Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
0003  *
0004  * This driver supports ATM cards based on the Efficient "Lanai"
0005  * chipset such as the Speedstream 3010 and the ENI-25p.  The
0006  * Speedstream 3060 is currently not supported since we don't
0007  * have the code to drive the on-board Alcatel DSL chipset (yet).
0008  *
0009  * Thanks to Efficient for supporting this project with hardware,
0010  * documentation, and by answering my questions.
0011  *
0012  * Things not working yet:
0013  *
0014  * o  We don't support the Speedstream 3060 yet - this card has
0015  *    an on-board DSL modem chip by Alcatel and the driver will
0016  *    need some extra code added to handle it
0017  *
0018  * o  Note that due to limitations of the Lanai only one VCC can be
0019  *    in CBR at once
0020  *
0021  * o We don't currently parse the EEPROM at all.  The code is all
0022  *   there as per the spec, but it doesn't actually work.  I think
0023  *   there may be some issues with the docs.  Anyway, do NOT
0024  *   enable it yet - bugs in that code may actually damage your
0025  *   hardware!  Because of this you should hardware an ESI before
0026  *   trying to use this in a LANE or MPOA environment.
0027  *
0028  * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
0029  *  vcc_tx_aal0() needs to send or queue a SKB
0030  *  vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
0031  *  vcc_rx_aal0() needs to handle AAL0 interrupts
0032  *    This isn't too much work - I just wanted to get other things
0033  *    done first.
0034  *
0035  * o  lanai_change_qos() isn't written yet
0036  *
0037  * o  There aren't any ioctl's yet -- I'd like to eventually support
0038  *    setting loopback and LED modes that way.
0039  *
0040  * o  If the segmentation engine or DMA gets shut down we should restart
0041  *    card as per section 17.0i.  (see lanai_reset)
0042  *
0043  * o setsockopt(SO_CIRANGE) isn't done (although despite what the
0044  *   API says it isn't exactly commonly implemented)
0045  */
0046 
0047 /* Version history:
0048  *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
0049  *   v.0.02 -- 11-JAN-2000 -- Endian fixes
0050  *   v.0.01 -- 30-NOV-1999 -- Initial release
0051  */
0052 
0053 #include <linux/module.h>
0054 #include <linux/slab.h>
0055 #include <linux/mm.h>
0056 #include <linux/atmdev.h>
0057 #include <asm/io.h>
0058 #include <asm/byteorder.h>
0059 #include <linux/spinlock.h>
0060 #include <linux/pci.h>
0061 #include <linux/dma-mapping.h>
0062 #include <linux/init.h>
0063 #include <linux/delay.h>
0064 #include <linux/interrupt.h>
0065 
0066 /* -------------------- TUNABLE PARAMATERS: */
0067 
0068 /*
0069  * Maximum number of VCIs per card.  Setting it lower could theoretically
0070  * save some memory, but since we allocate our vcc list with get_free_pages,
0071  * it's not really likely for most architectures
0072  */
0073 #define NUM_VCI         (1024)
0074 
0075 /*
0076  * Enable extra debugging
0077  */
0078 #define DEBUG
0079 /*
0080  * Debug _all_ register operations with card, except the memory test.
0081  * Also disables the timed poll to prevent extra chattiness.  This
0082  * isn't for normal use
0083  */
0084 #undef DEBUG_RW
0085 
0086 /*
0087  * The programming guide specifies a full test of the on-board SRAM
0088  * at initialization time.  Undefine to remove this
0089  */
0090 #define FULL_MEMORY_TEST
0091 
0092 /*
0093  * This is the number of (4 byte) service entries that we will
0094  * try to allocate at startup.  Note that we will end up with
0095  * one PAGE_SIZE's worth regardless of what this is set to
0096  */
0097 #define SERVICE_ENTRIES     (1024)
0098 /* TODO: make above a module load-time option */
0099 
0100 /*
0101  * We normally read the onboard EEPROM in order to discover our MAC
0102  * address.  Undefine to _not_ do this
0103  */
0104 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
0105 /* TODO: make above a module load-time option (also) */
0106 
0107 /*
0108  * Depth of TX fifo (in 128 byte units; range 2-31)
0109  * Smaller numbers are better for network latency
0110  * Larger numbers are better for PCI latency
0111  * I'm really sure where the best tradeoff is, but the BSD driver uses
0112  * 7 and it seems to work ok.
0113  */
0114 #define TX_FIFO_DEPTH       (7)
0115 /* TODO: make above a module load-time option */
0116 
0117 /*
0118  * How often (in jiffies) we will try to unstick stuck connections -
0119  * shouldn't need to happen much
0120  */
0121 #define LANAI_POLL_PERIOD   (10*HZ)
0122 /* TODO: make above a module load-time option */
0123 
0124 /*
0125  * When allocating an AAL5 receiving buffer, try to make it at least
0126  * large enough to hold this many max_sdu sized PDUs
0127  */
0128 #define AAL5_RX_MULTIPLIER  (3)
0129 /* TODO: make above a module load-time option */
0130 
0131 /*
0132  * Same for transmitting buffer
0133  */
0134 #define AAL5_TX_MULTIPLIER  (3)
0135 /* TODO: make above a module load-time option */
0136 
0137 /*
0138  * When allocating an AAL0 transmiting buffer, how many cells should fit.
0139  * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
0140  * really critical
0141  */
0142 #define AAL0_TX_MULTIPLIER  (40)
0143 /* TODO: make above a module load-time option */
0144 
0145 /*
0146  * How large should we make the AAL0 receiving buffer.  Remember that this
0147  * is shared between all AAL0 VC's
0148  */
0149 #define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
0150 /* TODO: make above a module load-time option */
0151 
0152 /*
0153  * Should we use Lanai's "powerdown" feature when no vcc's are bound?
0154  */
0155 /* #define USE_POWERDOWN */
0156 /* TODO: make above a module load-time option (also) */
0157 
0158 /* -------------------- DEBUGGING AIDS: */
0159 
0160 #define DEV_LABEL "lanai"
0161 
0162 #ifdef DEBUG
0163 
0164 #define DPRINTK(format, args...) \
0165     printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
0166 #define APRINTK(truth, format, args...) \
0167     do { \
0168         if (unlikely(!(truth))) \
0169             printk(KERN_ERR DEV_LABEL ": " format, ##args); \
0170     } while (0)
0171 
0172 #else /* !DEBUG */
0173 
0174 #define DPRINTK(format, args...)
0175 #define APRINTK(truth, format, args...)
0176 
0177 #endif /* DEBUG */
0178 
0179 #ifdef DEBUG_RW
0180 #define RWDEBUG(format, args...) \
0181     printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
0182 #else /* !DEBUG_RW */
0183 #define RWDEBUG(format, args...)
0184 #endif
0185 
0186 /* -------------------- DATA DEFINITIONS: */
0187 
0188 #define LANAI_MAPPING_SIZE  (0x40000)
0189 #define LANAI_EEPROM_SIZE   (128)
0190 
0191 typedef int vci_t;
0192 typedef void __iomem *bus_addr_t;
0193 
0194 /* DMA buffer in host memory for TX, RX, or service list. */
0195 struct lanai_buffer {
0196     u32 *start; /* From get_free_pages */
0197     u32 *end;   /* One past last byte */
0198     u32 *ptr;   /* Pointer to current host location */
0199     dma_addr_t dmaaddr;
0200 };
0201 
0202 struct lanai_vcc_stats {
0203     unsigned rx_nomem;
0204     union {
0205         struct {
0206             unsigned rx_badlen;
0207             unsigned service_trash;
0208             unsigned service_stream;
0209             unsigned service_rxcrc;
0210         } aal5;
0211         struct {
0212         } aal0;
0213     } x;
0214 };
0215 
0216 struct lanai_dev;           /* Forward declaration */
0217 
0218 /*
0219  * This is the card-specific per-vcc data.  Note that unlike some other
0220  * drivers there is NOT a 1-to-1 correspondance between these and
0221  * atm_vcc's - each one of these represents an actual 2-way vcc, but
0222  * an atm_vcc can be 1-way and share with a 1-way vcc in the other
0223  * direction.  To make it weirder, there can even be 0-way vccs
0224  * bound to us, waiting to do a change_qos
0225  */
0226 struct lanai_vcc {
0227     bus_addr_t vbase;       /* Base of VCC's registers */
0228     struct lanai_vcc_stats stats;
0229     int nref;           /* # of atm_vcc's who reference us */
0230     vci_t vci;
0231     struct {
0232         struct lanai_buffer buf;
0233         struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
0234     } rx;
0235     struct {
0236         struct lanai_buffer buf;
0237         struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
0238         int endptr;     /* last endptr from service entry */
0239         struct sk_buff_head backlog;
0240         void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
0241     } tx;
0242 };
0243 
0244 enum lanai_type {
0245     lanai2  = PCI_DEVICE_ID_EF_ATM_LANAI2,
0246     lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
0247 };
0248 
0249 struct lanai_dev_stats {
0250     unsigned ovfl_trash;    /* # of cells dropped - buffer overflow */
0251     unsigned vci_trash; /* # of cells dropped - closed vci */
0252     unsigned hec_err;   /* # of cells dropped - bad HEC */
0253     unsigned atm_ovfl;  /* # of cells dropped - rx fifo overflow */
0254     unsigned pcierr_parity_detect;
0255     unsigned pcierr_serr_set;
0256     unsigned pcierr_master_abort;
0257     unsigned pcierr_m_target_abort;
0258     unsigned pcierr_s_target_abort;
0259     unsigned pcierr_master_parity;
0260     unsigned service_notx;
0261     unsigned service_norx;
0262     unsigned service_rxnotaal5;
0263     unsigned dma_reenable;
0264     unsigned card_reset;
0265 };
0266 
0267 struct lanai_dev {
0268     bus_addr_t base;
0269     struct lanai_dev_stats stats;
0270     struct lanai_buffer service;
0271     struct lanai_vcc **vccs;
0272 #ifdef USE_POWERDOWN
0273     int nbound;         /* number of bound vccs */
0274 #endif
0275     enum lanai_type type;
0276     vci_t num_vci;          /* Currently just NUM_VCI */
0277     u8 eeprom[LANAI_EEPROM_SIZE];
0278     u32 serialno, magicno;
0279     struct pci_dev *pci;
0280     DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
0281     DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
0282     struct timer_list timer;
0283     int naal0;
0284     struct lanai_buffer aal0buf;    /* AAL0 RX buffers */
0285     u32 conf1, conf2;       /* CONFIG[12] registers */
0286     u32 status;         /* STATUS register */
0287     spinlock_t endtxlock;
0288     spinlock_t servicelock;
0289     struct atm_vcc *cbrvcc;
0290     int number;
0291     int board_rev;
0292 /* TODO - look at race conditions with maintence of conf1/conf2 */
0293 /* TODO - transmit locking: should we use _irq not _irqsave? */
0294 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
0295 };
0296 
0297 /*
0298  * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
0299  * This function iterates one of these, calling a given function for each
0300  * vci with their bit set
0301  */
0302 static void vci_bitfield_iterate(struct lanai_dev *lanai,
0303     const unsigned long *lp,
0304     void (*func)(struct lanai_dev *,vci_t vci))
0305 {
0306     vci_t vci;
0307 
0308     for_each_set_bit(vci, lp, NUM_VCI)
0309         func(lanai, vci);
0310 }
0311 
0312 /* -------------------- BUFFER  UTILITIES: */
0313 
0314 /*
0315  * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
0316  * usually any page allocation will do.  Just to be safe in case
0317  * PAGE_SIZE is insanely tiny, though...
0318  */
0319 #define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
0320 
0321 /*
0322  * Allocate a buffer in host RAM for service list, RX, or TX
0323  * Returns buf->start==NULL if no memory
0324  * Note that the size will be rounded up 2^n bytes, and
0325  * if we can't allocate that we'll settle for something smaller
0326  * until minbytes
0327  */
0328 static void lanai_buf_allocate(struct lanai_buffer *buf,
0329     size_t bytes, size_t minbytes, struct pci_dev *pci)
0330 {
0331     int size;
0332 
0333     if (bytes > (128 * 1024))   /* max lanai buffer size */
0334         bytes = 128 * 1024;
0335     for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
0336         ;
0337     if (minbytes < LANAI_PAGE_SIZE)
0338         minbytes = LANAI_PAGE_SIZE;
0339     do {
0340         /*
0341          * Technically we could use non-consistent mappings for
0342          * everything, but the way the lanai uses DMA memory would
0343          * make that a terrific pain.  This is much simpler.
0344          */
0345         buf->start = dma_alloc_coherent(&pci->dev,
0346                         size, &buf->dmaaddr, GFP_KERNEL);
0347         if (buf->start != NULL) {   /* Success */
0348             /* Lanai requires 256-byte alignment of DMA bufs */
0349             APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
0350                 "bad dmaaddr: 0x%lx\n",
0351                 (unsigned long) buf->dmaaddr);
0352             buf->ptr = buf->start;
0353             buf->end = (u32 *)
0354                 (&((unsigned char *) buf->start)[size]);
0355             memset(buf->start, 0, size);
0356             break;
0357         }
0358         size /= 2;
0359     } while (size >= minbytes);
0360 }
0361 
0362 /* size of buffer in bytes */
0363 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
0364 {
0365     return ((unsigned long) buf->end) - ((unsigned long) buf->start);
0366 }
0367 
0368 static void lanai_buf_deallocate(struct lanai_buffer *buf,
0369     struct pci_dev *pci)
0370 {
0371     if (buf->start != NULL) {
0372         dma_free_coherent(&pci->dev, lanai_buf_size(buf),
0373                   buf->start, buf->dmaaddr);
0374         buf->start = buf->end = buf->ptr = NULL;
0375     }
0376 }
0377 
0378 /* size of buffer as "card order" (0=1k .. 7=128k) */
0379 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
0380 {
0381     int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
0382 
0383     /* This can only happen if PAGE_SIZE is gigantic, but just in case */
0384     if (order > 7)
0385         order = 7;
0386     return order;
0387 }
0388 
0389 /* -------------------- PORT I/O UTILITIES: */
0390 
0391 /* Registers (and their bit-fields) */
0392 enum lanai_register {
0393     Reset_Reg       = 0x00, /* Reset; read for chip type; bits: */
0394 #define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)    /* Board revision */
0395 #define   RESET_GET_BOARD_ID(x)     (((x)>> 2)&0x03)    /* Board ID */
0396 #define     BOARD_ID_LANAI256       (0) /* 25.6M adapter card */
0397     Endian_Reg      = 0x04, /* Endian setting */
0398     IntStatus_Reg       = 0x08, /* Interrupt status */
0399     IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
0400     IntAck_Reg      = 0x10, /* Interrupt acknowledge */
0401     IntAckMasked_Reg    = 0x14, /* Interrupt acknowledge (masked) */
0402     IntStatusSet_Reg    = 0x18, /* Get status + enable/disable */
0403     IntStatusSetMasked_Reg  = 0x1C, /* Get status + en/di (masked) */
0404     IntControlEna_Reg   = 0x20, /* Interrupt control enable */
0405     IntControlDis_Reg   = 0x24, /* Interrupt control disable */
0406     Status_Reg      = 0x28, /* Status */
0407 #define   STATUS_PROMDATA    (0x00000001)   /* PROM_DATA pin */
0408 #define   STATUS_WAITING     (0x00000002)   /* Interrupt being delayed */
0409 #define   STATUS_SOOL        (0x00000004)   /* SOOL alarm */
0410 #define   STATUS_LOCD        (0x00000008)   /* LOCD alarm */
0411 #define   STATUS_LED         (0x00000010)   /* LED (HAPPI) output */
0412 #define   STATUS_GPIN        (0x00000020)   /* GPIN pin */
0413 #define   STATUS_BUTTBUSY    (0x00000040)   /* Butt register is pending */
0414     Config1_Reg     = 0x2C, /* Config word 1; bits: */
0415 #define   CONFIG1_PROMDATA   (0x00000001)   /* PROM_DATA pin */
0416 #define   CONFIG1_PROMCLK    (0x00000002)   /* PROM_CLK pin */
0417 #define   CONFIG1_SET_READMODE(x) ((x)*0x004)   /* PCI BM reads; values: */
0418 #define     READMODE_PLAIN      (0)     /*   Plain memory read */
0419 #define     READMODE_LINE       (2)     /*   Memory read line */
0420 #define     READMODE_MULTIPLE       (3)     /*   Memory read multiple */
0421 #define   CONFIG1_DMA_ENABLE     (0x00000010)   /* Turn on DMA */
0422 #define   CONFIG1_POWERDOWN  (0x00000020)   /* Turn off clocks */
0423 #define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)   /* Clock&loop mode; values: */
0424 #define     LOOPMODE_NORMAL     (0)     /*   Normal - no loop */
0425 #define     LOOPMODE_TIME       (1)
0426 #define     LOOPMODE_DIAG       (2)
0427 #define     LOOPMODE_LINE       (3)
0428 #define   CONFIG1_MASK_LOOPMODE  (0x00000180)
0429 #define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)   /* Mode of LED; values: */
0430 #define     LEDMODE_NOT_SOOL        (0)     /*   !SOOL */
0431 #define     LEDMODE_OFF         (1)     /*   0     */
0432 #define     LEDMODE_ON          (2)     /*   1     */
0433 #define     LEDMODE_NOT_LOCD        (3)     /*   !LOCD */
0434 #define     LEDMORE_GPIN        (4)     /*   GPIN  */
0435 #define     LEDMODE_NOT_GPIN        (7)     /*   !GPIN */
0436 #define   CONFIG1_MASK_LEDMODE   (0x00000E00)
0437 #define   CONFIG1_GPOUT1     (0x00001000)   /* Toggle for reset */
0438 #define   CONFIG1_GPOUT2     (0x00002000)   /* Loopback PHY */
0439 #define   CONFIG1_GPOUT3     (0x00004000)   /* Loopback lanai */
0440     Config2_Reg     = 0x30, /* Config word 2; bits: */
0441 #define   CONFIG2_HOWMANY    (0x00000001)   /* >512 VCIs? */
0442 #define   CONFIG2_PTI7_MODE  (0x00000002)   /* Make PTI=7 RM, not OAM */
0443 #define   CONFIG2_VPI_CHK_DIS    (0x00000004)   /* Ignore RX VPI value */
0444 #define   CONFIG2_HEC_DROP   (0x00000008)   /* Drop cells w/ HEC errors */
0445 #define   CONFIG2_VCI0_NORMAL    (0x00000010)   /* Treat VCI=0 normally */
0446 #define   CONFIG2_CBR_ENABLE     (0x00000020)   /* Deal with CBR traffic */
0447 #define   CONFIG2_TRASH_ALL  (0x00000040)   /* Trashing incoming cells */
0448 #define   CONFIG2_TX_DISABLE     (0x00000080)   /* Trashing outgoing cells */
0449 #define   CONFIG2_SET_TRASH  (0x00000100)   /* Turn trashing on */
0450     Statistics_Reg      = 0x34, /* Statistics; bits: */
0451 #define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)    /* FIFO overflowed */
0452 #define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)    /* HEC was bad */
0453 #define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)    /* VCI not open */
0454 #define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)    /* VCC buffer full */
0455     ServiceStuff_Reg    = 0x38, /* Service stuff; bits: */
0456 #define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)   /* size of service buffer */
0457 #define   SSTUFF_SET_ADDR(x)        ((x)>>8)    /* set address of buffer */
0458     ServWrite_Reg       = 0x3C, /* ServWrite Pointer */
0459     ServRead_Reg        = 0x40, /* ServRead Pointer */
0460     TxDepth_Reg     = 0x44, /* FIFO Transmit Depth */
0461     Butt_Reg        = 0x48, /* Butt register */
0462     CBR_ICG_Reg     = 0x50,
0463     CBR_PTR_Reg     = 0x54,
0464     PingCount_Reg       = 0x58, /* Ping count */
0465     DMA_Addr_Reg        = 0x5C  /* DMA address */
0466 };
0467 
0468 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
0469     enum lanai_register reg)
0470 {
0471     return lanai->base + reg;
0472 }
0473 
0474 static inline u32 reg_read(const struct lanai_dev *lanai,
0475     enum lanai_register reg)
0476 {
0477     u32 t;
0478     t = readl(reg_addr(lanai, reg));
0479     RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
0480         (int) reg, t);
0481     return t;
0482 }
0483 
0484 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
0485     enum lanai_register reg)
0486 {
0487     RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
0488         (int) reg, val);
0489     writel(val, reg_addr(lanai, reg));
0490 }
0491 
0492 static inline void conf1_write(const struct lanai_dev *lanai)
0493 {
0494     reg_write(lanai, lanai->conf1, Config1_Reg);
0495 }
0496 
0497 static inline void conf2_write(const struct lanai_dev *lanai)
0498 {
0499     reg_write(lanai, lanai->conf2, Config2_Reg);
0500 }
0501 
0502 /* Same as conf2_write(), but defers I/O if we're powered down */
0503 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
0504 {
0505 #ifdef USE_POWERDOWN
0506     if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
0507         return;
0508 #endif /* USE_POWERDOWN */
0509     conf2_write(lanai);
0510 }
0511 
0512 static inline void reset_board(const struct lanai_dev *lanai)
0513 {
0514     DPRINTK("about to reset board\n");
0515     reg_write(lanai, 0, Reset_Reg);
0516     /*
0517      * If we don't delay a little while here then we can end up
0518      * leaving the card in a VERY weird state and lock up the
0519      * PCI bus.  This isn't documented anywhere but I've convinced
0520      * myself after a lot of painful experimentation
0521      */
0522     udelay(5);
0523 }
0524 
0525 /* -------------------- CARD SRAM UTILITIES: */
0526 
0527 /* The SRAM is mapped into normal PCI memory space - the only catch is
0528  * that it is only 16-bits wide but must be accessed as 32-bit.  The
0529  * 16 high bits will be zero.  We don't hide this, since they get
0530  * programmed mostly like discrete registers anyway
0531  */
0532 #define SRAM_START (0x20000)
0533 #define SRAM_BYTES (0x20000)    /* Again, half don't really exist */
0534 
0535 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
0536 {
0537     return lanai->base + SRAM_START + offset;
0538 }
0539 
0540 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
0541 {
0542     return readl(sram_addr(lanai, offset));
0543 }
0544 
0545 static inline void sram_write(const struct lanai_dev *lanai,
0546     u32 val, int offset)
0547 {
0548     writel(val, sram_addr(lanai, offset));
0549 }
0550 
0551 static int sram_test_word(const struct lanai_dev *lanai, int offset,
0552               u32 pattern)
0553 {
0554     u32 readback;
0555     sram_write(lanai, pattern, offset);
0556     readback = sram_read(lanai, offset);
0557     if (likely(readback == pattern))
0558         return 0;
0559     printk(KERN_ERR DEV_LABEL
0560         "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
0561         lanai->number, offset,
0562         (unsigned int) pattern, (unsigned int) readback);
0563     return -EIO;
0564 }
0565 
0566 static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
0567 {
0568     int offset, result = 0;
0569     for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
0570         result = sram_test_word(lanai, offset, pattern);
0571     return result;
0572 }
0573 
0574 static int sram_test_and_clear(const struct lanai_dev *lanai)
0575 {
0576 #ifdef FULL_MEMORY_TEST
0577     int result;
0578     DPRINTK("testing SRAM\n");
0579     if ((result = sram_test_pass(lanai, 0x5555)) != 0)
0580         return result;
0581     if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
0582         return result;
0583 #endif
0584     DPRINTK("clearing SRAM\n");
0585     return sram_test_pass(lanai, 0x0000);
0586 }
0587 
0588 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
0589 
0590 /* vcc table */
0591 enum lanai_vcc_offset {
0592     vcc_rxaddr1     = 0x00, /* Location1, plus bits: */
0593 #define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of RX buffer */
0594 #define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)   /* RM cell action; values: */
0595 #define     RMMODE_TRASH      (0)       /*   discard */
0596 #define     RMMODE_PRESERVE   (1)       /*   input as AAL0 */
0597 #define     RMMODE_PIPE       (2)       /*   pipe to coscheduler */
0598 #define     RMMODE_PIPEALL    (3)       /*   pipe non-RM too */
0599 #define   RXADDR1_OAM_PRESERVE   (0x00002000)   /* Input OAM cells as AAL0 */
0600 #define   RXADDR1_SET_MODE(x) ((x)*0x0004000)   /* Reassembly mode */
0601 #define     RXMODE_TRASH      (0)       /*   discard */
0602 #define     RXMODE_AAL0       (1)       /*   non-AAL5 mode */
0603 #define     RXMODE_AAL5       (2)       /*   AAL5, intr. each PDU */
0604 #define     RXMODE_AAL5_STREAM    (3)       /*   AAL5 w/o per-PDU intr */
0605     vcc_rxaddr2     = 0x04, /* Location2 */
0606     vcc_rxcrc1      = 0x08, /* RX CRC claculation space */
0607     vcc_rxcrc2      = 0x0C,
0608     vcc_rxwriteptr      = 0x10, /* RX writeptr, plus bits: */
0609 #define   RXWRITEPTR_LASTEFCI    (0x00002000)   /* Last PDU had EFCI bit */
0610 #define   RXWRITEPTR_DROPPING    (0x00004000)   /* Had error, dropping */
0611 #define   RXWRITEPTR_TRASHING    (0x00008000)   /* Trashing */
0612     vcc_rxbufstart      = 0x14, /* RX bufstart, plus bits: */
0613 #define   RXBUFSTART_CLP     (0x00004000)
0614 #define   RXBUFSTART_CI      (0x00008000)
0615     vcc_rxreadptr       = 0x18, /* RX readptr */
0616     vcc_txicg       = 0x1C, /* TX ICG */
0617     vcc_txaddr1     = 0x20, /* Location1, plus bits: */
0618 #define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of TX buffer */
0619 #define   TXADDR1_ABR        (0x00008000)   /* use ABR (doesn't work) */
0620     vcc_txaddr2     = 0x24, /* Location2 */
0621     vcc_txcrc1      = 0x28, /* TX CRC claculation space */
0622     vcc_txcrc2      = 0x2C,
0623     vcc_txreadptr       = 0x30, /* TX Readptr, plus bits: */
0624 #define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
0625 #define   TXREADPTR_MASK_DELTA  (0x0000E000)    /* ? */
0626     vcc_txendptr        = 0x34, /* TX Endptr, plus bits: */
0627 #define   TXENDPTR_CLP      (0x00002000)
0628 #define   TXENDPTR_MASK_PDUMODE (0x0000C000)    /* PDU mode; values: */
0629 #define     PDUMODE_AAL0     (0*0x04000)
0630 #define     PDUMODE_AAL5     (2*0x04000)
0631 #define     PDUMODE_AAL5STREAM   (3*0x04000)
0632     vcc_txwriteptr      = 0x38, /* TX Writeptr */
0633 #define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
0634     vcc_txcbr_next      = 0x3C  /* # of next CBR VCI in ring */
0635 #define   TXCBR_NEXT_BOZO   (0x00008000)    /* "bozo bit" */
0636 };
0637 
0638 #define CARDVCC_SIZE    (0x40)
0639 
0640 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
0641     vci_t vci)
0642 {
0643     return sram_addr(lanai, vci * CARDVCC_SIZE);
0644 }
0645 
0646 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
0647     enum lanai_vcc_offset offset)
0648 {
0649     u32 val;
0650     APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
0651     val= readl(lvcc->vbase + offset);
0652     RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
0653         lvcc->vci, (int) offset, val);
0654     return val;
0655 }
0656 
0657 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
0658     u32 val, enum lanai_vcc_offset offset)
0659 {
0660     APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
0661     APRINTK((val & ~0xFFFF) == 0,
0662         "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
0663         (unsigned int) val, lvcc->vci, (unsigned int) offset);
0664     RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
0665         lvcc->vci, (unsigned int) offset, (unsigned int) val);
0666     writel(val, lvcc->vbase + offset);
0667 }
0668 
0669 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
0670 
0671 /* How many bytes will an AAL5 PDU take to transmit - remember that:
0672  *   o  we need to add 8 bytes for length, CPI, UU, and CRC
0673  *   o  we need to round up to 48 bytes for cells
0674  */
0675 static inline int aal5_size(int size)
0676 {
0677     int cells = (size + 8 + 47) / 48;
0678     return cells * 48;
0679 }
0680 
0681 /* -------------------- FREE AN ATM SKB: */
0682 
0683 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
0684 {
0685     if (atmvcc->pop != NULL)
0686         atmvcc->pop(atmvcc, skb);
0687     else
0688         dev_kfree_skb_any(skb);
0689 }
0690 
0691 /* -------------------- TURN VCCS ON AND OFF: */
0692 
0693 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
0694 {
0695     u32 addr1;
0696     if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
0697         dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
0698         cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
0699         cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
0700         cardvcc_write(lvcc, 0, vcc_rxwriteptr);
0701         cardvcc_write(lvcc, 0, vcc_rxbufstart);
0702         cardvcc_write(lvcc, 0, vcc_rxreadptr);
0703         cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
0704         addr1 = ((dmaaddr >> 8) & 0xFF) |
0705             RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
0706             RXADDR1_SET_RMMODE(RMMODE_TRASH) |  /* ??? */
0707          /* RXADDR1_OAM_PRESERVE |  --- no OAM support yet */
0708             RXADDR1_SET_MODE(RXMODE_AAL5);
0709     } else
0710         addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
0711             RXADDR1_OAM_PRESERVE |            /* ??? */
0712             RXADDR1_SET_MODE(RXMODE_AAL0);
0713     /* This one must be last! */
0714     cardvcc_write(lvcc, addr1, vcc_rxaddr1);
0715 }
0716 
0717 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
0718 {
0719     dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
0720     cardvcc_write(lvcc, 0, vcc_txicg);
0721     cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
0722     cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
0723     cardvcc_write(lvcc, 0, vcc_txreadptr);
0724     cardvcc_write(lvcc, 0, vcc_txendptr);
0725     cardvcc_write(lvcc, 0, vcc_txwriteptr);
0726     cardvcc_write(lvcc,
0727         (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
0728         TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
0729     cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
0730     cardvcc_write(lvcc,
0731         ((dmaaddr >> 8) & 0xFF) |
0732         TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
0733         vcc_txaddr1);
0734 }
0735 
0736 /* Shutdown receiving on card */
0737 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
0738 {
0739     if (lvcc->vbase == NULL)    /* We were never bound to a VCI */
0740         return;
0741     /* 15.1.1 - set to trashing, wait one cell time (15us) */
0742     cardvcc_write(lvcc,
0743         RXADDR1_SET_RMMODE(RMMODE_TRASH) |
0744         RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
0745     udelay(15);
0746     /* 15.1.2 - clear rest of entries */
0747     cardvcc_write(lvcc, 0, vcc_rxaddr2);
0748     cardvcc_write(lvcc, 0, vcc_rxcrc1);
0749     cardvcc_write(lvcc, 0, vcc_rxcrc2);
0750     cardvcc_write(lvcc, 0, vcc_rxwriteptr);
0751     cardvcc_write(lvcc, 0, vcc_rxbufstart);
0752     cardvcc_write(lvcc, 0, vcc_rxreadptr);
0753 }
0754 
0755 /* Shutdown transmitting on card.
0756  * Unfortunately the lanai needs us to wait until all the data
0757  * drains out of the buffer before we can dealloc it, so this
0758  * can take awhile -- up to 370ms for a full 128KB buffer
0759  * assuming everone else is quiet.  In theory the time is
0760  * boundless if there's a CBR VCC holding things up.
0761  */
0762 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
0763     struct lanai_vcc *lvcc)
0764 {
0765     struct sk_buff *skb;
0766     unsigned long flags, timeout;
0767     int read, write, lastread = -1;
0768 
0769     if (lvcc->vbase == NULL)    /* We were never bound to a VCI */
0770         return;
0771     /* 15.2.1 - wait for queue to drain */
0772     while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
0773         lanai_free_skb(lvcc->tx.atmvcc, skb);
0774     read_lock_irqsave(&vcc_sklist_lock, flags);
0775     __clear_bit(lvcc->vci, lanai->backlog_vccs);
0776     read_unlock_irqrestore(&vcc_sklist_lock, flags);
0777     /*
0778      * We need to wait for the VCC to drain but don't wait forever.  We
0779      * give each 1K of buffer size 1/128th of a second to clear out.
0780      * TODO: maybe disable CBR if we're about to timeout?
0781      */
0782     timeout = jiffies +
0783         (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
0784     write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
0785     for (;;) {
0786         read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
0787         if (read == write &&       /* Is TX buffer empty? */
0788             (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
0789             (cardvcc_read(lvcc, vcc_txcbr_next) &
0790             TXCBR_NEXT_BOZO) == 0))
0791             break;
0792         if (read != lastread) {    /* Has there been any progress? */
0793             lastread = read;
0794             timeout += HZ / 10;
0795         }
0796         if (unlikely(time_after(jiffies, timeout))) {
0797             printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
0798                 "backlog closing vci %d\n",
0799                 lvcc->tx.atmvcc->dev->number, lvcc->vci);
0800             DPRINTK("read, write = %d, %d\n", read, write);
0801             break;
0802         }
0803         msleep(40);
0804     }
0805     /* 15.2.2 - clear out all tx registers */
0806     cardvcc_write(lvcc, 0, vcc_txreadptr);
0807     cardvcc_write(lvcc, 0, vcc_txwriteptr);
0808     cardvcc_write(lvcc, 0, vcc_txendptr);
0809     cardvcc_write(lvcc, 0, vcc_txcrc1);
0810     cardvcc_write(lvcc, 0, vcc_txcrc2);
0811     cardvcc_write(lvcc, 0, vcc_txaddr2);
0812     cardvcc_write(lvcc, 0, vcc_txaddr1);
0813 }
0814 
0815 /* -------------------- MANAGING AAL0 RX BUFFER: */
0816 
0817 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
0818 {
0819     DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
0820     lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
0821                lanai->pci);
0822     return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
0823 }
0824 
0825 static inline void aal0_buffer_free(struct lanai_dev *lanai)
0826 {
0827     DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
0828     lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
0829 }
0830 
0831 /* -------------------- EEPROM UTILITIES: */
0832 
0833 /* Offsets of data in the EEPROM */
0834 #define EEPROM_COPYRIGHT    (0)
0835 #define EEPROM_COPYRIGHT_LEN    (44)
0836 #define EEPROM_CHECKSUM     (62)
0837 #define EEPROM_CHECKSUM_REV (63)
0838 #define EEPROM_MAC      (64)
0839 #define EEPROM_MAC_REV      (70)
0840 #define EEPROM_SERIAL       (112)
0841 #define EEPROM_SERIAL_REV   (116)
0842 #define EEPROM_MAGIC        (120)
0843 #define EEPROM_MAGIC_REV    (124)
0844 
0845 #define EEPROM_MAGIC_VALUE  (0x5AB478D2)
0846 
0847 #ifndef READ_EEPROM
0848 
0849 /* Stub functions to use if EEPROM reading is disabled */
0850 static int eeprom_read(struct lanai_dev *lanai)
0851 {
0852     printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
0853         lanai->number);
0854     memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
0855     return 0;
0856 }
0857 
0858 static int eeprom_validate(struct lanai_dev *lanai)
0859 {
0860     lanai->serialno = 0;
0861     lanai->magicno = EEPROM_MAGIC_VALUE;
0862     return 0;
0863 }
0864 
0865 #else /* READ_EEPROM */
0866 
0867 static int eeprom_read(struct lanai_dev *lanai)
0868 {
0869     int i, address;
0870     u8 data;
0871     u32 tmp;
0872 #define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
0873                 } while (0)
0874 #define clock_h()    set_config1(lanai->conf1 | CONFIG1_PROMCLK)
0875 #define clock_l()    set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
0876 #define data_h()     set_config1(lanai->conf1 | CONFIG1_PROMDATA)
0877 #define data_l()     set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
0878 #define pre_read()   do { data_h(); clock_h(); udelay(5); } while (0)
0879 #define read_pin()   (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
0880 #define send_stop()  do { data_l(); udelay(5); clock_h(); udelay(5); \
0881                   data_h(); udelay(5); } while (0)
0882     /* start with both clock and data high */
0883     data_h(); clock_h(); udelay(5);
0884     for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
0885         data = (address << 1) | 1;  /* Command=read + address */
0886         /* send start bit */
0887         data_l(); udelay(5);
0888         clock_l(); udelay(5);
0889         for (i = 128; i != 0; i >>= 1) {   /* write command out */
0890             tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
0891                 ((data & i) ? CONFIG1_PROMDATA : 0);
0892             if (lanai->conf1 != tmp) {
0893                 set_config1(tmp);
0894                 udelay(5);  /* Let new data settle */
0895             }
0896             clock_h(); udelay(5); clock_l(); udelay(5);
0897         }
0898         /* look for ack */
0899         data_h(); clock_h(); udelay(5);
0900         if (read_pin() != 0)
0901             goto error; /* No ack seen */
0902         clock_l(); udelay(5);
0903         /* read back result */
0904         for (data = 0, i = 7; i >= 0; i--) {
0905             data_h(); clock_h(); udelay(5);
0906             data = (data << 1) | !!read_pin();
0907             clock_l(); udelay(5);
0908         }
0909         /* look again for ack */
0910         data_h(); clock_h(); udelay(5);
0911         if (read_pin() == 0)
0912             goto error; /* Spurious ack */
0913         clock_l(); udelay(5);
0914         send_stop();
0915         lanai->eeprom[address] = data;
0916         DPRINTK("EEPROM 0x%04X %02X\n",
0917             (unsigned int) address, (unsigned int) data);
0918     }
0919     return 0;
0920     error:
0921     clock_l(); udelay(5);       /* finish read */
0922     send_stop();
0923     printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
0924         lanai->number, address);
0925     return -EIO;
0926 #undef set_config1
0927 #undef clock_h
0928 #undef clock_l
0929 #undef data_h
0930 #undef data_l
0931 #undef pre_read
0932 #undef read_pin
0933 #undef send_stop
0934 }
0935 
0936 /* read a big-endian 4-byte value out of eeprom */
0937 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
0938 {
0939     return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
0940 }
0941 
0942 /* Checksum/validate EEPROM contents */
0943 static int eeprom_validate(struct lanai_dev *lanai)
0944 {
0945     int i, s;
0946     u32 v;
0947     const u8 *e = lanai->eeprom;
0948 #ifdef DEBUG
0949     /* First, see if we can get an ASCIIZ string out of the copyright */
0950     for (i = EEPROM_COPYRIGHT;
0951         i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
0952         if (e[i] < 0x20 || e[i] > 0x7E)
0953             break;
0954     if ( i != EEPROM_COPYRIGHT &&
0955         i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
0956         DPRINTK("eeprom: copyright = \"%s\"\n",
0957             (char *) &e[EEPROM_COPYRIGHT]);
0958     else
0959         DPRINTK("eeprom: copyright not found\n");
0960 #endif
0961     /* Validate checksum */
0962     for (i = s = 0; i < EEPROM_CHECKSUM; i++)
0963         s += e[i];
0964     s &= 0xFF;
0965     if (s != e[EEPROM_CHECKSUM]) {
0966         printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
0967             "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
0968             (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
0969         return -EIO;
0970     }
0971     s ^= 0xFF;
0972     if (s != e[EEPROM_CHECKSUM_REV]) {
0973         printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
0974             "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
0975             (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
0976         return -EIO;
0977     }
0978     /* Verify MAC address */
0979     for (i = 0; i < 6; i++)
0980         if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
0981             printk(KERN_ERR DEV_LABEL
0982                 "(itf %d) : EEPROM MAC addresses don't match "
0983                 "(0x%02X, inverse 0x%02X)\n", lanai->number,
0984                 (unsigned int) e[EEPROM_MAC + i],
0985                 (unsigned int) e[EEPROM_MAC_REV + i]);
0986             return -EIO;
0987         }
0988     DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
0989     /* Verify serial number */
0990     lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
0991     v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
0992     if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
0993         printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
0994             "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
0995             (unsigned int) lanai->serialno, (unsigned int) v);
0996         return -EIO;
0997     }
0998     DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
0999     /* Verify magic number */
1000     lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1001     v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1002     if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1003         printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1004             "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1005             lanai->magicno, v);
1006         return -EIO;
1007     }
1008     DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1009     if (lanai->magicno != EEPROM_MAGIC_VALUE)
1010         printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1011             "magic not what expected (got 0x%08X, not 0x%08X)\n",
1012             lanai->number, (unsigned int) lanai->magicno,
1013             (unsigned int) EEPROM_MAGIC_VALUE);
1014     return 0;
1015 }
1016 
1017 #endif /* READ_EEPROM */
1018 
1019 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1020 {
1021     return &lanai->eeprom[EEPROM_MAC];
1022 }
1023 
1024 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1025 
1026 /* Interrupt types */
1027 #define INT_STATS   (0x00000002)    /* Statistics counter overflow */
1028 #define INT_SOOL    (0x00000004)    /* SOOL changed state */
1029 #define INT_LOCD    (0x00000008)    /* LOCD changed state */
1030 #define INT_LED     (0x00000010)    /* LED (HAPPI) changed state */
1031 #define INT_GPIN    (0x00000020)    /* GPIN changed state */
1032 #define INT_PING    (0x00000040)    /* PING_COUNT fulfilled */
1033 #define INT_WAKE    (0x00000080)    /* Lanai wants bus */
1034 #define INT_CBR0    (0x00000100)    /* CBR sched hit VCI 0 */
1035 #define INT_LOCK    (0x00000200)    /* Service list overflow */
1036 #define INT_MISMATCH    (0x00000400)    /* TX magic list mismatch */
1037 #define INT_AAL0_STR    (0x00000800)    /* Non-AAL5 buffer half filled */
1038 #define INT_AAL0    (0x00001000)    /* Non-AAL5 data available */
1039 #define INT_SERVICE (0x00002000)    /* Service list entries available */
1040 #define INT_TABORTSENT  (0x00004000)    /* Target abort sent by lanai */
1041 #define INT_TABORTBM    (0x00008000)    /* Abort rcv'd as bus master */
1042 #define INT_TIMEOUTBM   (0x00010000)    /* No response to bus master */
1043 #define INT_PCIPARITY   (0x00020000)    /* Parity error on PCI */
1044 
1045 /* Sets of the above */
1046 #define INT_ALL     (0x0003FFFE)    /* All interrupts */
1047 #define INT_STATUS  (0x0000003C)    /* Some status pin changed */
1048 #define INT_DMASHUT (0x00038000)    /* DMA engine got shut down */
1049 #define INT_SEGSHUT (0x00000700)    /* Segmentation got shut down */
1050 
1051 static inline u32 intr_pending(const struct lanai_dev *lanai)
1052 {
1053     return reg_read(lanai, IntStatusMasked_Reg);
1054 }
1055 
1056 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1057 {
1058     reg_write(lanai, i, IntControlEna_Reg);
1059 }
1060 
1061 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1062 {
1063     reg_write(lanai, i, IntControlDis_Reg);
1064 }
1065 
1066 /* -------------------- CARD/PCI STATUS: */
1067 
1068 static void status_message(int itf, const char *name, int status)
1069 {
1070     static const char *onoff[2] = { "off to on", "on to off" };
1071     printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1072         itf, name, onoff[!status]);
1073 }
1074 
1075 static void lanai_check_status(struct lanai_dev *lanai)
1076 {
1077     u32 new = reg_read(lanai, Status_Reg);
1078     u32 changes = new ^ lanai->status;
1079     lanai->status = new;
1080 #define e(flag, name) \
1081         if (changes & flag) \
1082             status_message(lanai->number, name, new & flag)
1083     e(STATUS_SOOL, "SOOL");
1084     e(STATUS_LOCD, "LOCD");
1085     e(STATUS_LED, "LED");
1086     e(STATUS_GPIN, "GPIN");
1087 #undef e
1088 }
1089 
1090 static void pcistatus_got(int itf, const char *name)
1091 {
1092     printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1093 }
1094 
1095 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1096 {
1097     u16 s;
1098     int result;
1099     result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1100     if (result != PCIBIOS_SUCCESSFUL) {
1101         printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1102             "%d\n", lanai->number, result);
1103         return;
1104     }
1105     s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1106         PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1107         PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1108     if (s == 0)
1109         return;
1110     result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1111     if (result != PCIBIOS_SUCCESSFUL)
1112         printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1113             "%d\n", lanai->number, result);
1114     if (clearonly)
1115         return;
1116 #define e(flag, name, stat) \
1117         if (s & flag) { \
1118             pcistatus_got(lanai->number, name); \
1119             ++lanai->stats.pcierr_##stat; \
1120         }
1121     e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1122     e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1123     e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1124     e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1125     e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1126     e(PCI_STATUS_PARITY, "master parity", master_parity);
1127 #undef e
1128 }
1129 
1130 /* -------------------- VCC TX BUFFER UTILITIES: */
1131 
1132 /* space left in tx buffer in bytes */
1133 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1134 {
1135     int r;
1136     r = endptr * 16;
1137     r -= ((unsigned long) lvcc->tx.buf.ptr) -
1138         ((unsigned long) lvcc->tx.buf.start);
1139     r -= 16;    /* Leave "bubble" - if start==end it looks empty */
1140     if (r < 0)
1141         r += lanai_buf_size(&lvcc->tx.buf);
1142     return r;
1143 }
1144 
1145 /* test if VCC is currently backlogged */
1146 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1147 {
1148     return !skb_queue_empty(&lvcc->tx.backlog);
1149 }
1150 
1151 /* Bit fields in the segmentation buffer descriptor */
1152 #define DESCRIPTOR_MAGIC    (0xD0000000)
1153 #define DESCRIPTOR_AAL5     (0x00008000)
1154 #define DESCRIPTOR_AAL5_STREAM  (0x00004000)
1155 #define DESCRIPTOR_CLP      (0x00002000)
1156 
1157 /* Add 32-bit descriptor with its padding */
1158 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1159     u32 flags, int len)
1160 {
1161     int pos;
1162     APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1163         "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1164     lvcc->tx.buf.ptr += 4;  /* Hope the values REALLY don't matter */
1165     pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1166         (unsigned char *) lvcc->tx.buf.start;
1167     APRINTK((pos & ~0x0001FFF0) == 0,
1168         "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1169         "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1170         lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1171     pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1172     APRINTK((pos & ~0x0001FFF0) == 0,
1173         "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1174         "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1175         lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1176     lvcc->tx.buf.ptr[-1] =
1177         cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1178         ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1179         DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1180     if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1181         lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1182 }
1183 
1184 /* Add 32-bit AAL5 trailer and leave room for its CRC */
1185 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1186     int len, int cpi, int uu)
1187 {
1188     APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1189         "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1190     lvcc->tx.buf.ptr += 2;
1191     lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1192     if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1193         lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1194 }
1195 
1196 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1197     const unsigned char *src, int n)
1198 {
1199     unsigned char *e;
1200     int m;
1201     e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1202     m = e - (unsigned char *) lvcc->tx.buf.end;
1203     if (m < 0)
1204         m = 0;
1205     memcpy(lvcc->tx.buf.ptr, src, n - m);
1206     if (m != 0) {
1207         memcpy(lvcc->tx.buf.start, src + n - m, m);
1208         e = ((unsigned char *) lvcc->tx.buf.start) + m;
1209     }
1210     lvcc->tx.buf.ptr = (u32 *) e;
1211 }
1212 
1213 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1214 {
1215     unsigned char *e;
1216     int m;
1217     if (n == 0)
1218         return;
1219     e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1220     m = e - (unsigned char *) lvcc->tx.buf.end;
1221     if (m < 0)
1222         m = 0;
1223     memset(lvcc->tx.buf.ptr, 0, n - m);
1224     if (m != 0) {
1225         memset(lvcc->tx.buf.start, 0, m);
1226         e = ((unsigned char *) lvcc->tx.buf.start) + m;
1227     }
1228     lvcc->tx.buf.ptr = (u32 *) e;
1229 }
1230 
1231 /* Update "butt" register to specify new WritePtr */
1232 static inline void lanai_endtx(struct lanai_dev *lanai,
1233     const struct lanai_vcc *lvcc)
1234 {
1235     int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1236         (unsigned char *) lvcc->tx.buf.start;
1237     APRINTK((ptr & ~0x0001FFF0) == 0,
1238         "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1239         ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1240         lvcc->tx.buf.end);
1241 
1242     /*
1243      * Since the "butt register" is a shared resounce on the card we
1244      * serialize all accesses to it through this spinlock.  This is
1245      * mostly just paranoia since the register is rarely "busy" anyway
1246      * but is needed for correctness.
1247      */
1248     spin_lock(&lanai->endtxlock);
1249     /*
1250      * We need to check if the "butt busy" bit is set before
1251      * updating the butt register.  In theory this should
1252      * never happen because the ATM card is plenty fast at
1253      * updating the register.  Still, we should make sure
1254      */
1255     for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1256         if (unlikely(i > 50)) {
1257             printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1258                 "always busy!\n", lanai->number);
1259             break;
1260         }
1261         udelay(5);
1262     }
1263     /*
1264      * Before we tall the card to start work we need to be sure 100% of
1265      * the info in the service buffer has been written before we tell
1266      * the card about it
1267      */
1268     wmb();
1269     reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1270     spin_unlock(&lanai->endtxlock);
1271 }
1272 
1273 /*
1274  * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1275  * space available.  "pdusize" is the number of bytes the PDU will take
1276  */
1277 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1278     struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1279 {
1280     int pad;
1281     APRINTK(pdusize == aal5_size(skb->len),
1282         "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1283         pdusize, aal5_size(skb->len));
1284     vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1285     pad = pdusize - skb->len - 8;
1286     APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1287     APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1288     vcc_tx_memcpy(lvcc, skb->data, skb->len);
1289     vcc_tx_memzero(lvcc, pad);
1290     vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1291     lanai_endtx(lanai, lvcc);
1292     lanai_free_skb(lvcc->tx.atmvcc, skb);
1293     atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1294 }
1295 
1296 /* Try to fill the buffer - don't call unless there is backlog */
1297 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1298     struct lanai_vcc *lvcc, int endptr)
1299 {
1300     int n;
1301     struct sk_buff *skb;
1302     int space = vcc_tx_space(lvcc, endptr);
1303     APRINTK(vcc_is_backlogged(lvcc),
1304         "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1305         lvcc->vci);
1306     while (space >= 64) {
1307         skb = skb_dequeue(&lvcc->tx.backlog);
1308         if (skb == NULL)
1309             goto no_backlog;
1310         n = aal5_size(skb->len);
1311         if (n + 16 > space) {
1312             /* No room for this packet - put it back on queue */
1313             skb_queue_head(&lvcc->tx.backlog, skb);
1314             return;
1315         }
1316         lanai_send_one_aal5(lanai, lvcc, skb, n);
1317         space -= n + 16;
1318     }
1319     if (!vcc_is_backlogged(lvcc)) {
1320         no_backlog:
1321         __clear_bit(lvcc->vci, lanai->backlog_vccs);
1322     }
1323 }
1324 
1325 /* Given an skb that we want to transmit either send it now or queue */
1326 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1327     struct sk_buff *skb)
1328 {
1329     int space, n;
1330     if (vcc_is_backlogged(lvcc))        /* Already backlogged */
1331         goto queue_it;
1332     space = vcc_tx_space(lvcc,
1333             TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1334     n = aal5_size(skb->len);
1335     APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1336     if (space < n + 16) {           /* No space for this PDU */
1337         __set_bit(lvcc->vci, lanai->backlog_vccs);
1338         queue_it:
1339         skb_queue_tail(&lvcc->tx.backlog, skb);
1340         return;
1341     }
1342     lanai_send_one_aal5(lanai, lvcc, skb, n);
1343 }
1344 
1345 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1346     struct lanai_vcc *lvcc, int endptr)
1347 {
1348     printk(KERN_INFO DEV_LABEL
1349         ": vcc_tx_unqueue_aal0: not implemented\n");
1350 }
1351 
1352 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1353     struct sk_buff *skb)
1354 {
1355     printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1356     /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1357     lanai_free_skb(lvcc->tx.atmvcc, skb);
1358 }
1359 
1360 /* -------------------- VCC RX BUFFER UTILITIES: */
1361 
1362 /* unlike the _tx_ cousins, this doesn't update ptr */
1363 static inline void vcc_rx_memcpy(unsigned char *dest,
1364     const struct lanai_vcc *lvcc, int n)
1365 {
1366     int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1367         ((const unsigned char *) (lvcc->rx.buf.end));
1368     if (m < 0)
1369         m = 0;
1370     memcpy(dest, lvcc->rx.buf.ptr, n - m);
1371     memcpy(dest + n - m, lvcc->rx.buf.start, m);
1372     /* Make sure that these copies don't get reordered */
1373     barrier();
1374 }
1375 
1376 /* Receive AAL5 data on a VCC with a particular endptr */
1377 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1378 {
1379     int size;
1380     struct sk_buff *skb;
1381     const u32 *x;
1382     u32 *end = &lvcc->rx.buf.start[endptr * 4];
1383     int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1384     if (n < 0)
1385         n += lanai_buf_size(&lvcc->rx.buf);
1386     APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1387         "vcc_rx_aal5: n out of range (%d/%zu)\n",
1388         n, lanai_buf_size(&lvcc->rx.buf));
1389     /* Recover the second-to-last word to get true pdu length */
1390     if ((x = &end[-2]) < lvcc->rx.buf.start)
1391         x = &lvcc->rx.buf.end[-2];
1392     /*
1393      * Before we actually read from the buffer, make sure the memory
1394      * changes have arrived
1395      */
1396     rmb();
1397     size = be32_to_cpup(x) & 0xffff;
1398     if (unlikely(n != aal5_size(size))) {
1399         /* Make sure size matches padding */
1400         printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1401             "on vci=%d - size=%d n=%d\n",
1402             lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1403         lvcc->stats.x.aal5.rx_badlen++;
1404         goto out;
1405     }
1406     skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1407     if (unlikely(skb == NULL)) {
1408         lvcc->stats.rx_nomem++;
1409         goto out;
1410     }
1411     skb_put(skb, size);
1412     vcc_rx_memcpy(skb->data, lvcc, size);
1413     ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1414     __net_timestamp(skb);
1415     lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1416     atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1417     out:
1418     lvcc->rx.buf.ptr = end;
1419     cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1420 }
1421 
1422 static void vcc_rx_aal0(struct lanai_dev *lanai)
1423 {
1424     printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1425     /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1426     /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1427 }
1428 
1429 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1430 
1431 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1432 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1433 #define VCCTABLE_GETFREEPAGE
1434 #else
1435 #include <linux/vmalloc.h>
1436 #endif
1437 
1438 static int vcc_table_allocate(struct lanai_dev *lanai)
1439 {
1440 #ifdef VCCTABLE_GETFREEPAGE
1441     APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1442         "vcc table > PAGE_SIZE!");
1443     lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1444     return (lanai->vccs == NULL) ? -ENOMEM : 0;
1445 #else
1446     int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1447     lanai->vccs = vzalloc(bytes);
1448     if (unlikely(lanai->vccs == NULL))
1449         return -ENOMEM;
1450     return 0;
1451 #endif
1452 }
1453 
1454 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1455 {
1456 #ifdef VCCTABLE_GETFREEPAGE
1457     free_page((unsigned long) lanai->vccs);
1458 #else
1459     vfree(lanai->vccs);
1460 #endif
1461 }
1462 
1463 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1464 static inline struct lanai_vcc *new_lanai_vcc(void)
1465 {
1466     struct lanai_vcc *lvcc;
1467     lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1468     if (likely(lvcc != NULL)) {
1469         skb_queue_head_init(&lvcc->tx.backlog);
1470 #ifdef DEBUG
1471         lvcc->vci = -1;
1472 #endif
1473     }
1474     return lvcc;
1475 }
1476 
1477 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1478     struct lanai_buffer *buf, int max_sdu, int multiplier,
1479     const char *name)
1480 {
1481     int size;
1482     if (unlikely(max_sdu < 1))
1483         max_sdu = 1;
1484     max_sdu = aal5_size(max_sdu);
1485     size = (max_sdu + 16) * multiplier + 16;
1486     lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1487     if (unlikely(buf->start == NULL))
1488         return -ENOMEM;
1489     if (unlikely(lanai_buf_size(buf) < size))
1490         printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1491             "for %s buffer, got only %zu\n", lanai->number, size,
1492             name, lanai_buf_size(buf));
1493     DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1494     return 0;
1495 }
1496 
1497 /* Setup a RX buffer for a currently unbound AAL5 vci */
1498 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1499     struct lanai_vcc *lvcc, const struct atm_qos *qos)
1500 {
1501     return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1502         qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1503 }
1504 
1505 /* Setup a TX buffer for a currently unbound AAL5 vci */
1506 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1507     const struct atm_qos *qos)
1508 {
1509     int max_sdu, multiplier;
1510     if (qos->aal == ATM_AAL0) {
1511         lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1512         max_sdu = ATM_CELL_SIZE - 1;
1513         multiplier = AAL0_TX_MULTIPLIER;
1514     } else {
1515         lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1516         max_sdu = qos->txtp.max_sdu;
1517         multiplier = AAL5_TX_MULTIPLIER;
1518     }
1519     return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1520         multiplier, "TX");
1521 }
1522 
1523 static inline void host_vcc_bind(struct lanai_dev *lanai,
1524     struct lanai_vcc *lvcc, vci_t vci)
1525 {
1526     if (lvcc->vbase != NULL)
1527         return;    /* We already were bound in the other direction */
1528     DPRINTK("Binding vci %d\n", vci);
1529 #ifdef USE_POWERDOWN
1530     if (lanai->nbound++ == 0) {
1531         DPRINTK("Coming out of powerdown\n");
1532         lanai->conf1 &= ~CONFIG1_POWERDOWN;
1533         conf1_write(lanai);
1534         conf2_write(lanai);
1535     }
1536 #endif
1537     lvcc->vbase = cardvcc_addr(lanai, vci);
1538     lanai->vccs[lvcc->vci = vci] = lvcc;
1539 }
1540 
1541 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1542     struct lanai_vcc *lvcc)
1543 {
1544     if (lvcc->vbase == NULL)
1545         return; /* This vcc was never bound */
1546     DPRINTK("Unbinding vci %d\n", lvcc->vci);
1547     lvcc->vbase = NULL;
1548     lanai->vccs[lvcc->vci] = NULL;
1549 #ifdef USE_POWERDOWN
1550     if (--lanai->nbound == 0) {
1551         DPRINTK("Going into powerdown\n");
1552         lanai->conf1 |= CONFIG1_POWERDOWN;
1553         conf1_write(lanai);
1554     }
1555 #endif
1556 }
1557 
1558 /* -------------------- RESET CARD: */
1559 
1560 static void lanai_reset(struct lanai_dev *lanai)
1561 {
1562     printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1563         "implemented\n", lanai->number);
1564     /* TODO */
1565     /* The following is just a hack until we write the real
1566      * resetter - at least ack whatever interrupt sent us
1567      * here
1568      */
1569     reg_write(lanai, INT_ALL, IntAck_Reg);
1570     lanai->stats.card_reset++;
1571 }
1572 
1573 /* -------------------- SERVICE LIST UTILITIES: */
1574 
1575 /*
1576  * Allocate service buffer and tell card about it
1577  */
1578 static int service_buffer_allocate(struct lanai_dev *lanai)
1579 {
1580     lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1581         lanai->pci);
1582     if (unlikely(lanai->service.start == NULL))
1583         return -ENOMEM;
1584     DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1585         lanai->service.start,
1586         lanai_buf_size(&lanai->service),
1587         lanai_buf_size_cardorder(&lanai->service));
1588     /* Clear ServWrite register to be safe */
1589     reg_write(lanai, 0, ServWrite_Reg);
1590     /* ServiceStuff register contains size and address of buffer */
1591     reg_write(lanai,
1592         SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1593         SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1594         ServiceStuff_Reg);
1595     return 0;
1596 }
1597 
1598 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1599 {
1600     lanai_buf_deallocate(&lanai->service, lanai->pci);
1601 }
1602 
1603 /* Bitfields in service list */
1604 #define SERVICE_TX  (0x80000000)    /* Was from transmission */
1605 #define SERVICE_TRASH   (0x40000000)    /* RXed PDU was trashed */
1606 #define SERVICE_CRCERR  (0x20000000)    /* RXed PDU had CRC error */
1607 #define SERVICE_CI  (0x10000000)    /* RXed PDU had CI set */
1608 #define SERVICE_CLP (0x08000000)    /* RXed PDU had CLP set */
1609 #define SERVICE_STREAM  (0x04000000)    /* RX Stream mode */
1610 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1611 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1612 
1613 /* Handle one thing from the service list - returns true if it marked a
1614  * VCC ready for xmit
1615  */
1616 static int handle_service(struct lanai_dev *lanai, u32 s)
1617 {
1618     vci_t vci = SERVICE_GET_VCI(s);
1619     struct lanai_vcc *lvcc;
1620     read_lock(&vcc_sklist_lock);
1621     lvcc = lanai->vccs[vci];
1622     if (unlikely(lvcc == NULL)) {
1623         read_unlock(&vcc_sklist_lock);
1624         DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1625             "vcc %d\n", lanai->number, (unsigned int) s, vci);
1626         if (s & SERVICE_TX)
1627             lanai->stats.service_notx++;
1628         else
1629             lanai->stats.service_norx++;
1630         return 0;
1631     }
1632     if (s & SERVICE_TX) {           /* segmentation interrupt */
1633         if (unlikely(lvcc->tx.atmvcc == NULL)) {
1634             read_unlock(&vcc_sklist_lock);
1635             DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1636                 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1637             lanai->stats.service_notx++;
1638             return 0;
1639         }
1640         __set_bit(vci, lanai->transmit_ready);
1641         lvcc->tx.endptr = SERVICE_GET_END(s);
1642         read_unlock(&vcc_sklist_lock);
1643         return 1;
1644     }
1645     if (unlikely(lvcc->rx.atmvcc == NULL)) {
1646         read_unlock(&vcc_sklist_lock);
1647         DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1648             "vcc %d\n", lanai->number, (unsigned int) s, vci);
1649         lanai->stats.service_norx++;
1650         return 0;
1651     }
1652     if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1653         read_unlock(&vcc_sklist_lock);
1654         DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1655             "vcc %d\n", lanai->number, (unsigned int) s, vci);
1656         lanai->stats.service_rxnotaal5++;
1657         atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1658         return 0;
1659     }
1660     if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1661         vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1662         read_unlock(&vcc_sklist_lock);
1663         return 0;
1664     }
1665     if (s & SERVICE_TRASH) {
1666         int bytes;
1667         read_unlock(&vcc_sklist_lock);
1668         DPRINTK("got trashed rx pdu on vci %d\n", vci);
1669         atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1670         lvcc->stats.x.aal5.service_trash++;
1671         bytes = (SERVICE_GET_END(s) * 16) -
1672             (((unsigned long) lvcc->rx.buf.ptr) -
1673             ((unsigned long) lvcc->rx.buf.start)) + 47;
1674         if (bytes < 0)
1675             bytes += lanai_buf_size(&lvcc->rx.buf);
1676         lanai->stats.ovfl_trash += (bytes / 48);
1677         return 0;
1678     }
1679     if (s & SERVICE_STREAM) {
1680         read_unlock(&vcc_sklist_lock);
1681         atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1682         lvcc->stats.x.aal5.service_stream++;
1683         printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1684             "PDU on VCI %d!\n", lanai->number, vci);
1685         lanai_reset(lanai);
1686         return 0;
1687     }
1688     DPRINTK("got rx crc error on vci %d\n", vci);
1689     atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1690     lvcc->stats.x.aal5.service_rxcrc++;
1691     lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1692     cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1693     read_unlock(&vcc_sklist_lock);
1694     return 0;
1695 }
1696 
1697 /* Try transmitting on all VCIs that we marked ready to serve */
1698 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1699 {
1700     struct lanai_vcc *lvcc = lanai->vccs[vci];
1701     if (vcc_is_backlogged(lvcc))
1702         lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1703 }
1704 
1705 /* Run service queue -- called from interrupt context or with
1706  * interrupts otherwise disabled and with the lanai->servicelock
1707  * lock held
1708  */
1709 static void run_service(struct lanai_dev *lanai)
1710 {
1711     int ntx = 0;
1712     u32 wreg = reg_read(lanai, ServWrite_Reg);
1713     const u32 *end = lanai->service.start + wreg;
1714     while (lanai->service.ptr != end) {
1715         ntx += handle_service(lanai,
1716             le32_to_cpup(lanai->service.ptr++));
1717         if (lanai->service.ptr >= lanai->service.end)
1718             lanai->service.ptr = lanai->service.start;
1719     }
1720     reg_write(lanai, wreg, ServRead_Reg);
1721     if (ntx != 0) {
1722         read_lock(&vcc_sklist_lock);
1723         vci_bitfield_iterate(lanai, lanai->transmit_ready,
1724             iter_transmit);
1725         bitmap_zero(lanai->transmit_ready, NUM_VCI);
1726         read_unlock(&vcc_sklist_lock);
1727     }
1728 }
1729 
1730 /* -------------------- GATHER STATISTICS: */
1731 
1732 static void get_statistics(struct lanai_dev *lanai)
1733 {
1734     u32 statreg = reg_read(lanai, Statistics_Reg);
1735     lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1736     lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1737     lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1738     lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1739 }
1740 
1741 /* -------------------- POLLING TIMER: */
1742 
1743 #ifndef DEBUG_RW
1744 /* Try to undequeue 1 backlogged vcc */
1745 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1746 {
1747     struct lanai_vcc *lvcc = lanai->vccs[vci];
1748     int endptr;
1749     if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1750         !vcc_is_backlogged(lvcc)) {
1751         __clear_bit(vci, lanai->backlog_vccs);
1752         return;
1753     }
1754     endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1755     lvcc->tx.unqueue(lanai, lvcc, endptr);
1756 }
1757 #endif /* !DEBUG_RW */
1758 
1759 static void lanai_timed_poll(struct timer_list *t)
1760 {
1761     struct lanai_dev *lanai = from_timer(lanai, t, timer);
1762 #ifndef DEBUG_RW
1763     unsigned long flags;
1764 #ifdef USE_POWERDOWN
1765     if (lanai->conf1 & CONFIG1_POWERDOWN)
1766         return;
1767 #endif /* USE_POWERDOWN */
1768     local_irq_save(flags);
1769     /* If we can grab the spinlock, check if any services need to be run */
1770     if (spin_trylock(&lanai->servicelock)) {
1771         run_service(lanai);
1772         spin_unlock(&lanai->servicelock);
1773     }
1774     /* ...and see if any backlogged VCs can make progress */
1775     /* unfortunately linux has no read_trylock() currently */
1776     read_lock(&vcc_sklist_lock);
1777     vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1778     read_unlock(&vcc_sklist_lock);
1779     local_irq_restore(flags);
1780 
1781     get_statistics(lanai);
1782 #endif /* !DEBUG_RW */
1783     mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1784 }
1785 
1786 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1787 {
1788     timer_setup(&lanai->timer, lanai_timed_poll, 0);
1789     lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1790     add_timer(&lanai->timer);
1791 }
1792 
1793 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1794 {
1795     del_timer_sync(&lanai->timer);
1796 }
1797 
1798 /* -------------------- INTERRUPT SERVICE: */
1799 
1800 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1801 {
1802     u32 ack = 0;
1803     if (reason & INT_SERVICE) {
1804         ack = INT_SERVICE;
1805         spin_lock(&lanai->servicelock);
1806         run_service(lanai);
1807         spin_unlock(&lanai->servicelock);
1808     }
1809     if (reason & (INT_AAL0_STR | INT_AAL0)) {
1810         ack |= reason & (INT_AAL0_STR | INT_AAL0);
1811         vcc_rx_aal0(lanai);
1812     }
1813     /* The rest of the interrupts are pretty rare */
1814     if (ack == reason)
1815         goto done;
1816     if (reason & INT_STATS) {
1817         reason &= ~INT_STATS;   /* No need to ack */
1818         get_statistics(lanai);
1819     }
1820     if (reason & INT_STATUS) {
1821         ack |= reason & INT_STATUS;
1822         lanai_check_status(lanai);
1823     }
1824     if (unlikely(reason & INT_DMASHUT)) {
1825         printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1826             "shutdown, reason=0x%08X, address=0x%08X\n",
1827             lanai->number, (unsigned int) (reason & INT_DMASHUT),
1828             (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1829         if (reason & INT_TABORTBM) {
1830             lanai_reset(lanai);
1831             return;
1832         }
1833         ack |= (reason & INT_DMASHUT);
1834         printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1835             lanai->number);
1836         conf1_write(lanai);
1837         lanai->stats.dma_reenable++;
1838         pcistatus_check(lanai, 0);
1839     }
1840     if (unlikely(reason & INT_TABORTSENT)) {
1841         ack |= (reason & INT_TABORTSENT);
1842         printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1843             lanai->number);
1844         pcistatus_check(lanai, 0);
1845     }
1846     if (unlikely(reason & INT_SEGSHUT)) {
1847         printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1848             "segmentation shutdown, reason=0x%08X\n", lanai->number,
1849             (unsigned int) (reason & INT_SEGSHUT));
1850         lanai_reset(lanai);
1851         return;
1852     }
1853     if (unlikely(reason & (INT_PING | INT_WAKE))) {
1854         printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1855             "unexpected interrupt 0x%08X, resetting\n",
1856             lanai->number,
1857             (unsigned int) (reason & (INT_PING | INT_WAKE)));
1858         lanai_reset(lanai);
1859         return;
1860     }
1861 #ifdef DEBUG
1862     if (unlikely(ack != reason)) {
1863         DPRINTK("unacked ints: 0x%08X\n",
1864             (unsigned int) (reason & ~ack));
1865         ack = reason;
1866     }
1867 #endif
1868    done:
1869     if (ack != 0)
1870         reg_write(lanai, ack, IntAck_Reg);
1871 }
1872 
1873 static irqreturn_t lanai_int(int irq, void *devid)
1874 {
1875     struct lanai_dev *lanai = devid;
1876     u32 reason;
1877 
1878 #ifdef USE_POWERDOWN
1879     /*
1880      * If we're powered down we shouldn't be generating any interrupts -
1881      * so assume that this is a shared interrupt line and it's for someone
1882      * else
1883      */
1884     if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1885         return IRQ_NONE;
1886 #endif
1887 
1888     reason = intr_pending(lanai);
1889     if (reason == 0)
1890         return IRQ_NONE;    /* Must be for someone else */
1891 
1892     do {
1893         if (unlikely(reason == 0xFFFFFFFF))
1894             break;      /* Maybe we've been unplugged? */
1895         lanai_int_1(lanai, reason);
1896         reason = intr_pending(lanai);
1897     } while (reason != 0);
1898 
1899     return IRQ_HANDLED;
1900 }
1901 
1902 /* TODO - it would be nice if we could use the "delayed interrupt" system
1903  *   to some advantage
1904  */
1905 
1906 /* -------------------- CHECK BOARD ID/REV: */
1907 
1908 /*
1909  * The board id and revision are stored both in the reset register and
1910  * in the PCI configuration space - the documentation says to check
1911  * each of them.  If revp!=NULL we store the revision there
1912  */
1913 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1914 {
1915     DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1916         (int) RESET_GET_BOARD_ID(val),
1917         (int) RESET_GET_BOARD_REV(val));
1918     if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1919         printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1920             "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1921         return -ENODEV;
1922     }
1923     if (revp != NULL)
1924         *revp = RESET_GET_BOARD_REV(val);
1925     return 0;
1926 }
1927 
1928 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1929 
1930 static int lanai_pci_start(struct lanai_dev *lanai)
1931 {
1932     struct pci_dev *pci = lanai->pci;
1933     int result;
1934 
1935     if (pci_enable_device(pci) != 0) {
1936         printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1937             "PCI device", lanai->number);
1938         return -ENXIO;
1939     }
1940     pci_set_master(pci);
1941     if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1942         printk(KERN_WARNING DEV_LABEL
1943             "(itf %d): No suitable DMA available.\n", lanai->number);
1944         return -EBUSY;
1945     }
1946     result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1947     if (result != 0)
1948         return result;
1949     /* Set latency timer to zero as per lanai docs */
1950     result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1951     if (result != PCIBIOS_SUCCESSFUL) {
1952         printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1953             "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1954         return -EINVAL;
1955     }
1956     pcistatus_check(lanai, 1);
1957     pcistatus_check(lanai, 0);
1958     return 0;
1959 }
1960 
1961 /* -------------------- VPI/VCI ALLOCATION: */
1962 
1963 /*
1964  * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1965  * get a CBRZERO interrupt), and we can use it only if no one is receiving
1966  * AAL0 traffic (since they will use the same queue) - according to the
1967  * docs we shouldn't even use it for AAL0 traffic
1968  */
1969 static inline int vci0_is_ok(struct lanai_dev *lanai,
1970     const struct atm_qos *qos)
1971 {
1972     if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1973         return 0;
1974     if (qos->rxtp.traffic_class != ATM_NONE) {
1975         if (lanai->naal0 != 0)
1976             return 0;
1977         lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1978         conf2_write_if_powerup(lanai);
1979     }
1980     return 1;
1981 }
1982 
1983 /* return true if vci is currently unused, or if requested qos is
1984  * compatible
1985  */
1986 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1987     const struct atm_vcc *atmvcc)
1988 {
1989     const struct atm_qos *qos = &atmvcc->qos;
1990     const struct lanai_vcc *lvcc = lanai->vccs[vci];
1991     if (vci == 0 && !vci0_is_ok(lanai, qos))
1992         return 0;
1993     if (unlikely(lvcc != NULL)) {
1994         if (qos->rxtp.traffic_class != ATM_NONE &&
1995             lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
1996             return 0;
1997         if (qos->txtp.traffic_class != ATM_NONE &&
1998             lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
1999             return 0;
2000         if (qos->txtp.traffic_class == ATM_CBR &&
2001             lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2002             return 0;
2003     }
2004     if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2005         qos->rxtp.traffic_class != ATM_NONE) {
2006         const struct lanai_vcc *vci0 = lanai->vccs[0];
2007         if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2008             return 0;
2009         lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2010         conf2_write_if_powerup(lanai);
2011     }
2012     return 1;
2013 }
2014 
2015 static int lanai_normalize_ci(struct lanai_dev *lanai,
2016     const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2017 {
2018     switch (*vpip) {
2019         case ATM_VPI_ANY:
2020             *vpip = 0;
2021             fallthrough;
2022         case 0:
2023             break;
2024         default:
2025             return -EADDRINUSE;
2026     }
2027     switch (*vcip) {
2028         case ATM_VCI_ANY:
2029             for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2030                 (*vcip)++)
2031                 if (vci_is_ok(lanai, *vcip, atmvcc))
2032                     return 0;
2033             return -EADDRINUSE;
2034         default:
2035             if (*vcip >= lanai->num_vci || *vcip < 0 ||
2036                 !vci_is_ok(lanai, *vcip, atmvcc))
2037                 return -EADDRINUSE;
2038     }
2039     return 0;
2040 }
2041 
2042 /* -------------------- MANAGE CBR: */
2043 
2044 /*
2045  * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2046  * Note that storing a number greater than 2046.0 will result in
2047  * incorrect shaping
2048  */
2049 #define CBRICG_FRAC_BITS    (4)
2050 #define CBRICG_MAX      (2046 << CBRICG_FRAC_BITS)
2051 
2052 /*
2053  * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2054  * where MAXPCR is (according to the docs) 25600000/(54*8),
2055  * which is equal to (3125<<9)/27.
2056  *
2057  * Solving for ICG, we get:
2058  *    ICG = MAXPCR/PCR - 1
2059  *    ICG = (3125<<9)/(27*PCR) - 1
2060  *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2061  *
2062  * The end result is supposed to be a fixed-point number with FRAC_BITS
2063  * bits of a fractional part, so we keep everything in the numerator
2064  * shifted by that much as we compute
2065  *
2066  */
2067 static int pcr_to_cbricg(const struct atm_qos *qos)
2068 {
2069     int rounddown = 0;  /* 1 = Round PCR down, i.e. round ICG _up_ */
2070     int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2071     if (pcr == 0)       /* Use maximum bandwidth */
2072         return 0;
2073     if (pcr < 0) {
2074         rounddown = 1;
2075         pcr = -pcr;
2076     }
2077     x = pcr * 27;
2078     icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2079     if (rounddown)
2080         icg += x - 1;
2081     icg /= x;
2082     if (icg > CBRICG_MAX)
2083         icg = CBRICG_MAX;
2084     DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2085         pcr, rounddown ? 'Y' : 'N', icg);
2086     return icg;
2087 }
2088 
2089 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2090 {
2091     reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2092     reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2093     lanai->conf2 |= CONFIG2_CBR_ENABLE;
2094     conf2_write(lanai);
2095 }
2096 
2097 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2098 {
2099     lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2100     conf2_write(lanai);
2101 }
2102 
2103 /* -------------------- OPERATIONS: */
2104 
2105 /* setup a newly detected device */
2106 static int lanai_dev_open(struct atm_dev *atmdev)
2107 {
2108     struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2109     unsigned long raw_base;
2110     int result;
2111 
2112     DPRINTK("In lanai_dev_open()\n");
2113     /* Basic device fields */
2114     lanai->number = atmdev->number;
2115     lanai->num_vci = NUM_VCI;
2116     bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2117     bitmap_zero(lanai->transmit_ready, NUM_VCI);
2118     lanai->naal0 = 0;
2119 #ifdef USE_POWERDOWN
2120     lanai->nbound = 0;
2121 #endif
2122     lanai->cbrvcc = NULL;
2123     memset(&lanai->stats, 0, sizeof lanai->stats);
2124     spin_lock_init(&lanai->endtxlock);
2125     spin_lock_init(&lanai->servicelock);
2126     atmdev->ci_range.vpi_bits = 0;
2127     atmdev->ci_range.vci_bits = 0;
2128     while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2129         atmdev->ci_range.vci_bits++;
2130     atmdev->link_rate = ATM_25_PCR;
2131 
2132     /* 3.2: PCI initialization */
2133     if ((result = lanai_pci_start(lanai)) != 0)
2134         goto error;
2135     raw_base = lanai->pci->resource[0].start;
2136     lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2137     if (lanai->base == NULL) {
2138         printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2139         result = -ENOMEM;
2140         goto error_pci;
2141     }
2142     /* 3.3: Reset lanai and PHY */
2143     reset_board(lanai);
2144     lanai->conf1 = reg_read(lanai, Config1_Reg);
2145     lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2146         CONFIG1_MASK_LEDMODE);
2147     lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2148     reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2149     udelay(1000);
2150     conf1_write(lanai);
2151 
2152     /*
2153      * 3.4: Turn on endian mode for big-endian hardware
2154      *   We don't actually want to do this - the actual bit fields
2155      *   in the endian register are not documented anywhere.
2156      *   Instead we do the bit-flipping ourselves on big-endian
2157      *   hardware.
2158      *
2159      * 3.5: get the board ID/rev by reading the reset register
2160      */
2161     result = check_board_id_and_rev("register",
2162         reg_read(lanai, Reset_Reg), &lanai->board_rev);
2163     if (result != 0)
2164         goto error_unmap;
2165 
2166     /* 3.6: read EEPROM */
2167     if ((result = eeprom_read(lanai)) != 0)
2168         goto error_unmap;
2169     if ((result = eeprom_validate(lanai)) != 0)
2170         goto error_unmap;
2171 
2172     /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2173     reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2174     udelay(1000);
2175     conf1_write(lanai);
2176     /* TODO - loopback tests */
2177     lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2178     conf1_write(lanai);
2179 
2180     /* 3.8/3.9: test and initialize card SRAM */
2181     if ((result = sram_test_and_clear(lanai)) != 0)
2182         goto error_unmap;
2183 
2184     /* 3.10: initialize lanai registers */
2185     lanai->conf1 |= CONFIG1_DMA_ENABLE;
2186     conf1_write(lanai);
2187     if ((result = service_buffer_allocate(lanai)) != 0)
2188         goto error_unmap;
2189     if ((result = vcc_table_allocate(lanai)) != 0)
2190         goto error_service;
2191     lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2192         CONFIG2_HEC_DROP |  /* ??? */ CONFIG2_PTI7_MODE;
2193     conf2_write(lanai);
2194     reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2195     reg_write(lanai, 0, CBR_ICG_Reg);   /* CBR defaults to no limit */
2196     if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2197         DEV_LABEL, lanai)) != 0) {
2198         printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2199         goto error_vcctable;
2200     }
2201     mb();               /* Make sure that all that made it */
2202     intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2203     /* 3.11: initialize loop mode (i.e. turn looping off) */
2204     lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2205         CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2206         CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2207     conf1_write(lanai);
2208     lanai->status = reg_read(lanai, Status_Reg);
2209     /* We're now done initializing this card */
2210 #ifdef USE_POWERDOWN
2211     lanai->conf1 |= CONFIG1_POWERDOWN;
2212     conf1_write(lanai);
2213 #endif
2214     memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2215     lanai_timed_poll_start(lanai);
2216     printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2217         "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2218         lanai->base, lanai->pci->irq, atmdev->esi);
2219     printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2220         "board_rev=%d\n", lanai->number,
2221         lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2222         (unsigned int) lanai->serialno, lanai->board_rev);
2223     return 0;
2224 
2225     error_vcctable:
2226     vcc_table_deallocate(lanai);
2227     error_service:
2228     service_buffer_deallocate(lanai);
2229     error_unmap:
2230     reset_board(lanai);
2231 #ifdef USE_POWERDOWN
2232     lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2233     conf1_write(lanai);
2234 #endif
2235     iounmap(lanai->base);
2236     lanai->base = NULL;
2237     error_pci:
2238     pci_disable_device(lanai->pci);
2239     error:
2240     return result;
2241 }
2242 
2243 /* called when device is being shutdown, and all vcc's are gone - higher
2244  * levels will deallocate the atm device for us
2245  */
2246 static void lanai_dev_close(struct atm_dev *atmdev)
2247 {
2248     struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2249     if (lanai->base==NULL)
2250         return;
2251     printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2252         lanai->number);
2253     lanai_timed_poll_stop(lanai);
2254 #ifdef USE_POWERDOWN
2255     lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2256     conf1_write(lanai);
2257 #endif
2258     intr_disable(lanai, INT_ALL);
2259     free_irq(lanai->pci->irq, lanai);
2260     reset_board(lanai);
2261 #ifdef USE_POWERDOWN
2262     lanai->conf1 |= CONFIG1_POWERDOWN;
2263     conf1_write(lanai);
2264 #endif
2265     pci_disable_device(lanai->pci);
2266     vcc_table_deallocate(lanai);
2267     service_buffer_deallocate(lanai);
2268     iounmap(lanai->base);
2269     kfree(lanai);
2270 }
2271 
2272 /* close a vcc */
2273 static void lanai_close(struct atm_vcc *atmvcc)
2274 {
2275     struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2276     struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2277     if (lvcc == NULL)
2278         return;
2279     clear_bit(ATM_VF_READY, &atmvcc->flags);
2280     clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2281     if (lvcc->rx.atmvcc == atmvcc) {
2282         lanai_shutdown_rx_vci(lvcc);
2283         if (atmvcc->qos.aal == ATM_AAL0) {
2284             if (--lanai->naal0 <= 0)
2285                 aal0_buffer_free(lanai);
2286         } else
2287             lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2288         lvcc->rx.atmvcc = NULL;
2289     }
2290     if (lvcc->tx.atmvcc == atmvcc) {
2291         if (atmvcc == lanai->cbrvcc) {
2292             if (lvcc->vbase != NULL)
2293                 lanai_cbr_shutdown(lanai);
2294             lanai->cbrvcc = NULL;
2295         }
2296         lanai_shutdown_tx_vci(lanai, lvcc);
2297         lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2298         lvcc->tx.atmvcc = NULL;
2299     }
2300     if (--lvcc->nref == 0) {
2301         host_vcc_unbind(lanai, lvcc);
2302         kfree(lvcc);
2303     }
2304     atmvcc->dev_data = NULL;
2305     clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2306 }
2307 
2308 /* open a vcc on the card to vpi/vci */
2309 static int lanai_open(struct atm_vcc *atmvcc)
2310 {
2311     struct lanai_dev *lanai;
2312     struct lanai_vcc *lvcc;
2313     int result = 0;
2314     int vci = atmvcc->vci;
2315     short vpi = atmvcc->vpi;
2316     /* we don't support partial open - it's not really useful anyway */
2317     if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2318         (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2319         return -EINVAL;
2320     lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2321     result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2322     if (unlikely(result != 0))
2323         goto out;
2324     set_bit(ATM_VF_ADDR, &atmvcc->flags);
2325     if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2326         return -EINVAL;
2327     DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2328         (int) vpi, vci);
2329     lvcc = lanai->vccs[vci];
2330     if (lvcc == NULL) {
2331         lvcc = new_lanai_vcc();
2332         if (unlikely(lvcc == NULL))
2333             return -ENOMEM;
2334         atmvcc->dev_data = lvcc;
2335     }
2336     lvcc->nref++;
2337     if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2338         APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2339             vci);
2340         if (atmvcc->qos.aal == ATM_AAL0) {
2341             if (lanai->naal0 == 0)
2342                 result = aal0_buffer_allocate(lanai);
2343         } else
2344             result = lanai_setup_rx_vci_aal5(
2345                 lanai, lvcc, &atmvcc->qos);
2346         if (unlikely(result != 0))
2347             goto out_free;
2348         lvcc->rx.atmvcc = atmvcc;
2349         lvcc->stats.rx_nomem = 0;
2350         lvcc->stats.x.aal5.rx_badlen = 0;
2351         lvcc->stats.x.aal5.service_trash = 0;
2352         lvcc->stats.x.aal5.service_stream = 0;
2353         lvcc->stats.x.aal5.service_rxcrc = 0;
2354         if (atmvcc->qos.aal == ATM_AAL0)
2355             lanai->naal0++;
2356     }
2357     if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2358         APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2359             vci);
2360         result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2361         if (unlikely(result != 0))
2362             goto out_free;
2363         lvcc->tx.atmvcc = atmvcc;
2364         if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2365             APRINTK(lanai->cbrvcc == NULL,
2366                 "cbrvcc!=NULL, vci=%d\n", vci);
2367             lanai->cbrvcc = atmvcc;
2368         }
2369     }
2370     host_vcc_bind(lanai, lvcc, vci);
2371     /*
2372      * Make sure everything made it to RAM before we tell the card about
2373      * the VCC
2374      */
2375     wmb();
2376     if (atmvcc == lvcc->rx.atmvcc)
2377         host_vcc_start_rx(lvcc);
2378     if (atmvcc == lvcc->tx.atmvcc) {
2379         host_vcc_start_tx(lvcc);
2380         if (lanai->cbrvcc == atmvcc)
2381             lanai_cbr_setup(lanai);
2382     }
2383     set_bit(ATM_VF_READY, &atmvcc->flags);
2384     return 0;
2385     out_free:
2386     lanai_close(atmvcc);
2387     out:
2388     return result;
2389 }
2390 
2391 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2392 {
2393     struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2394     struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2395     unsigned long flags;
2396     if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2397           lvcc->tx.atmvcc != atmvcc))
2398         goto einval;
2399 #ifdef DEBUG
2400     if (unlikely(skb == NULL)) {
2401         DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2402         goto einval;
2403     }
2404     if (unlikely(lanai == NULL)) {
2405         DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2406         goto einval;
2407     }
2408 #endif
2409     ATM_SKB(skb)->vcc = atmvcc;
2410     switch (atmvcc->qos.aal) {
2411         case ATM_AAL5:
2412             read_lock_irqsave(&vcc_sklist_lock, flags);
2413             vcc_tx_aal5(lanai, lvcc, skb);
2414             read_unlock_irqrestore(&vcc_sklist_lock, flags);
2415             return 0;
2416         case ATM_AAL0:
2417             if (unlikely(skb->len != ATM_CELL_SIZE-1))
2418                 goto einval;
2419   /* NOTE - this next line is technically invalid - we haven't unshared skb */
2420             cpu_to_be32s((u32 *) skb->data);
2421             read_lock_irqsave(&vcc_sklist_lock, flags);
2422             vcc_tx_aal0(lanai, lvcc, skb);
2423             read_unlock_irqrestore(&vcc_sklist_lock, flags);
2424             return 0;
2425     }
2426     DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2427         atmvcc->vci);
2428     einval:
2429     lanai_free_skb(atmvcc, skb);
2430     return -EINVAL;
2431 }
2432 
2433 static int lanai_change_qos(struct atm_vcc *atmvcc,
2434     /*const*/ struct atm_qos *qos, int flags)
2435 {
2436     return -EBUSY;      /* TODO: need to write this */
2437 }
2438 
2439 #ifndef CONFIG_PROC_FS
2440 #define lanai_proc_read NULL
2441 #else
2442 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2443 {
2444     struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2445     loff_t left = *pos;
2446     struct lanai_vcc *lvcc;
2447     if (left-- == 0)
2448         return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2449             "serial=%u, magic=0x%08X, num_vci=%d\n",
2450             atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2451             (unsigned int) lanai->serialno,
2452             (unsigned int) lanai->magicno, lanai->num_vci);
2453     if (left-- == 0)
2454         return sprintf(page, "revision: board=%d, pci_if=%d\n",
2455             lanai->board_rev, (int) lanai->pci->revision);
2456     if (left-- == 0)
2457         return sprintf(page, "EEPROM ESI: %pM\n",
2458             &lanai->eeprom[EEPROM_MAC]);
2459     if (left-- == 0)
2460         return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2461             "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2462             (lanai->status & STATUS_LOCD) ? 1 : 0,
2463             (lanai->status & STATUS_LED) ? 1 : 0,
2464             (lanai->status & STATUS_GPIN) ? 1 : 0);
2465     if (left-- == 0)
2466         return sprintf(page, "global buffer sizes: service=%zu, "
2467             "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2468             lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2469     if (left-- == 0) {
2470         get_statistics(lanai);
2471         return sprintf(page, "cells in error: overflow=%u, "
2472             "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2473             lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2474             lanai->stats.hec_err, lanai->stats.atm_ovfl);
2475     }
2476     if (left-- == 0)
2477         return sprintf(page, "PCI errors: parity_detect=%u, "
2478             "master_abort=%u, master_target_abort=%u,\n",
2479             lanai->stats.pcierr_parity_detect,
2480             lanai->stats.pcierr_serr_set,
2481             lanai->stats.pcierr_m_target_abort);
2482     if (left-- == 0)
2483         return sprintf(page, "            slave_target_abort=%u, "
2484             "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2485             lanai->stats.pcierr_master_parity);
2486     if (left-- == 0)
2487         return sprintf(page, "                     no_tx=%u, "
2488             "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2489             lanai->stats.service_notx,
2490             lanai->stats.service_rxnotaal5);
2491     if (left-- == 0)
2492         return sprintf(page, "resets: dma=%u, card=%u\n",
2493             lanai->stats.dma_reenable, lanai->stats.card_reset);
2494     /* At this point, "left" should be the VCI we're looking for */
2495     read_lock(&vcc_sklist_lock);
2496     for (; ; left++) {
2497         if (left >= NUM_VCI) {
2498             left = 0;
2499             goto out;
2500         }
2501         if ((lvcc = lanai->vccs[left]) != NULL)
2502             break;
2503         (*pos)++;
2504     }
2505     /* Note that we re-use "left" here since we're done with it */
2506     left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2507         lvcc->nref, lvcc->stats.rx_nomem);
2508     if (lvcc->rx.atmvcc != NULL) {
2509         left += sprintf(&page[left], ",\n          rx_AAL=%d",
2510             lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2511         if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2512             left += sprintf(&page[left], ", rx_buf_size=%zu, "
2513                 "rx_bad_len=%u,\n          rx_service_trash=%u, "
2514                 "rx_service_stream=%u, rx_bad_crc=%u",
2515                 lanai_buf_size(&lvcc->rx.buf),
2516                 lvcc->stats.x.aal5.rx_badlen,
2517                 lvcc->stats.x.aal5.service_trash,
2518                 lvcc->stats.x.aal5.service_stream,
2519                 lvcc->stats.x.aal5.service_rxcrc);
2520     }
2521     if (lvcc->tx.atmvcc != NULL)
2522         left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2523             "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2524             lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2525             lanai_buf_size(&lvcc->tx.buf),
2526             lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2527             vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2528     page[left++] = '\n';
2529     page[left] = '\0';
2530     out:
2531     read_unlock(&vcc_sklist_lock);
2532     return left;
2533 }
2534 #endif /* CONFIG_PROC_FS */
2535 
2536 /* -------------------- HOOKS: */
2537 
2538 static const struct atmdev_ops ops = {
2539     .dev_close  = lanai_dev_close,
2540     .open       = lanai_open,
2541     .close      = lanai_close,
2542     .send       = lanai_send,
2543     .phy_put    = NULL,
2544     .phy_get    = NULL,
2545     .change_qos = lanai_change_qos,
2546     .proc_read  = lanai_proc_read,
2547     .owner      = THIS_MODULE
2548 };
2549 
2550 /* initialize one probed card */
2551 static int lanai_init_one(struct pci_dev *pci,
2552               const struct pci_device_id *ident)
2553 {
2554     struct lanai_dev *lanai;
2555     struct atm_dev *atmdev;
2556     int result;
2557 
2558     lanai = kzalloc(sizeof(*lanai), GFP_KERNEL);
2559     if (lanai == NULL) {
2560         printk(KERN_ERR DEV_LABEL
2561                ": couldn't allocate dev_data structure!\n");
2562         return -ENOMEM;
2563     }
2564 
2565     atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2566     if (atmdev == NULL) {
2567         printk(KERN_ERR DEV_LABEL
2568             ": couldn't register atm device!\n");
2569         kfree(lanai);
2570         return -EBUSY;
2571     }
2572 
2573     atmdev->dev_data = lanai;
2574     lanai->pci = pci;
2575     lanai->type = (enum lanai_type) ident->device;
2576 
2577     result = lanai_dev_open(atmdev);
2578     if (result != 0) {
2579         DPRINTK("lanai_start() failed, err=%d\n", -result);
2580         atm_dev_deregister(atmdev);
2581         kfree(lanai);
2582     }
2583     return result;
2584 }
2585 
2586 static const struct pci_device_id lanai_pci_tbl[] = {
2587     { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2588     { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2589     { 0, }  /* terminal entry */
2590 };
2591 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2592 
2593 static struct pci_driver lanai_driver = {
2594     .name     = DEV_LABEL,
2595     .id_table = lanai_pci_tbl,
2596     .probe    = lanai_init_one,
2597 };
2598 
2599 module_pci_driver(lanai_driver);
2600 
2601 MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2602 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2603 MODULE_LICENSE("GPL");