->consumer, "Relaxing link with %s\n",
1680         dev_name(link->supplier));
1681 }
1682 
1683 static int fw_devlink_no_driver(struct device *dev, void *data)
1684 {
1685     struct device_link *link = to_devlink(dev);
1686 
1687     if (!link->supplier->can_match)
1688         fw_devlink_relax_link(link);
1689 
1690     return 0;
1691 }
1692 
1693 void fw_devlink_drivers_done(void)
1694 {
1695     fw_devlink_drv_reg_done = true;
1696     device_links_write_lock();
1697     class_for_each_device(&devlink_class, NULL, NULL,
1698                   fw_devlink_no_driver);
1699     device_links_write_unlock();
1700 }
1701 
1702 /**
1703  * wait_for_init_devices_probe - Try to probe any device needed for init
1704  *
1705  * Some devices might need to be probed and bound successfully before the kernel
1706  * boot sequence can finish and move on to init/userspace. For example, a
1707  * network interface might need to be bound to be able to mount a NFS rootfs.
1708  *
1709  * With fw_devlink=on by default, some of these devices might be blocked from
1710  * probing because they are waiting on a optional supplier that doesn't have a
1711  * driver. While fw_devlink will eventually identify such devices and unblock
1712  * the probing automatically, it might be too late by the time it unblocks the
1713  * probing of devices. For example, the IP4 autoconfig might timeout before
1714  * fw_devlink unblocks probing of the network interface.
1715  *
1716  * This function is available to temporarily try and probe all devices that have
1717  * a driver even if some of their suppliers haven't been added or don't have
1718  * drivers.
1719  *
1720  * The drivers can then decide which of the suppliers are optional vs mandatory
1721  * and probe the device if possible. By the time this function returns, all such
1722  * "best effort" probes are guaranteed to be completed. If a device successfully
1723  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1724  * device where the supplier hasn't yet probed successfully because they have to
1725  * be optional dependencies.
1726  *
1727  * Any devices that didn't successfully probe go back to being treated as if
1728  * this function was never called.
1729  *
1730  * This also means that some devices that aren't needed for init and could have
1731  * waited for their optional supplier to probe (when the supplier's module is
1732  * loaded later on) would end up probing prematurely with limited functionality.
1733  * So call this function only when boot would fail without it.
1734  */
1735 void __init wait_for_init_devices_probe(void)
1736 {
1737     if (!fw_devlink_flags || fw_devlink_is_permissive())
1738         return;
1739 
1740     /*
1741      * Wait for all ongoing probes to finish so that the "best effort" is
1742      * only applied to devices that can't probe otherwise.
1743      */
1744     wait_for_device_probe();
1745 
1746     pr_info("Trying to probe devices needed for running init ...\n");
1747     fw_devlink_best_effort = true;
1748     driver_deferred_probe_trigger();
1749 
1750     /*
1751      * Wait for all "best effort" probes to finish before going back to
1752      * normal enforcement.
1753      */
1754     wait_for_device_probe();
1755     fw_devlink_best_effort = false;
1756 }
1757 
1758 static void fw_devlink_unblock_consumers(struct device *dev)
1759 {
1760     struct device_link *link;
1761 
1762     if (!fw_devlink_flags || fw_devlink_is_permissive())
1763         return;
1764 
1765     device_links_write_lock();
1766     list_for_each_entry(link, &dev->links.consumers, s_node)
1767         fw_devlink_relax_link(link);
1768     device_links_write_unlock();
1769 }
1770 
1771 /**
1772  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1773  * @con: Device to check dependencies for.
1774  * @sup: Device to check against.
1775  *
1776  * Check if @sup depends on @con or any device dependent on it (its child or
1777  * its consumer etc).  When such a cyclic dependency is found, convert all
1778  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1779  * This is the equivalent of doing fw_devlink=permissive just between the
1780  * devices in the cycle. We need to do this because, at this point, fw_devlink
1781  * can't tell which of these dependencies is not a real dependency.
1782  *
1783  * Return 1 if a cycle is found. Otherwise, return 0.
1784  */
1785 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1786 {
1787     struct device_link *link;
1788     int ret;
1789 
1790     if (con == sup)
1791         return 1;
1792 
1793     ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1794     if (ret)
1795         return ret;
1796 
1797     list_for_each_entry(link, &con->links.consumers, s_node) {
1798         if ((link->flags & ~DL_FLAG_INFERRED) ==
1799             (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1800             continue;
1801 
1802         if (!fw_devlink_relax_cycle(link->consumer, sup))
1803             continue;
1804 
1805         ret = 1;
1806 
1807         fw_devlink_relax_link(link);
1808     }
1809     return ret;
1810 }
1811 
1812 /**
1813  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1814  * @con: consumer device for the device link
1815  * @sup_handle: fwnode handle of supplier
1816  * @flags: devlink flags
1817  *
1818  * This function will try to create a device link between the consumer device
1819  * @con and the supplier device represented by @sup_handle.
1820  *
1821  * The supplier has to be provided as a fwnode because incorrect cycles in
1822  * fwnode links can sometimes cause the supplier device to never be created.
1823  * This function detects such cases and returns an error if it cannot create a
1824  * device link from the consumer to a missing supplier.
1825  *
1826  * Returns,
1827  * 0 on successfully creating a device link
1828  * -EINVAL if the device link cannot be created as expected
1829  * -EAGAIN if the device link cannot be created right now, but it may be
1830  *  possible to do that in the future
1831  */
1832 static int fw_devlink_create_devlink(struct device *con,
1833                      struct fwnode_handle *sup_handle, u32 flags)
1834 {
1835     struct device *sup_dev;
1836     int ret = 0;
1837 
1838     /*
1839      * In some cases, a device P might also be a supplier to its child node
1840      * C. However, this would defer the probe of C until the probe of P
1841      * completes successfully. This is perfectly fine in the device driver
1842      * model. device_add() doesn't guarantee probe completion of the device
1843      * by the time it returns.
1844      *
1845      * However, there are a few drivers that assume C will finish probing
1846      * as soon as it's added and before P finishes probing. So, we provide
1847      * a flag to let fw_devlink know not to delay the probe of C until the
1848      * probe of P completes successfully.
1849      *
1850      * When such a flag is set, we can't create device links where P is the
1851      * supplier of C as that would delay the probe of C.
1852      */
1853     if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1854         fwnode_is_ancestor_of(sup_handle, con->fwnode))
1855         return -EINVAL;
1856 
1857     sup_dev = get_dev_from_fwnode(sup_handle);
1858     if (sup_dev) {
1859         /*
1860          * If it's one of those drivers that don't actually bind to
1861          * their device using driver core, then don't wait on this
1862          * supplier device indefinitely.
1863          */
1864         if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1865             sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1866             ret = -EINVAL;
1867             goto out;
1868         }
1869 
1870         /*
1871          * If this fails, it is due to cycles in device links.  Just
1872          * give up on this link and treat it as invalid.
1873          */
1874         if (!device_link_add(con, sup_dev, flags) &&
1875             !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1876             dev_info(con, "Fixing up cyclic dependency with %s\n",
1877                  dev_name(sup_dev));
1878             device_links_write_lock();
1879             fw_devlink_relax_cycle(con, sup_dev);
1880             device_links_write_unlock();
1881             device_link_add(con, sup_dev,
1882                     FW_DEVLINK_FLAGS_PERMISSIVE);
1883             ret = -EINVAL;
1884         }
1885 
1886         goto out;
1887     }
1888 
1889     /* Supplier that's already initialized without a struct device. */
1890     if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1891         return -EINVAL;
1892 
1893     /*
1894      * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1895      * cycles. So cycle detection isn't necessary and shouldn't be
1896      * done.
1897      */
1898     if (flags & DL_FLAG_SYNC_STATE_ONLY)
1899         return -EAGAIN;
1900 
1901     /*
1902      * If we can't find the supplier device from its fwnode, it might be
1903      * due to a cyclic dependency between fwnodes. Some of these cycles can
1904      * be broken by applying logic. Check for these types of cycles and
1905      * break them so that devices in the cycle probe properly.
1906      *
1907      * If the supplier's parent is dependent on the consumer, then the
1908      * consumer and supplier have a cyclic dependency. Since fw_devlink
1909      * can't tell which of the inferred dependencies are incorrect, don't
1910      * enforce probe ordering between any of the devices in this cyclic
1911      * dependency. Do this by relaxing all the fw_devlink device links in
1912      * this cycle and by treating the fwnode link between the consumer and
1913      * the supplier as an invalid dependency.
1914      */
1915     sup_dev = fwnode_get_next_parent_dev(sup_handle);
1916     if (sup_dev && device_is_dependent(con, sup_dev)) {
1917         dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1918              sup_handle, dev_name(sup_dev));
1919         device_links_write_lock();
1920         fw_devlink_relax_cycle(con, sup_dev);
1921         device_links_write_unlock();
1922         ret = -EINVAL;
1923     } else {
1924         /*
1925          * Can't check for cycles or no cycles. So let's try
1926          * again later.
1927          */
1928         ret = -EAGAIN;
1929     }
1930 
1931 out:
1932     put_device(sup_dev);
1933     return ret;
1934 }
1935 
1936 /**
1937  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1938  * @dev: Device that needs to be linked to its consumers
1939  *
1940  * This function looks at all the consumer fwnodes of @dev and creates device
1941  * links between the consumer device and @dev (supplier).
1942  *
1943  * If the consumer device has not been added yet, then this function creates a
1944  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1945  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1946  * sync_state() callback before the real consumer device gets to be added and
1947  * then probed.
1948  *
1949  * Once device links are created from the real consumer to @dev (supplier), the
1950  * fwnode links are deleted.
1951  */
1952 static void __fw_devlink_link_to_consumers(struct device *dev)
1953 {
1954     struct fwnode_handle *fwnode = dev->fwnode;
1955     struct fwnode_link *link, *tmp;
1956 
1957     list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1958         u32 dl_flags = fw_devlink_get_flags();
1959         struct device *con_dev;
1960         bool own_link = true;
1961         int ret;
1962 
1963         con_dev = get_dev_from_fwnode(link->consumer);
1964         /*
1965          * If consumer device is not available yet, make a "proxy"
1966          * SYNC_STATE_ONLY link from the consumer's parent device to
1967          * the supplier device. This is necessary to make sure the
1968          * supplier doesn't get a sync_state() callback before the real
1969          * consumer can create a device link to the supplier.
1970          *
1971          * This proxy link step is needed to handle the case where the
1972          * consumer's parent device is added before the supplier.
1973          */
1974         if (!con_dev) {
1975             con_dev = fwnode_get_next_parent_dev(link->consumer);
1976             /*
1977              * However, if the consumer's parent device is also the
1978              * parent of the supplier, don't create a
1979              * consumer-supplier link from the parent to its child
1980              * device. Such a dependency is impossible.
1981              */
1982             if (con_dev &&
1983                 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1984                 put_device(con_dev);
1985                 con_dev = NULL;
1986             } else {
1987                 own_link = false;
1988                 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1989             }
1990         }
1991 
1992         if (!con_dev)
1993             continue;
1994 
1995         ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1996         put_device(con_dev);
1997         if (!own_link || ret == -EAGAIN)
1998             continue;
1999 
2000         __fwnode_link_del(link);
2001     }
2002 }
2003 
2004 /**
2005  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2006  * @dev: The consumer device that needs to be linked to its suppliers
2007  * @fwnode: Root of the fwnode tree that is used to create device links
2008  *
2009  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2010  * @fwnode and creates device links between @dev (consumer) and all the
2011  * supplier devices of the entire fwnode tree at @fwnode.
2012  *
2013  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2014  * and the real suppliers of @dev. Once these device links are created, the
2015  * fwnode links are deleted. When such device links are successfully created,
2016  * this function is called recursively on those supplier devices. This is
2017  * needed to detect and break some invalid cycles in fwnode links.  See
2018  * fw_devlink_create_devlink() for more details.
2019  *
2020  * In addition, it also looks at all the suppliers of the entire fwnode tree
2021  * because some of the child devices of @dev that have not been added yet
2022  * (because @dev hasn't probed) might already have their suppliers added to
2023  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2024  * @dev (consumer) and these suppliers to make sure they don't execute their
2025  * sync_state() callbacks before these child devices have a chance to create
2026  * their device links. The fwnode links that correspond to the child devices
2027  * aren't delete because they are needed later to create the device links
2028  * between the real consumer and supplier devices.
2029  */
2030 static void __fw_devlink_link_to_suppliers(struct device *dev,
2031                        struct fwnode_handle *fwnode)
2032 {
2033     bool own_link = (dev->fwnode == fwnode);
2034     struct fwnode_link *link, *tmp;
2035     struct fwnode_handle *child = NULL;
2036     u32 dl_flags;
2037 
2038     if (own_link)
2039         dl_flags = fw_devlink_get_flags();
2040     else
2041         dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2042 
2043     list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2044         int ret;
2045         struct device *sup_dev;
2046         struct fwnode_handle *sup = link->supplier;
2047 
2048         ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2049         if (!own_link || ret == -EAGAIN)
2050             continue;
2051 
2052         __fwnode_link_del(link);
2053 
2054         /* If no device link was created, nothing more to do. */
2055         if (ret)
2056             continue;
2057 
2058         /*
2059          * If a device link was successfully created to a supplier, we
2060          * now need to try and link the supplier to all its suppliers.
2061          *
2062          * This is needed to detect and delete false dependencies in
2063          * fwnode links that haven't been converted to a device link
2064          * yet. See comments in fw_devlink_create_devlink() for more
2065          * details on the false dependency.
2066          *
2067          * Without deleting these false dependencies, some devices will
2068          * never probe because they'll keep waiting for their false
2069          * dependency fwnode links to be converted to device links.
2070          */
2071         sup_dev = get_dev_from_fwnode(sup);
2072         __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2073         put_device(sup_dev);
2074     }
2075 
2076     /*
2077      * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2078      * all the descendants. This proxy link step is needed to handle the
2079      * case where the supplier is added before the consumer's parent device
2080      * (@dev).
2081      */
2082     while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2083         __fw_devlink_link_to_suppliers(dev, child);
2084 }
2085 
2086 static void fw_devlink_link_device(struct device *dev)
2087 {
2088     struct fwnode_handle *fwnode = dev->fwnode;
2089 
2090     if (!fw_devlink_flags)
2091         return;
2092 
2093     fw_devlink_parse_fwtree(fwnode);
2094 
2095     mutex_lock(&fwnode_link_lock);
2096     __fw_devlink_link_to_consumers(dev);
2097     __fw_devlink_link_to_suppliers(dev, fwnode);
2098     mutex_unlock(&fwnode_link_lock);
2099 }
2100 
2101 /* Device links support end. */
2102 
2103 int (*platform_notify)(struct device *dev) = NULL;
2104 int (*platform_notify_remove)(struct device *dev) = NULL;
2105 static struct kobject *dev_kobj;
2106 struct kobject *sysfs_dev_char_kobj;
2107 struct kobject *sysfs_dev_block_kobj;
2108 
2109 static DEFINE_MUTEX(device_hotplug_lock);
2110 
2111 void lock_device_hotplug(void)
2112 {
2113     mutex_lock(&device_hotplug_lock);
2114 }
2115 
2116 void unlock_device_hotplug(void)
2117 {
2118     mutex_unlock(&device_hotplug_lock);
2119 }
2120 
2121 int lock_device_hotplug_sysfs(void)
2122 {
2123     if (mutex_trylock(&device_hotplug_lock))
2124         return 0;
2125 
2126     /* Avoid busy looping (5 ms of sleep should do). */
2127     msleep(5);
2128     return restart_syscall();
2129 }
2130 
2131 #ifdef CONFIG_BLOCK
2132 static inline int device_is_not_partition(struct device *dev)
2133 {
2134     return !(dev->type == &part_type);
2135 }
2136 #else
2137 static inline int device_is_not_partition(struct device *dev)
2138 {
2139     return 1;
2140 }
2141 #endif
2142 
2143 static void device_platform_notify(struct device *dev)
2144 {
2145     acpi_device_notify(dev);
2146 
2147     software_node_notify(dev);
2148 
2149     if (platform_notify)
2150         platform_notify(dev);
2151 }
2152 
2153 static void device_platform_notify_remove(struct device *dev)
2154 {
2155     acpi_device_notify_remove(dev);
2156 
2157     software_node_notify_remove(dev);
2158 
2159     if (platform_notify_remove)
2160         platform_notify_remove(dev);
2161 }
2162 
2163 /**
2164  * dev_driver_string - Return a device's driver name, if at all possible
2165  * @dev: struct device to get the name of
2166  *
2167  * Will return the device's driver's name if it is bound to a device.  If
2168  * the device is not bound to a driver, it will return the name of the bus
2169  * it is attached to.  If it is not attached to a bus either, an empty
2170  * string will be returned.
2171  */
2172 const char *dev_driver_string(const struct device *dev)
2173 {
2174     struct device_driver *drv;
2175 
2176     /* dev->driver can change to NULL underneath us because of unbinding,
2177      * so be careful about accessing it.  dev->bus and dev->class should
2178      * never change once they are set, so they don't need special care.
2179      */
2180     drv = READ_ONCE(dev->driver);
2181     return drv ? drv->name : dev_bus_name(dev);
2182 }
2183 EXPORT_SYMBOL(dev_driver_string);
2184 
2185 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2186 
2187 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2188                  char *buf)
2189 {
2190     struct device_attribute *dev_attr = to_dev_attr(attr);
2191     struct device *dev = kobj_to_dev(kobj);
2192     ssize_t ret = -EIO;
2193 
2194     if (dev_attr->show)
2195         ret = dev_attr->show(dev, dev_attr, buf);
2196     if (ret >= (ssize_t)PAGE_SIZE) {
2197         printk("dev_attr_show: %pS returned bad count\n",
2198                 dev_attr->show);
2199     }
2200     return ret;
2201 }
2202 
2203 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2204                   const char *buf, size_t count)
2205 {
2206     struct device_attribute *dev_attr = to_dev_attr(attr);
2207     struct device *dev = kobj_to_dev(kobj);
2208     ssize_t ret = -EIO;
2209 
2210     if (dev_attr->store)
2211         ret = dev_attr->store(dev, dev_attr, buf, count);
2212     return ret;
2213 }
2214 
2215 static const struct sysfs_ops dev_sysfs_ops = {
2216     .show   = dev_attr_show,
2217     .store  = dev_attr_store,
2218 };
2219 
2220 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2221 
2222 ssize_t device_store_ulong(struct device *dev,
2223                struct device_attribute *attr,
2224                const char *buf, size_t size)
2225 {
2226     struct dev_ext_attribute *ea = to_ext_attr(attr);
2227     int ret;
2228     unsigned long new;
2229 
2230     ret = kstrtoul(buf, 0, &new);
2231     if (ret)
2232         return ret;
2233     *(unsigned long *)(ea->var) = new;
2234     /* Always return full write size even if we didn't consume all */
2235     return size;
2236 }
2237 EXPORT_SYMBOL_GPL(device_store_ulong);
2238 
2239 ssize_t device_show_ulong(struct device *dev,
2240               struct device_attribute *attr,
2241               char *buf)
2242 {
2243     struct dev_ext_attribute *ea = to_ext_attr(attr);
2244     return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2245 }
2246 EXPORT_SYMBOL_GPL(device_show_ulong);
2247 
2248 ssize_t device_store_int(struct device *dev,
2249              struct device_attribute *attr,
2250              const char *buf, size_t size)
2251 {
2252     struct dev_ext_attribute *ea = to_ext_attr(attr);
2253     int ret;
2254     long new;
2255 
2256     ret = kstrtol(buf, 0, &new);
2257     if (ret)
2258         return ret;
2259 
2260     if (new > INT_MAX || new < INT_MIN)
2261         return -EINVAL;
2262     *(int *)(ea->var) = new;
2263     /* Always return full write size even if we didn't consume all */
2264     return size;
2265 }
2266 EXPORT_SYMBOL_GPL(device_store_int);
2267 
2268 ssize_t device_show_int(struct device *dev,
2269             struct device_attribute *attr,
2270             char *buf)
2271 {
2272     struct dev_ext_attribute *ea = to_ext_attr(attr);
2273 
2274     return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2275 }
2276 EXPORT_SYMBOL_GPL(device_show_int);
2277 
2278 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2279               const char *buf, size_t size)
2280 {
2281     struct dev_ext_attribute *ea = to_ext_attr(attr);
2282 
2283     if (strtobool(buf, ea->var) < 0)
2284         return -EINVAL;
2285 
2286     return size;
2287 }
2288 EXPORT_SYMBOL_GPL(device_store_bool);
2289 
2290 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2291              char *buf)
2292 {
2293     struct dev_ext_attribute *ea = to_ext_attr(attr);
2294 
2295     return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2296 }
2297 EXPORT_SYMBOL_GPL(device_show_bool);
2298 
2299 /**
2300  * device_release - free device structure.
2301  * @kobj: device's kobject.
2302  *
2303  * This is called once the reference count for the object
2304  * reaches 0. We forward the call to the device's release
2305  * method, which should handle actually freeing the structure.
2306  */
2307 static void device_release(struct kobject *kobj)
2308 {
2309     struct device *dev = kobj_to_dev(kobj);
2310     struct device_private *p = dev->p;
2311 
2312     /*
2313      * Some platform devices are driven without driver attached
2314      * and managed resources may have been acquired.  Make sure
2315      * all resources are released.
2316      *
2317      * Drivers still can add resources into device after device
2318      * is deleted but alive, so release devres here to avoid
2319      * possible memory leak.
2320      */
2321     devres_release_all(dev);
2322 
2323     kfree(dev->dma_range_map);
2324 
2325     if (dev->release)
2326         dev->release(dev);
2327     else if (dev->type && dev->type->release)
2328         dev->type->release(dev);
2329     else if (dev->class && dev->class->dev_release)
2330         dev->class->dev_release(dev);
2331     else
2332         WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2333             dev_name(dev));
2334     kfree(p);
2335 }
2336 
2337 static const void *device_namespace(struct kobject *kobj)
2338 {
2339     struct device *dev = kobj_to_dev(kobj);
2340     const void *ns = NULL;
2341 
2342     if (dev->class && dev->class->ns_type)
2343         ns = dev->class->namespace(dev);
2344 
2345     return ns;
2346 }
2347 
2348 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2349 {
2350     struct device *dev = kobj_to_dev(kobj);
2351 
2352     if (dev->class && dev->class->get_ownership)
2353         dev->class->get_ownership(dev, uid, gid);
2354 }
2355 
2356 static struct kobj_type device_ktype = {
2357     .release    = device_release,
2358     .sysfs_ops  = &dev_sysfs_ops,
2359     .namespace  = device_namespace,
2360     .get_ownership  = device_get_ownership,
2361 };
2362 
2363 
2364 static int dev_uevent_filter(struct kobject *kobj)
2365 {
2366     const struct kobj_type *ktype = get_ktype(kobj);
2367 
2368     if (ktype == &device_ktype) {
2369         struct device *dev = kobj_to_dev(kobj);
2370         if (dev->bus)
2371             return 1;
2372         if (dev->class)
2373             return 1;
2374     }
2375     return 0;
2376 }
2377 
2378 static const char *dev_uevent_name(struct kobject *kobj)
2379 {
2380     struct device *dev = kobj_to_dev(kobj);
2381 
2382     if (dev->bus)
2383         return dev->bus->name;
2384     if (dev->class)
2385         return dev->class->name;
2386     return NULL;
2387 }
2388 
2389 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2390 {
2391     struct device *dev = kobj_to_dev(kobj);
2392     int retval = 0;
2393 
2394     /* add device node properties if present */
2395     if (MAJOR(dev->devt)) {
2396         const char *tmp;
2397         const char *name;
2398         umode_t mode = 0;
2399         kuid_t uid = GLOBAL_ROOT_UID;
2400         kgid_t gid = GLOBAL_ROOT_GID;
2401 
2402         add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2403         add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2404         name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2405         if (name) {
2406             add_uevent_var(env, "DEVNAME=%s", name);
2407             if (mode)
2408                 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2409             if (!uid_eq(uid, GLOBAL_ROOT_UID))
2410                 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2411             if (!gid_eq(gid, GLOBAL_ROOT_GID))
2412                 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2413             kfree(tmp);
2414         }
2415     }
2416 
2417     if (dev->type && dev->type->name)
2418         add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2419 
2420     if (dev->driver)
2421         add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2422 
2423     /* Add common DT information about the device */
2424     of_device_uevent(dev, env);
2425 
2426     /* have the bus specific function add its stuff */
2427     if (dev->bus && dev->bus->uevent) {
2428         retval = dev->bus->uevent(dev, env);
2429         if (retval)
2430             pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2431                  dev_name(dev), __func__, retval);
2432     }
2433 
2434     /* have the class specific function add its stuff */
2435     if (dev->class && dev->class->dev_uevent) {
2436         retval = dev->class->dev_uevent(dev, env);
2437         if (retval)
2438             pr_debug("device: '%s': %s: class uevent() "
2439                  "returned %d\n", dev_name(dev),
2440                  __func__, retval);
2441     }
2442 
2443     /* have the device type specific function add its stuff */
2444     if (dev->type && dev->type->uevent) {
2445         retval = dev->type->uevent(dev, env);
2446         if (retval)
2447             pr_debug("device: '%s': %s: dev_type uevent() "
2448                  "returned %d\n", dev_name(dev),
2449                  __func__, retval);
2450     }
2451 
2452     return retval;
2453 }
2454 
2455 static const struct kset_uevent_ops device_uevent_ops = {
2456     .filter =   dev_uevent_filter,
2457     .name =     dev_uevent_name,
2458     .uevent =   dev_uevent,
2459 };
2460 
2461 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2462                char *buf)
2463 {
2464     struct kobject *top_kobj;
2465     struct kset *kset;
2466     struct kobj_uevent_env *env = NULL;
2467     int i;
2468     int len = 0;
2469     int retval;
2470 
2471     /* search the kset, the device belongs to */
2472     top_kobj = &dev->kobj;
2473     while (!top_kobj->kset && top_kobj->parent)
2474         top_kobj = top_kobj->parent;
2475     if (!top_kobj->kset)
2476         goto out;
2477 
2478     kset = top_kobj->kset;
2479     if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2480         goto out;
2481 
2482     /* respect filter */
2483     if (kset->uevent_ops && kset->uevent_ops->filter)
2484         if (!kset->uevent_ops->filter(&dev->kobj))
2485             goto out;
2486 
2487     env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2488     if (!env)
2489         return -ENOMEM;
2490 
2491     /* let the kset specific function add its keys */
2492     retval = kset->uevent_ops->uevent(&dev->kobj, env);
2493     if (retval)
2494         goto out;
2495 
2496     /* copy keys to file */
2497     for (i = 0; i < env->envp_idx; i++)
2498         len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2499 out:
2500     kfree(env);
2501     return len;
2502 }
2503 
2504 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2505                 const char *buf, size_t count)
2506 {
2507     int rc;
2508 
2509     rc = kobject_synth_uevent(&dev->kobj, buf, count);
2510 
2511     if (rc) {
2512         dev_err(dev, "uevent: failed to send synthetic uevent\n");
2513         return rc;
2514     }
2515 
2516     return count;
2517 }
2518 static DEVICE_ATTR_RW(uevent);
2519 
2520 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2521                char *buf)
2522 {
2523     bool val;
2524 
2525     device_lock(dev);
2526     val = !dev->offline;
2527     device_unlock(dev);
2528     return sysfs_emit(buf, "%u\n", val);
2529 }
2530 
2531 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2532                 const char *buf, size_t count)
2533 {
2534     bool val;
2535     int ret;
2536 
2537     ret = strtobool(buf, &val);
2538     if (ret < 0)
2539         return ret;
2540 
2541     ret = lock_device_hotplug_sysfs();
2542     if (ret)
2543         return ret;
2544 
2545     ret = val ? device_online(dev) : device_offline(dev);
2546     unlock_device_hotplug();
2547     return ret < 0 ? ret : count;
2548 }
2549 static DEVICE_ATTR_RW(online);
2550 
2551 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2552                   char *buf)
2553 {
2554     const char *loc;
2555 
2556     switch (dev->removable) {
2557     case DEVICE_REMOVABLE:
2558         loc = "removable";
2559         break;
2560     case DEVICE_FIXED:
2561         loc = "fixed";
2562         break;
2563     default:
2564         loc = "unknown";
2565     }
2566     return sysfs_emit(buf, "%s\n", loc);
2567 }
2568 static DEVICE_ATTR_RO(removable);
2569 
2570 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2571 {
2572     return sysfs_create_groups(&dev->kobj, groups);
2573 }
2574 EXPORT_SYMBOL_GPL(device_add_groups);
2575 
2576 void device_remove_groups(struct device *dev,
2577               const struct attribute_group **groups)
2578 {
2579     sysfs_remove_groups(&dev->kobj, groups);
2580 }
2581 EXPORT_SYMBOL_GPL(device_remove_groups);
2582 
2583 union device_attr_group_devres {
2584     const struct attribute_group *group;
2585     const struct attribute_group **groups;
2586 };
2587 
2588 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2589 {
2590     return ((union device_attr_group_devres *)res)->group == data;
2591 }
2592 
2593 static void devm_attr_group_remove(struct device *dev, void *res)
2594 {
2595     union device_attr_group_devres *devres = res;
2596     const struct attribute_group *group = devres->group;
2597 
2598     dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2599     sysfs_remove_group(&dev->kobj, group);
2600 }
2601 
2602 static void devm_attr_groups_remove(struct device *dev, void *res)
2603 {
2604     union device_attr_group_devres *devres = res;
2605     const struct attribute_group **groups = devres->groups;
2606 
2607     dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2608     sysfs_remove_groups(&dev->kobj, groups);
2609 }
2610 
2611 /**
2612  * devm_device_add_group - given a device, create a managed attribute group
2613  * @dev:    The device to create the group for
2614  * @grp:    The attribute group to create
2615  *
2616  * This function creates a group for the first time.  It will explicitly
2617  * warn and error if any of the attribute files being created already exist.
2618  *
2619  * Returns 0 on success or error code on failure.
2620  */
2621 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2622 {
2623     union device_attr_group_devres *devres;
2624     int error;
2625 
2626     devres = devres_alloc(devm_attr_group_remove,
2627                   sizeof(*devres), GFP_KERNEL);
2628     if (!devres)
2629         return -ENOMEM;
2630 
2631     error = sysfs_create_group(&dev->kobj, grp);
2632     if (error) {
2633         devres_free(devres);
2634         return error;
2635     }
2636 
2637     devres->group = grp;
2638     devres_add(dev, devres);
2639     return 0;
2640 }
2641 EXPORT_SYMBOL_GPL(devm_device_add_group);
2642 
2643 /**
2644  * devm_device_remove_group: remove a managed group from a device
2645  * @dev:    device to remove the group from
2646  * @grp:    group to remove
2647  *
2648  * This function removes a group of attributes from a device. The attributes
2649  * previously have to have been created for this group, otherwise it will fail.
2650  */
2651 void devm_device_remove_group(struct device *dev,
2652                   const struct attribute_group *grp)
2653 {
2654     WARN_ON(devres_release(dev, devm_attr_group_remove,
2655                    devm_attr_group_match,
2656                    /* cast away const */ (void *)grp));
2657 }
2658 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2659 
2660 /**
2661  * devm_device_add_groups - create a bunch of managed attribute groups
2662  * @dev:    The device to create the group for
2663  * @groups: The attribute groups to create, NULL terminated
2664  *
2665  * This function creates a bunch of managed attribute groups.  If an error
2666  * occurs when creating a group, all previously created groups will be
2667  * removed, unwinding everything back to the original state when this
2668  * function was called.  It will explicitly warn and error if any of the
2669  * attribute files being created already exist.
2670  *
2671  * Returns 0 on success or error code from sysfs_create_group on failure.
2672  */
2673 int devm_device_add_groups(struct device *dev,
2674                const struct attribute_group **groups)
2675 {
2676     union device_attr_group_devres *devres;
2677     int error;
2678 
2679     devres = devres_alloc(devm_attr_groups_remove,
2680                   sizeof(*devres), GFP_KERNEL);
2681     if (!devres)
2682         return -ENOMEM;
2683 
2684     error = sysfs_create_groups(&dev->kobj, groups);
2685     if (error) {
2686         devres_free(devres);
2687         return error;
2688     }
2689 
2690     devres->groups = groups;
2691     devres_add(dev, devres);
2692     return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2695 
2696 /**
2697  * devm_device_remove_groups - remove a list of managed groups
2698  *
2699  * @dev:    The device for the groups to be removed from
2700  * @groups: NULL terminated list of groups to be removed
2701  *
2702  * If groups is not NULL, remove the specified groups from the device.
2703  */
2704 void devm_device_remove_groups(struct device *dev,
2705                    const struct attribute_group **groups)
2706 {
2707     WARN_ON(devres_release(dev, devm_attr_groups_remove,
2708                    devm_attr_group_match,
2709                    /* cast away const */ (void *)groups));
2710 }
2711 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2712 
2713 static int device_add_attrs(struct device *dev)
2714 {
2715     struct class *class = dev->class;
2716     const struct device_type *type = dev->type;
2717     int error;
2718 
2719     if (class) {
2720         error = device_add_groups(dev, class->dev_groups);
2721         if (error)
2722             return error;
2723     }
2724 
2725     if (type) {
2726         error = device_add_groups(dev, type->groups);
2727         if (error)
2728             goto err_remove_class_groups;
2729     }
2730 
2731     error = device_add_groups(dev, dev->groups);
2732     if (error)
2733         goto err_remove_type_groups;
2734 
2735     if (device_supports_offline(dev) && !dev->offline_disabled) {
2736         error = device_create_file(dev, &dev_attr_online);
2737         if (error)
2738             goto err_remove_dev_groups;
2739     }
2740 
2741     if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2742         error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2743         if (error)
2744             goto err_remove_dev_online;
2745     }
2746 
2747     if (dev_removable_is_valid(dev)) {
2748         error = device_create_file(dev, &dev_attr_removable);
2749         if (error)
2750             goto err_remove_dev_waiting_for_supplier;
2751     }
2752 
2753     if (dev_add_physical_location(dev)) {
2754         error = device_add_group(dev,
2755             &dev_attr_physical_location_group);
2756         if (error)
2757             goto err_remove_dev_removable;
2758     }
2759 
2760     return 0;
2761 
2762  err_remove_dev_removable:
2763     device_remove_file(dev, &dev_attr_removable);
2764  err_remove_dev_waiting_for_supplier:
2765     device_remove_file(dev, &dev_attr_waiting_for_supplier);
2766  err_remove_dev_online:
2767     device_remove_file(dev, &dev_attr_online);
2768  err_remove_dev_groups:
2769     device_remove_groups(dev, dev->groups);
2770  err_remove_type_groups:
2771     if (type)
2772         device_remove_groups(dev, type->groups);
2773  err_remove_class_groups:
2774     if (class)
2775         device_remove_groups(dev, class->dev_groups);
2776 
2777     return error;
2778 }
2779 
2780 static void device_remove_attrs(struct device *dev)
2781 {
2782     struct class *class = dev->class;
2783     const struct device_type *type = dev->type;
2784 
2785     if (dev->physical_location) {
2786         device_remove_group(dev, &dev_attr_physical_location_group);
2787         kfree(dev->physical_location);
2788     }
2789 
2790     device_remove_file(dev, &dev_attr_removable);
2791     device_remove_file(dev, &dev_attr_waiting_for_supplier);
2792     device_remove_file(dev, &dev_attr_online);
2793     device_remove_groups(dev, dev->groups);
2794 
2795     if (type)
2796         device_remove_groups(dev, type->groups);
2797 
2798     if (class)
2799         device_remove_groups(dev, class->dev_groups);
2800 }
2801 
2802 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2803             char *buf)
2804 {
2805     return print_dev_t(buf, dev->devt);
2806 }
2807 static DEVICE_ATTR_RO(dev);
2808 
2809 /* /sys/devices/ */
2810 struct kset *devices_kset;
2811 
2812 /**
2813  * devices_kset_move_before - Move device in the devices_kset's list.
2814  * @deva: Device to move.
2815  * @devb: Device @deva should come before.
2816  */
2817 static void devices_kset_move_before(struct device *deva, struct device *devb)
2818 {
2819     if (!devices_kset)
2820         return;
2821     pr_debug("devices_kset: Moving %s before %s\n",
2822          dev_name(deva), dev_name(devb));
2823     spin_lock(&devices_kset->list_lock);
2824     list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2825     spin_unlock(&devices_kset->list_lock);
2826 }
2827 
2828 /**
2829  * devices_kset_move_after - Move device in the devices_kset's list.
2830  * @deva: Device to move
2831  * @devb: Device @deva should come after.
2832  */
2833 static void devices_kset_move_after(struct device *deva, struct device *devb)
2834 {
2835     if (!devices_kset)
2836         return;
2837     pr_debug("devices_kset: Moving %s after %s\n",
2838          dev_name(deva), dev_name(devb));
2839     spin_lock(&devices_kset->list_lock);
2840     list_move(&deva->kobj.entry, &devb->kobj.entry);
2841     spin_unlock(&devices_kset->list_lock);
2842 }
2843 
2844 /**
2845  * devices_kset_move_last - move the device to the end of devices_kset's list.
2846  * @dev: device to move
2847  */
2848 void devices_kset_move_last(struct device *dev)
2849 {
2850     if (!devices_kset)
2851         return;
2852     pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2853     spin_lock(&devices_kset->list_lock);
2854     list_move_tail(&dev->kobj.entry, &devices_kset->list);
2855     spin_unlock(&devices_kset->list_lock);
2856 }
2857 
2858 /**
2859  * device_create_file - create sysfs attribute file for device.
2860  * @dev: device.
2861  * @attr: device attribute descriptor.
2862  */
2863 int device_create_file(struct device *dev,
2864                const struct device_attribute *attr)
2865 {
2866     int error = 0;
2867 
2868     if (dev) {
2869         WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2870             "Attribute %s: write permission without 'store'\n",
2871             attr->attr.name);
2872         WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2873             "Attribute %s: read permission without 'show'\n",
2874             attr->attr.name);
2875         error = sysfs_create_file(&dev->kobj, &attr->attr);
2876     }
2877 
2878     return error;
2879 }
2880 EXPORT_SYMBOL_GPL(device_create_file);
2881 
2882 /**
2883  * device_remove_file - remove sysfs attribute file.
2884  * @dev: device.
2885  * @attr: device attribute descriptor.
2886  */
2887 void device_remove_file(struct device *dev,
2888             const struct device_attribute *attr)
2889 {
2890     if (dev)
2891         sysfs_remove_file(&dev->kobj, &attr->attr);
2892 }
2893 EXPORT_SYMBOL_GPL(device_remove_file);
2894 
2895 /**
2896  * device_remove_file_self - remove sysfs attribute file from its own method.
2897  * @dev: device.
2898  * @attr: device attribute descriptor.
2899  *
2900  * See kernfs_remove_self() for details.
2901  */
2902 bool device_remove_file_self(struct device *dev,
2903                  const struct device_attribute *attr)
2904 {
2905     if (dev)
2906         return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2907     else
2908         return false;
2909 }
2910 EXPORT_SYMBOL_GPL(device_remove_file_self);
2911 
2912 /**
2913  * device_create_bin_file - create sysfs binary attribute file for device.
2914  * @dev: device.
2915  * @attr: device binary attribute descriptor.
2916  */
2917 int device_create_bin_file(struct device *dev,
2918                const struct bin_attribute *attr)
2919 {
2920     int error = -EINVAL;
2921     if (dev)
2922         error = sysfs_create_bin_file(&dev->kobj, attr);
2923     return error;
2924 }
2925 EXPORT_SYMBOL_GPL(device_create_bin_file);
2926 
2927 /**
2928  * device_remove_bin_file - remove sysfs binary attribute file
2929  * @dev: device.
2930  * @attr: device binary attribute descriptor.
2931  */
2932 void device_remove_bin_file(struct device *dev,
2933                 const struct bin_attribute *attr)
2934 {
2935     if (dev)
2936         sysfs_remove_bin_file(&dev->kobj, attr);
2937 }
2938 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2939 
2940 static void klist_children_get(struct klist_node *n)
2941 {
2942     struct device_private *p = to_device_private_parent(n);
2943     struct device *dev = p->device;
2944 
2945     get_device(dev);
2946 }
2947 
2948 static void klist_children_put(struct klist_node *n)
2949 {
2950     struct device_private *p = to_device_private_parent(n);
2951     struct device *dev = p->device;
2952 
2953     put_device(dev);
2954 }
2955 
2956 /**
2957  * device_initialize - init device structure.
2958  * @dev: device.
2959  *
2960  * This prepares the device for use by other layers by initializing
2961  * its fields.
2962  * It is the first half of device_register(), if called by
2963  * that function, though it can also be called separately, so one
2964  * may use @dev's fields. In particular, get_device()/put_device()
2965  * may be used for reference counting of @dev after calling this
2966  * function.
2967  *
2968  * All fields in @dev must be initialized by the caller to 0, except
2969  * for those explicitly set to some other value.  The simplest
2970  * approach is to use kzalloc() to allocate the structure containing
2971  * @dev.
2972  *
2973  * NOTE: Use put_device() to give up your reference instead of freeing
2974  * @dev directly once you have called this function.
2975  */
2976 void device_initialize(struct device *dev)
2977 {
2978     dev->kobj.kset = devices_kset;
2979     kobject_init(&dev->kobj, &device_ktype);
2980     INIT_LIST_HEAD(&dev->dma_pools);
2981     mutex_init(&dev->mutex);
2982     lockdep_set_novalidate_class(&dev->mutex);
2983     spin_lock_init(&dev->devres_lock);
2984     INIT_LIST_HEAD(&dev->devres_head);
2985     device_pm_init(dev);
2986     set_dev_node(dev, NUMA_NO_NODE);
2987     INIT_LIST_HEAD(&dev->links.consumers);
2988     INIT_LIST_HEAD(&dev->links.suppliers);
2989     INIT_LIST_HEAD(&dev->links.defer_sync);
2990     dev->links.status = DL_DEV_NO_DRIVER;
2991 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2992     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2993     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2994     dev->dma_coherent = dma_default_coherent;
2995 #endif
2996 #ifdef CONFIG_SWIOTLB
2997     dev->dma_io_tlb_mem = &io_tlb_default_mem;
2998 #endif
2999 }
3000 EXPORT_SYMBOL_GPL(device_initialize);
3001 
3002 struct kobject *virtual_device_parent(struct device *dev)
3003 {
3004     static struct kobject *virtual_dir = NULL;
3005 
3006     if (!virtual_dir)
3007         virtual_dir = kobject_create_and_add("virtual",
3008                              &devices_kset->kobj);
3009 
3010     return virtual_dir;
3011 }
3012 
3013 struct class_dir {
3014     struct kobject kobj;
3015     struct class *class;
3016 };
3017 
3018 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3019 
3020 static void class_dir_release(struct kobject *kobj)
3021 {
3022     struct class_dir *dir = to_class_dir(kobj);
3023     kfree(dir);
3024 }
3025 
3026 static const
3027 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
3028 {
3029     struct class_dir *dir = to_class_dir(kobj);
3030     return dir->class->ns_type;
3031 }
3032 
3033 static struct kobj_type class_dir_ktype = {
3034     .release    = class_dir_release,
3035     .sysfs_ops  = &kobj_sysfs_ops,
3036     .child_ns_type  = class_dir_child_ns_type
3037 };
3038 
3039 static struct kobject *
3040 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3041 {
3042     struct class_dir *dir;
3043     int retval;
3044 
3045     dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3046     if (!dir)
3047         return ERR_PTR(-ENOMEM);
3048 
3049     dir->class = class;
3050     kobject_init(&dir->kobj, &class_dir_ktype);
3051 
3052     dir->kobj.kset = &class->p->glue_dirs;
3053 
3054     retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3055     if (retval < 0) {
3056         kobject_put(&dir->kobj);
3057         return ERR_PTR(retval);
3058     }
3059     return &dir->kobj;
3060 }
3061 
3062 static DEFINE_MUTEX(gdp_mutex);
3063 
3064 static struct kobject *get_device_parent(struct device *dev,
3065                      struct device *parent)
3066 {
3067     if (dev->class) {
3068         struct kobject *kobj = NULL;
3069         struct kobject *parent_kobj;
3070         struct kobject *k;
3071 
3072 #ifdef CONFIG_BLOCK
3073         /* block disks show up in /sys/block */
3074         if (sysfs_deprecated && dev->class == &block_class) {
3075             if (parent && parent->class == &block_class)
3076                 return &parent->kobj;
3077             return &block_class.p->subsys.kobj;
3078         }
3079 #endif
3080 
3081         /*
3082          * If we have no parent, we live in "virtual".
3083          * Class-devices with a non class-device as parent, live
3084          * in a "glue" directory to prevent namespace collisions.
3085          */
3086         if (parent == NULL)
3087             parent_kobj = virtual_device_parent(dev);
3088         else if (parent->class && !dev->class->ns_type)
3089             return &parent->kobj;
3090         else
3091             parent_kobj = &parent->kobj;
3092 
3093         mutex_lock(&gdp_mutex);
3094 
3095         /* find our class-directory at the parent and reference it */
3096         spin_lock(&dev->class->p->glue_dirs.list_lock);
3097         list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3098             if (k->parent == parent_kobj) {
3099                 kobj = kobject_get(k);
3100                 break;
3101             }
3102         spin_unlock(&dev->class->p->glue_dirs.list_lock);
3103         if (kobj) {
3104             mutex_unlock(&gdp_mutex);
3105             return kobj;
3106         }
3107 
3108         /* or create a new class-directory at the parent device */
3109         k = class_dir_create_and_add(dev->class, parent_kobj);
3110         /* do not emit an uevent for this simple "glue" directory */
3111         mutex_unlock(&gdp_mutex);
3112         return k;
3113     }
3114 
3115     /* subsystems can specify a default root directory for their devices */
3116     if (!parent && dev->bus && dev->bus->dev_root)
3117         return &dev->bus->dev_root->kobj;
3118 
3119     if (parent)
3120         return &parent->kobj;
3121     return NULL;
3122 }
3123 
3124 static inline bool live_in_glue_dir(struct kobject *kobj,
3125                     struct device *dev)
3126 {
3127     if (!kobj || !dev->class ||
3128         kobj->kset != &dev->class->p->glue_dirs)
3129         return false;
3130     return true;
3131 }
3132 
3133 static inline struct kobject *get_glue_dir(struct device *dev)
3134 {
3135     return dev->kobj.parent;
3136 }
3137 
3138 /**
3139  * kobject_has_children - Returns whether a kobject has children.
3140  * @kobj: the object to test
3141  *
3142  * This will return whether a kobject has other kobjects as children.
3143  *
3144  * It does NOT account for the presence of attribute files, only sub
3145  * directories. It also assumes there is no concurrent addition or
3146  * removal of such children, and thus relies on external locking.
3147  */
3148 static inline bool kobject_has_children(struct kobject *kobj)
3149 {
3150     WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3151 
3152     return kobj->sd && kobj->sd->dir.subdirs;
3153 }
3154 
3155 /*
3156  * make sure cleaning up dir as the last step, we need to make
3157  * sure .release handler of kobject is run with holding the
3158  * global lock
3159  */
3160 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3161 {
3162     unsigned int ref;
3163 
3164     /* see if we live in a "glue" directory */
3165     if (!live_in_glue_dir(glue_dir, dev))
3166         return;
3167 
3168     mutex_lock(&gdp_mutex);
3169     /**
3170      * There is a race condition between removing glue directory
3171      * and adding a new device under the glue directory.
3172      *
3173      * CPU1:                                         CPU2:
3174      *
3175      * device_add()
3176      *   get_device_parent()
3177      *     class_dir_create_and_add()
3178      *       kobject_add_internal()
3179      *         create_dir()    // create glue_dir
3180      *
3181      *                                               device_add()
3182      *                                                 get_device_parent()
3183      *                                                   kobject_get() // get glue_dir
3184      *
3185      * device_del()
3186      *   cleanup_glue_dir()
3187      *     kobject_del(glue_dir)
3188      *
3189      *                                               kobject_add()
3190      *                                                 kobject_add_internal()
3191      *                                                   create_dir() // in glue_dir
3192      *                                                     sysfs_create_dir_ns()
3193      *                                                       kernfs_create_dir_ns(sd)
3194      *
3195      *       sysfs_remove_dir() // glue_dir->sd=NULL
3196      *       sysfs_put()        // free glue_dir->sd
3197      *
3198      *                                                         // sd is freed
3199      *                                                         kernfs_new_node(sd)
3200      *                                                           kernfs_get(glue_dir)
3201      *                                                           kernfs_add_one()
3202      *                                                           kernfs_put()
3203      *
3204      * Before CPU1 remove last child device under glue dir, if CPU2 add
3205      * a new device under glue dir, the glue_dir kobject reference count
3206      * will be increase to 2 in kobject_get(k). And CPU2 has been called
3207      * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3208      * and sysfs_put(). This result in glue_dir->sd is freed.
3209      *
3210      * Then the CPU2 will see a stale "empty" but still potentially used
3211      * glue dir around in kernfs_new_node().
3212      *
3213      * In order to avoid this happening, we also should make sure that
3214      * kernfs_node for glue_dir is released in CPU1 only when refcount
3215      * for glue_dir kobj is 1.
3216      */
3217     ref = kref_read(&glue_dir->kref);
3218     if (!kobject_has_children(glue_dir) && !--ref)
3219         kobject_del(glue_dir);
3220     kobject_put(glue_dir);
3221     mutex_unlock(&gdp_mutex);
3222 }
3223 
3224 static int device_add_class_symlinks(struct device *dev)
3225 {
3226     struct device_node *of_node = dev_of_node(dev);
3227     int error;
3228 
3229     if (of_node) {
3230         error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3231         if (error)
3232             dev_warn(dev, "Error %d creating of_node link\n",error);
3233         /* An error here doesn't warrant bringing down the device */
3234     }
3235 
3236     if (!dev->class)
3237         return 0;
3238 
3239     error = sysfs_create_link(&dev->kobj,
3240                   &dev->class->p->subsys.kobj,
3241                   "subsystem");
3242     if (error)
3243         goto out_devnode;
3244 
3245     if (dev->parent && device_is_not_partition(dev)) {
3246         error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3247                       "device");
3248         if (error)
3249             goto out_subsys;
3250     }
3251 
3252 #ifdef CONFIG_BLOCK
3253     /* /sys/block has directories and does not need symlinks */
3254     if (sysfs_deprecated && dev->class == &block_class)
3255         return 0;
3256 #endif
3257 
3258     /* link in the class directory pointing to the device */
3259     error = sysfs_create_link(&dev->class->p->subsys.kobj,
3260                   &dev->kobj, dev_name(dev));
3261     if (error)
3262         goto out_device;
3263 
3264     return 0;
3265 
3266 out_device:
3267     sysfs_remove_link(&dev->kobj, "device");
3268 
3269 out_subsys:
3270     sysfs_remove_link(&dev->kobj, "subsystem");
3271 out_devnode:
3272     sysfs_remove_link(&dev->kobj, "of_node");
3273     return error;
3274 }
3275 
3276 static void device_remove_class_symlinks(struct device *dev)
3277 {
3278     if (dev_of_node(dev))
3279         sysfs_remove_link(&dev->kobj, "of_node");
3280 
3281     if (!dev->class)
3282         return;
3283 
3284     if (dev->parent && device_is_not_partition(dev))
3285         sysfs_remove_link(&dev->kobj, "device");
3286     sysfs_remove_link(&dev->kobj, "subsystem");
3287 #ifdef CONFIG_BLOCK
3288     if (sysfs_deprecated && dev->class == &block_class)
3289         return;
3290 #endif
3291     sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3292 }
3293 
3294 /**
3295  * dev_set_name - set a device name
3296  * @dev: device
3297  * @fmt: format string for the device's name
3298  */
3299 int dev_set_name(struct device *dev, const char *fmt, ...)
3300 {
3301     va_list vargs;
3302     int err;
3303 
3304     va_start(vargs, fmt);
3305     err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3306     va_end(vargs);
3307     return err;
3308 }
3309 EXPORT_SYMBOL_GPL(dev_set_name);
3310 
3311 /**
3312  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3313  * @dev: device
3314  *
3315  * By default we select char/ for new entries.  Setting class->dev_obj
3316  * to NULL prevents an entry from being created.  class->dev_kobj must
3317  * be set (or cleared) before any devices are registered to the class
3318  * otherwise device_create_sys_dev_entry() and
3319  * device_remove_sys_dev_entry() will disagree about the presence of
3320  * the link.
3321  */
3322 static struct kobject *device_to_dev_kobj(struct device *dev)
3323 {
3324     struct kobject *kobj;
3325 
3326     if (dev->class)
3327         kobj = dev->class->dev_kobj;
3328     else
3329         kobj = sysfs_dev_char_kobj;
3330 
3331     return kobj;
3332 }
3333 
3334 static int device_create_sys_dev_entry(struct device *dev)
3335 {
3336     struct kobject *kobj = device_to_dev_kobj(dev);
3337     int error = 0;
3338     char devt_str[15];
3339 
3340     if (kobj) {
3341         format_dev_t(devt_str, dev->devt);
3342         error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3343     }
3344 
3345     return error;
3346 }
3347 
3348 static void device_remove_sys_dev_entry(struct device *dev)
3349 {
3350     struct kobject *kobj = device_to_dev_kobj(dev);
3351     char devt_str[15];
3352 
3353     if (kobj) {
3354         format_dev_t(devt_str, dev->devt);
3355         sysfs_remove_link(kobj, devt_str);
3356     }
3357 }
3358 
3359 static int device_private_init(struct device *dev)
3360 {
3361     dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3362     if (!dev->p)
3363         return -ENOMEM;
3364     dev->p->device = dev;
3365     klist_init(&dev->p->klist_children, klist_children_get,
3366            klist_children_put);
3367     INIT_LIST_HEAD(&dev->p->deferred_probe);
3368     return 0;
3369 }
3370 
3371 /**
3372  * device_add - add device to device hierarchy.
3373  * @dev: device.
3374  *
3375  * This is part 2 of device_register(), though may be called
3376  * separately _iff_ device_initialize() has been called separately.
3377  *
3378  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3379  * to the global and sibling lists for the device, then
3380  * adds it to the other relevant subsystems of the driver model.
3381  *
3382  * Do not call this routine or device_register() more than once for
3383  * any device structure.  The driver model core is not designed to work
3384  * with devices that get unregistered and then spring back to life.
3385  * (Among other things, it's very hard to guarantee that all references
3386  * to the previous incarnation of @dev have been dropped.)  Allocate
3387  * and register a fresh new struct device instead.
3388  *
3389  * NOTE: _Never_ directly free @dev after calling this function, even
3390  * if it returned an error! Always use put_device() to give up your
3391  * reference instead.
3392  *
3393  * Rule of thumb is: if device_add() succeeds, you should call
3394  * device_del() when you want to get rid of it. If device_add() has
3395  * *not* succeeded, use *only* put_device() to drop the reference
3396  * count.
3397  */
3398 int device_add(struct device *dev)
3399 {
3400     struct device *parent;
3401     struct kobject *kobj;
3402     struct class_interface *class_intf;
3403     int error = -EINVAL;
3404     struct kobject *glue_dir = NULL;
3405 
3406     dev = get_device(dev);
3407     if (!dev)
3408         goto done;
3409 
3410     if (!dev->p) {
3411         error = device_private_init(dev);
3412         if (error)
3413             goto done;
3414     }
3415 
3416     /*
3417      * for statically allocated devices, which should all be converted
3418      * some day, we need to initialize the name. We prevent reading back
3419      * the name, and force the use of dev_name()
3420      */
3421     if (dev->init_name) {
3422         dev_set_name(dev, "%s", dev->init_name);
3423         dev->init_name = NULL;
3424     }
3425 
3426     /* subsystems can specify simple device enumeration */
3427     if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3428         dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3429 
3430     if (!dev_name(dev)) {
3431         error = -EINVAL;
3432         goto name_error;
3433     }
3434 
3435     pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3436 
3437     parent = get_device(dev->parent);
3438     kobj = get_device_parent(dev, parent);
3439     if (IS_ERR(kobj)) {
3440         error = PTR_ERR(kobj);
3441         goto parent_error;
3442     }
3443     if (kobj)
3444         dev->kobj.parent = kobj;
3445 
3446     /* use parent numa_node */
3447     if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3448         set_dev_node(dev, dev_to_node(parent));
3449 
3450     /* first, register with generic layer. */
3451     /* we require the name to be set before, and pass NULL */
3452     error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3453     if (error) {
3454         glue_dir = get_glue_dir(dev);
3455         goto Error;
3456     }
3457 
3458     /* notify platform of device entry */
3459     device_platform_notify(dev);
3460 
3461     error = device_create_file(dev, &dev_attr_uevent);
3462     if (error)
3463         goto attrError;
3464 
3465     error = device_add_class_symlinks(dev);
3466     if (error)
3467         goto SymlinkError;
3468     error = device_add_attrs(dev);
3469     if (error)
3470         goto AttrsError;
3471     error = bus_add_device(dev);
3472     if (error)
3473         goto BusError;
3474     error = dpm_sysfs_add(dev);
3475     if (error)
3476         goto DPMError;
3477     device_pm_add(dev);
3478 
3479     if (MAJOR(dev->devt)) {
3480         error = device_create_file(dev, &dev_attr_dev);
3481         if (error)
3482             goto DevAttrError;
3483 
3484         error = device_create_sys_dev_entry(dev);
3485         if (error)
3486             goto SysEntryError;
3487 
3488         devtmpfs_create_node(dev);
3489     }
3490 
3491     /* Notify clients of device addition.  This call must come
3492      * after dpm_sysfs_add() and before kobject_uevent().
3493      */
3494     if (dev->bus)
3495         blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3496                          BUS_NOTIFY_ADD_DEVICE, dev);
3497 
3498     kobject_uevent(&dev->kobj, KOBJ_ADD);
3499 
3500     /*
3501      * Check if any of the other devices (consumers) have been waiting for
3502      * this device (supplier) to be added so that they can create a device
3503      * link to it.
3504      *
3505      * This needs to happen after device_pm_add() because device_link_add()
3506      * requires the supplier be registered before it's called.
3507      *
3508      * But this also needs to happen before bus_probe_device() to make sure
3509      * waiting consumers can link to it before the driver is bound to the
3510      * device and the driver sync_state callback is called for this device.
3511      */
3512     if (dev->fwnode && !dev->fwnode->dev) {
3513         dev->fwnode->dev = dev;
3514         fw_devlink_link_device(dev);
3515     }
3516 
3517     bus_probe_device(dev);
3518 
3519     /*
3520      * If all driver registration is done and a newly added device doesn't
3521      * match with any driver, don't block its consumers from probing in
3522      * case the consumer device is able to operate without this supplier.
3523      */
3524     if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3525         fw_devlink_unblock_consumers(dev);
3526 
3527     if (parent)
3528         klist_add_tail(&dev->p->knode_parent,
3529                    &parent->p->klist_children);
3530 
3531     if (dev->class) {
3532         mutex_lock(&dev->class->p->mutex);
3533         /* tie the class to the device */
3534         klist_add_tail(&dev->p->knode_class,
3535                    &dev->class->p->klist_devices);
3536 
3537         /* notify any interfaces that the device is here */
3538         list_for_each_entry(class_intf,
3539                     &dev->class->p->interfaces, node)
3540             if (class_intf->add_dev)
3541                 class_intf->add_dev(dev, class_intf);
3542         mutex_unlock(&dev->class->p->mutex);
3543     }
3544 done:
3545     put_device(dev);
3546     return error;
3547  SysEntryError:
3548     if (MAJOR(dev->devt))
3549         device_remove_file(dev, &dev_attr_dev);
3550  DevAttrError:
3551     device_pm_remove(dev);
3552     dpm_sysfs_remove(dev);
3553  DPMError:
3554     bus_remove_device(dev);
3555  BusError:
3556     device_remove_attrs(dev);
3557  AttrsError:
3558     device_remove_class_symlinks(dev);
3559  SymlinkError:
3560     device_remove_file(dev, &dev_attr_uevent);
3561  attrError:
3562     device_platform_notify_remove(dev);
3563     kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3564     glue_dir = get_glue_dir(dev);
3565     kobject_del(&dev->kobj);
3566  Error:
3567     cleanup_glue_dir(dev, glue_dir);
3568 parent_error:
3569     put_device(parent);
3570 name_error:
3571     kfree(dev->p);
3572     dev->p = NULL;
3573     goto done;
3574 }
3575 EXPORT_SYMBOL_GPL(device_add);
3576 
3577 /**
3578  * device_register - register a device with the system.
3579  * @dev: pointer to the device structure
3580  *
3581  * This happens in two clean steps - initialize the device
3582  * and add it to the system. The two steps can be called
3583  * separately, but this is the easiest and most common.
3584  * I.e. you should only call the two helpers separately if
3585  * have a clearly defined need to use and refcount the device
3586  * before it is added to the hierarchy.
3587  *
3588  * For more information, see the kerneldoc for device_initialize()
3589  * and device_add().
3590  *
3591  * NOTE: _Never_ directly free @dev after calling this function, even
3592  * if it returned an error! Always use put_device() to give up the
3593  * reference initialized in this function instead.
3594  */
3595 int device_register(struct device *dev)
3596 {
3597     device_initialize(dev);
3598     return device_add(dev);
3599 }
3600 EXPORT_SYMBOL_GPL(device_register);
3601 
3602 /**
3603  * get_device - increment reference count for device.
3604  * @dev: device.
3605  *
3606  * This simply forwards the call to kobject_get(), though
3607  * we do take care to provide for the case that we get a NULL
3608  * pointer passed in.
3609  */
3610 struct device *get_device(struct device *dev)
3611 {
3612     return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3613 }
3614 EXPORT_SYMBOL_GPL(get_device);
3615 
3616 /**
3617  * put_device - decrement reference count.
3618  * @dev: device in question.
3619  */
3620 void put_device(struct device *dev)
3621 {
3622     /* might_sleep(); */
3623     if (dev)
3624         kobject_put(&dev->kobj);
3625 }
3626 EXPORT_SYMBOL_GPL(put_device);
3627 
3628 bool kill_device(struct device *dev)
3629 {
3630     /*
3631      * Require the device lock and set the "dead" flag to guarantee that
3632      * the update behavior is consistent with the other bitfields near
3633      * it and that we cannot have an asynchronous probe routine trying
3634      * to run while we are tearing out the bus/class/sysfs from
3635      * underneath the device.
3636      */
3637     device_lock_assert(dev);
3638 
3639     if (dev->p->dead)
3640         return false;
3641     dev->p->dead = true;
3642     return true;
3643 }
3644 EXPORT_SYMBOL_GPL(kill_device);
3645 
3646 /**
3647  * device_del - delete device from system.
3648  * @dev: device.
3649  *
3650  * This is the first part of the device unregistration
3651  * sequence. This removes the device from the lists we control
3652  * from here, has it removed from the other driver model
3653  * subsystems it was added to in device_add(), and removes it
3654  * from the kobject hierarchy.
3655  *
3656  * NOTE: this should be called manually _iff_ device_add() was
3657  * also called manually.
3658  */
3659 void device_del(struct device *dev)
3660 {
3661     struct device *parent = dev->parent;
3662     struct kobject *glue_dir = NULL;
3663     struct class_interface *class_intf;
3664     unsigned int noio_flag;
3665 
3666     device_lock(dev);
3667     kill_device(dev);
3668     device_unlock(dev);
3669 
3670     if (dev->fwnode && dev->fwnode->dev == dev)
3671         dev->fwnode->dev = NULL;
3672 
3673     /* Notify clients of device removal.  This call must come
3674      * before dpm_sysfs_remove().
3675      */
3676     noio_flag = memalloc_noio_save();
3677     if (dev->bus)
3678         blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3679                          BUS_NOTIFY_DEL_DEVICE, dev);
3680 
3681     dpm_sysfs_remove(dev);
3682     if (parent)
3683         klist_del(&dev->p->knode_parent);
3684     if (MAJOR(dev->devt)) {
3685         devtmpfs_delete_node(dev);
3686         device_remove_sys_dev_entry(dev);
3687         device_remove_file(dev, &dev_attr_dev);
3688     }
3689     if (dev->class) {
3690         device_remove_class_symlinks(dev);
3691 
3692         mutex_lock(&dev->class->p->mutex);
3693         /* notify any interfaces that the device is now gone */
3694         list_for_each_entry(class_intf,
3695                     &dev->class->p->interfaces, node)
3696             if (class_intf->remove_dev)
3697                 class_intf->remove_dev(dev, class_intf);
3698         /* remove the device from the class list */
3699         klist_del(&dev->p->knode_class);
3700         mutex_unlock(&dev->class->p->mutex);
3701     }
3702     device_remove_file(dev, &dev_attr_uevent);
3703     device_remove_attrs(dev);
3704     bus_remove_device(dev);
3705     device_pm_remove(dev);
3706     driver_deferred_probe_del(dev);
3707     device_platform_notify_remove(dev);
3708     device_links_purge(dev);
3709 
3710     if (dev->bus)
3711         blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3712                          BUS_NOTIFY_REMOVED_DEVICE, dev);
3713     kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3714     glue_dir = get_glue_dir(dev);
3715     kobject_del(&dev->kobj);
3716     cleanup_glue_dir(dev, glue_dir);
3717     memalloc_noio_restore(noio_flag);
3718     put_device(parent);
3719 }
3720 EXPORT_SYMBOL_GPL(device_del);
3721 
3722 /**
3723  * device_unregister - unregister device from system.
3724  * @dev: device going away.
3725  *
3726  * We do this in two parts, like we do device_register(). First,
3727  * we remove it from all the subsystems with device_del(), then
3728  * we decrement the reference count via put_device(). If that
3729  * is the final reference count, the device will be cleaned up
3730  * via device_release() above. Otherwise, the structure will
3731  * stick around until the final reference to the device is dropped.
3732  */
3733 void device_unregister(struct device *dev)
3734 {
3735     pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3736     device_del(dev);
3737     put_device(dev);
3738 }
3739 EXPORT_SYMBOL_GPL(device_unregister);
3740 
3741 static struct device *prev_device(struct klist_iter *i)
3742 {
3743     struct klist_node *n = klist_prev(i);
3744     struct device *dev = NULL;
3745     struct device_private *p;
3746 
3747     if (n) {
3748         p = to_device_private_parent(n);
3749         dev = p->device;
3750     }
3751     return dev;
3752 }
3753 
3754 static struct device *next_device(struct klist_iter *i)
3755 {
3756     struct klist_node *n = klist_next(i);
3757     struct device *dev = NULL;
3758     struct device_private *p;
3759 
3760     if (n) {
3761         p = to_device_private_parent(n);
3762         dev = p->device;
3763     }
3764     return dev;
3765 }
3766 
3767 /**
3768  * device_get_devnode - path of device node file
3769  * @dev: device
3770  * @mode: returned file access mode
3771  * @uid: returned file owner
3772  * @gid: returned file group
3773  * @tmp: possibly allocated string
3774  *
3775  * Return the relative path of a possible device node.
3776  * Non-default names may need to allocate a memory to compose
3777  * a name. This memory is returned in tmp and needs to be
3778  * freed by the caller.
3779  */
3780 const char *device_get_devnode(struct device *dev,
3781                    umode_t *mode, kuid_t *uid, kgid_t *gid,
3782                    const char **tmp)
3783 {
3784     char *s;
3785 
3786     *tmp = NULL;
3787 
3788     /* the device type may provide a specific name */
3789     if (dev->type && dev->type->devnode)
3790         *tmp = dev->type->devnode(dev, mode, uid, gid);
3791     if (*tmp)
3792         return *tmp;
3793 
3794     /* the class may provide a specific name */
3795     if (dev->class && dev->class->devnode)
3796         *tmp = dev->class->devnode(dev, mode);
3797     if (*tmp)
3798         return *tmp;
3799 
3800     /* return name without allocation, tmp == NULL */
3801     if (strchr(dev_name(dev), '!') == NULL)
3802         return dev_name(dev);
3803 
3804     /* replace '!' in the name with '/' */
3805     s = kstrdup(dev_name(dev), GFP_KERNEL);
3806     if (!s)
3807         return NULL;
3808     strreplace(s, '!', '/');
3809     return *tmp = s;
3810 }
3811 
3812 /**
3813  * device_for_each_child - device child iterator.
3814  * @parent: parent struct device.
3815  * @fn: function to be called for each device.
3816  * @data: data for the callback.
3817  *
3818  * Iterate over @parent's child devices, and call @fn for each,
3819  * passing it @data.
3820  *
3821  * We check the return of @fn each time. If it returns anything
3822  * other than 0, we break out and return that value.
3823  */
3824 int device_for_each_child(struct device *parent, void *data,
3825               int (*fn)(struct device *dev, void *data))
3826 {
3827     struct klist_iter i;
3828     struct device *child;
3829     int error = 0;
3830 
3831     if (!parent->p)
3832         return 0;
3833 
3834     klist_iter_init(&parent->p->klist_children, &i);
3835     while (!error && (child = next_device(&i)))
3836         error = fn(child, data);
3837     klist_iter_exit(&i);
3838     return error;
3839 }
3840 EXPORT_SYMBOL_GPL(device_for_each_child);
3841 
3842 /**
3843  * device_for_each_child_reverse - device child iterator in reversed order.
3844  * @parent: parent struct device.
3845  * @fn: function to be called for each device.
3846  * @data: data for the callback.
3847  *
3848  * Iterate over @parent's child devices, and call @fn for each,
3849  * passing it @data.
3850  *
3851  * We check the return of @fn each time. If it returns anything
3852  * other than 0, we break out and return that value.
3853  */
3854 int device_for_each_child_reverse(struct device *parent, void *data,
3855                   int (*fn)(struct device *dev, void *data))
3856 {
3857     struct klist_iter i;
3858     struct device *child;
3859     int error = 0;
3860 
3861     if (!parent->p)
3862         return 0;
3863 
3864     klist_iter_init(&parent->p->klist_children, &i);
3865     while ((child = prev_device(&i)) && !error)
3866         error = fn(child, data);
3867     klist_iter_exit(&i);
3868     return error;
3869 }
3870 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3871 
3872 /**
3873  * device_find_child - device iterator for locating a particular device.
3874  * @parent: parent struct device
3875  * @match: Callback function to check device
3876  * @data: Data to pass to match function
3877  *
3878  * This is similar to the device_for_each_child() function above, but it
3879  * returns a reference to a device that is 'found' for later use, as
3880  * determined by the @match callback.
3881  *
3882  * The callback should return 0 if the device doesn't match and non-zero
3883  * if it does.  If the callback returns non-zero and a reference to the
3884  * current device can be obtained, this function will return to the caller
3885  * and not iterate over any more devices.
3886  *
3887  * NOTE: you will need to drop the reference with put_device() after use.
3888  */
3889 struct device *device_find_child(struct device *parent, void *data,
3890                  int (*match)(struct device *dev, void *data))
3891 {
3892     struct klist_iter i;
3893     struct device *child;
3894 
3895     if (!parent)
3896         return NULL;
3897 
3898     klist_iter_init(&parent->p->klist_children, &i);
3899     while ((child = next_device(&i)))
3900         if (match(child, data) && get_device(child))
3901             break;
3902     klist_iter_exit(&i);
3903     return child;
3904 }
3905 EXPORT_SYMBOL_GPL(device_find_child);
3906 
3907 /**
3908  * device_find_child_by_name - device iterator for locating a child device.
3909  * @parent: parent struct device
3910  * @name: name of the child device
3911  *
3912  * This is similar to the device_find_child() function above, but it
3913  * returns a reference to a device that has the name @name.
3914  *
3915  * NOTE: you will need to drop the reference with put_device() after use.
3916  */
3917 struct device *device_find_child_by_name(struct device *parent,
3918                      const char *name)
3919 {
3920     struct klist_iter i;
3921     struct device *child;
3922 
3923     if (!parent)
3924         return NULL;
3925 
3926     klist_iter_init(&parent->p->klist_children, &i);
3927     while ((child = next_device(&i)))
3928         if (sysfs_streq(dev_name(child), name) && get_device(child))
3929             break;
3930     klist_iter_exit(&i);
3931     return child;
3932 }
3933 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3934 
3935 static int match_any(struct device *dev, void *unused)
3936 {
3937     return 1;
3938 }
3939 
3940 /**
3941  * device_find_any_child - device iterator for locating a child device, if any.
3942  * @parent: parent struct device
3943  *
3944  * This is similar to the device_find_child() function above, but it
3945  * returns a reference to a child device, if any.
3946  *
3947  * NOTE: you will need to drop the reference with put_device() after use.
3948  */
3949 struct device *device_find_any_child(struct device *parent)
3950 {
3951     return device_find_child(parent, NULL, match_any);
3952 }
3953 EXPORT_SYMBOL_GPL(device_find_any_child);
3954 
3955 int __init devices_init(void)
3956 {
3957     devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3958     if (!devices_kset)
3959         return -ENOMEM;
3960     dev_kobj = kobject_create_and_add("dev", NULL);
3961     if (!dev_kobj)
3962         goto dev_kobj_err;
3963     sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3964     if (!sysfs_dev_block_kobj)
3965         goto block_kobj_err;
3966     sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3967     if (!sysfs_dev_char_kobj)
3968         goto char_kobj_err;
3969 
3970     return 0;
3971 
3972  char_kobj_err:
3973     kobject_put(sysfs_dev_block_kobj);
3974  block_kobj_err:
3975     kobject_put(dev_kobj);
3976  dev_kobj_err:
3977     kset_unregister(devices_kset);
3978     return -ENOMEM;
3979 }
3980 
3981 static int device_check_offline(struct device *dev, void *not_used)
3982 {
3983     int ret;
3984 
3985     ret = device_for_each_child(dev, NULL, device_check_offline);
3986     if (ret)
3987         return ret;
3988 
3989     return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3990 }
3991 
3992 /**
3993  * device_offline - Prepare the device for hot-removal.
3994  * @dev: Device to be put offline.
3995  *
3996  * Execute the device bus type's .offline() callback, if present, to prepare
3997  * the device for a subsequent hot-removal.  If that succeeds, the device must
3998  * not be used until either it is removed or its bus type's .online() callback
3999  * is executed.
4000  *
4001  * Call under device_hotplug_lock.
4002  */
4003 int device_offline(struct device *dev)
4004 {
4005     int ret;
4006 
4007     if (dev->offline_disabled)
4008         return -EPERM;
4009 
4010     ret = device_for_each_child(dev, NULL, device_check_offline);
4011     if (ret)
4012         return ret;
4013 
4014     device_lock(dev);
4015     if (device_supports_offline(dev)) {
4016         if (dev->offline) {
4017             ret = 1;
4018         } else {
4019             ret = dev->bus->offline(dev);
4020             if (!ret) {
4021                 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4022                 dev->offline = true;
4023             }
4024         }
4025     }
4026     device_unlock(dev);
4027 
4028     return ret;
4029 }
4030 
4031 /**
4032  * device_online - Put the device back online after successful device_offline().
4033  * @dev: Device to be put back online.
4034  *
4035  * If device_offline() has been successfully executed for @dev, but the device
4036  * has not been removed subsequently, execute its bus type's .online() callback
4037  * to indicate that the device can be used again.
4038  *
4039  * Call under device_hotplug_lock.
4040  */
4041 int device_online(struct device *dev)
4042 {
4043     int ret = 0;
4044 
4045     device_lock(dev);
4046     if (device_supports_offline(dev)) {
4047         if (dev->offline) {
4048             ret = dev->bus->online(dev);
4049             if (!ret) {
4050                 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4051                 dev->offline = false;
4052             }
4053         } else {
4054             ret = 1;
4055         }
4056     }
4057     device_unlock(dev);
4058 
4059     return ret;
4060 }
4061 
4062 struct root_device {
4063     struct device dev;
4064     struct module *owner;
4065 };
4066 
4067 static inline struct root_device *to_root_device(struct device *d)
4068 {
4069     return container_of(d, struct root_device, dev);
4070 }
4071 
4072 static void root_device_release(struct device *dev)
4073 {
4074     kfree(to_root_device(dev));
4075 }
4076 
4077 /**
4078  * __root_device_register - allocate and register a root device
4079  * @name: root device name
4080  * @owner: owner module of the root device, usually THIS_MODULE
4081  *
4082  * This function allocates a root device and registers it
4083  * using device_register(). In order to free the returned
4084  * device, use root_device_unregister().
4085  *
4086  * Root devices are dummy devices which allow other devices
4087  * to be grouped under /sys/devices. Use this function to
4088  * allocate a root device and then use it as the parent of
4089  * any device which should appear under /sys/devices/{name}
4090  *
4091  * The /sys/devices/{name} directory will also contain a
4092  * 'module' symlink which points to the @owner directory
4093  * in sysfs.
4094  *
4095  * Returns &struct device pointer on success, or ERR_PTR() on error.
4096  *
4097  * Note: You probably want to use root_device_register().
4098  */
4099 struct device *__root_device_register(const char *name, struct module *owner)
4100 {
4101     struct root_device *root;
4102     int err = -ENOMEM;
4103 
4104     root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4105     if (!root)
4106         return ERR_PTR(err);
4107 
4108     err = dev_set_name(&root->dev, "%s", name);
4109     if (err) {
4110         kfree(root);
4111         return ERR_PTR(err);
4112     }
4113 
4114     root->dev.release = root_device_release;
4115 
4116     err = device_register(&root->dev);
4117     if (err) {
4118         put_device(&root->dev);
4119         return ERR_PTR(err);
4120     }
4121 
4122 #ifdef CONFIG_MODULES   /* gotta find a "cleaner" way to do this */
4123     if (owner) {
4124         struct module_kobject *mk = &owner->mkobj;
4125 
4126         err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4127         if (err) {
4128             device_unregister(&root->dev);
4129             return ERR_PTR(err);
4130         }
4131         root->owner = owner;
4132     }
4133 #endif
4134 
4135     return &root->dev;
4136 }
4137 EXPORT_SYMBOL_GPL(__root_device_register);
4138 
4139 /**
4140  * root_device_unregister - unregister and free a root device
4141  * @dev: device going away
4142  *
4143  * This function unregisters and cleans up a device that was created by
4144  * root_device_register().
4145  */
4146 void root_device_unregister(struct device *dev)
4147 {
4148     struct root_device *root = to_root_device(dev);
4149 
4150     if (root->owner)
4151         sysfs_remove_link(&root->dev.kobj, "module");
4152 
4153     device_unregister(dev);
4154 }
4155 EXPORT_SYMBOL_GPL(root_device_unregister);
4156 
4157 
4158 static void device_create_release(struct device *dev)
4159 {
4160     pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4161     kfree(dev);
4162 }
4163 
4164 static __printf(6, 0) struct device *
4165 device_create_groups_vargs(struct class *class, struct device *parent,
4166                dev_t devt, void *drvdata,
4167                const struct attribute_group **groups,
4168                const char *fmt, va_list args)
4169 {
4170     struct device *dev = NULL;
4171     int retval = -ENODEV;
4172 
4173     if (class == NULL || IS_ERR(class))
4174         goto error;
4175 
4176     dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4177     if (!dev) {
4178         retval = -ENOMEM;
4179         goto error;
4180     }
4181 
4182     device_initialize(dev);
4183     dev->devt = devt;
4184     dev->class = class;
4185     dev->parent = parent;
4186     dev->groups = groups;
4187     dev->release = device_create_release;
4188     dev_set_drvdata(dev, drvdata);
4189 
4190     retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4191     if (retval)
4192         goto error;
4193 
4194     retval = device_add(dev);
4195     if (retval)
4196         goto error;
4197 
4198     return dev;
4199 
4200 error:
4201     put_device(dev);
4202     return ERR_PTR(retval);
4203 }
4204 
4205 /**
4206  * device_create - creates a device and registers it with sysfs
4207  * @class: pointer to the struct class that this device should be registered to
4208  * @parent: pointer to the parent struct device of this new device, if any
4209  * @devt: the dev_t for the char device to be added
4210  * @drvdata: the data to be added to the device for callbacks
4211  * @fmt: string for the device's name
4212  *
4213  * This function can be used by char device classes.  A struct device
4214  * will be created in sysfs, registered to the specified class.
4215  *
4216  * A "dev" file will be created, showing the dev_t for the device, if
4217  * the dev_t is not 0,0.
4218  * If a pointer to a parent struct device is passed in, the newly created
4219  * struct device will be a child of that device in sysfs.
4220  * The pointer to the struct device will be returned from the call.
4221  * Any further sysfs files that might be required can be created using this
4222  * pointer.
4223  *
4224  * Returns &struct device pointer on success, or ERR_PTR() on error.
4225  *
4226  * Note: the struct class passed to this function must have previously
4227  * been created with a call to class_create().
4228  */
4229 struct device *device_create(struct class *class, struct device *parent,
4230                  dev_t devt, void *drvdata, const char *fmt, ...)
4231 {
4232     va_list vargs;
4233     struct device *dev;
4234 
4235     va_start(vargs, fmt);
4236     dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4237                       fmt, vargs);
4238     va_end(vargs);
4239     return dev;
4240 }
4241 EXPORT_SYMBOL_GPL(device_create);
4242 
4243 /**
4244  * device_create_with_groups - creates a device and registers it with sysfs
4245  * @class: pointer to the struct class that this device should be registered to
4246  * @parent: pointer to the parent struct device of this new device, if any
4247  * @devt: the dev_t for the char device to be added
4248  * @drvdata: the data to be added to the device for callbacks
4249  * @groups: NULL-terminated list of attribute groups to be created
4250  * @fmt: string for the device's name
4251  *
4252  * This function can be used by char device classes.  A struct device
4253  * will be created in sysfs, registered to the specified class.
4254  * Additional attributes specified in the groups parameter will also
4255  * be created automatically.
4256  *
4257  * A "dev" file will be created, showing the dev_t for the device, if
4258  * the dev_t is not 0,0.
4259  * If a pointer to a parent struct device is passed in, the newly created
4260  * struct device will be a child of that device in sysfs.
4261  * The pointer to the struct device will be returned from the call.
4262  * Any further sysfs files that might be required can be created using this
4263  * pointer.
4264  *
4265  * Returns &struct device pointer on success, or ERR_PTR() on error.
4266  *
4267  * Note: the struct class passed to this function must have previously
4268  * been created with a call to class_create().
4269  */
4270 struct device *device_create_with_groups(struct class *class,
4271                      struct device *parent, dev_t devt,
4272                      void *drvdata,
4273                      const struct attribute_group **groups,
4274                      const char *fmt, ...)
4275 {
4276     va_list vargs;
4277     struct device *dev;
4278 
4279     va_start(vargs, fmt);
4280     dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4281                      fmt, vargs);
4282     va_end(vargs);
4283     return dev;
4284 }
4285 EXPORT_SYMBOL_GPL(device_create_with_groups);
4286 
4287 /**
4288  * device_destroy - removes a device that was created with device_create()
4289  * @class: pointer to the struct class that this device was registered with
4290  * @devt: the dev_t of the device that was previously registered
4291  *
4292  * This call unregisters and cleans up a device that was created with a
4293  * call to device_create().
4294  */
4295 void device_destroy(struct class *class, dev_t devt)
4296 {
4297     struct device *dev;
4298 
4299     dev = class_find_device_by_devt(class, devt);
4300     if (dev) {
4301         put_device(dev);
4302         device_unregister(dev);
4303     }
4304 }
4305 EXPORT_SYMBOL_GPL(device_destroy);
4306 
4307 /**
4308  * device_rename - renames a device
4309  * @dev: the pointer to the struct device to be renamed
4310  * @new_name: the new name of the device
4311  *
4312  * It is the responsibility of the caller to provide mutual
4313  * exclusion between two different calls of device_rename
4314  * on the same device to ensure that new_name is valid and
4315  * won't conflict with other devices.
4316  *
4317  * Note: Don't call this function.  Currently, the networking layer calls this
4318  * function, but that will change.  The following text from Kay Sievers offers
4319  * some insight:
4320  *
4321  * Renaming devices is racy at many levels, symlinks and other stuff are not
4322  * replaced atomically, and you get a "move" uevent, but it's not easy to
4323  * connect the event to the old and new device. Device nodes are not renamed at
4324  * all, there isn't even support for that in the kernel now.
4325  *
4326  * In the meantime, during renaming, your target name might be taken by another
4327  * driver, creating conflicts. Or the old name is taken directly after you
4328  * renamed it -- then you get events for the same DEVPATH, before you even see
4329  * the "move" event. It's just a mess, and nothing new should ever rely on
4330  * kernel device renaming. Besides that, it's not even implemented now for
4331  * other things than (driver-core wise very simple) network devices.
4332  *
4333  * We are currently about to change network renaming in udev to completely
4334  * disallow renaming of devices in the same namespace as the kernel uses,
4335  * because we can't solve the problems properly, that arise with swapping names
4336  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4337  * be allowed to some other name than eth[0-9]*, for the aforementioned
4338  * reasons.
4339  *
4340  * Make up a "real" name in the driver before you register anything, or add
4341  * some other attributes for userspace to find the device, or use udev to add
4342  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4343  * don't even want to get into that and try to implement the missing pieces in
4344  * the core. We really have other pieces to fix in the driver core mess. :)
4345  */
4346 int device_rename(struct device *dev, const char *new_name)
4347 {
4348     struct kobject *kobj = &dev->kobj;
4349     char *old_device_name = NULL;
4350     int error;
4351 
4352     dev = get_device(dev);
4353     if (!dev)
4354         return -EINVAL;
4355 
4356     dev_dbg(dev, "renaming to %s\n", new_name);
4357 
4358     old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4359     if (!old_device_name) {
4360         error = -ENOMEM;
4361         goto out;
4362     }
4363 
4364     if (dev->class) {
4365         error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4366                          kobj, old_device_name,
4367                          new_name, kobject_namespace(kobj));
4368         if (error)
4369             goto out;
4370     }
4371 
4372     error = kobject_rename(kobj, new_name);
4373     if (error)
4374         goto out;
4375 
4376 out:
4377     put_device(dev);
4378 
4379     kfree(old_device_name);
4380 
4381     return error;
4382 }
4383 EXPORT_SYMBOL_GPL(device_rename);
4384 
4385 static int device_move_class_links(struct device *dev,
4386                    struct device *old_parent,
4387                    struct device *new_parent)
4388 {
4389     int error = 0;
4390 
4391     if (old_parent)
4392         sysfs_remove_link(&dev->kobj, "device");
4393     if (new_parent)
4394         error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4395                       "device");
4396     return error;
4397 }
4398 
4399 /**
4400  * device_move - moves a device to a new parent
4401  * @dev: the pointer to the struct device to be moved
4402  * @new_parent: the new parent of the device (can be NULL)
4403  * @dpm_order: how to reorder the dpm_list
4404  */
4405 int device_move(struct device *dev, struct device *new_parent,
4406         enum dpm_order dpm_order)
4407 {
4408     int error;
4409     struct device *old_parent;
4410     struct kobject *new_parent_kobj;
4411 
4412     dev = get_device(dev);
4413     if (!dev)
4414         return -EINVAL;
4415 
4416     device_pm_lock();
4417     new_parent = get_device(new_parent);
4418     new_parent_kobj = get_device_parent(dev, new_parent);
4419     if (IS_ERR(new_parent_kobj)) {
4420         error = PTR_ERR(new_parent_kobj);
4421         put_device(new_parent);
4422         goto out;
4423     }
4424 
4425     pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4426          __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4427     error = kobject_move(&dev->kobj, new_parent_kobj);
4428     if (error) {
4429         cleanup_glue_dir(dev, new_parent_kobj);
4430         put_device(new_parent);
4431         goto out;
4432     }
4433     old_parent = dev->parent;
4434     dev->parent = new_parent;
4435     if (old_parent)
4436         klist_remove(&dev->p->knode_parent);
4437     if (new_parent) {
4438         klist_add_tail(&dev->p->knode_parent,
4439                    &new_parent->p->klist_children);
4440         set_dev_node(dev, dev_to_node(new_parent));
4441     }
4442 
4443     if (dev->class) {
4444         error = device_move_class_links(dev, old_parent, new_parent);
4445         if (error) {
4446             /* We ignore errors on cleanup since we're hosed anyway... */
4447             device_move_class_links(dev, new_parent, old_parent);
4448             if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4449                 if (new_parent)
4450                     klist_remove(&dev->p->knode_parent);
4451                 dev->parent = old_parent;
4452                 if (old_parent) {
4453                     klist_add_tail(&dev->p->knode_parent,
4454                                &old_parent->p->klist_children);
4455                     set_dev_node(dev, dev_to_node(old_parent));
4456                 }
4457             }
4458             cleanup_glue_dir(dev, new_parent_kobj);
4459             put_device(new_parent);
4460             goto out;
4461         }
4462     }
4463     switch (dpm_order) {
4464     case DPM_ORDER_NONE:
4465         break;
4466     case DPM_ORDER_DEV_AFTER_PARENT:
4467         device_pm_move_after(dev, new_parent);
4468         devices_kset_move_after(dev, new_parent);
4469         break;
4470     case DPM_ORDER_PARENT_BEFORE_DEV:
4471         device_pm_move_before(new_parent, dev);
4472         devices_kset_move_before(new_parent, dev);
4473         break;
4474     case DPM_ORDER_DEV_LAST:
4475         device_pm_move_last(dev);
4476         devices_kset_move_last(dev);
4477         break;
4478     }
4479 
4480     put_device(old_parent);
4481 out:
4482     device_pm_unlock();
4483     put_device(dev);
4484     return error;
4485 }
4486 EXPORT_SYMBOL_GPL(device_move);
4487 
4488 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4489                      kgid_t kgid)
4490 {
4491     struct kobject *kobj = &dev->kobj;
4492     struct class *class = dev->class;
4493     const struct device_type *type = dev->type;
4494     int error;
4495 
4496     if (class) {
4497         /*
4498          * Change the device groups of the device class for @dev to
4499          * @kuid/@kgid.
4500          */
4501         error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4502                           kgid);
4503         if (error)
4504             return error;
4505     }
4506 
4507     if (type) {
4508         /*
4509          * Change the device groups of the device type for @dev to
4510          * @kuid/@kgid.
4511          */
4512         error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4513                           kgid);
4514         if (error)
4515             return error;
4516     }
4517 
4518     /* Change the device groups of @dev to @kuid/@kgid. */
4519     error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4520     if (error)
4521         return error;
4522 
4523     if (device_supports_offline(dev) && !dev->offline_disabled) {
4524         /* Change online device attributes of @dev to @kuid/@kgid. */
4525         error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4526                         kuid, kgid);
4527         if (error)
4528             return error;
4529     }
4530 
4531     return 0;
4532 }
4533 
4534 /**
4535  * device_change_owner - change the owner of an existing device.
4536  * @dev: device.
4537  * @kuid: new owner's kuid
4538  * @kgid: new owner's kgid
4539  *
4540  * This changes the owner of @dev and its corresponding sysfs entries to
4541  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4542  * core.
4543  *
4544  * Returns 0 on success or error code on failure.
4545  */
4546 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4547 {
4548     int error;
4549     struct kobject *kobj = &dev->kobj;
4550 
4551     dev = get_device(dev);
4552     if (!dev)
4553         return -EINVAL;
4554 
4555     /*
4556      * Change the kobject and the default attributes and groups of the
4557      * ktype associated with it to @kuid/@kgid.
4558      */
4559     error = sysfs_change_owner(kobj, kuid, kgid);
4560     if (error)
4561         goto out;
4562 
4563     /*
4564      * Change the uevent file for @dev to the new owner. The uevent file
4565      * was created in a separate step when @dev got added and we mirror
4566      * that step here.
4567      */
4568     error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4569                     kgid);
4570     if (error)
4571         goto out;
4572 
4573     /*
4574      * Change the device groups, the device groups associated with the
4575      * device class, and the groups associated with the device type of @dev
4576      * to @kuid/@kgid.
4577      */
4578     error = device_attrs_change_owner(dev, kuid, kgid);
4579     if (error)
4580         goto out;
4581 
4582     error = dpm_sysfs_change_owner(dev, kuid, kgid);
4583     if (error)
4584         goto out;
4585 
4586 #ifdef CONFIG_BLOCK
4587     if (sysfs_deprecated && dev->class == &block_class)
4588         goto out;
4589 #endif
4590 
4591     /*
4592      * Change the owner of the symlink located in the class directory of
4593      * the device class associated with @dev which points to the actual
4594      * directory entry for @dev to @kuid/@kgid. This ensures that the
4595      * symlink shows the same permissions as its target.
4596      */
4597     error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4598                     dev_name(dev), kuid, kgid);
4599     if (error)
4600         goto out;
4601 
4602 out:
4603     put_device(dev);
4604     return error;
4605 }
4606 EXPORT_SYMBOL_GPL(device_change_owner);
4607 
4608 /**
4609  * device_shutdown - call ->shutdown() on each device to shutdown.
4610  */
4611 void device_shutdown(void)
4612 {
4613     struct device *dev, *parent;
4614 
4615     wait_for_device_probe();
4616     device_block_probing();
4617 
4618     cpufreq_suspend();
4619 
4620     spin_lock(&devices_kset->list_lock);
4621     /*
4622      * Walk the devices list backward, shutting down each in turn.
4623      * Beware that device unplug events may also start pulling
4624      * devices offline, even as the system is shutting down.
4625      */
4626     while (!list_empty(&devices_kset->list)) {
4627         dev = list_entry(devices_kset->list.prev, struct device,
4628                 kobj.entry);
4629 
4630         /*
4631          * hold reference count of device's parent to
4632          * prevent it from being freed because parent's
4633          * lock is to be held
4634          */
4635         parent = get_device(dev->parent);
4636         get_device(dev);
4637         /*
4638          * Make sure the device is off the kset list, in the
4639          * event that dev->*->shutdown() doesn't remove it.
4640          */
4641         list_del_init(&dev->kobj.entry);
4642         spin_unlock(&devices_kset->list_lock);
4643 
4644         /* hold lock to avoid race with probe/release */
4645         if (parent)
4646             device_lock(parent);
4647         device_lock(dev);
4648 
4649         /* Don't allow any more runtime suspends */
4650         pm_runtime_get_noresume(dev);
4651         pm_runtime_barrier(dev);
4652 
4653         if (dev->class && dev->class->shutdown_pre) {
4654             if (initcall_debug)
4655                 dev_info(dev, "shutdown_pre\n");
4656             dev->class->shutdown_pre(dev);
4657         }
4658         if (dev->bus && dev->bus->shutdown) {
4659             if (initcall_debug)
4660                 dev_info(dev, "shutdown\n");
4661             dev->bus->shutdown(dev);
4662         } else if (dev->driver && dev->driver->shutdown) {
4663             if (initcall_debug)
4664                 dev_info(dev, "shutdown\n");
4665             dev->driver->shutdown(dev);
4666         }
4667 
4668         device_unlock(dev);
4669         if (parent)
4670             device_unlock(parent);
4671 
4672         put_device(dev);
4673         put_device(parent);
4674 
4675         spin_lock(&devices_kset->list_lock);
4676     }
4677     spin_unlock(&devices_kset->list_lock);
4678 }
4679 
4680 /*
4681  * Device logging functions
4682  */
4683 
4684 #ifdef CONFIG_PRINTK
4685 static void
4686 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4687 {
4688     const char *subsys;
4689 
4690     memset(dev_info, 0, sizeof(*dev_info));
4691 
4692     if (dev->class)
4693         subsys = dev->class->name;
4694     else if (dev->bus)
4695         subsys = dev->bus->name;
4696     else
4697         return;
4698 
4699     strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4700 
4701     /*
4702      * Add device identifier DEVICE=:
4703      *   b12:8         block dev_t
4704      *   c127:3        char dev_t
4705      *   n8            netdev ifindex
4706      *   +sound:card0  subsystem:devname
4707      */
4708     if (MAJOR(dev->devt)) {
4709         char c;
4710 
4711         if (strcmp(subsys, "block") == 0)
4712             c = 'b';
4713         else
4714             c = 'c';
4715 
4716         snprintf(dev_info->device, sizeof(dev_info->device),
4717              "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4718     } else if (strcmp(subsys, "net") == 0) {
4719         struct net_device *net = to_net_dev(dev);
4720 
4721         snprintf(dev_info->device, sizeof(dev_info->device),
4722              "n%u", net->ifindex);
4723     } else {
4724         snprintf(dev_info->device, sizeof(dev_info->device),
4725              "+%s:%s", subsys, dev_name(dev));
4726     }
4727 }
4728 
4729 int dev_vprintk_emit(int level, const struct device *dev,
4730              const char *fmt, va_list args)
4731 {
4732     struct dev_printk_info dev_info;
4733 
4734     set_dev_info(dev, &dev_info);
4735 
4736     return vprintk_emit(0, level, &dev_info, fmt, args);
4737 }
4738 EXPORT_SYMBOL(dev_vprintk_emit);
4739 
4740 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4741 {
4742     va_list args;
4743     int r;
4744 
4745     va_start(args, fmt);
4746 
4747     r = dev_vprintk_emit(level, dev, fmt, args);
4748 
4749     va_end(args);
4750 
4751     return r;
4752 }
4753 EXPORT_SYMBOL(dev_printk_emit);
4754 
4755 static void __dev_printk(const char *level, const struct device *dev,
4756             struct va_format *vaf)
4757 {
4758     if (dev)
4759         dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4760                 dev_driver_string(dev), dev_name(dev), vaf);
4761     else
4762         printk("%s(NULL device *): %pV", level, vaf);
4763 }
4764 
4765 void _dev_printk(const char *level, const struct device *dev,
4766          const char *fmt, ...)
4767 {
4768     struct va_format vaf;
4769     va_list args;
4770 
4771     va_start(args, fmt);
4772 
4773     vaf.fmt = fmt;
4774     vaf.va = &args;
4775 
4776     __dev_printk(level, dev, &vaf);
4777 
4778     va_end(args);
4779 }
4780 EXPORT_SYMBOL(_dev_printk);
4781 
4782 #define define_dev_printk_level(func, kern_level)       \
4783 void func(const struct device *dev, const char *fmt, ...)   \
4784 {                               \
4785     struct va_format vaf;                   \
4786     va_list args;                       \
4787                                 \
4788     va_start(args, fmt);                    \
4789                                 \
4790     vaf.fmt = fmt;                      \
4791     vaf.va = &args;                     \
4792                                 \
4793     __dev_printk(kern_level, dev, &vaf);            \
4794                                 \
4795     va_end(args);                       \
4796 }                               \
4797 EXPORT_SYMBOL(func);
4798 
4799 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4800 define_dev_printk_level(_dev_alert, KERN_ALERT);
4801 define_dev_printk_level(_dev_crit, KERN_CRIT);
4802 define_dev_printk_level(_dev_err, KERN_ERR);
4803 define_dev_printk_level(_dev_warn, KERN_WARNING);
4804 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4805 define_dev_printk_level(_dev_info, KERN_INFO);
4806 
4807 #endif
4808 
4809 /**
4810  * dev_err_probe - probe error check and log helper
4811  * @dev: the pointer to the struct device
4812  * @err: error value to test
4813  * @fmt: printf-style format string
4814  * @...: arguments as specified in the format string
4815  *
4816  * This helper implements common pattern present in probe functions for error
4817  * checking: print debug or error message depending if the error value is
4818  * -EPROBE_DEFER and propagate error upwards.
4819  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4820  * checked later by reading devices_deferred debugfs attribute.
4821  * It replaces code sequence::
4822  *
4823  *  if (err != -EPROBE_DEFER)
4824  *      dev_err(dev, ...);
4825  *  else
4826  *      dev_dbg(dev, ...);
4827  *  return err;
4828  *
4829  * with::
4830  *
4831  *  return dev_err_probe(dev, err, ...);
4832  *
4833  * Note that it is deemed acceptable to use this function for error
4834  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4835  * The benefit compared to a normal dev_err() is the standardized format
4836  * of the error code and the fact that the error code is returned.
4837  *
4838  * Returns @err.
4839  *
4840  */
4841 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4842 {
4843     struct va_format vaf;
4844     va_list args;
4845 
4846     va_start(args, fmt);
4847     vaf.fmt = fmt;
4848     vaf.va = &args;
4849 
4850     if (err != -EPROBE_DEFER) {
4851         dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4852     } else {
4853         device_set_deferred_probe_reason(dev, &vaf);
4854         dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4855     }
4856 
4857     va_end(args);
4858 
4859     return err;
4860 }
4861 EXPORT_SYMBOL_GPL(dev_err_probe);
4862 
4863 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4864 {
4865     return fwnode && !IS_ERR(fwnode->secondary);
4866 }
4867 
4868 /**
4869  * set_primary_fwnode - Change the primary firmware node of a given device.
4870  * @dev: Device to handle.
4871  * @fwnode: New primary firmware node of the device.
4872  *
4873  * Set the device's firmware node pointer to @fwnode, but if a secondary
4874  * firmware node of the device is present, preserve it.
4875  *
4876  * Valid fwnode cases are:
4877  *  - primary --> secondary --> -ENODEV
4878  *  - primary --> NULL
4879  *  - secondary --> -ENODEV
4880  *  - NULL
4881  */
4882 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4883 {
4884     struct device *parent = dev->parent;
4885     struct fwnode_handle *fn = dev->fwnode;
4886 
4887     if (fwnode) {
4888         if (fwnode_is_primary(fn))
4889             fn = fn->secondary;
4890 
4891         if (fn) {
4892             WARN_ON(fwnode->secondary);
4893             fwnode->secondary = fn;
4894         }
4895         dev->fwnode = fwnode;
4896     } else {
4897         if (fwnode_is_primary(fn)) {
4898             dev->fwnode = fn->secondary;
4899             /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4900             if (!(parent && fn == parent->fwnode))
4901                 fn->secondary = NULL;
4902         } else {
4903             dev->fwnode = NULL;
4904         }
4905     }
4906 }
4907 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4908 
4909 /**
4910  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4911  * @dev: Device to handle.
4912  * @fwnode: New secondary firmware node of the device.
4913  *
4914  * If a primary firmware node of the device is present, set its secondary
4915  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4916  * @fwnode.
4917  */
4918 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4919 {
4920     if (fwnode)
4921         fwnode->secondary = ERR_PTR(-ENODEV);
4922 
4923     if (fwnode_is_primary(dev->fwnode))
4924         dev->fwnode->secondary = fwnode;
4925     else
4926         dev->fwnode = fwnode;
4927 }
4928 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4929 
4930 /**
4931  * device_set_of_node_from_dev - reuse device-tree node of another device
4932  * @dev: device whose device-tree node is being set
4933  * @dev2: device whose device-tree node is being reused
4934  *
4935  * Takes another reference to the new device-tree node after first dropping
4936  * any reference held to the old node.
4937  */
4938 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4939 {
4940     of_node_put(dev->of_node);
4941     dev->of_node = of_node_get(dev2->of_node);
4942     dev->of_node_reused = true;
4943 }
4944 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4945 
4946 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4947 {
4948     dev->fwnode = fwnode;
4949     dev->of_node = to_of_node(fwnode);
4950 }
4951 EXPORT_SYMBOL_GPL(device_set_node);
4952 
4953 int device_match_name(struct device *dev, const void *name)
4954 {
4955     return sysfs_streq(dev_name(dev), name);
4956 }
4957 EXPORT_SYMBOL_GPL(device_match_name);
4958 
4959 int device_match_of_node(struct device *dev, const void *np)
4960 {
4961     return dev->of_node == np;
4962 }
4963 EXPORT_SYMBOL_GPL(device_match_of_node);
4964 
4965 int device_match_fwnode(struct device *dev, const void *fwnode)
4966 {
4967     return dev_fwnode(dev) == fwnode;
4968 }
4969 EXPORT_SYMBOL_GPL(device_match_fwnode);
4970 
4971 int device_match_devt(struct device *dev, const void *pdevt)
4972 {
4973     return dev->devt == *(dev_t *)pdevt;
4974 }
4975 EXPORT_SYMBOL_GPL(device_match_devt);
4976 
4977 int device_match_acpi_dev(struct device *dev, const void *adev)
4978 {
4979     return ACPI_COMPANION(dev) == adev;
4980 }
4981 EXPORT_SYMBOL(device_match_acpi_dev);
4982 
4983 int device_match_acpi_handle(struct device *dev, const void *handle)
4984 {
4985     return ACPI_HANDLE(dev) == handle;
4986 }
4987 EXPORT_SYMBOL(device_match_acpi_handle);
4988 
4989 int device_match_any(struct device *dev, const void *unused)
4990 {
4991     return 1;
4992 }
4993 EXPORT_SYMBOL_GPL(device_match_any);