Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * sata_mv.c - Marvell SATA support
0004  *
0005  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
0006  * Copyright 2005: EMC Corporation, all rights reserved.
0007  * Copyright 2005 Red Hat, Inc.  All rights reserved.
0008  *
0009  * Originally written by Brett Russ.
0010  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
0011  *
0012  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
0013  */
0014 
0015 /*
0016  * sata_mv TODO list:
0017  *
0018  * --> Develop a low-power-consumption strategy, and implement it.
0019  *
0020  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
0021  *
0022  * --> [Experiment, Marvell value added] Is it possible to use target
0023  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
0024  *       creating LibATA target mode support would be very interesting.
0025  *
0026  *       Target mode, for those without docs, is the ability to directly
0027  *       connect two SATA ports.
0028  */
0029 
0030 /*
0031  * 80x1-B2 errata PCI#11:
0032  *
0033  * Users of the 6041/6081 Rev.B2 chips (current is C0)
0034  * should be careful to insert those cards only onto PCI-X bus #0,
0035  * and only in device slots 0..7, not higher.  The chips may not
0036  * work correctly otherwise  (note: this is a pretty rare condition).
0037  */
0038 
0039 #include <linux/kernel.h>
0040 #include <linux/module.h>
0041 #include <linux/pci.h>
0042 #include <linux/init.h>
0043 #include <linux/blkdev.h>
0044 #include <linux/delay.h>
0045 #include <linux/interrupt.h>
0046 #include <linux/dmapool.h>
0047 #include <linux/dma-mapping.h>
0048 #include <linux/device.h>
0049 #include <linux/clk.h>
0050 #include <linux/phy/phy.h>
0051 #include <linux/platform_device.h>
0052 #include <linux/ata_platform.h>
0053 #include <linux/mbus.h>
0054 #include <linux/bitops.h>
0055 #include <linux/gfp.h>
0056 #include <linux/of.h>
0057 #include <linux/of_irq.h>
0058 #include <scsi/scsi_host.h>
0059 #include <scsi/scsi_cmnd.h>
0060 #include <scsi/scsi_device.h>
0061 #include <linux/libata.h>
0062 
0063 #define DRV_NAME    "sata_mv"
0064 #define DRV_VERSION "1.28"
0065 
0066 /*
0067  * module options
0068  */
0069 
0070 #ifdef CONFIG_PCI
0071 static int msi;
0072 module_param(msi, int, S_IRUGO);
0073 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
0074 #endif
0075 
0076 static int irq_coalescing_io_count;
0077 module_param(irq_coalescing_io_count, int, S_IRUGO);
0078 MODULE_PARM_DESC(irq_coalescing_io_count,
0079          "IRQ coalescing I/O count threshold (0..255)");
0080 
0081 static int irq_coalescing_usecs;
0082 module_param(irq_coalescing_usecs, int, S_IRUGO);
0083 MODULE_PARM_DESC(irq_coalescing_usecs,
0084          "IRQ coalescing time threshold in usecs");
0085 
0086 enum {
0087     /* BAR's are enumerated in terms of pci_resource_start() terms */
0088     MV_PRIMARY_BAR      = 0,    /* offset 0x10: memory space */
0089     MV_IO_BAR       = 2,    /* offset 0x18: IO space */
0090     MV_MISC_BAR     = 3,    /* offset 0x1c: FLASH, NVRAM, SRAM */
0091 
0092     MV_MAJOR_REG_AREA_SZ    = 0x10000,  /* 64KB */
0093     MV_MINOR_REG_AREA_SZ    = 0x2000,   /* 8KB */
0094 
0095     /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
0096     COAL_CLOCKS_PER_USEC    = 150,      /* for calculating COAL_TIMEs */
0097     MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
0098     MAX_COAL_IO_COUNT   = 255,      /* completed I/O count */
0099 
0100     MV_PCI_REG_BASE     = 0,
0101 
0102     /*
0103      * Per-chip ("all ports") interrupt coalescing feature.
0104      * This is only for GEN_II / GEN_IIE hardware.
0105      *
0106      * Coalescing defers the interrupt until either the IO_THRESHOLD
0107      * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
0108      */
0109     COAL_REG_BASE       = 0x18000,
0110     IRQ_COAL_CAUSE      = (COAL_REG_BASE + 0x08),
0111     ALL_PORTS_COAL_IRQ  = (1 << 4), /* all ports irq event */
0112 
0113     IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
0114     IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
0115 
0116     /*
0117      * Registers for the (unused here) transaction coalescing feature:
0118      */
0119     TRAN_COAL_CAUSE_LO  = (COAL_REG_BASE + 0x88),
0120     TRAN_COAL_CAUSE_HI  = (COAL_REG_BASE + 0x8c),
0121 
0122     SATAHC0_REG_BASE    = 0x20000,
0123     FLASH_CTL       = 0x1046c,
0124     GPIO_PORT_CTL       = 0x104f0,
0125     RESET_CFG       = 0x180d8,
0126 
0127     MV_PCI_REG_SZ       = MV_MAJOR_REG_AREA_SZ,
0128     MV_SATAHC_REG_SZ    = MV_MAJOR_REG_AREA_SZ,
0129     MV_SATAHC_ARBTR_REG_SZ  = MV_MINOR_REG_AREA_SZ,     /* arbiter */
0130     MV_PORT_REG_SZ      = MV_MINOR_REG_AREA_SZ,
0131 
0132     MV_MAX_Q_DEPTH      = 32,
0133     MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
0134 
0135     /* CRQB needs alignment on a 1KB boundary. Size == 1KB
0136      * CRPB needs alignment on a 256B boundary. Size == 256B
0137      * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
0138      */
0139     MV_CRQB_Q_SZ        = (32 * MV_MAX_Q_DEPTH),
0140     MV_CRPB_Q_SZ        = (8 * MV_MAX_Q_DEPTH),
0141     MV_MAX_SG_CT        = 256,
0142     MV_SG_TBL_SZ        = (16 * MV_MAX_SG_CT),
0143 
0144     /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
0145     MV_PORT_HC_SHIFT    = 2,
0146     MV_PORTS_PER_HC     = (1 << MV_PORT_HC_SHIFT), /* 4 */
0147     /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
0148     MV_PORT_MASK        = (MV_PORTS_PER_HC - 1),   /* 3 */
0149 
0150     /* Host Flags */
0151     MV_FLAG_DUAL_HC     = (1 << 30),  /* two SATA Host Controllers */
0152 
0153     MV_COMMON_FLAGS     = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
0154 
0155     MV_GEN_I_FLAGS      = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
0156 
0157     MV_GEN_II_FLAGS     = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
0158                   ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
0159 
0160     MV_GEN_IIE_FLAGS    = MV_GEN_II_FLAGS | ATA_FLAG_AN,
0161 
0162     CRQB_FLAG_READ      = (1 << 0),
0163     CRQB_TAG_SHIFT      = 1,
0164     CRQB_IOID_SHIFT     = 6,    /* CRQB Gen-II/IIE IO Id shift */
0165     CRQB_PMP_SHIFT      = 12,   /* CRQB Gen-II/IIE PMP shift */
0166     CRQB_HOSTQ_SHIFT    = 17,   /* CRQB Gen-II/IIE HostQueTag shift */
0167     CRQB_CMD_ADDR_SHIFT = 8,
0168     CRQB_CMD_CS     = (0x2 << 11),
0169     CRQB_CMD_LAST       = (1 << 15),
0170 
0171     CRPB_FLAG_STATUS_SHIFT  = 8,
0172     CRPB_IOID_SHIFT_6   = 5,    /* CRPB Gen-II IO Id shift */
0173     CRPB_IOID_SHIFT_7   = 7,    /* CRPB Gen-IIE IO Id shift */
0174 
0175     EPRD_FLAG_END_OF_TBL    = (1 << 31),
0176 
0177     /* PCI interface registers */
0178 
0179     MV_PCI_COMMAND      = 0xc00,
0180     MV_PCI_COMMAND_MWRCOM   = (1 << 4), /* PCI Master Write Combining */
0181     MV_PCI_COMMAND_MRDTRIG  = (1 << 7), /* PCI Master Read Trigger */
0182 
0183     PCI_MAIN_CMD_STS    = 0xd30,
0184     STOP_PCI_MASTER     = (1 << 2),
0185     PCI_MASTER_EMPTY    = (1 << 3),
0186     GLOB_SFT_RST        = (1 << 4),
0187 
0188     MV_PCI_MODE     = 0xd00,
0189     MV_PCI_MODE_MASK    = 0x30,
0190 
0191     MV_PCI_EXP_ROM_BAR_CTL  = 0xd2c,
0192     MV_PCI_DISC_TIMER   = 0xd04,
0193     MV_PCI_MSI_TRIGGER  = 0xc38,
0194     MV_PCI_SERR_MASK    = 0xc28,
0195     MV_PCI_XBAR_TMOUT   = 0x1d04,
0196     MV_PCI_ERR_LOW_ADDRESS  = 0x1d40,
0197     MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
0198     MV_PCI_ERR_ATTRIBUTE    = 0x1d48,
0199     MV_PCI_ERR_COMMAND  = 0x1d50,
0200 
0201     PCI_IRQ_CAUSE       = 0x1d58,
0202     PCI_IRQ_MASK        = 0x1d5c,
0203     PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
0204 
0205     PCIE_IRQ_CAUSE      = 0x1900,
0206     PCIE_IRQ_MASK       = 0x1910,
0207     PCIE_UNMASK_ALL_IRQS    = 0x40a,    /* assorted bits */
0208 
0209     /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
0210     PCI_HC_MAIN_IRQ_CAUSE   = 0x1d60,
0211     PCI_HC_MAIN_IRQ_MASK    = 0x1d64,
0212     SOC_HC_MAIN_IRQ_CAUSE   = 0x20020,
0213     SOC_HC_MAIN_IRQ_MASK    = 0x20024,
0214     ERR_IRQ         = (1 << 0), /* shift by (2 * port #) */
0215     DONE_IRQ        = (1 << 1), /* shift by (2 * port #) */
0216     HC0_IRQ_PEND        = 0x1ff,    /* bits 0-8 = HC0's ports */
0217     HC_SHIFT        = 9,        /* bits 9-17 = HC1's ports */
0218     DONE_IRQ_0_3        = 0x000000aa,   /* DONE_IRQ ports 0,1,2,3 */
0219     DONE_IRQ_4_7        = (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
0220     PCI_ERR         = (1 << 18),
0221     TRAN_COAL_LO_DONE   = (1 << 19),    /* transaction coalescing */
0222     TRAN_COAL_HI_DONE   = (1 << 20),    /* transaction coalescing */
0223     PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
0224     PORTS_4_7_COAL_DONE = (1 << 17),    /* HC1 IRQ coalescing */
0225     ALL_PORTS_COAL_DONE = (1 << 21),    /* GEN_II(E) IRQ coalescing */
0226     GPIO_INT        = (1 << 22),
0227     SELF_INT        = (1 << 23),
0228     TWSI_INT        = (1 << 24),
0229     HC_MAIN_RSVD        = (0x7f << 25), /* bits 31-25 */
0230     HC_MAIN_RSVD_5      = (0x1fff << 19), /* bits 31-19 */
0231     HC_MAIN_RSVD_SOC    = (0x3fffffb << 6),     /* bits 31-9, 7-6 */
0232 
0233     /* SATAHC registers */
0234     HC_CFG          = 0x00,
0235 
0236     HC_IRQ_CAUSE        = 0x14,
0237     DMA_IRQ         = (1 << 0), /* shift by port # */
0238     HC_COAL_IRQ     = (1 << 4), /* IRQ coalescing */
0239     DEV_IRQ         = (1 << 8), /* shift by port # */
0240 
0241     /*
0242      * Per-HC (Host-Controller) interrupt coalescing feature.
0243      * This is present on all chip generations.
0244      *
0245      * Coalescing defers the interrupt until either the IO_THRESHOLD
0246      * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
0247      */
0248     HC_IRQ_COAL_IO_THRESHOLD    = 0x000c,
0249     HC_IRQ_COAL_TIME_THRESHOLD  = 0x0010,
0250 
0251     SOC_LED_CTRL        = 0x2c,
0252     SOC_LED_CTRL_BLINK  = (1 << 0), /* Active LED blink */
0253     SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),   /* Multiplex dev presence */
0254                         /*  with dev activity LED */
0255 
0256     /* Shadow block registers */
0257     SHD_BLK         = 0x100,
0258     SHD_CTL_AST     = 0x20,     /* ofs from SHD_BLK */
0259 
0260     /* SATA registers */
0261     SATA_STATUS     = 0x300,  /* ctrl, err regs follow status */
0262     SATA_ACTIVE     = 0x350,
0263     FIS_IRQ_CAUSE       = 0x364,
0264     FIS_IRQ_CAUSE_AN    = (1 << 9), /* async notification */
0265 
0266     LTMODE          = 0x30c,    /* requires read-after-write */
0267     LTMODE_BIT8     = (1 << 8), /* unknown, but necessary */
0268 
0269     PHY_MODE2       = 0x330,
0270     PHY_MODE3       = 0x310,
0271 
0272     PHY_MODE4       = 0x314,    /* requires read-after-write */
0273     PHY_MODE4_CFG_MASK  = 0x00000003,   /* phy internal config field */
0274     PHY_MODE4_CFG_VALUE = 0x00000001,   /* phy internal config field */
0275     PHY_MODE4_RSVD_ZEROS    = 0x5de3fffa,   /* Gen2e always write zeros */
0276     PHY_MODE4_RSVD_ONES = 0x00000005,   /* Gen2e always write ones */
0277 
0278     SATA_IFCTL      = 0x344,
0279     SATA_TESTCTL        = 0x348,
0280     SATA_IFSTAT     = 0x34c,
0281     VENDOR_UNIQUE_FIS   = 0x35c,
0282 
0283     FISCFG          = 0x360,
0284     FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
0285     FISCFG_SINGLE_SYNC  = (1 << 16),    /* SYNC on DMA activation */
0286 
0287     PHY_MODE9_GEN2      = 0x398,
0288     PHY_MODE9_GEN1      = 0x39c,
0289     PHYCFG_OFS      = 0x3a0,    /* only in 65n devices */
0290 
0291     MV5_PHY_MODE        = 0x74,
0292     MV5_LTMODE      = 0x30,
0293     MV5_PHY_CTL     = 0x0C,
0294     SATA_IFCFG      = 0x050,
0295     LP_PHY_CTL      = 0x058,
0296     LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
0297     LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
0298     LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
0299     LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
0300     LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
0301 
0302     MV_M2_PREAMP_MASK   = 0x7e0,
0303 
0304     /* Port registers */
0305     EDMA_CFG        = 0,
0306     EDMA_CFG_Q_DEPTH    = 0x1f,     /* max device queue depth */
0307     EDMA_CFG_NCQ        = (1 << 5), /* for R/W FPDMA queued */
0308     EDMA_CFG_NCQ_GO_ON_ERR  = (1 << 14),    /* continue on error */
0309     EDMA_CFG_RD_BRST_EXT    = (1 << 11),    /* read burst 512B */
0310     EDMA_CFG_WR_BUFF_LEN    = (1 << 13),    /* write buffer 512B */
0311     EDMA_CFG_EDMA_FBS   = (1 << 16),    /* EDMA FIS-Based Switching */
0312     EDMA_CFG_FBS        = (1 << 26),    /* FIS-Based Switching */
0313 
0314     EDMA_ERR_IRQ_CAUSE  = 0x8,
0315     EDMA_ERR_IRQ_MASK   = 0xc,
0316     EDMA_ERR_D_PAR      = (1 << 0), /* UDMA data parity err */
0317     EDMA_ERR_PRD_PAR    = (1 << 1), /* UDMA PRD parity err */
0318     EDMA_ERR_DEV        = (1 << 2), /* device error */
0319     EDMA_ERR_DEV_DCON   = (1 << 3), /* device disconnect */
0320     EDMA_ERR_DEV_CON    = (1 << 4), /* device connected */
0321     EDMA_ERR_SERR       = (1 << 5), /* SError bits [WBDST] raised */
0322     EDMA_ERR_SELF_DIS   = (1 << 7), /* Gen II/IIE self-disable */
0323     EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
0324     EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
0325     EDMA_ERR_TRANS_IRQ_7    = (1 << 8), /* Gen IIE transprt layer irq */
0326     EDMA_ERR_CRQB_PAR   = (1 << 9), /* CRQB parity error */
0327     EDMA_ERR_CRPB_PAR   = (1 << 10),    /* CRPB parity error */
0328     EDMA_ERR_INTRL_PAR  = (1 << 11),    /* internal parity error */
0329     EDMA_ERR_IORDY      = (1 << 12),    /* IORdy timeout */
0330 
0331     EDMA_ERR_LNK_CTRL_RX    = (0xf << 13),  /* link ctrl rx error */
0332     EDMA_ERR_LNK_CTRL_RX_0  = (1 << 13),    /* transient: CRC err */
0333     EDMA_ERR_LNK_CTRL_RX_1  = (1 << 14),    /* transient: FIFO err */
0334     EDMA_ERR_LNK_CTRL_RX_2  = (1 << 15),    /* fatal: caught SYNC */
0335     EDMA_ERR_LNK_CTRL_RX_3  = (1 << 16),    /* transient: FIS rx err */
0336 
0337     EDMA_ERR_LNK_DATA_RX    = (0xf << 17),  /* link data rx error */
0338 
0339     EDMA_ERR_LNK_CTRL_TX    = (0x1f << 21), /* link ctrl tx error */
0340     EDMA_ERR_LNK_CTRL_TX_0  = (1 << 21),    /* transient: CRC err */
0341     EDMA_ERR_LNK_CTRL_TX_1  = (1 << 22),    /* transient: FIFO err */
0342     EDMA_ERR_LNK_CTRL_TX_2  = (1 << 23),    /* transient: caught SYNC */
0343     EDMA_ERR_LNK_CTRL_TX_3  = (1 << 24),    /* transient: caught DMAT */
0344     EDMA_ERR_LNK_CTRL_TX_4  = (1 << 25),    /* transient: FIS collision */
0345 
0346     EDMA_ERR_LNK_DATA_TX    = (0x1f << 26), /* link data tx error */
0347 
0348     EDMA_ERR_TRANS_PROTO    = (1 << 31),    /* transport protocol error */
0349     EDMA_ERR_OVERRUN_5  = (1 << 5),
0350     EDMA_ERR_UNDERRUN_5 = (1 << 6),
0351 
0352     EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
0353                   EDMA_ERR_LNK_CTRL_RX_1 |
0354                   EDMA_ERR_LNK_CTRL_RX_3 |
0355                   EDMA_ERR_LNK_CTRL_TX,
0356 
0357     EDMA_EH_FREEZE      = EDMA_ERR_D_PAR |
0358                   EDMA_ERR_PRD_PAR |
0359                   EDMA_ERR_DEV_DCON |
0360                   EDMA_ERR_DEV_CON |
0361                   EDMA_ERR_SERR |
0362                   EDMA_ERR_SELF_DIS |
0363                   EDMA_ERR_CRQB_PAR |
0364                   EDMA_ERR_CRPB_PAR |
0365                   EDMA_ERR_INTRL_PAR |
0366                   EDMA_ERR_IORDY |
0367                   EDMA_ERR_LNK_CTRL_RX_2 |
0368                   EDMA_ERR_LNK_DATA_RX |
0369                   EDMA_ERR_LNK_DATA_TX |
0370                   EDMA_ERR_TRANS_PROTO,
0371 
0372     EDMA_EH_FREEZE_5    = EDMA_ERR_D_PAR |
0373                   EDMA_ERR_PRD_PAR |
0374                   EDMA_ERR_DEV_DCON |
0375                   EDMA_ERR_DEV_CON |
0376                   EDMA_ERR_OVERRUN_5 |
0377                   EDMA_ERR_UNDERRUN_5 |
0378                   EDMA_ERR_SELF_DIS_5 |
0379                   EDMA_ERR_CRQB_PAR |
0380                   EDMA_ERR_CRPB_PAR |
0381                   EDMA_ERR_INTRL_PAR |
0382                   EDMA_ERR_IORDY,
0383 
0384     EDMA_REQ_Q_BASE_HI  = 0x10,
0385     EDMA_REQ_Q_IN_PTR   = 0x14,     /* also contains BASE_LO */
0386 
0387     EDMA_REQ_Q_OUT_PTR  = 0x18,
0388     EDMA_REQ_Q_PTR_SHIFT    = 5,
0389 
0390     EDMA_RSP_Q_BASE_HI  = 0x1c,
0391     EDMA_RSP_Q_IN_PTR   = 0x20,
0392     EDMA_RSP_Q_OUT_PTR  = 0x24,     /* also contains BASE_LO */
0393     EDMA_RSP_Q_PTR_SHIFT    = 3,
0394 
0395     EDMA_CMD        = 0x28,     /* EDMA command register */
0396     EDMA_EN         = (1 << 0), /* enable EDMA */
0397     EDMA_DS         = (1 << 1), /* disable EDMA; self-negated */
0398     EDMA_RESET      = (1 << 2), /* reset eng/trans/link/phy */
0399 
0400     EDMA_STATUS     = 0x30,     /* EDMA engine status */
0401     EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
0402     EDMA_STATUS_IDLE    = (1 << 7), /* GenIIe EDMA enabled/idle */
0403 
0404     EDMA_IORDY_TMOUT    = 0x34,
0405     EDMA_ARB_CFG        = 0x38,
0406 
0407     EDMA_HALTCOND       = 0x60,     /* GenIIe halt conditions */
0408     EDMA_UNKNOWN_RSVD   = 0x6C,     /* GenIIe unknown/reserved */
0409 
0410     BMDMA_CMD       = 0x224,    /* bmdma command register */
0411     BMDMA_STATUS        = 0x228,    /* bmdma status register */
0412     BMDMA_PRD_LOW       = 0x22c,    /* bmdma PRD addr 31:0 */
0413     BMDMA_PRD_HIGH      = 0x230,    /* bmdma PRD addr 63:32 */
0414 
0415     /* Host private flags (hp_flags) */
0416     MV_HP_FLAG_MSI      = (1 << 0),
0417     MV_HP_ERRATA_50XXB0 = (1 << 1),
0418     MV_HP_ERRATA_50XXB2 = (1 << 2),
0419     MV_HP_ERRATA_60X1B2 = (1 << 3),
0420     MV_HP_ERRATA_60X1C0 = (1 << 4),
0421     MV_HP_GEN_I     = (1 << 6), /* Generation I: 50xx */
0422     MV_HP_GEN_II        = (1 << 7), /* Generation II: 60xx */
0423     MV_HP_GEN_IIE       = (1 << 8), /* Generation IIE: 6042/7042 */
0424     MV_HP_PCIE      = (1 << 9), /* PCIe bus/regs: 7042 */
0425     MV_HP_CUT_THROUGH   = (1 << 10),    /* can use EDMA cut-through */
0426     MV_HP_FLAG_SOC      = (1 << 11),    /* SystemOnChip, no PCI */
0427     MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),   /* is led blinking enabled? */
0428     MV_HP_FIX_LP_PHY_CTL    = (1 << 13),    /* fix speed in LP_PHY_CTL ? */
0429 
0430     /* Port private flags (pp_flags) */
0431     MV_PP_FLAG_EDMA_EN  = (1 << 0), /* is EDMA engine enabled? */
0432     MV_PP_FLAG_NCQ_EN   = (1 << 1), /* is EDMA set up for NCQ? */
0433     MV_PP_FLAG_FBS_EN   = (1 << 2), /* is EDMA set up for FBS? */
0434     MV_PP_FLAG_DELAYED_EH   = (1 << 3), /* delayed dev err handling */
0435     MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),    /* ignore initial ATA_DRDY */
0436 };
0437 
0438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
0439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
0440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
0441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
0442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
0443 
0444 #define WINDOW_CTRL(i)      (0x20030 + ((i) << 4))
0445 #define WINDOW_BASE(i)      (0x20034 + ((i) << 4))
0446 
0447 enum {
0448     /* DMA boundary 0xffff is required by the s/g splitting
0449      * we need on /length/ in mv_fill-sg().
0450      */
0451     MV_DMA_BOUNDARY     = 0xffffU,
0452 
0453     /* mask of register bits containing lower 32 bits
0454      * of EDMA request queue DMA address
0455      */
0456     EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
0457 
0458     /* ditto, for response queue */
0459     EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
0460 };
0461 
0462 enum chip_type {
0463     chip_504x,
0464     chip_508x,
0465     chip_5080,
0466     chip_604x,
0467     chip_608x,
0468     chip_6042,
0469     chip_7042,
0470     chip_soc,
0471 };
0472 
0473 /* Command ReQuest Block: 32B */
0474 struct mv_crqb {
0475     __le32          sg_addr;
0476     __le32          sg_addr_hi;
0477     __le16          ctrl_flags;
0478     __le16          ata_cmd[11];
0479 };
0480 
0481 struct mv_crqb_iie {
0482     __le32          addr;
0483     __le32          addr_hi;
0484     __le32          flags;
0485     __le32          len;
0486     __le32          ata_cmd[4];
0487 };
0488 
0489 /* Command ResPonse Block: 8B */
0490 struct mv_crpb {
0491     __le16          id;
0492     __le16          flags;
0493     __le32          tmstmp;
0494 };
0495 
0496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
0497 struct mv_sg {
0498     __le32          addr;
0499     __le32          flags_size;
0500     __le32          addr_hi;
0501     __le32          reserved;
0502 };
0503 
0504 /*
0505  * We keep a local cache of a few frequently accessed port
0506  * registers here, to avoid having to read them (very slow)
0507  * when switching between EDMA and non-EDMA modes.
0508  */
0509 struct mv_cached_regs {
0510     u32         fiscfg;
0511     u32         ltmode;
0512     u32         haltcond;
0513     u32         unknown_rsvd;
0514 };
0515 
0516 struct mv_port_priv {
0517     struct mv_crqb      *crqb;
0518     dma_addr_t      crqb_dma;
0519     struct mv_crpb      *crpb;
0520     dma_addr_t      crpb_dma;
0521     struct mv_sg        *sg_tbl[MV_MAX_Q_DEPTH];
0522     dma_addr_t      sg_tbl_dma[MV_MAX_Q_DEPTH];
0523 
0524     unsigned int        req_idx;
0525     unsigned int        resp_idx;
0526 
0527     u32         pp_flags;
0528     struct mv_cached_regs   cached;
0529     unsigned int        delayed_eh_pmp_map;
0530 };
0531 
0532 struct mv_port_signal {
0533     u32         amps;
0534     u32         pre;
0535 };
0536 
0537 struct mv_host_priv {
0538     u32         hp_flags;
0539     unsigned int        board_idx;
0540     u32         main_irq_mask;
0541     struct mv_port_signal   signal[8];
0542     const struct mv_hw_ops  *ops;
0543     int         n_ports;
0544     void __iomem        *base;
0545     void __iomem        *main_irq_cause_addr;
0546     void __iomem        *main_irq_mask_addr;
0547     u32         irq_cause_offset;
0548     u32         irq_mask_offset;
0549     u32         unmask_all_irqs;
0550 
0551     /*
0552      * Needed on some devices that require their clocks to be enabled.
0553      * These are optional: if the platform device does not have any
0554      * clocks, they won't be used.  Also, if the underlying hardware
0555      * does not support the common clock framework (CONFIG_HAVE_CLK=n),
0556      * all the clock operations become no-ops (see clk.h).
0557      */
0558     struct clk      *clk;
0559     struct clk              **port_clks;
0560     /*
0561      * Some devices have a SATA PHY which can be enabled/disabled
0562      * in order to save power. These are optional: if the platform
0563      * devices does not have any phy, they won't be used.
0564      */
0565     struct phy      **port_phys;
0566     /*
0567      * These consistent DMA memory pools give us guaranteed
0568      * alignment for hardware-accessed data structures,
0569      * and less memory waste in accomplishing the alignment.
0570      */
0571     struct dma_pool     *crqb_pool;
0572     struct dma_pool     *crpb_pool;
0573     struct dma_pool     *sg_tbl_pool;
0574 };
0575 
0576 struct mv_hw_ops {
0577     void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
0578                unsigned int port);
0579     void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
0580     void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
0581                void __iomem *mmio);
0582     int (*reset_hc)(struct ata_host *host, void __iomem *mmio,
0583             unsigned int n_hc);
0584     void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
0585     void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
0586 };
0587 
0588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
0589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
0590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
0591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
0592 static int mv_port_start(struct ata_port *ap);
0593 static void mv_port_stop(struct ata_port *ap);
0594 static int mv_qc_defer(struct ata_queued_cmd *qc);
0595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
0596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
0597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
0598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
0599             unsigned long deadline);
0600 static void mv_eh_freeze(struct ata_port *ap);
0601 static void mv_eh_thaw(struct ata_port *ap);
0602 static void mv6_dev_config(struct ata_device *dev);
0603 
0604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
0605                unsigned int port);
0606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
0607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
0608                void __iomem *mmio);
0609 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
0610             unsigned int n_hc);
0611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
0612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
0613 
0614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
0615                unsigned int port);
0616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
0617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
0618                void __iomem *mmio);
0619 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
0620             unsigned int n_hc);
0621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
0622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
0623                       void __iomem *mmio);
0624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
0625                       void __iomem *mmio);
0626 static int mv_soc_reset_hc(struct ata_host *host,
0627                   void __iomem *mmio, unsigned int n_hc);
0628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
0629                       void __iomem *mmio);
0630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
0631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
0632                   void __iomem *mmio, unsigned int port);
0633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
0634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
0635                  unsigned int port_no);
0636 static int mv_stop_edma(struct ata_port *ap);
0637 static int mv_stop_edma_engine(void __iomem *port_mmio);
0638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
0639 
0640 static void mv_pmp_select(struct ata_port *ap, int pmp);
0641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
0642                 unsigned long deadline);
0643 static int  mv_softreset(struct ata_link *link, unsigned int *class,
0644                 unsigned long deadline);
0645 static void mv_pmp_error_handler(struct ata_port *ap);
0646 static void mv_process_crpb_entries(struct ata_port *ap,
0647                     struct mv_port_priv *pp);
0648 
0649 static void mv_sff_irq_clear(struct ata_port *ap);
0650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
0651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
0652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
0653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
0654 static u8   mv_bmdma_status(struct ata_port *ap);
0655 static u8 mv_sff_check_status(struct ata_port *ap);
0656 
0657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
0658  * because we have to allow room for worst case splitting of
0659  * PRDs for 64K boundaries in mv_fill_sg().
0660  */
0661 #ifdef CONFIG_PCI
0662 static struct scsi_host_template mv5_sht = {
0663     ATA_BASE_SHT(DRV_NAME),
0664     .sg_tablesize       = MV_MAX_SG_CT / 2,
0665     .dma_boundary       = MV_DMA_BOUNDARY,
0666 };
0667 #endif
0668 static struct scsi_host_template mv6_sht = {
0669     __ATA_BASE_SHT(DRV_NAME),
0670     .can_queue      = MV_MAX_Q_DEPTH - 1,
0671     .sg_tablesize       = MV_MAX_SG_CT / 2,
0672     .dma_boundary       = MV_DMA_BOUNDARY,
0673     .sdev_groups        = ata_ncq_sdev_groups,
0674     .change_queue_depth = ata_scsi_change_queue_depth,
0675     .tag_alloc_policy   = BLK_TAG_ALLOC_RR,
0676     .slave_configure    = ata_scsi_slave_config
0677 };
0678 
0679 static struct ata_port_operations mv5_ops = {
0680     .inherits       = &ata_sff_port_ops,
0681 
0682     .lost_interrupt     = ATA_OP_NULL,
0683 
0684     .qc_defer       = mv_qc_defer,
0685     .qc_prep        = mv_qc_prep,
0686     .qc_issue       = mv_qc_issue,
0687 
0688     .freeze         = mv_eh_freeze,
0689     .thaw           = mv_eh_thaw,
0690     .hardreset      = mv_hardreset,
0691 
0692     .scr_read       = mv5_scr_read,
0693     .scr_write      = mv5_scr_write,
0694 
0695     .port_start     = mv_port_start,
0696     .port_stop      = mv_port_stop,
0697 };
0698 
0699 static struct ata_port_operations mv6_ops = {
0700     .inherits       = &ata_bmdma_port_ops,
0701 
0702     .lost_interrupt     = ATA_OP_NULL,
0703 
0704     .qc_defer       = mv_qc_defer,
0705     .qc_prep        = mv_qc_prep,
0706     .qc_issue       = mv_qc_issue,
0707 
0708     .dev_config             = mv6_dev_config,
0709 
0710     .freeze         = mv_eh_freeze,
0711     .thaw           = mv_eh_thaw,
0712     .hardreset      = mv_hardreset,
0713     .softreset      = mv_softreset,
0714     .pmp_hardreset      = mv_pmp_hardreset,
0715     .pmp_softreset      = mv_softreset,
0716     .error_handler      = mv_pmp_error_handler,
0717 
0718     .scr_read       = mv_scr_read,
0719     .scr_write      = mv_scr_write,
0720 
0721     .sff_check_status   = mv_sff_check_status,
0722     .sff_irq_clear      = mv_sff_irq_clear,
0723     .check_atapi_dma    = mv_check_atapi_dma,
0724     .bmdma_setup        = mv_bmdma_setup,
0725     .bmdma_start        = mv_bmdma_start,
0726     .bmdma_stop     = mv_bmdma_stop,
0727     .bmdma_status       = mv_bmdma_status,
0728 
0729     .port_start     = mv_port_start,
0730     .port_stop      = mv_port_stop,
0731 };
0732 
0733 static struct ata_port_operations mv_iie_ops = {
0734     .inherits       = &mv6_ops,
0735     .dev_config     = ATA_OP_NULL,
0736     .qc_prep        = mv_qc_prep_iie,
0737 };
0738 
0739 static const struct ata_port_info mv_port_info[] = {
0740     {  /* chip_504x */
0741         .flags      = MV_GEN_I_FLAGS,
0742         .pio_mask   = ATA_PIO4,
0743         .udma_mask  = ATA_UDMA6,
0744         .port_ops   = &mv5_ops,
0745     },
0746     {  /* chip_508x */
0747         .flags      = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
0748         .pio_mask   = ATA_PIO4,
0749         .udma_mask  = ATA_UDMA6,
0750         .port_ops   = &mv5_ops,
0751     },
0752     {  /* chip_5080 */
0753         .flags      = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
0754         .pio_mask   = ATA_PIO4,
0755         .udma_mask  = ATA_UDMA6,
0756         .port_ops   = &mv5_ops,
0757     },
0758     {  /* chip_604x */
0759         .flags      = MV_GEN_II_FLAGS,
0760         .pio_mask   = ATA_PIO4,
0761         .udma_mask  = ATA_UDMA6,
0762         .port_ops   = &mv6_ops,
0763     },
0764     {  /* chip_608x */
0765         .flags      = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
0766         .pio_mask   = ATA_PIO4,
0767         .udma_mask  = ATA_UDMA6,
0768         .port_ops   = &mv6_ops,
0769     },
0770     {  /* chip_6042 */
0771         .flags      = MV_GEN_IIE_FLAGS,
0772         .pio_mask   = ATA_PIO4,
0773         .udma_mask  = ATA_UDMA6,
0774         .port_ops   = &mv_iie_ops,
0775     },
0776     {  /* chip_7042 */
0777         .flags      = MV_GEN_IIE_FLAGS,
0778         .pio_mask   = ATA_PIO4,
0779         .udma_mask  = ATA_UDMA6,
0780         .port_ops   = &mv_iie_ops,
0781     },
0782     {  /* chip_soc */
0783         .flags      = MV_GEN_IIE_FLAGS,
0784         .pio_mask   = ATA_PIO4,
0785         .udma_mask  = ATA_UDMA6,
0786         .port_ops   = &mv_iie_ops,
0787     },
0788 };
0789 
0790 static const struct pci_device_id mv_pci_tbl[] = {
0791     { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
0792     { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
0793     { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
0794     { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
0795     /* RocketRAID 1720/174x have different identifiers */
0796     { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
0797     { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
0798     { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
0799 
0800     { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
0801     { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
0802     { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
0803     { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
0804     { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
0805 
0806     { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
0807 
0808     /* Adaptec 1430SA */
0809     { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
0810 
0811     /* Marvell 7042 support */
0812     { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
0813 
0814     /* Highpoint RocketRAID PCIe series */
0815     { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
0816     { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
0817 
0818     { }         /* terminate list */
0819 };
0820 
0821 static const struct mv_hw_ops mv5xxx_ops = {
0822     .phy_errata     = mv5_phy_errata,
0823     .enable_leds        = mv5_enable_leds,
0824     .read_preamp        = mv5_read_preamp,
0825     .reset_hc       = mv5_reset_hc,
0826     .reset_flash        = mv5_reset_flash,
0827     .reset_bus      = mv5_reset_bus,
0828 };
0829 
0830 static const struct mv_hw_ops mv6xxx_ops = {
0831     .phy_errata     = mv6_phy_errata,
0832     .enable_leds        = mv6_enable_leds,
0833     .read_preamp        = mv6_read_preamp,
0834     .reset_hc       = mv6_reset_hc,
0835     .reset_flash        = mv6_reset_flash,
0836     .reset_bus      = mv_reset_pci_bus,
0837 };
0838 
0839 static const struct mv_hw_ops mv_soc_ops = {
0840     .phy_errata     = mv6_phy_errata,
0841     .enable_leds        = mv_soc_enable_leds,
0842     .read_preamp        = mv_soc_read_preamp,
0843     .reset_hc       = mv_soc_reset_hc,
0844     .reset_flash        = mv_soc_reset_flash,
0845     .reset_bus      = mv_soc_reset_bus,
0846 };
0847 
0848 static const struct mv_hw_ops mv_soc_65n_ops = {
0849     .phy_errata     = mv_soc_65n_phy_errata,
0850     .enable_leds        = mv_soc_enable_leds,
0851     .reset_hc       = mv_soc_reset_hc,
0852     .reset_flash        = mv_soc_reset_flash,
0853     .reset_bus      = mv_soc_reset_bus,
0854 };
0855 
0856 /*
0857  * Functions
0858  */
0859 
0860 static inline void writelfl(unsigned long data, void __iomem *addr)
0861 {
0862     writel(data, addr);
0863     (void) readl(addr); /* flush to avoid PCI posted write */
0864 }
0865 
0866 static inline unsigned int mv_hc_from_port(unsigned int port)
0867 {
0868     return port >> MV_PORT_HC_SHIFT;
0869 }
0870 
0871 static inline unsigned int mv_hardport_from_port(unsigned int port)
0872 {
0873     return port & MV_PORT_MASK;
0874 }
0875 
0876 /*
0877  * Consolidate some rather tricky bit shift calculations.
0878  * This is hot-path stuff, so not a function.
0879  * Simple code, with two return values, so macro rather than inline.
0880  *
0881  * port is the sole input, in range 0..7.
0882  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
0883  * hardport is the other output, in range 0..3.
0884  *
0885  * Note that port and hardport may be the same variable in some cases.
0886  */
0887 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)    \
0888 {                               \
0889     shift    = mv_hc_from_port(port) * HC_SHIFT;        \
0890     hardport = mv_hardport_from_port(port);         \
0891     shift   += hardport * 2;                \
0892 }
0893 
0894 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
0895 {
0896     return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
0897 }
0898 
0899 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
0900                          unsigned int port)
0901 {
0902     return mv_hc_base(base, mv_hc_from_port(port));
0903 }
0904 
0905 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
0906 {
0907     return  mv_hc_base_from_port(base, port) +
0908         MV_SATAHC_ARBTR_REG_SZ +
0909         (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
0910 }
0911 
0912 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
0913 {
0914     void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
0915     unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
0916 
0917     return hc_mmio + ofs;
0918 }
0919 
0920 static inline void __iomem *mv_host_base(struct ata_host *host)
0921 {
0922     struct mv_host_priv *hpriv = host->private_data;
0923     return hpriv->base;
0924 }
0925 
0926 static inline void __iomem *mv_ap_base(struct ata_port *ap)
0927 {
0928     return mv_port_base(mv_host_base(ap->host), ap->port_no);
0929 }
0930 
0931 static inline int mv_get_hc_count(unsigned long port_flags)
0932 {
0933     return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
0934 }
0935 
0936 /**
0937  *      mv_save_cached_regs - (re-)initialize cached port registers
0938  *      @ap: the port whose registers we are caching
0939  *
0940  *  Initialize the local cache of port registers,
0941  *  so that reading them over and over again can
0942  *  be avoided on the hotter paths of this driver.
0943  *  This saves a few microseconds each time we switch
0944  *  to/from EDMA mode to perform (eg.) a drive cache flush.
0945  */
0946 static void mv_save_cached_regs(struct ata_port *ap)
0947 {
0948     void __iomem *port_mmio = mv_ap_base(ap);
0949     struct mv_port_priv *pp = ap->private_data;
0950 
0951     pp->cached.fiscfg = readl(port_mmio + FISCFG);
0952     pp->cached.ltmode = readl(port_mmio + LTMODE);
0953     pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
0954     pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
0955 }
0956 
0957 /**
0958  *      mv_write_cached_reg - write to a cached port register
0959  *      @addr: hardware address of the register
0960  *      @old: pointer to cached value of the register
0961  *      @new: new value for the register
0962  *
0963  *  Write a new value to a cached register,
0964  *  but only if the value is different from before.
0965  */
0966 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
0967 {
0968     if (new != *old) {
0969         unsigned long laddr;
0970         *old = new;
0971         /*
0972          * Workaround for 88SX60x1-B2 FEr SATA#13:
0973          * Read-after-write is needed to prevent generating 64-bit
0974          * write cycles on the PCI bus for SATA interface registers
0975          * at offsets ending in 0x4 or 0xc.
0976          *
0977          * Looks like a lot of fuss, but it avoids an unnecessary
0978          * +1 usec read-after-write delay for unaffected registers.
0979          */
0980         laddr = (unsigned long)addr & 0xffff;
0981         if (laddr >= 0x300 && laddr <= 0x33c) {
0982             laddr &= 0x000f;
0983             if (laddr == 0x4 || laddr == 0xc) {
0984                 writelfl(new, addr); /* read after write */
0985                 return;
0986             }
0987         }
0988         writel(new, addr); /* unaffected by the errata */
0989     }
0990 }
0991 
0992 static void mv_set_edma_ptrs(void __iomem *port_mmio,
0993                  struct mv_host_priv *hpriv,
0994                  struct mv_port_priv *pp)
0995 {
0996     u32 index;
0997 
0998     /*
0999      * initialize request queue
1000      */
1001     pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1002     index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1003 
1004     WARN_ON(pp->crqb_dma & 0x3ff);
1005     writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1006     writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1007          port_mmio + EDMA_REQ_Q_IN_PTR);
1008     writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1009 
1010     /*
1011      * initialize response queue
1012      */
1013     pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;    /* paranoia */
1014     index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1015 
1016     WARN_ON(pp->crpb_dma & 0xff);
1017     writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1018     writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1019     writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1020          port_mmio + EDMA_RSP_Q_OUT_PTR);
1021 }
1022 
1023 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1024 {
1025     /*
1026      * When writing to the main_irq_mask in hardware,
1027      * we must ensure exclusivity between the interrupt coalescing bits
1028      * and the corresponding individual port DONE_IRQ bits.
1029      *
1030      * Note that this register is really an "IRQ enable" register,
1031      * not an "IRQ mask" register as Marvell's naming might suggest.
1032      */
1033     if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1034         mask &= ~DONE_IRQ_0_3;
1035     if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1036         mask &= ~DONE_IRQ_4_7;
1037     writelfl(mask, hpriv->main_irq_mask_addr);
1038 }
1039 
1040 static void mv_set_main_irq_mask(struct ata_host *host,
1041                  u32 disable_bits, u32 enable_bits)
1042 {
1043     struct mv_host_priv *hpriv = host->private_data;
1044     u32 old_mask, new_mask;
1045 
1046     old_mask = hpriv->main_irq_mask;
1047     new_mask = (old_mask & ~disable_bits) | enable_bits;
1048     if (new_mask != old_mask) {
1049         hpriv->main_irq_mask = new_mask;
1050         mv_write_main_irq_mask(new_mask, hpriv);
1051     }
1052 }
1053 
1054 static void mv_enable_port_irqs(struct ata_port *ap,
1055                      unsigned int port_bits)
1056 {
1057     unsigned int shift, hardport, port = ap->port_no;
1058     u32 disable_bits, enable_bits;
1059 
1060     MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1061 
1062     disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1063     enable_bits  = port_bits << shift;
1064     mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1065 }
1066 
1067 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1068                       void __iomem *port_mmio,
1069                       unsigned int port_irqs)
1070 {
1071     struct mv_host_priv *hpriv = ap->host->private_data;
1072     int hardport = mv_hardport_from_port(ap->port_no);
1073     void __iomem *hc_mmio = mv_hc_base_from_port(
1074                 mv_host_base(ap->host), ap->port_no);
1075     u32 hc_irq_cause;
1076 
1077     /* clear EDMA event indicators, if any */
1078     writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1079 
1080     /* clear pending irq events */
1081     hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1082     writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1083 
1084     /* clear FIS IRQ Cause */
1085     if (IS_GEN_IIE(hpriv))
1086         writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1087 
1088     mv_enable_port_irqs(ap, port_irqs);
1089 }
1090 
1091 static void mv_set_irq_coalescing(struct ata_host *host,
1092                   unsigned int count, unsigned int usecs)
1093 {
1094     struct mv_host_priv *hpriv = host->private_data;
1095     void __iomem *mmio = hpriv->base, *hc_mmio;
1096     u32 coal_enable = 0;
1097     unsigned long flags;
1098     unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1099     const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1100                             ALL_PORTS_COAL_DONE;
1101 
1102     /* Disable IRQ coalescing if either threshold is zero */
1103     if (!usecs || !count) {
1104         clks = count = 0;
1105     } else {
1106         /* Respect maximum limits of the hardware */
1107         clks = usecs * COAL_CLOCKS_PER_USEC;
1108         if (clks > MAX_COAL_TIME_THRESHOLD)
1109             clks = MAX_COAL_TIME_THRESHOLD;
1110         if (count > MAX_COAL_IO_COUNT)
1111             count = MAX_COAL_IO_COUNT;
1112     }
1113 
1114     spin_lock_irqsave(&host->lock, flags);
1115     mv_set_main_irq_mask(host, coal_disable, 0);
1116 
1117     if (is_dual_hc && !IS_GEN_I(hpriv)) {
1118         /*
1119          * GEN_II/GEN_IIE with dual host controllers:
1120          * one set of global thresholds for the entire chip.
1121          */
1122         writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1123         writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1124         /* clear leftover coal IRQ bit */
1125         writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1126         if (count)
1127             coal_enable = ALL_PORTS_COAL_DONE;
1128         clks = count = 0; /* force clearing of regular regs below */
1129     }
1130 
1131     /*
1132      * All chips: independent thresholds for each HC on the chip.
1133      */
1134     hc_mmio = mv_hc_base_from_port(mmio, 0);
1135     writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1136     writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1137     writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1138     if (count)
1139         coal_enable |= PORTS_0_3_COAL_DONE;
1140     if (is_dual_hc) {
1141         hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1142         writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1143         writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1144         writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1145         if (count)
1146             coal_enable |= PORTS_4_7_COAL_DONE;
1147     }
1148 
1149     mv_set_main_irq_mask(host, 0, coal_enable);
1150     spin_unlock_irqrestore(&host->lock, flags);
1151 }
1152 
1153 /*
1154  *      mv_start_edma - Enable eDMA engine
1155  *      @pp: port private data
1156  *
1157  *      Verify the local cache of the eDMA state is accurate with a
1158  *      WARN_ON.
1159  *
1160  *      LOCKING:
1161  *      Inherited from caller.
1162  */
1163 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1164              struct mv_port_priv *pp, u8 protocol)
1165 {
1166     int want_ncq = (protocol == ATA_PROT_NCQ);
1167 
1168     if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1169         int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1170         if (want_ncq != using_ncq)
1171             mv_stop_edma(ap);
1172     }
1173     if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1174         struct mv_host_priv *hpriv = ap->host->private_data;
1175 
1176         mv_edma_cfg(ap, want_ncq, 1);
1177 
1178         mv_set_edma_ptrs(port_mmio, hpriv, pp);
1179         mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1180 
1181         writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1182         pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1183     }
1184 }
1185 
1186 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1187 {
1188     void __iomem *port_mmio = mv_ap_base(ap);
1189     const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1190     const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1191     int i;
1192 
1193     /*
1194      * Wait for the EDMA engine to finish transactions in progress.
1195      * No idea what a good "timeout" value might be, but measurements
1196      * indicate that it often requires hundreds of microseconds
1197      * with two drives in-use.  So we use the 15msec value above
1198      * as a rough guess at what even more drives might require.
1199      */
1200     for (i = 0; i < timeout; ++i) {
1201         u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1202         if ((edma_stat & empty_idle) == empty_idle)
1203             break;
1204         udelay(per_loop);
1205     }
1206     /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1207 }
1208 
1209 /**
1210  *      mv_stop_edma_engine - Disable eDMA engine
1211  *      @port_mmio: io base address
1212  *
1213  *      LOCKING:
1214  *      Inherited from caller.
1215  */
1216 static int mv_stop_edma_engine(void __iomem *port_mmio)
1217 {
1218     int i;
1219 
1220     /* Disable eDMA.  The disable bit auto clears. */
1221     writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1222 
1223     /* Wait for the chip to confirm eDMA is off. */
1224     for (i = 10000; i > 0; i--) {
1225         u32 reg = readl(port_mmio + EDMA_CMD);
1226         if (!(reg & EDMA_EN))
1227             return 0;
1228         udelay(10);
1229     }
1230     return -EIO;
1231 }
1232 
1233 static int mv_stop_edma(struct ata_port *ap)
1234 {
1235     void __iomem *port_mmio = mv_ap_base(ap);
1236     struct mv_port_priv *pp = ap->private_data;
1237     int err = 0;
1238 
1239     if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1240         return 0;
1241     pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1242     mv_wait_for_edma_empty_idle(ap);
1243     if (mv_stop_edma_engine(port_mmio)) {
1244         ata_port_err(ap, "Unable to stop eDMA\n");
1245         err = -EIO;
1246     }
1247     mv_edma_cfg(ap, 0, 0);
1248     return err;
1249 }
1250 
1251 static void mv_dump_mem(struct device *dev, void __iomem *start, unsigned bytes)
1252 {
1253     int b, w, o;
1254     unsigned char linebuf[38];
1255 
1256     for (b = 0; b < bytes; ) {
1257         for (w = 0, o = 0; b < bytes && w < 4; w++) {
1258             o += snprintf(linebuf + o, sizeof(linebuf) - o,
1259                       "%08x ", readl(start + b));
1260             b += sizeof(u32);
1261         }
1262         dev_dbg(dev, "%s: %p: %s\n",
1263             __func__, start + b, linebuf);
1264     }
1265 }
1266 
1267 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1268 {
1269     int b, w, o;
1270     u32 dw = 0;
1271     unsigned char linebuf[38];
1272 
1273     for (b = 0; b < bytes; ) {
1274         for (w = 0, o = 0; b < bytes && w < 4; w++) {
1275             (void) pci_read_config_dword(pdev, b, &dw);
1276             o += snprintf(linebuf + o, sizeof(linebuf) - o,
1277                       "%08x ", dw);
1278             b += sizeof(u32);
1279         }
1280         dev_dbg(&pdev->dev, "%s: %02x: %s\n",
1281             __func__, b, linebuf);
1282     }
1283 }
1284 
1285 static void mv_dump_all_regs(void __iomem *mmio_base,
1286                  struct pci_dev *pdev)
1287 {
1288     void __iomem *hc_base;
1289     void __iomem *port_base;
1290     int start_port, num_ports, p, start_hc, num_hcs, hc;
1291 
1292     start_hc = start_port = 0;
1293     num_ports = 8;      /* should be benign for 4 port devs */
1294     num_hcs = 2;
1295     dev_dbg(&pdev->dev,
1296         "%s: All registers for port(s) %u-%u:\n", __func__,
1297         start_port, num_ports > 1 ? num_ports - 1 : start_port);
1298 
1299     dev_dbg(&pdev->dev, "%s: PCI config space regs:\n", __func__);
1300     mv_dump_pci_cfg(pdev, 0x68);
1301 
1302     dev_dbg(&pdev->dev, "%s: PCI regs:\n", __func__);
1303     mv_dump_mem(&pdev->dev, mmio_base+0xc00, 0x3c);
1304     mv_dump_mem(&pdev->dev, mmio_base+0xd00, 0x34);
1305     mv_dump_mem(&pdev->dev, mmio_base+0xf00, 0x4);
1306     mv_dump_mem(&pdev->dev, mmio_base+0x1d00, 0x6c);
1307     for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1308         hc_base = mv_hc_base(mmio_base, hc);
1309         dev_dbg(&pdev->dev, "%s: HC regs (HC %i):\n", __func__, hc);
1310         mv_dump_mem(&pdev->dev, hc_base, 0x1c);
1311     }
1312     for (p = start_port; p < start_port + num_ports; p++) {
1313         port_base = mv_port_base(mmio_base, p);
1314         dev_dbg(&pdev->dev, "%s: EDMA regs (port %i):\n", __func__, p);
1315         mv_dump_mem(&pdev->dev, port_base, 0x54);
1316         dev_dbg(&pdev->dev, "%s: SATA regs (port %i):\n", __func__, p);
1317         mv_dump_mem(&pdev->dev, port_base+0x300, 0x60);
1318     }
1319 }
1320 
1321 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1322 {
1323     unsigned int ofs;
1324 
1325     switch (sc_reg_in) {
1326     case SCR_STATUS:
1327     case SCR_CONTROL:
1328     case SCR_ERROR:
1329         ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1330         break;
1331     case SCR_ACTIVE:
1332         ofs = SATA_ACTIVE;   /* active is not with the others */
1333         break;
1334     default:
1335         ofs = 0xffffffffU;
1336         break;
1337     }
1338     return ofs;
1339 }
1340 
1341 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1342 {
1343     unsigned int ofs = mv_scr_offset(sc_reg_in);
1344 
1345     if (ofs != 0xffffffffU) {
1346         *val = readl(mv_ap_base(link->ap) + ofs);
1347         return 0;
1348     } else
1349         return -EINVAL;
1350 }
1351 
1352 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1353 {
1354     unsigned int ofs = mv_scr_offset(sc_reg_in);
1355 
1356     if (ofs != 0xffffffffU) {
1357         void __iomem *addr = mv_ap_base(link->ap) + ofs;
1358         struct mv_host_priv *hpriv = link->ap->host->private_data;
1359         if (sc_reg_in == SCR_CONTROL) {
1360             /*
1361              * Workaround for 88SX60x1 FEr SATA#26:
1362              *
1363              * COMRESETs have to take care not to accidentally
1364              * put the drive to sleep when writing SCR_CONTROL.
1365              * Setting bits 12..15 prevents this problem.
1366              *
1367              * So if we see an outbound COMMRESET, set those bits.
1368              * Ditto for the followup write that clears the reset.
1369              *
1370              * The proprietary driver does this for
1371              * all chip versions, and so do we.
1372              */
1373             if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1374                 val |= 0xf000;
1375 
1376             if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1377                 void __iomem *lp_phy_addr =
1378                     mv_ap_base(link->ap) + LP_PHY_CTL;
1379                 /*
1380                  * Set PHY speed according to SControl speed.
1381                  */
1382                 u32 lp_phy_val =
1383                     LP_PHY_CTL_PIN_PU_PLL |
1384                     LP_PHY_CTL_PIN_PU_RX  |
1385                     LP_PHY_CTL_PIN_PU_TX;
1386 
1387                 if ((val & 0xf0) != 0x10)
1388                     lp_phy_val |=
1389                         LP_PHY_CTL_GEN_TX_3G |
1390                         LP_PHY_CTL_GEN_RX_3G;
1391 
1392                 writelfl(lp_phy_val, lp_phy_addr);
1393             }
1394         }
1395         writelfl(val, addr);
1396         return 0;
1397     } else
1398         return -EINVAL;
1399 }
1400 
1401 static void mv6_dev_config(struct ata_device *adev)
1402 {
1403     /*
1404      * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1405      *
1406      * Gen-II does not support NCQ over a port multiplier
1407      *  (no FIS-based switching).
1408      */
1409     if (adev->flags & ATA_DFLAG_NCQ) {
1410         if (sata_pmp_attached(adev->link->ap)) {
1411             adev->flags &= ~ATA_DFLAG_NCQ;
1412             ata_dev_info(adev,
1413                 "NCQ disabled for command-based switching\n");
1414         }
1415     }
1416 }
1417 
1418 static int mv_qc_defer(struct ata_queued_cmd *qc)
1419 {
1420     struct ata_link *link = qc->dev->link;
1421     struct ata_port *ap = link->ap;
1422     struct mv_port_priv *pp = ap->private_data;
1423 
1424     /*
1425      * Don't allow new commands if we're in a delayed EH state
1426      * for NCQ and/or FIS-based switching.
1427      */
1428     if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1429         return ATA_DEFER_PORT;
1430 
1431     /* PIO commands need exclusive link: no other commands [DMA or PIO]
1432      * can run concurrently.
1433      * set excl_link when we want to send a PIO command in DMA mode
1434      * or a non-NCQ command in NCQ mode.
1435      * When we receive a command from that link, and there are no
1436      * outstanding commands, mark a flag to clear excl_link and let
1437      * the command go through.
1438      */
1439     if (unlikely(ap->excl_link)) {
1440         if (link == ap->excl_link) {
1441             if (ap->nr_active_links)
1442                 return ATA_DEFER_PORT;
1443             qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1444             return 0;
1445         } else
1446             return ATA_DEFER_PORT;
1447     }
1448 
1449     /*
1450      * If the port is completely idle, then allow the new qc.
1451      */
1452     if (ap->nr_active_links == 0)
1453         return 0;
1454 
1455     /*
1456      * The port is operating in host queuing mode (EDMA) with NCQ
1457      * enabled, allow multiple NCQ commands.  EDMA also allows
1458      * queueing multiple DMA commands but libata core currently
1459      * doesn't allow it.
1460      */
1461     if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1462         (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1463         if (ata_is_ncq(qc->tf.protocol))
1464             return 0;
1465         else {
1466             ap->excl_link = link;
1467             return ATA_DEFER_PORT;
1468         }
1469     }
1470 
1471     return ATA_DEFER_PORT;
1472 }
1473 
1474 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1475 {
1476     struct mv_port_priv *pp = ap->private_data;
1477     void __iomem *port_mmio;
1478 
1479     u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1480     u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1481     u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1482 
1483     ltmode   = *old_ltmode & ~LTMODE_BIT8;
1484     haltcond = *old_haltcond | EDMA_ERR_DEV;
1485 
1486     if (want_fbs) {
1487         fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1488         ltmode = *old_ltmode | LTMODE_BIT8;
1489         if (want_ncq)
1490             haltcond &= ~EDMA_ERR_DEV;
1491         else
1492             fiscfg |=  FISCFG_WAIT_DEV_ERR;
1493     } else {
1494         fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1495     }
1496 
1497     port_mmio = mv_ap_base(ap);
1498     mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1499     mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1500     mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1501 }
1502 
1503 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1504 {
1505     struct mv_host_priv *hpriv = ap->host->private_data;
1506     u32 old, new;
1507 
1508     /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1509     old = readl(hpriv->base + GPIO_PORT_CTL);
1510     if (want_ncq)
1511         new = old | (1 << 22);
1512     else
1513         new = old & ~(1 << 22);
1514     if (new != old)
1515         writel(new, hpriv->base + GPIO_PORT_CTL);
1516 }
1517 
1518 /*
1519  *  mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1520  *  @ap: Port being initialized
1521  *
1522  *  There are two DMA modes on these chips:  basic DMA, and EDMA.
1523  *
1524  *  Bit-0 of the "EDMA RESERVED" register enables/disables use
1525  *  of basic DMA on the GEN_IIE versions of the chips.
1526  *
1527  *  This bit survives EDMA resets, and must be set for basic DMA
1528  *  to function, and should be cleared when EDMA is active.
1529  */
1530 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1531 {
1532     struct mv_port_priv *pp = ap->private_data;
1533     u32 new, *old = &pp->cached.unknown_rsvd;
1534 
1535     if (enable_bmdma)
1536         new = *old | 1;
1537     else
1538         new = *old & ~1;
1539     mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1540 }
1541 
1542 /*
1543  * SOC chips have an issue whereby the HDD LEDs don't always blink
1544  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1545  * of the SOC takes care of it, generating a steady blink rate when
1546  * any drive on the chip is active.
1547  *
1548  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1549  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1550  *
1551  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1552  * LED operation works then, and provides better (more accurate) feedback.
1553  *
1554  * Note that this code assumes that an SOC never has more than one HC onboard.
1555  */
1556 static void mv_soc_led_blink_enable(struct ata_port *ap)
1557 {
1558     struct ata_host *host = ap->host;
1559     struct mv_host_priv *hpriv = host->private_data;
1560     void __iomem *hc_mmio;
1561     u32 led_ctrl;
1562 
1563     if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1564         return;
1565     hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1566     hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1567     led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568     writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1569 }
1570 
1571 static void mv_soc_led_blink_disable(struct ata_port *ap)
1572 {
1573     struct ata_host *host = ap->host;
1574     struct mv_host_priv *hpriv = host->private_data;
1575     void __iomem *hc_mmio;
1576     u32 led_ctrl;
1577     unsigned int port;
1578 
1579     if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1580         return;
1581 
1582     /* disable led-blink only if no ports are using NCQ */
1583     for (port = 0; port < hpriv->n_ports; port++) {
1584         struct ata_port *this_ap = host->ports[port];
1585         struct mv_port_priv *pp = this_ap->private_data;
1586 
1587         if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1588             return;
1589     }
1590 
1591     hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1592     hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1593     led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1594     writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1595 }
1596 
1597 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1598 {
1599     u32 cfg;
1600     struct mv_port_priv *pp    = ap->private_data;
1601     struct mv_host_priv *hpriv = ap->host->private_data;
1602     void __iomem *port_mmio    = mv_ap_base(ap);
1603 
1604     /* set up non-NCQ EDMA configuration */
1605     cfg = EDMA_CFG_Q_DEPTH;     /* always 0x1f for *all* chips */
1606     pp->pp_flags &=
1607       ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1608 
1609     if (IS_GEN_I(hpriv))
1610         cfg |= (1 << 8);    /* enab config burst size mask */
1611 
1612     else if (IS_GEN_II(hpriv)) {
1613         cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1614         mv_60x1_errata_sata25(ap, want_ncq);
1615 
1616     } else if (IS_GEN_IIE(hpriv)) {
1617         int want_fbs = sata_pmp_attached(ap);
1618         /*
1619          * Possible future enhancement:
1620          *
1621          * The chip can use FBS with non-NCQ, if we allow it,
1622          * But first we need to have the error handling in place
1623          * for this mode (datasheet section 7.3.15.4.2.3).
1624          * So disallow non-NCQ FBS for now.
1625          */
1626         want_fbs &= want_ncq;
1627 
1628         mv_config_fbs(ap, want_ncq, want_fbs);
1629 
1630         if (want_fbs) {
1631             pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1632             cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1633         }
1634 
1635         cfg |= (1 << 23);   /* do not mask PM field in rx'd FIS */
1636         if (want_edma) {
1637             cfg |= (1 << 22); /* enab 4-entry host queue cache */
1638             if (!IS_SOC(hpriv))
1639                 cfg |= (1 << 18); /* enab early completion */
1640         }
1641         if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1642             cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1643         mv_bmdma_enable_iie(ap, !want_edma);
1644 
1645         if (IS_SOC(hpriv)) {
1646             if (want_ncq)
1647                 mv_soc_led_blink_enable(ap);
1648             else
1649                 mv_soc_led_blink_disable(ap);
1650         }
1651     }
1652 
1653     if (want_ncq) {
1654         cfg |= EDMA_CFG_NCQ;
1655         pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1656     }
1657 
1658     writelfl(cfg, port_mmio + EDMA_CFG);
1659 }
1660 
1661 static void mv_port_free_dma_mem(struct ata_port *ap)
1662 {
1663     struct mv_host_priv *hpriv = ap->host->private_data;
1664     struct mv_port_priv *pp = ap->private_data;
1665     int tag;
1666 
1667     if (pp->crqb) {
1668         dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1669         pp->crqb = NULL;
1670     }
1671     if (pp->crpb) {
1672         dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1673         pp->crpb = NULL;
1674     }
1675     /*
1676      * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1677      * For later hardware, we have one unique sg_tbl per NCQ tag.
1678      */
1679     for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1680         if (pp->sg_tbl[tag]) {
1681             if (tag == 0 || !IS_GEN_I(hpriv))
1682                 dma_pool_free(hpriv->sg_tbl_pool,
1683                           pp->sg_tbl[tag],
1684                           pp->sg_tbl_dma[tag]);
1685             pp->sg_tbl[tag] = NULL;
1686         }
1687     }
1688 }
1689 
1690 /**
1691  *      mv_port_start - Port specific init/start routine.
1692  *      @ap: ATA channel to manipulate
1693  *
1694  *      Allocate and point to DMA memory, init port private memory,
1695  *      zero indices.
1696  *
1697  *      LOCKING:
1698  *      Inherited from caller.
1699  */
1700 static int mv_port_start(struct ata_port *ap)
1701 {
1702     struct device *dev = ap->host->dev;
1703     struct mv_host_priv *hpriv = ap->host->private_data;
1704     struct mv_port_priv *pp;
1705     unsigned long flags;
1706     int tag;
1707 
1708     pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1709     if (!pp)
1710         return -ENOMEM;
1711     ap->private_data = pp;
1712 
1713     pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1714     if (!pp->crqb)
1715         return -ENOMEM;
1716 
1717     pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1718     if (!pp->crpb)
1719         goto out_port_free_dma_mem;
1720 
1721     /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1722     if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1723         ap->flags |= ATA_FLAG_AN;
1724     /*
1725      * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1726      * For later hardware, we need one unique sg_tbl per NCQ tag.
1727      */
1728     for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1729         if (tag == 0 || !IS_GEN_I(hpriv)) {
1730             pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1731                           GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1732             if (!pp->sg_tbl[tag])
1733                 goto out_port_free_dma_mem;
1734         } else {
1735             pp->sg_tbl[tag]     = pp->sg_tbl[0];
1736             pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1737         }
1738     }
1739 
1740     spin_lock_irqsave(ap->lock, flags);
1741     mv_save_cached_regs(ap);
1742     mv_edma_cfg(ap, 0, 0);
1743     spin_unlock_irqrestore(ap->lock, flags);
1744 
1745     return 0;
1746 
1747 out_port_free_dma_mem:
1748     mv_port_free_dma_mem(ap);
1749     return -ENOMEM;
1750 }
1751 
1752 /**
1753  *      mv_port_stop - Port specific cleanup/stop routine.
1754  *      @ap: ATA channel to manipulate
1755  *
1756  *      Stop DMA, cleanup port memory.
1757  *
1758  *      LOCKING:
1759  *      This routine uses the host lock to protect the DMA stop.
1760  */
1761 static void mv_port_stop(struct ata_port *ap)
1762 {
1763     unsigned long flags;
1764 
1765     spin_lock_irqsave(ap->lock, flags);
1766     mv_stop_edma(ap);
1767     mv_enable_port_irqs(ap, 0);
1768     spin_unlock_irqrestore(ap->lock, flags);
1769     mv_port_free_dma_mem(ap);
1770 }
1771 
1772 /**
1773  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1774  *      @qc: queued command whose SG list to source from
1775  *
1776  *      Populate the SG list and mark the last entry.
1777  *
1778  *      LOCKING:
1779  *      Inherited from caller.
1780  */
1781 static void mv_fill_sg(struct ata_queued_cmd *qc)
1782 {
1783     struct mv_port_priv *pp = qc->ap->private_data;
1784     struct scatterlist *sg;
1785     struct mv_sg *mv_sg, *last_sg = NULL;
1786     unsigned int si;
1787 
1788     mv_sg = pp->sg_tbl[qc->hw_tag];
1789     for_each_sg(qc->sg, sg, qc->n_elem, si) {
1790         dma_addr_t addr = sg_dma_address(sg);
1791         u32 sg_len = sg_dma_len(sg);
1792 
1793         while (sg_len) {
1794             u32 offset = addr & 0xffff;
1795             u32 len = sg_len;
1796 
1797             if (offset + len > 0x10000)
1798                 len = 0x10000 - offset;
1799 
1800             mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1801             mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1802             mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1803             mv_sg->reserved = 0;
1804 
1805             sg_len -= len;
1806             addr += len;
1807 
1808             last_sg = mv_sg;
1809             mv_sg++;
1810         }
1811     }
1812 
1813     if (likely(last_sg))
1814         last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1815     mb(); /* ensure data structure is visible to the chipset */
1816 }
1817 
1818 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1819 {
1820     u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1821         (last ? CRQB_CMD_LAST : 0);
1822     *cmdw = cpu_to_le16(tmp);
1823 }
1824 
1825 /**
1826  *  mv_sff_irq_clear - Clear hardware interrupt after DMA.
1827  *  @ap: Port associated with this ATA transaction.
1828  *
1829  *  We need this only for ATAPI bmdma transactions,
1830  *  as otherwise we experience spurious interrupts
1831  *  after libata-sff handles the bmdma interrupts.
1832  */
1833 static void mv_sff_irq_clear(struct ata_port *ap)
1834 {
1835     mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1836 }
1837 
1838 /**
1839  *  mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1840  *  @qc: queued command to check for chipset/DMA compatibility.
1841  *
1842  *  The bmdma engines cannot handle speculative data sizes
1843  *  (bytecount under/over flow).  So only allow DMA for
1844  *  data transfer commands with known data sizes.
1845  *
1846  *  LOCKING:
1847  *  Inherited from caller.
1848  */
1849 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1850 {
1851     struct scsi_cmnd *scmd = qc->scsicmd;
1852 
1853     if (scmd) {
1854         switch (scmd->cmnd[0]) {
1855         case READ_6:
1856         case READ_10:
1857         case READ_12:
1858         case WRITE_6:
1859         case WRITE_10:
1860         case WRITE_12:
1861         case GPCMD_READ_CD:
1862         case GPCMD_SEND_DVD_STRUCTURE:
1863         case GPCMD_SEND_CUE_SHEET:
1864             return 0; /* DMA is safe */
1865         }
1866     }
1867     return -EOPNOTSUPP; /* use PIO instead */
1868 }
1869 
1870 /**
1871  *  mv_bmdma_setup - Set up BMDMA transaction
1872  *  @qc: queued command to prepare DMA for.
1873  *
1874  *  LOCKING:
1875  *  Inherited from caller.
1876  */
1877 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1878 {
1879     struct ata_port *ap = qc->ap;
1880     void __iomem *port_mmio = mv_ap_base(ap);
1881     struct mv_port_priv *pp = ap->private_data;
1882 
1883     mv_fill_sg(qc);
1884 
1885     /* clear all DMA cmd bits */
1886     writel(0, port_mmio + BMDMA_CMD);
1887 
1888     /* load PRD table addr. */
1889     writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1890         port_mmio + BMDMA_PRD_HIGH);
1891     writelfl(pp->sg_tbl_dma[qc->hw_tag],
1892         port_mmio + BMDMA_PRD_LOW);
1893 
1894     /* issue r/w command */
1895     ap->ops->sff_exec_command(ap, &qc->tf);
1896 }
1897 
1898 /**
1899  *  mv_bmdma_start - Start a BMDMA transaction
1900  *  @qc: queued command to start DMA on.
1901  *
1902  *  LOCKING:
1903  *  Inherited from caller.
1904  */
1905 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1906 {
1907     struct ata_port *ap = qc->ap;
1908     void __iomem *port_mmio = mv_ap_base(ap);
1909     unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1910     u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1911 
1912     /* start host DMA transaction */
1913     writelfl(cmd, port_mmio + BMDMA_CMD);
1914 }
1915 
1916 /**
1917  *  mv_bmdma_stop_ap - Stop BMDMA transfer
1918  *  @ap: port to stop
1919  *
1920  *  Clears the ATA_DMA_START flag in the bmdma control register
1921  *
1922  *  LOCKING:
1923  *  Inherited from caller.
1924  */
1925 static void mv_bmdma_stop_ap(struct ata_port *ap)
1926 {
1927     void __iomem *port_mmio = mv_ap_base(ap);
1928     u32 cmd;
1929 
1930     /* clear start/stop bit */
1931     cmd = readl(port_mmio + BMDMA_CMD);
1932     if (cmd & ATA_DMA_START) {
1933         cmd &= ~ATA_DMA_START;
1934         writelfl(cmd, port_mmio + BMDMA_CMD);
1935 
1936         /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1937         ata_sff_dma_pause(ap);
1938     }
1939 }
1940 
1941 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1942 {
1943     mv_bmdma_stop_ap(qc->ap);
1944 }
1945 
1946 /**
1947  *  mv_bmdma_status - Read BMDMA status
1948  *  @ap: port for which to retrieve DMA status.
1949  *
1950  *  Read and return equivalent of the sff BMDMA status register.
1951  *
1952  *  LOCKING:
1953  *  Inherited from caller.
1954  */
1955 static u8 mv_bmdma_status(struct ata_port *ap)
1956 {
1957     void __iomem *port_mmio = mv_ap_base(ap);
1958     u32 reg, status;
1959 
1960     /*
1961      * Other bits are valid only if ATA_DMA_ACTIVE==0,
1962      * and the ATA_DMA_INTR bit doesn't exist.
1963      */
1964     reg = readl(port_mmio + BMDMA_STATUS);
1965     if (reg & ATA_DMA_ACTIVE)
1966         status = ATA_DMA_ACTIVE;
1967     else if (reg & ATA_DMA_ERR)
1968         status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1969     else {
1970         /*
1971          * Just because DMA_ACTIVE is 0 (DMA completed),
1972          * this does _not_ mean the device is "done".
1973          * So we should not yet be signalling ATA_DMA_INTR
1974          * in some cases.  Eg. DSM/TRIM, and perhaps others.
1975          */
1976         mv_bmdma_stop_ap(ap);
1977         if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1978             status = 0;
1979         else
1980             status = ATA_DMA_INTR;
1981     }
1982     return status;
1983 }
1984 
1985 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1986 {
1987     struct ata_taskfile *tf = &qc->tf;
1988     /*
1989      * Workaround for 88SX60x1 FEr SATA#24.
1990      *
1991      * Chip may corrupt WRITEs if multi_count >= 4kB.
1992      * Note that READs are unaffected.
1993      *
1994      * It's not clear if this errata really means "4K bytes",
1995      * or if it always happens for multi_count > 7
1996      * regardless of device sector_size.
1997      *
1998      * So, for safety, any write with multi_count > 7
1999      * gets converted here into a regular PIO write instead:
2000      */
2001     if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2002         if (qc->dev->multi_count > 7) {
2003             switch (tf->command) {
2004             case ATA_CMD_WRITE_MULTI:
2005                 tf->command = ATA_CMD_PIO_WRITE;
2006                 break;
2007             case ATA_CMD_WRITE_MULTI_FUA_EXT:
2008                 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2009                 fallthrough;
2010             case ATA_CMD_WRITE_MULTI_EXT:
2011                 tf->command = ATA_CMD_PIO_WRITE_EXT;
2012                 break;
2013             }
2014         }
2015     }
2016 }
2017 
2018 /**
2019  *      mv_qc_prep - Host specific command preparation.
2020  *      @qc: queued command to prepare
2021  *
2022  *      This routine simply redirects to the general purpose routine
2023  *      if command is not DMA.  Else, it handles prep of the CRQB
2024  *      (command request block), does some sanity checking, and calls
2025  *      the SG load routine.
2026  *
2027  *      LOCKING:
2028  *      Inherited from caller.
2029  */
2030 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2031 {
2032     struct ata_port *ap = qc->ap;
2033     struct mv_port_priv *pp = ap->private_data;
2034     __le16 *cw;
2035     struct ata_taskfile *tf = &qc->tf;
2036     u16 flags = 0;
2037     unsigned in_index;
2038 
2039     switch (tf->protocol) {
2040     case ATA_PROT_DMA:
2041         if (tf->command == ATA_CMD_DSM)
2042             return AC_ERR_OK;
2043         fallthrough;
2044     case ATA_PROT_NCQ:
2045         break;  /* continue below */
2046     case ATA_PROT_PIO:
2047         mv_rw_multi_errata_sata24(qc);
2048         return AC_ERR_OK;
2049     default:
2050         return AC_ERR_OK;
2051     }
2052 
2053     /* Fill in command request block
2054      */
2055     if (!(tf->flags & ATA_TFLAG_WRITE))
2056         flags |= CRQB_FLAG_READ;
2057     WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2058     flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2059     flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2060 
2061     /* get current queue index from software */
2062     in_index = pp->req_idx;
2063 
2064     pp->crqb[in_index].sg_addr =
2065         cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2066     pp->crqb[in_index].sg_addr_hi =
2067         cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2068     pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2069 
2070     cw = &pp->crqb[in_index].ata_cmd[0];
2071 
2072     /* Sadly, the CRQB cannot accommodate all registers--there are
2073      * only 11 bytes...so we must pick and choose required
2074      * registers based on the command.  So, we drop feature and
2075      * hob_feature for [RW] DMA commands, but they are needed for
2076      * NCQ.  NCQ will drop hob_nsect, which is not needed there
2077      * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2078      */
2079     switch (tf->command) {
2080     case ATA_CMD_READ:
2081     case ATA_CMD_READ_EXT:
2082     case ATA_CMD_WRITE:
2083     case ATA_CMD_WRITE_EXT:
2084     case ATA_CMD_WRITE_FUA_EXT:
2085         mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2086         break;
2087     case ATA_CMD_FPDMA_READ:
2088     case ATA_CMD_FPDMA_WRITE:
2089         mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2090         mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2091         break;
2092     default:
2093         /* The only other commands EDMA supports in non-queued and
2094          * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2095          * of which are defined/used by Linux.  If we get here, this
2096          * driver needs work.
2097          */
2098         ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2099                 tf->command);
2100         return AC_ERR_INVALID;
2101     }
2102     mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2103     mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2104     mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2105     mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2106     mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2107     mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2108     mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2109     mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2110     mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);    /* last */
2111 
2112     if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2113         return AC_ERR_OK;
2114     mv_fill_sg(qc);
2115 
2116     return AC_ERR_OK;
2117 }
2118 
2119 /**
2120  *      mv_qc_prep_iie - Host specific command preparation.
2121  *      @qc: queued command to prepare
2122  *
2123  *      This routine simply redirects to the general purpose routine
2124  *      if command is not DMA.  Else, it handles prep of the CRQB
2125  *      (command request block), does some sanity checking, and calls
2126  *      the SG load routine.
2127  *
2128  *      LOCKING:
2129  *      Inherited from caller.
2130  */
2131 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2132 {
2133     struct ata_port *ap = qc->ap;
2134     struct mv_port_priv *pp = ap->private_data;
2135     struct mv_crqb_iie *crqb;
2136     struct ata_taskfile *tf = &qc->tf;
2137     unsigned in_index;
2138     u32 flags = 0;
2139 
2140     if ((tf->protocol != ATA_PROT_DMA) &&
2141         (tf->protocol != ATA_PROT_NCQ))
2142         return AC_ERR_OK;
2143     if (tf->command == ATA_CMD_DSM)
2144         return AC_ERR_OK;  /* use bmdma for this */
2145 
2146     /* Fill in Gen IIE command request block */
2147     if (!(tf->flags & ATA_TFLAG_WRITE))
2148         flags |= CRQB_FLAG_READ;
2149 
2150     WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2151     flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2152     flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2153     flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2154 
2155     /* get current queue index from software */
2156     in_index = pp->req_idx;
2157 
2158     crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2159     crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2160     crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2161     crqb->flags = cpu_to_le32(flags);
2162 
2163     crqb->ata_cmd[0] = cpu_to_le32(
2164             (tf->command << 16) |
2165             (tf->feature << 24)
2166         );
2167     crqb->ata_cmd[1] = cpu_to_le32(
2168             (tf->lbal << 0) |
2169             (tf->lbam << 8) |
2170             (tf->lbah << 16) |
2171             (tf->device << 24)
2172         );
2173     crqb->ata_cmd[2] = cpu_to_le32(
2174             (tf->hob_lbal << 0) |
2175             (tf->hob_lbam << 8) |
2176             (tf->hob_lbah << 16) |
2177             (tf->hob_feature << 24)
2178         );
2179     crqb->ata_cmd[3] = cpu_to_le32(
2180             (tf->nsect << 0) |
2181             (tf->hob_nsect << 8)
2182         );
2183 
2184     if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2185         return AC_ERR_OK;
2186     mv_fill_sg(qc);
2187 
2188     return AC_ERR_OK;
2189 }
2190 
2191 /**
2192  *  mv_sff_check_status - fetch device status, if valid
2193  *  @ap: ATA port to fetch status from
2194  *
2195  *  When using command issue via mv_qc_issue_fis(),
2196  *  the initial ATA_BUSY state does not show up in the
2197  *  ATA status (shadow) register.  This can confuse libata!
2198  *
2199  *  So we have a hook here to fake ATA_BUSY for that situation,
2200  *  until the first time a BUSY, DRQ, or ERR bit is seen.
2201  *
2202  *  The rest of the time, it simply returns the ATA status register.
2203  */
2204 static u8 mv_sff_check_status(struct ata_port *ap)
2205 {
2206     u8 stat = ioread8(ap->ioaddr.status_addr);
2207     struct mv_port_priv *pp = ap->private_data;
2208 
2209     if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2210         if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2211             pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2212         else
2213             stat = ATA_BUSY;
2214     }
2215     return stat;
2216 }
2217 
2218 /**
2219  *  mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2220  *  @ap: ATA port to send a FIS
2221  *  @fis: fis to be sent
2222  *  @nwords: number of 32-bit words in the fis
2223  */
2224 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2225 {
2226     void __iomem *port_mmio = mv_ap_base(ap);
2227     u32 ifctl, old_ifctl, ifstat;
2228     int i, timeout = 200, final_word = nwords - 1;
2229 
2230     /* Initiate FIS transmission mode */
2231     old_ifctl = readl(port_mmio + SATA_IFCTL);
2232     ifctl = 0x100 | (old_ifctl & 0xf);
2233     writelfl(ifctl, port_mmio + SATA_IFCTL);
2234 
2235     /* Send all words of the FIS except for the final word */
2236     for (i = 0; i < final_word; ++i)
2237         writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2238 
2239     /* Flag end-of-transmission, and then send the final word */
2240     writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2241     writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2242 
2243     /*
2244      * Wait for FIS transmission to complete.
2245      * This typically takes just a single iteration.
2246      */
2247     do {
2248         ifstat = readl(port_mmio + SATA_IFSTAT);
2249     } while (!(ifstat & 0x1000) && --timeout);
2250 
2251     /* Restore original port configuration */
2252     writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2253 
2254     /* See if it worked */
2255     if ((ifstat & 0x3000) != 0x1000) {
2256         ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2257                   __func__, ifstat);
2258         return AC_ERR_OTHER;
2259     }
2260     return 0;
2261 }
2262 
2263 /**
2264  *  mv_qc_issue_fis - Issue a command directly as a FIS
2265  *  @qc: queued command to start
2266  *
2267  *  Note that the ATA shadow registers are not updated
2268  *  after command issue, so the device will appear "READY"
2269  *  if polled, even while it is BUSY processing the command.
2270  *
2271  *  So we use a status hook to fake ATA_BUSY until the drive changes state.
2272  *
2273  *  Note: we don't get updated shadow regs on *completion*
2274  *  of non-data commands. So avoid sending them via this function,
2275  *  as they will appear to have completed immediately.
2276  *
2277  *  GEN_IIE has special registers that we could get the result tf from,
2278  *  but earlier chipsets do not.  For now, we ignore those registers.
2279  */
2280 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2281 {
2282     struct ata_port *ap = qc->ap;
2283     struct mv_port_priv *pp = ap->private_data;
2284     struct ata_link *link = qc->dev->link;
2285     u32 fis[5];
2286     int err = 0;
2287 
2288     ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2289     err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2290     if (err)
2291         return err;
2292 
2293     switch (qc->tf.protocol) {
2294     case ATAPI_PROT_PIO:
2295         pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2296         fallthrough;
2297     case ATAPI_PROT_NODATA:
2298         ap->hsm_task_state = HSM_ST_FIRST;
2299         break;
2300     case ATA_PROT_PIO:
2301         pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2302         if (qc->tf.flags & ATA_TFLAG_WRITE)
2303             ap->hsm_task_state = HSM_ST_FIRST;
2304         else
2305             ap->hsm_task_state = HSM_ST;
2306         break;
2307     default:
2308         ap->hsm_task_state = HSM_ST_LAST;
2309         break;
2310     }
2311 
2312     if (qc->tf.flags & ATA_TFLAG_POLLING)
2313         ata_sff_queue_pio_task(link, 0);
2314     return 0;
2315 }
2316 
2317 /**
2318  *      mv_qc_issue - Initiate a command to the host
2319  *      @qc: queued command to start
2320  *
2321  *      This routine simply redirects to the general purpose routine
2322  *      if command is not DMA.  Else, it sanity checks our local
2323  *      caches of the request producer/consumer indices then enables
2324  *      DMA and bumps the request producer index.
2325  *
2326  *      LOCKING:
2327  *      Inherited from caller.
2328  */
2329 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2330 {
2331     static int limit_warnings = 10;
2332     struct ata_port *ap = qc->ap;
2333     void __iomem *port_mmio = mv_ap_base(ap);
2334     struct mv_port_priv *pp = ap->private_data;
2335     u32 in_index;
2336     unsigned int port_irqs;
2337 
2338     pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2339 
2340     switch (qc->tf.protocol) {
2341     case ATA_PROT_DMA:
2342         if (qc->tf.command == ATA_CMD_DSM) {
2343             if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2344                 return AC_ERR_OTHER;
2345             break;  /* use bmdma for this */
2346         }
2347         fallthrough;
2348     case ATA_PROT_NCQ:
2349         mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2350         pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2351         in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2352 
2353         /* Write the request in pointer to kick the EDMA to life */
2354         writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2355                     port_mmio + EDMA_REQ_Q_IN_PTR);
2356         return 0;
2357 
2358     case ATA_PROT_PIO:
2359         /*
2360          * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2361          *
2362          * Someday, we might implement special polling workarounds
2363          * for these, but it all seems rather unnecessary since we
2364          * normally use only DMA for commands which transfer more
2365          * than a single block of data.
2366          *
2367          * Much of the time, this could just work regardless.
2368          * So for now, just log the incident, and allow the attempt.
2369          */
2370         if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2371             --limit_warnings;
2372             ata_link_warn(qc->dev->link, DRV_NAME
2373                       ": attempting PIO w/multiple DRQ: "
2374                       "this may fail due to h/w errata\n");
2375         }
2376         fallthrough;
2377     case ATA_PROT_NODATA:
2378     case ATAPI_PROT_PIO:
2379     case ATAPI_PROT_NODATA:
2380         if (ap->flags & ATA_FLAG_PIO_POLLING)
2381             qc->tf.flags |= ATA_TFLAG_POLLING;
2382         break;
2383     }
2384 
2385     if (qc->tf.flags & ATA_TFLAG_POLLING)
2386         port_irqs = ERR_IRQ;    /* mask device interrupt when polling */
2387     else
2388         port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2389 
2390     /*
2391      * We're about to send a non-EDMA capable command to the
2392      * port.  Turn off EDMA so there won't be problems accessing
2393      * shadow block, etc registers.
2394      */
2395     mv_stop_edma(ap);
2396     mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2397     mv_pmp_select(ap, qc->dev->link->pmp);
2398 
2399     if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2400         struct mv_host_priv *hpriv = ap->host->private_data;
2401         /*
2402          * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2403          *
2404          * After any NCQ error, the READ_LOG_EXT command
2405          * from libata-eh *must* use mv_qc_issue_fis().
2406          * Otherwise it might fail, due to chip errata.
2407          *
2408          * Rather than special-case it, we'll just *always*
2409          * use this method here for READ_LOG_EXT, making for
2410          * easier testing.
2411          */
2412         if (IS_GEN_II(hpriv))
2413             return mv_qc_issue_fis(qc);
2414     }
2415     return ata_bmdma_qc_issue(qc);
2416 }
2417 
2418 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2419 {
2420     struct mv_port_priv *pp = ap->private_data;
2421     struct ata_queued_cmd *qc;
2422 
2423     if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2424         return NULL;
2425     qc = ata_qc_from_tag(ap, ap->link.active_tag);
2426     if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2427         return qc;
2428     return NULL;
2429 }
2430 
2431 static void mv_pmp_error_handler(struct ata_port *ap)
2432 {
2433     unsigned int pmp, pmp_map;
2434     struct mv_port_priv *pp = ap->private_data;
2435 
2436     if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2437         /*
2438          * Perform NCQ error analysis on failed PMPs
2439          * before we freeze the port entirely.
2440          *
2441          * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2442          */
2443         pmp_map = pp->delayed_eh_pmp_map;
2444         pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2445         for (pmp = 0; pmp_map != 0; pmp++) {
2446             unsigned int this_pmp = (1 << pmp);
2447             if (pmp_map & this_pmp) {
2448                 struct ata_link *link = &ap->pmp_link[pmp];
2449                 pmp_map &= ~this_pmp;
2450                 ata_eh_analyze_ncq_error(link);
2451             }
2452         }
2453         ata_port_freeze(ap);
2454     }
2455     sata_pmp_error_handler(ap);
2456 }
2457 
2458 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2459 {
2460     void __iomem *port_mmio = mv_ap_base(ap);
2461 
2462     return readl(port_mmio + SATA_TESTCTL) >> 16;
2463 }
2464 
2465 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2466 {
2467     unsigned int pmp;
2468 
2469     /*
2470      * Initialize EH info for PMPs which saw device errors
2471      */
2472     for (pmp = 0; pmp_map != 0; pmp++) {
2473         unsigned int this_pmp = (1 << pmp);
2474         if (pmp_map & this_pmp) {
2475             struct ata_link *link = &ap->pmp_link[pmp];
2476             struct ata_eh_info *ehi = &link->eh_info;
2477 
2478             pmp_map &= ~this_pmp;
2479             ata_ehi_clear_desc(ehi);
2480             ata_ehi_push_desc(ehi, "dev err");
2481             ehi->err_mask |= AC_ERR_DEV;
2482             ehi->action |= ATA_EH_RESET;
2483             ata_link_abort(link);
2484         }
2485     }
2486 }
2487 
2488 static int mv_req_q_empty(struct ata_port *ap)
2489 {
2490     void __iomem *port_mmio = mv_ap_base(ap);
2491     u32 in_ptr, out_ptr;
2492 
2493     in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2494             >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2495     out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2496             >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2497     return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2498 }
2499 
2500 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2501 {
2502     struct mv_port_priv *pp = ap->private_data;
2503     int failed_links;
2504     unsigned int old_map, new_map;
2505 
2506     /*
2507      * Device error during FBS+NCQ operation:
2508      *
2509      * Set a port flag to prevent further I/O being enqueued.
2510      * Leave the EDMA running to drain outstanding commands from this port.
2511      * Perform the post-mortem/EH only when all responses are complete.
2512      * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2513      */
2514     if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2515         pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2516         pp->delayed_eh_pmp_map = 0;
2517     }
2518     old_map = pp->delayed_eh_pmp_map;
2519     new_map = old_map | mv_get_err_pmp_map(ap);
2520 
2521     if (old_map != new_map) {
2522         pp->delayed_eh_pmp_map = new_map;
2523         mv_pmp_eh_prep(ap, new_map & ~old_map);
2524     }
2525     failed_links = hweight16(new_map);
2526 
2527     ata_port_info(ap,
2528               "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2529               __func__, pp->delayed_eh_pmp_map,
2530               ap->qc_active, failed_links,
2531               ap->nr_active_links);
2532 
2533     if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2534         mv_process_crpb_entries(ap, pp);
2535         mv_stop_edma(ap);
2536         mv_eh_freeze(ap);
2537         ata_port_info(ap, "%s: done\n", __func__);
2538         return 1;   /* handled */
2539     }
2540     ata_port_info(ap, "%s: waiting\n", __func__);
2541     return 1;   /* handled */
2542 }
2543 
2544 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2545 {
2546     /*
2547      * Possible future enhancement:
2548      *
2549      * FBS+non-NCQ operation is not yet implemented.
2550      * See related notes in mv_edma_cfg().
2551      *
2552      * Device error during FBS+non-NCQ operation:
2553      *
2554      * We need to snapshot the shadow registers for each failed command.
2555      * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2556      */
2557     return 0;   /* not handled */
2558 }
2559 
2560 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2561 {
2562     struct mv_port_priv *pp = ap->private_data;
2563 
2564     if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2565         return 0;   /* EDMA was not active: not handled */
2566     if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2567         return 0;   /* FBS was not active: not handled */
2568 
2569     if (!(edma_err_cause & EDMA_ERR_DEV))
2570         return 0;   /* non DEV error: not handled */
2571     edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2572     if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2573         return 0;   /* other problems: not handled */
2574 
2575     if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2576         /*
2577          * EDMA should NOT have self-disabled for this case.
2578          * If it did, then something is wrong elsewhere,
2579          * and we cannot handle it here.
2580          */
2581         if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2582             ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2583                       __func__, edma_err_cause, pp->pp_flags);
2584             return 0; /* not handled */
2585         }
2586         return mv_handle_fbs_ncq_dev_err(ap);
2587     } else {
2588         /*
2589          * EDMA should have self-disabled for this case.
2590          * If it did not, then something is wrong elsewhere,
2591          * and we cannot handle it here.
2592          */
2593         if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2594             ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2595                       __func__, edma_err_cause, pp->pp_flags);
2596             return 0; /* not handled */
2597         }
2598         return mv_handle_fbs_non_ncq_dev_err(ap);
2599     }
2600     return 0;   /* not handled */
2601 }
2602 
2603 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2604 {
2605     struct ata_eh_info *ehi = &ap->link.eh_info;
2606     char *when = "idle";
2607 
2608     ata_ehi_clear_desc(ehi);
2609     if (edma_was_enabled) {
2610         when = "EDMA enabled";
2611     } else {
2612         struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2613         if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2614             when = "polling";
2615     }
2616     ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2617     ehi->err_mask |= AC_ERR_OTHER;
2618     ehi->action   |= ATA_EH_RESET;
2619     ata_port_freeze(ap);
2620 }
2621 
2622 /**
2623  *      mv_err_intr - Handle error interrupts on the port
2624  *      @ap: ATA channel to manipulate
2625  *
2626  *      Most cases require a full reset of the chip's state machine,
2627  *      which also performs a COMRESET.
2628  *      Also, if the port disabled DMA, update our cached copy to match.
2629  *
2630  *      LOCKING:
2631  *      Inherited from caller.
2632  */
2633 static void mv_err_intr(struct ata_port *ap)
2634 {
2635     void __iomem *port_mmio = mv_ap_base(ap);
2636     u32 edma_err_cause, eh_freeze_mask, serr = 0;
2637     u32 fis_cause = 0;
2638     struct mv_port_priv *pp = ap->private_data;
2639     struct mv_host_priv *hpriv = ap->host->private_data;
2640     unsigned int action = 0, err_mask = 0;
2641     struct ata_eh_info *ehi = &ap->link.eh_info;
2642     struct ata_queued_cmd *qc;
2643     int abort = 0;
2644 
2645     /*
2646      * Read and clear the SError and err_cause bits.
2647      * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2648      * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2649      */
2650     sata_scr_read(&ap->link, SCR_ERROR, &serr);
2651     sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2652 
2653     edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2654     if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2655         fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2656         writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2657     }
2658     writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2659 
2660     if (edma_err_cause & EDMA_ERR_DEV) {
2661         /*
2662          * Device errors during FIS-based switching operation
2663          * require special handling.
2664          */
2665         if (mv_handle_dev_err(ap, edma_err_cause))
2666             return;
2667     }
2668 
2669     qc = mv_get_active_qc(ap);
2670     ata_ehi_clear_desc(ehi);
2671     ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2672               edma_err_cause, pp->pp_flags);
2673 
2674     if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2675         ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2676         if (fis_cause & FIS_IRQ_CAUSE_AN) {
2677             u32 ec = edma_err_cause &
2678                    ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2679             sata_async_notification(ap);
2680             if (!ec)
2681                 return; /* Just an AN; no need for the nukes */
2682             ata_ehi_push_desc(ehi, "SDB notify");
2683         }
2684     }
2685     /*
2686      * All generations share these EDMA error cause bits:
2687      */
2688     if (edma_err_cause & EDMA_ERR_DEV) {
2689         err_mask |= AC_ERR_DEV;
2690         action |= ATA_EH_RESET;
2691         ata_ehi_push_desc(ehi, "dev error");
2692     }
2693     if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2694             EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2695             EDMA_ERR_INTRL_PAR)) {
2696         err_mask |= AC_ERR_ATA_BUS;
2697         action |= ATA_EH_RESET;
2698         ata_ehi_push_desc(ehi, "parity error");
2699     }
2700     if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2701         ata_ehi_hotplugged(ehi);
2702         ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2703             "dev disconnect" : "dev connect");
2704         action |= ATA_EH_RESET;
2705     }
2706 
2707     /*
2708      * Gen-I has a different SELF_DIS bit,
2709      * different FREEZE bits, and no SERR bit:
2710      */
2711     if (IS_GEN_I(hpriv)) {
2712         eh_freeze_mask = EDMA_EH_FREEZE_5;
2713         if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2714             pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2715             ata_ehi_push_desc(ehi, "EDMA self-disable");
2716         }
2717     } else {
2718         eh_freeze_mask = EDMA_EH_FREEZE;
2719         if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2720             pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2721             ata_ehi_push_desc(ehi, "EDMA self-disable");
2722         }
2723         if (edma_err_cause & EDMA_ERR_SERR) {
2724             ata_ehi_push_desc(ehi, "SError=%08x", serr);
2725             err_mask |= AC_ERR_ATA_BUS;
2726             action |= ATA_EH_RESET;
2727         }
2728     }
2729 
2730     if (!err_mask) {
2731         err_mask = AC_ERR_OTHER;
2732         action |= ATA_EH_RESET;
2733     }
2734 
2735     ehi->serror |= serr;
2736     ehi->action |= action;
2737 
2738     if (qc)
2739         qc->err_mask |= err_mask;
2740     else
2741         ehi->err_mask |= err_mask;
2742 
2743     if (err_mask == AC_ERR_DEV) {
2744         /*
2745          * Cannot do ata_port_freeze() here,
2746          * because it would kill PIO access,
2747          * which is needed for further diagnosis.
2748          */
2749         mv_eh_freeze(ap);
2750         abort = 1;
2751     } else if (edma_err_cause & eh_freeze_mask) {
2752         /*
2753          * Note to self: ata_port_freeze() calls ata_port_abort()
2754          */
2755         ata_port_freeze(ap);
2756     } else {
2757         abort = 1;
2758     }
2759 
2760     if (abort) {
2761         if (qc)
2762             ata_link_abort(qc->dev->link);
2763         else
2764             ata_port_abort(ap);
2765     }
2766 }
2767 
2768 static bool mv_process_crpb_response(struct ata_port *ap,
2769         struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2770 {
2771     u8 ata_status;
2772     u16 edma_status = le16_to_cpu(response->flags);
2773 
2774     /*
2775      * edma_status from a response queue entry:
2776      *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2777      *   MSB is saved ATA status from command completion.
2778      */
2779     if (!ncq_enabled) {
2780         u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2781         if (err_cause) {
2782             /*
2783              * Error will be seen/handled by
2784              * mv_err_intr().  So do nothing at all here.
2785              */
2786             return false;
2787         }
2788     }
2789     ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2790     if (!ac_err_mask(ata_status))
2791         return true;
2792     /* else: leave it for mv_err_intr() */
2793     return false;
2794 }
2795 
2796 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2797 {
2798     void __iomem *port_mmio = mv_ap_base(ap);
2799     struct mv_host_priv *hpriv = ap->host->private_data;
2800     u32 in_index;
2801     bool work_done = false;
2802     u32 done_mask = 0;
2803     int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2804 
2805     /* Get the hardware queue position index */
2806     in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2807             >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2808 
2809     /* Process new responses from since the last time we looked */
2810     while (in_index != pp->resp_idx) {
2811         unsigned int tag;
2812         struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2813 
2814         pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2815 
2816         if (IS_GEN_I(hpriv)) {
2817             /* 50xx: no NCQ, only one command active at a time */
2818             tag = ap->link.active_tag;
2819         } else {
2820             /* Gen II/IIE: get command tag from CRPB entry */
2821             tag = le16_to_cpu(response->id) & 0x1f;
2822         }
2823         if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2824             done_mask |= 1 << tag;
2825         work_done = true;
2826     }
2827 
2828     if (work_done) {
2829         ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2830 
2831         /* Update the software queue position index in hardware */
2832         writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2833              (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2834              port_mmio + EDMA_RSP_Q_OUT_PTR);
2835     }
2836 }
2837 
2838 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2839 {
2840     struct mv_port_priv *pp;
2841     int edma_was_enabled;
2842 
2843     /*
2844      * Grab a snapshot of the EDMA_EN flag setting,
2845      * so that we have a consistent view for this port,
2846      * even if something we call of our routines changes it.
2847      */
2848     pp = ap->private_data;
2849     edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2850     /*
2851      * Process completed CRPB response(s) before other events.
2852      */
2853     if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2854         mv_process_crpb_entries(ap, pp);
2855         if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2856             mv_handle_fbs_ncq_dev_err(ap);
2857     }
2858     /*
2859      * Handle chip-reported errors, or continue on to handle PIO.
2860      */
2861     if (unlikely(port_cause & ERR_IRQ)) {
2862         mv_err_intr(ap);
2863     } else if (!edma_was_enabled) {
2864         struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2865         if (qc)
2866             ata_bmdma_port_intr(ap, qc);
2867         else
2868             mv_unexpected_intr(ap, edma_was_enabled);
2869     }
2870 }
2871 
2872 /**
2873  *      mv_host_intr - Handle all interrupts on the given host controller
2874  *      @host: host specific structure
2875  *      @main_irq_cause: Main interrupt cause register for the chip.
2876  *
2877  *      LOCKING:
2878  *      Inherited from caller.
2879  */
2880 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2881 {
2882     struct mv_host_priv *hpriv = host->private_data;
2883     void __iomem *mmio = hpriv->base, *hc_mmio;
2884     unsigned int handled = 0, port;
2885 
2886     /* If asserted, clear the "all ports" IRQ coalescing bit */
2887     if (main_irq_cause & ALL_PORTS_COAL_DONE)
2888         writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2889 
2890     for (port = 0; port < hpriv->n_ports; port++) {
2891         struct ata_port *ap = host->ports[port];
2892         unsigned int p, shift, hardport, port_cause;
2893 
2894         MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2895         /*
2896          * Each hc within the host has its own hc_irq_cause register,
2897          * where the interrupting ports bits get ack'd.
2898          */
2899         if (hardport == 0) {    /* first port on this hc ? */
2900             u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2901             u32 port_mask, ack_irqs;
2902             /*
2903              * Skip this entire hc if nothing pending for any ports
2904              */
2905             if (!hc_cause) {
2906                 port += MV_PORTS_PER_HC - 1;
2907                 continue;
2908             }
2909             /*
2910              * We don't need/want to read the hc_irq_cause register,
2911              * because doing so hurts performance, and
2912              * main_irq_cause already gives us everything we need.
2913              *
2914              * But we do have to *write* to the hc_irq_cause to ack
2915              * the ports that we are handling this time through.
2916              *
2917              * This requires that we create a bitmap for those
2918              * ports which interrupted us, and use that bitmap
2919              * to ack (only) those ports via hc_irq_cause.
2920              */
2921             ack_irqs = 0;
2922             if (hc_cause & PORTS_0_3_COAL_DONE)
2923                 ack_irqs = HC_COAL_IRQ;
2924             for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2925                 if ((port + p) >= hpriv->n_ports)
2926                     break;
2927                 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2928                 if (hc_cause & port_mask)
2929                     ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2930             }
2931             hc_mmio = mv_hc_base_from_port(mmio, port);
2932             writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2933             handled = 1;
2934         }
2935         /*
2936          * Handle interrupts signalled for this port:
2937          */
2938         port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2939         if (port_cause)
2940             mv_port_intr(ap, port_cause);
2941     }
2942     return handled;
2943 }
2944 
2945 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2946 {
2947     struct mv_host_priv *hpriv = host->private_data;
2948     struct ata_port *ap;
2949     struct ata_queued_cmd *qc;
2950     struct ata_eh_info *ehi;
2951     unsigned int i, err_mask, printed = 0;
2952     u32 err_cause;
2953 
2954     err_cause = readl(mmio + hpriv->irq_cause_offset);
2955 
2956     dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2957 
2958     dev_dbg(host->dev, "%s: All regs @ PCI error\n", __func__);
2959     mv_dump_all_regs(mmio, to_pci_dev(host->dev));
2960 
2961     writelfl(0, mmio + hpriv->irq_cause_offset);
2962 
2963     for (i = 0; i < host->n_ports; i++) {
2964         ap = host->ports[i];
2965         if (!ata_link_offline(&ap->link)) {
2966             ehi = &ap->link.eh_info;
2967             ata_ehi_clear_desc(ehi);
2968             if (!printed++)
2969                 ata_ehi_push_desc(ehi,
2970                     "PCI err cause 0x%08x", err_cause);
2971             err_mask = AC_ERR_HOST_BUS;
2972             ehi->action = ATA_EH_RESET;
2973             qc = ata_qc_from_tag(ap, ap->link.active_tag);
2974             if (qc)
2975                 qc->err_mask |= err_mask;
2976             else
2977                 ehi->err_mask |= err_mask;
2978 
2979             ata_port_freeze(ap);
2980         }
2981     }
2982     return 1;   /* handled */
2983 }
2984 
2985 /**
2986  *      mv_interrupt - Main interrupt event handler
2987  *      @irq: unused
2988  *      @dev_instance: private data; in this case the host structure
2989  *
2990  *      Read the read only register to determine if any host
2991  *      controllers have pending interrupts.  If so, call lower level
2992  *      routine to handle.  Also check for PCI errors which are only
2993  *      reported here.
2994  *
2995  *      LOCKING:
2996  *      This routine holds the host lock while processing pending
2997  *      interrupts.
2998  */
2999 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3000 {
3001     struct ata_host *host = dev_instance;
3002     struct mv_host_priv *hpriv = host->private_data;
3003     unsigned int handled = 0;
3004     int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3005     u32 main_irq_cause, pending_irqs;
3006 
3007     spin_lock(&host->lock);
3008 
3009     /* for MSI:  block new interrupts while in here */
3010     if (using_msi)
3011         mv_write_main_irq_mask(0, hpriv);
3012 
3013     main_irq_cause = readl(hpriv->main_irq_cause_addr);
3014     pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3015     /*
3016      * Deal with cases where we either have nothing pending, or have read
3017      * a bogus register value which can indicate HW removal or PCI fault.
3018      */
3019     if (pending_irqs && main_irq_cause != 0xffffffffU) {
3020         if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3021             handled = mv_pci_error(host, hpriv->base);
3022         else
3023             handled = mv_host_intr(host, pending_irqs);
3024     }
3025 
3026     /* for MSI: unmask; interrupt cause bits will retrigger now */
3027     if (using_msi)
3028         mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3029 
3030     spin_unlock(&host->lock);
3031 
3032     return IRQ_RETVAL(handled);
3033 }
3034 
3035 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3036 {
3037     unsigned int ofs;
3038 
3039     switch (sc_reg_in) {
3040     case SCR_STATUS:
3041     case SCR_ERROR:
3042     case SCR_CONTROL:
3043         ofs = sc_reg_in * sizeof(u32);
3044         break;
3045     default:
3046         ofs = 0xffffffffU;
3047         break;
3048     }
3049     return ofs;
3050 }
3051 
3052 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3053 {
3054     struct mv_host_priv *hpriv = link->ap->host->private_data;
3055     void __iomem *mmio = hpriv->base;
3056     void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3057     unsigned int ofs = mv5_scr_offset(sc_reg_in);
3058 
3059     if (ofs != 0xffffffffU) {
3060         *val = readl(addr + ofs);
3061         return 0;
3062     } else
3063         return -EINVAL;
3064 }
3065 
3066 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3067 {
3068     struct mv_host_priv *hpriv = link->ap->host->private_data;
3069     void __iomem *mmio = hpriv->base;
3070     void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3071     unsigned int ofs = mv5_scr_offset(sc_reg_in);
3072 
3073     if (ofs != 0xffffffffU) {
3074         writelfl(val, addr + ofs);
3075         return 0;
3076     } else
3077         return -EINVAL;
3078 }
3079 
3080 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3081 {
3082     struct pci_dev *pdev = to_pci_dev(host->dev);
3083     int early_5080;
3084 
3085     early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3086 
3087     if (!early_5080) {
3088         u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3089         tmp |= (1 << 0);
3090         writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3091     }
3092 
3093     mv_reset_pci_bus(host, mmio);
3094 }
3095 
3096 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3097 {
3098     writel(0x0fcfffff, mmio + FLASH_CTL);
3099 }
3100 
3101 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3102                void __iomem *mmio)
3103 {
3104     void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3105     u32 tmp;
3106 
3107     tmp = readl(phy_mmio + MV5_PHY_MODE);
3108 
3109     hpriv->signal[idx].pre = tmp & 0x1800;  /* bits 12:11 */
3110     hpriv->signal[idx].amps = tmp & 0xe0;   /* bits 7:5 */
3111 }
3112 
3113 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3114 {
3115     u32 tmp;
3116 
3117     writel(0, mmio + GPIO_PORT_CTL);
3118 
3119     /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3120 
3121     tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3122     tmp |= ~(1 << 0);
3123     writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3124 }
3125 
3126 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3127                unsigned int port)
3128 {
3129     void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3130     const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3131     u32 tmp;
3132     int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3133 
3134     if (fix_apm_sq) {
3135         tmp = readl(phy_mmio + MV5_LTMODE);
3136         tmp |= (1 << 19);
3137         writel(tmp, phy_mmio + MV5_LTMODE);
3138 
3139         tmp = readl(phy_mmio + MV5_PHY_CTL);
3140         tmp &= ~0x3;
3141         tmp |= 0x1;
3142         writel(tmp, phy_mmio + MV5_PHY_CTL);
3143     }
3144 
3145     tmp = readl(phy_mmio + MV5_PHY_MODE);
3146     tmp &= ~mask;
3147     tmp |= hpriv->signal[port].pre;
3148     tmp |= hpriv->signal[port].amps;
3149     writel(tmp, phy_mmio + MV5_PHY_MODE);
3150 }
3151 
3152 
3153 #undef ZERO
3154 #define ZERO(reg) writel(0, port_mmio + (reg))
3155 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3156                  unsigned int port)
3157 {
3158     void __iomem *port_mmio = mv_port_base(mmio, port);
3159 
3160     mv_reset_channel(hpriv, mmio, port);
3161 
3162     ZERO(0x028);    /* command */
3163     writel(0x11f, port_mmio + EDMA_CFG);
3164     ZERO(0x004);    /* timer */
3165     ZERO(0x008);    /* irq err cause */
3166     ZERO(0x00c);    /* irq err mask */
3167     ZERO(0x010);    /* rq bah */
3168     ZERO(0x014);    /* rq inp */
3169     ZERO(0x018);    /* rq outp */
3170     ZERO(0x01c);    /* respq bah */
3171     ZERO(0x024);    /* respq outp */
3172     ZERO(0x020);    /* respq inp */
3173     ZERO(0x02c);    /* test control */
3174     writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3175 }
3176 #undef ZERO
3177 
3178 #define ZERO(reg) writel(0, hc_mmio + (reg))
3179 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3180             unsigned int hc)
3181 {
3182     void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3183     u32 tmp;
3184 
3185     ZERO(0x00c);
3186     ZERO(0x010);
3187     ZERO(0x014);
3188     ZERO(0x018);
3189 
3190     tmp = readl(hc_mmio + 0x20);
3191     tmp &= 0x1c1c1c1c;
3192     tmp |= 0x03030303;
3193     writel(tmp, hc_mmio + 0x20);
3194 }
3195 #undef ZERO
3196 
3197 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
3198             unsigned int n_hc)
3199 {
3200     struct mv_host_priv *hpriv = host->private_data;
3201     unsigned int hc, port;
3202 
3203     for (hc = 0; hc < n_hc; hc++) {
3204         for (port = 0; port < MV_PORTS_PER_HC; port++)
3205             mv5_reset_hc_port(hpriv, mmio,
3206                       (hc * MV_PORTS_PER_HC) + port);
3207 
3208         mv5_reset_one_hc(hpriv, mmio, hc);
3209     }
3210 
3211     return 0;
3212 }
3213 
3214 #undef ZERO
3215 #define ZERO(reg) writel(0, mmio + (reg))
3216 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3217 {
3218     struct mv_host_priv *hpriv = host->private_data;
3219     u32 tmp;
3220 
3221     tmp = readl(mmio + MV_PCI_MODE);
3222     tmp &= 0xff00ffff;
3223     writel(tmp, mmio + MV_PCI_MODE);
3224 
3225     ZERO(MV_PCI_DISC_TIMER);
3226     ZERO(MV_PCI_MSI_TRIGGER);
3227     writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3228     ZERO(MV_PCI_SERR_MASK);
3229     ZERO(hpriv->irq_cause_offset);
3230     ZERO(hpriv->irq_mask_offset);
3231     ZERO(MV_PCI_ERR_LOW_ADDRESS);
3232     ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3233     ZERO(MV_PCI_ERR_ATTRIBUTE);
3234     ZERO(MV_PCI_ERR_COMMAND);
3235 }
3236 #undef ZERO
3237 
3238 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3239 {
3240     u32 tmp;
3241 
3242     mv5_reset_flash(hpriv, mmio);
3243 
3244     tmp = readl(mmio + GPIO_PORT_CTL);
3245     tmp &= 0x3;
3246     tmp |= (1 << 5) | (1 << 6);
3247     writel(tmp, mmio + GPIO_PORT_CTL);
3248 }
3249 
3250 /*
3251  *      mv6_reset_hc - Perform the 6xxx global soft reset
3252  *      @mmio: base address of the HBA
3253  *
3254  *      This routine only applies to 6xxx parts.
3255  *
3256  *      LOCKING:
3257  *      Inherited from caller.
3258  */
3259 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
3260             unsigned int n_hc)
3261 {
3262     void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3263     int i, rc = 0;
3264     u32 t;
3265 
3266     /* Following procedure defined in PCI "main command and status
3267      * register" table.
3268      */
3269     t = readl(reg);
3270     writel(t | STOP_PCI_MASTER, reg);
3271 
3272     for (i = 0; i < 1000; i++) {
3273         udelay(1);
3274         t = readl(reg);
3275         if (PCI_MASTER_EMPTY & t)
3276             break;
3277     }
3278     if (!(PCI_MASTER_EMPTY & t)) {
3279         dev_err(host->dev, "PCI master won't flush\n");
3280         rc = 1;
3281         goto done;
3282     }
3283 
3284     /* set reset */
3285     i = 5;
3286     do {
3287         writel(t | GLOB_SFT_RST, reg);
3288         t = readl(reg);
3289         udelay(1);
3290     } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3291 
3292     if (!(GLOB_SFT_RST & t)) {
3293         dev_err(host->dev, "can't set global reset\n");
3294         rc = 1;
3295         goto done;
3296     }
3297 
3298     /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3299     i = 5;
3300     do {
3301         writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3302         t = readl(reg);
3303         udelay(1);
3304     } while ((GLOB_SFT_RST & t) && (i-- > 0));
3305 
3306     if (GLOB_SFT_RST & t) {
3307         dev_err(host->dev, "can't clear global reset\n");
3308         rc = 1;
3309     }
3310 done:
3311     return rc;
3312 }
3313 
3314 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3315                void __iomem *mmio)
3316 {
3317     void __iomem *port_mmio;
3318     u32 tmp;
3319 
3320     tmp = readl(mmio + RESET_CFG);
3321     if ((tmp & (1 << 0)) == 0) {
3322         hpriv->signal[idx].amps = 0x7 << 8;
3323         hpriv->signal[idx].pre = 0x1 << 5;
3324         return;
3325     }
3326 
3327     port_mmio = mv_port_base(mmio, idx);
3328     tmp = readl(port_mmio + PHY_MODE2);
3329 
3330     hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3331     hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3332 }
3333 
3334 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3335 {
3336     writel(0x00000060, mmio + GPIO_PORT_CTL);
3337 }
3338 
3339 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3340                unsigned int port)
3341 {
3342     void __iomem *port_mmio = mv_port_base(mmio, port);
3343 
3344     u32 hp_flags = hpriv->hp_flags;
3345     int fix_phy_mode2 =
3346         hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3347     int fix_phy_mode4 =
3348         hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3349     u32 m2, m3;
3350 
3351     if (fix_phy_mode2) {
3352         m2 = readl(port_mmio + PHY_MODE2);
3353         m2 &= ~(1 << 16);
3354         m2 |= (1 << 31);
3355         writel(m2, port_mmio + PHY_MODE2);
3356 
3357         udelay(200);
3358 
3359         m2 = readl(port_mmio + PHY_MODE2);
3360         m2 &= ~((1 << 16) | (1 << 31));
3361         writel(m2, port_mmio + PHY_MODE2);
3362 
3363         udelay(200);
3364     }
3365 
3366     /*
3367      * Gen-II/IIe PHY_MODE3 errata RM#2:
3368      * Achieves better receiver noise performance than the h/w default:
3369      */
3370     m3 = readl(port_mmio + PHY_MODE3);
3371     m3 = (m3 & 0x1f) | (0x5555601 << 5);
3372 
3373     /* Guideline 88F5182 (GL# SATA-S11) */
3374     if (IS_SOC(hpriv))
3375         m3 &= ~0x1c;
3376 
3377     if (fix_phy_mode4) {
3378         u32 m4 = readl(port_mmio + PHY_MODE4);
3379         /*
3380          * Enforce reserved-bit restrictions on GenIIe devices only.
3381          * For earlier chipsets, force only the internal config field
3382          *  (workaround for errata FEr SATA#10 part 1).
3383          */
3384         if (IS_GEN_IIE(hpriv))
3385             m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3386         else
3387             m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3388         writel(m4, port_mmio + PHY_MODE4);
3389     }
3390     /*
3391      * Workaround for 60x1-B2 errata SATA#13:
3392      * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3393      * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3394      * Or ensure we use writelfl() when writing PHY_MODE4.
3395      */
3396     writel(m3, port_mmio + PHY_MODE3);
3397 
3398     /* Revert values of pre-emphasis and signal amps to the saved ones */
3399     m2 = readl(port_mmio + PHY_MODE2);
3400 
3401     m2 &= ~MV_M2_PREAMP_MASK;
3402     m2 |= hpriv->signal[port].amps;
3403     m2 |= hpriv->signal[port].pre;
3404     m2 &= ~(1 << 16);
3405 
3406     /* according to mvSata 3.6.1, some IIE values are fixed */
3407     if (IS_GEN_IIE(hpriv)) {
3408         m2 &= ~0xC30FF01F;
3409         m2 |= 0x0000900F;
3410     }
3411 
3412     writel(m2, port_mmio + PHY_MODE2);
3413 }
3414 
3415 /* TODO: use the generic LED interface to configure the SATA Presence */
3416 /* & Acitivy LEDs on the board */
3417 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3418                       void __iomem *mmio)
3419 {
3420     return;
3421 }
3422 
3423 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3424                void __iomem *mmio)
3425 {
3426     void __iomem *port_mmio;
3427     u32 tmp;
3428 
3429     port_mmio = mv_port_base(mmio, idx);
3430     tmp = readl(port_mmio + PHY_MODE2);
3431 
3432     hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3433     hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3434 }
3435 
3436 #undef ZERO
3437 #define ZERO(reg) writel(0, port_mmio + (reg))
3438 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3439                     void __iomem *mmio, unsigned int port)
3440 {
3441     void __iomem *port_mmio = mv_port_base(mmio, port);
3442 
3443     mv_reset_channel(hpriv, mmio, port);
3444 
3445     ZERO(0x028);        /* command */
3446     writel(0x101f, port_mmio + EDMA_CFG);
3447     ZERO(0x004);        /* timer */
3448     ZERO(0x008);        /* irq err cause */
3449     ZERO(0x00c);        /* irq err mask */
3450     ZERO(0x010);        /* rq bah */
3451     ZERO(0x014);        /* rq inp */
3452     ZERO(0x018);        /* rq outp */
3453     ZERO(0x01c);        /* respq bah */
3454     ZERO(0x024);        /* respq outp */
3455     ZERO(0x020);        /* respq inp */
3456     ZERO(0x02c);        /* test control */
3457     writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3458 }
3459 
3460 #undef ZERO
3461 
3462 #define ZERO(reg) writel(0, hc_mmio + (reg))
3463 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3464                        void __iomem *mmio)
3465 {
3466     void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3467 
3468     ZERO(0x00c);
3469     ZERO(0x010);
3470     ZERO(0x014);
3471 
3472 }
3473 
3474 #undef ZERO
3475 
3476 static int mv_soc_reset_hc(struct ata_host *host,
3477                   void __iomem *mmio, unsigned int n_hc)
3478 {
3479     struct mv_host_priv *hpriv = host->private_data;
3480     unsigned int port;
3481 
3482     for (port = 0; port < hpriv->n_ports; port++)
3483         mv_soc_reset_hc_port(hpriv, mmio, port);
3484 
3485     mv_soc_reset_one_hc(hpriv, mmio);
3486 
3487     return 0;
3488 }
3489 
3490 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3491                       void __iomem *mmio)
3492 {
3493     return;
3494 }
3495 
3496 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3497 {
3498     return;
3499 }
3500 
3501 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3502                   void __iomem *mmio, unsigned int port)
3503 {
3504     void __iomem *port_mmio = mv_port_base(mmio, port);
3505     u32 reg;
3506 
3507     reg = readl(port_mmio + PHY_MODE3);
3508     reg &= ~(0x3 << 27);    /* SELMUPF (bits 28:27) to 1 */
3509     reg |= (0x1 << 27);
3510     reg &= ~(0x3 << 29);    /* SELMUPI (bits 30:29) to 1 */
3511     reg |= (0x1 << 29);
3512     writel(reg, port_mmio + PHY_MODE3);
3513 
3514     reg = readl(port_mmio + PHY_MODE4);
3515     reg &= ~0x1;    /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3516     reg |= (0x1 << 16);
3517     writel(reg, port_mmio + PHY_MODE4);
3518 
3519     reg = readl(port_mmio + PHY_MODE9_GEN2);
3520     reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3521     reg |= 0x8;
3522     reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3523     writel(reg, port_mmio + PHY_MODE9_GEN2);
3524 
3525     reg = readl(port_mmio + PHY_MODE9_GEN1);
3526     reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3527     reg |= 0x8;
3528     reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3529     writel(reg, port_mmio + PHY_MODE9_GEN1);
3530 }
3531 
3532 /*
3533  *  soc_is_65 - check if the soc is 65 nano device
3534  *
3535  *  Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3536  *  register, this register should contain non-zero value and it exists only
3537  *  in the 65 nano devices, when reading it from older devices we get 0.
3538  */
3539 static bool soc_is_65n(struct mv_host_priv *hpriv)
3540 {
3541     void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3542 
3543     if (readl(port0_mmio + PHYCFG_OFS))
3544         return true;
3545     return false;
3546 }
3547 
3548 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3549 {
3550     u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3551 
3552     ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3553     if (want_gen2i)
3554         ifcfg |= (1 << 7);      /* enable gen2i speed */
3555     writelfl(ifcfg, port_mmio + SATA_IFCFG);
3556 }
3557 
3558 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3559                  unsigned int port_no)
3560 {
3561     void __iomem *port_mmio = mv_port_base(mmio, port_no);
3562 
3563     /*
3564      * The datasheet warns against setting EDMA_RESET when EDMA is active
3565      * (but doesn't say what the problem might be).  So we first try
3566      * to disable the EDMA engine before doing the EDMA_RESET operation.
3567      */
3568     mv_stop_edma_engine(port_mmio);
3569     writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3570 
3571     if (!IS_GEN_I(hpriv)) {
3572         /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3573         mv_setup_ifcfg(port_mmio, 1);
3574     }
3575     /*
3576      * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3577      * link, and physical layers.  It resets all SATA interface registers
3578      * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3579      */
3580     writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3581     udelay(25); /* allow reset propagation */
3582     writelfl(0, port_mmio + EDMA_CMD);
3583 
3584     hpriv->ops->phy_errata(hpriv, mmio, port_no);
3585 
3586     if (IS_GEN_I(hpriv))
3587         usleep_range(500, 1000);
3588 }
3589 
3590 static void mv_pmp_select(struct ata_port *ap, int pmp)
3591 {
3592     if (sata_pmp_supported(ap)) {
3593         void __iomem *port_mmio = mv_ap_base(ap);
3594         u32 reg = readl(port_mmio + SATA_IFCTL);
3595         int old = reg & 0xf;
3596 
3597         if (old != pmp) {
3598             reg = (reg & ~0xf) | pmp;
3599             writelfl(reg, port_mmio + SATA_IFCTL);
3600         }
3601     }
3602 }
3603 
3604 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3605                 unsigned long deadline)
3606 {
3607     mv_pmp_select(link->ap, sata_srst_pmp(link));
3608     return sata_std_hardreset(link, class, deadline);
3609 }
3610 
3611 static int mv_softreset(struct ata_link *link, unsigned int *class,
3612                 unsigned long deadline)
3613 {
3614     mv_pmp_select(link->ap, sata_srst_pmp(link));
3615     return ata_sff_softreset(link, class, deadline);
3616 }
3617 
3618 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3619             unsigned long deadline)
3620 {
3621     struct ata_port *ap = link->ap;
3622     struct mv_host_priv *hpriv = ap->host->private_data;
3623     struct mv_port_priv *pp = ap->private_data;
3624     void __iomem *mmio = hpriv->base;
3625     int rc, attempts = 0, extra = 0;
3626     u32 sstatus;
3627     bool online;
3628 
3629     mv_reset_channel(hpriv, mmio, ap->port_no);
3630     pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3631     pp->pp_flags &=
3632       ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3633 
3634     /* Workaround for errata FEr SATA#10 (part 2) */
3635     do {
3636         const unsigned long *timing =
3637                 sata_ehc_deb_timing(&link->eh_context);
3638 
3639         rc = sata_link_hardreset(link, timing, deadline + extra,
3640                      &online, NULL);
3641         rc = online ? -EAGAIN : rc;
3642         if (rc)
3643             return rc;
3644         sata_scr_read(link, SCR_STATUS, &sstatus);
3645         if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3646             /* Force 1.5gb/s link speed and try again */
3647             mv_setup_ifcfg(mv_ap_base(ap), 0);
3648             if (time_after(jiffies + HZ, deadline))
3649                 extra = HZ; /* only extend it once, max */
3650         }
3651     } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3652     mv_save_cached_regs(ap);
3653     mv_edma_cfg(ap, 0, 0);
3654 
3655     return rc;
3656 }
3657 
3658 static void mv_eh_freeze(struct ata_port *ap)
3659 {
3660     mv_stop_edma(ap);
3661     mv_enable_port_irqs(ap, 0);
3662 }
3663 
3664 static void mv_eh_thaw(struct ata_port *ap)
3665 {
3666     struct mv_host_priv *hpriv = ap->host->private_data;
3667     unsigned int port = ap->port_no;
3668     unsigned int hardport = mv_hardport_from_port(port);
3669     void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3670     void __iomem *port_mmio = mv_ap_base(ap);
3671     u32 hc_irq_cause;
3672 
3673     /* clear EDMA errors on this port */
3674     writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3675 
3676     /* clear pending irq events */
3677     hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3678     writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3679 
3680     mv_enable_port_irqs(ap, ERR_IRQ);
3681 }
3682 
3683 /**
3684  *      mv_port_init - Perform some early initialization on a single port.
3685  *      @port: libata data structure storing shadow register addresses
3686  *      @port_mmio: base address of the port
3687  *
3688  *      Initialize shadow register mmio addresses, clear outstanding
3689  *      interrupts on the port, and unmask interrupts for the future
3690  *      start of the port.
3691  *
3692  *      LOCKING:
3693  *      Inherited from caller.
3694  */
3695 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3696 {
3697     void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3698 
3699     /* PIO related setup
3700      */
3701     port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3702     port->error_addr =
3703         port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3704     port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3705     port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3706     port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3707     port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3708     port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3709     port->status_addr =
3710         port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3711     /* special case: control/altstatus doesn't have ATA_REG_ address */
3712     port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3713 
3714     /* Clear any currently outstanding port interrupt conditions */
3715     serr = port_mmio + mv_scr_offset(SCR_ERROR);
3716     writelfl(readl(serr), serr);
3717     writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3718 
3719     /* unmask all non-transient EDMA error interrupts */
3720     writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3721 }
3722 
3723 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3724 {
3725     struct mv_host_priv *hpriv = host->private_data;
3726     void __iomem *mmio = hpriv->base;
3727     u32 reg;
3728 
3729     if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3730         return 0;   /* not PCI-X capable */
3731     reg = readl(mmio + MV_PCI_MODE);
3732     if ((reg & MV_PCI_MODE_MASK) == 0)
3733         return 0;   /* conventional PCI mode */
3734     return 1;   /* chip is in PCI-X mode */
3735 }
3736 
3737 static int mv_pci_cut_through_okay(struct ata_host *host)
3738 {
3739     struct mv_host_priv *hpriv = host->private_data;
3740     void __iomem *mmio = hpriv->base;
3741     u32 reg;
3742 
3743     if (!mv_in_pcix_mode(host)) {
3744         reg = readl(mmio + MV_PCI_COMMAND);
3745         if (reg & MV_PCI_COMMAND_MRDTRIG)
3746             return 0; /* not okay */
3747     }
3748     return 1; /* okay */
3749 }
3750 
3751 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3752 {
3753     struct mv_host_priv *hpriv = host->private_data;
3754     void __iomem *mmio = hpriv->base;
3755 
3756     /* workaround for 60x1-B2 errata PCI#7 */
3757     if (mv_in_pcix_mode(host)) {
3758         u32 reg = readl(mmio + MV_PCI_COMMAND);
3759         writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3760     }
3761 }
3762 
3763 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3764 {
3765     struct pci_dev *pdev = to_pci_dev(host->dev);
3766     struct mv_host_priv *hpriv = host->private_data;
3767     u32 hp_flags = hpriv->hp_flags;
3768 
3769     switch (board_idx) {
3770     case chip_5080:
3771         hpriv->ops = &mv5xxx_ops;
3772         hp_flags |= MV_HP_GEN_I;
3773 
3774         switch (pdev->revision) {
3775         case 0x1:
3776             hp_flags |= MV_HP_ERRATA_50XXB0;
3777             break;
3778         case 0x3:
3779             hp_flags |= MV_HP_ERRATA_50XXB2;
3780             break;
3781         default:
3782             dev_warn(&pdev->dev,
3783                  "Applying 50XXB2 workarounds to unknown rev\n");
3784             hp_flags |= MV_HP_ERRATA_50XXB2;
3785             break;
3786         }
3787         break;
3788 
3789     case chip_504x:
3790     case chip_508x:
3791         hpriv->ops = &mv5xxx_ops;
3792         hp_flags |= MV_HP_GEN_I;
3793 
3794         switch (pdev->revision) {
3795         case 0x0:
3796             hp_flags |= MV_HP_ERRATA_50XXB0;
3797             break;
3798         case 0x3:
3799             hp_flags |= MV_HP_ERRATA_50XXB2;
3800             break;
3801         default:
3802             dev_warn(&pdev->dev,
3803                  "Applying B2 workarounds to unknown rev\n");
3804             hp_flags |= MV_HP_ERRATA_50XXB2;
3805             break;
3806         }
3807         break;
3808 
3809     case chip_604x:
3810     case chip_608x:
3811         hpriv->ops = &mv6xxx_ops;
3812         hp_flags |= MV_HP_GEN_II;
3813 
3814         switch (pdev->revision) {
3815         case 0x7:
3816             mv_60x1b2_errata_pci7(host);
3817             hp_flags |= MV_HP_ERRATA_60X1B2;
3818             break;
3819         case 0x9:
3820             hp_flags |= MV_HP_ERRATA_60X1C0;
3821             break;
3822         default:
3823             dev_warn(&pdev->dev,
3824                  "Applying B2 workarounds to unknown rev\n");
3825             hp_flags |= MV_HP_ERRATA_60X1B2;
3826             break;
3827         }
3828         break;
3829 
3830     case chip_7042:
3831         hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3832         if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3833             (pdev->device == 0x2300 || pdev->device == 0x2310))
3834         {
3835             /*
3836              * Highpoint RocketRAID PCIe 23xx series cards:
3837              *
3838              * Unconfigured drives are treated as "Legacy"
3839              * by the BIOS, and it overwrites sector 8 with
3840              * a "Lgcy" metadata block prior to Linux boot.
3841              *
3842              * Configured drives (RAID or JBOD) leave sector 8
3843              * alone, but instead overwrite a high numbered
3844              * sector for the RAID metadata.  This sector can
3845              * be determined exactly, by truncating the physical
3846              * drive capacity to a nice even GB value.
3847              *
3848              * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3849              *
3850              * Warn the user, lest they think we're just buggy.
3851              */
3852             dev_warn(&pdev->dev, "Highpoint RocketRAID"
3853                 " BIOS CORRUPTS DATA on all attached drives,"
3854                 " regardless of if/how they are configured."
3855                 " BEWARE!\n");
3856             dev_warn(&pdev->dev, "For data safety, do not"
3857                 " use sectors 8-9 on \"Legacy\" drives,"
3858                 " and avoid the final two gigabytes on"
3859                 " all RocketRAID BIOS initialized drives.\n");
3860         }
3861         fallthrough;
3862     case chip_6042:
3863         hpriv->ops = &mv6xxx_ops;
3864         hp_flags |= MV_HP_GEN_IIE;
3865         if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3866             hp_flags |= MV_HP_CUT_THROUGH;
3867 
3868         switch (pdev->revision) {
3869         case 0x2: /* Rev.B0: the first/only public release */
3870             hp_flags |= MV_HP_ERRATA_60X1C0;
3871             break;
3872         default:
3873             dev_warn(&pdev->dev,
3874                  "Applying 60X1C0 workarounds to unknown rev\n");
3875             hp_flags |= MV_HP_ERRATA_60X1C0;
3876             break;
3877         }
3878         break;
3879     case chip_soc:
3880         if (soc_is_65n(hpriv))
3881             hpriv->ops = &mv_soc_65n_ops;
3882         else
3883             hpriv->ops = &mv_soc_ops;
3884         hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3885             MV_HP_ERRATA_60X1C0;
3886         break;
3887 
3888     default:
3889         dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3890         return -EINVAL;
3891     }
3892 
3893     hpriv->hp_flags = hp_flags;
3894     if (hp_flags & MV_HP_PCIE) {
3895         hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3896         hpriv->irq_mask_offset  = PCIE_IRQ_MASK;
3897         hpriv->unmask_all_irqs  = PCIE_UNMASK_ALL_IRQS;
3898     } else {
3899         hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3900         hpriv->irq_mask_offset  = PCI_IRQ_MASK;
3901         hpriv->unmask_all_irqs  = PCI_UNMASK_ALL_IRQS;
3902     }
3903 
3904     return 0;
3905 }
3906 
3907 /**
3908  *      mv_init_host - Perform some early initialization of the host.
3909  *  @host: ATA host to initialize
3910  *
3911  *      If possible, do an early global reset of the host.  Then do
3912  *      our port init and clear/unmask all/relevant host interrupts.
3913  *
3914  *      LOCKING:
3915  *      Inherited from caller.
3916  */
3917 static int mv_init_host(struct ata_host *host)
3918 {
3919     int rc = 0, n_hc, port, hc;
3920     struct mv_host_priv *hpriv = host->private_data;
3921     void __iomem *mmio = hpriv->base;
3922 
3923     rc = mv_chip_id(host, hpriv->board_idx);
3924     if (rc)
3925         goto done;
3926 
3927     if (IS_SOC(hpriv)) {
3928         hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3929         hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3930     } else {
3931         hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3932         hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3933     }
3934 
3935     /* initialize shadow irq mask with register's value */
3936     hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3937 
3938     /* global interrupt mask: 0 == mask everything */
3939     mv_set_main_irq_mask(host, ~0, 0);
3940 
3941     n_hc = mv_get_hc_count(host->ports[0]->flags);
3942 
3943     for (port = 0; port < host->n_ports; port++)
3944         if (hpriv->ops->read_preamp)
3945             hpriv->ops->read_preamp(hpriv, port, mmio);
3946 
3947     rc = hpriv->ops->reset_hc(host, mmio, n_hc);
3948     if (rc)
3949         goto done;
3950 
3951     hpriv->ops->reset_flash(hpriv, mmio);
3952     hpriv->ops->reset_bus(host, mmio);
3953     hpriv->ops->enable_leds(hpriv, mmio);
3954 
3955     for (port = 0; port < host->n_ports; port++) {
3956         struct ata_port *ap = host->ports[port];
3957         void __iomem *port_mmio = mv_port_base(mmio, port);
3958 
3959         mv_port_init(&ap->ioaddr, port_mmio);
3960     }
3961 
3962     for (hc = 0; hc < n_hc; hc++) {
3963         void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3964 
3965         dev_dbg(host->dev, "HC%i: HC config=0x%08x HC IRQ cause "
3966             "(before clear)=0x%08x\n", hc,
3967             readl(hc_mmio + HC_CFG),
3968             readl(hc_mmio + HC_IRQ_CAUSE));
3969 
3970         /* Clear any currently outstanding hc interrupt conditions */
3971         writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3972     }
3973 
3974     if (!IS_SOC(hpriv)) {
3975         /* Clear any currently outstanding host interrupt conditions */
3976         writelfl(0, mmio + hpriv->irq_cause_offset);
3977 
3978         /* and unmask interrupt generation for host regs */
3979         writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3980     }
3981 
3982     /*
3983      * enable only global host interrupts for now.
3984      * The per-port interrupts get done later as ports are set up.
3985      */
3986     mv_set_main_irq_mask(host, 0, PCI_ERR);
3987     mv_set_irq_coalescing(host, irq_coalescing_io_count,
3988                     irq_coalescing_usecs);
3989 done:
3990     return rc;
3991 }
3992 
3993 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3994 {
3995     hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3996                                  MV_CRQB_Q_SZ, 0);
3997     if (!hpriv->crqb_pool)
3998         return -ENOMEM;
3999 
4000     hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4001                                  MV_CRPB_Q_SZ, 0);
4002     if (!hpriv->crpb_pool)
4003         return -ENOMEM;
4004 
4005     hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4006                                  MV_SG_TBL_SZ, 0);
4007     if (!hpriv->sg_tbl_pool)
4008         return -ENOMEM;
4009 
4010     return 0;
4011 }
4012 
4013 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4014                  const struct mbus_dram_target_info *dram)
4015 {
4016     int i;
4017 
4018     for (i = 0; i < 4; i++) {
4019         writel(0, hpriv->base + WINDOW_CTRL(i));
4020         writel(0, hpriv->base + WINDOW_BASE(i));
4021     }
4022 
4023     for (i = 0; i < dram->num_cs; i++) {
4024         const struct mbus_dram_window *cs = dram->cs + i;
4025 
4026         writel(((cs->size - 1) & 0xffff0000) |
4027             (cs->mbus_attr << 8) |
4028             (dram->mbus_dram_target_id << 4) | 1,
4029             hpriv->base + WINDOW_CTRL(i));
4030         writel(cs->base, hpriv->base + WINDOW_BASE(i));
4031     }
4032 }
4033 
4034 /**
4035  *      mv_platform_probe - handle a positive probe of an soc Marvell
4036  *      host
4037  *      @pdev: platform device found
4038  *
4039  *      LOCKING:
4040  *      Inherited from caller.
4041  */
4042 static int mv_platform_probe(struct platform_device *pdev)
4043 {
4044     const struct mv_sata_platform_data *mv_platform_data;
4045     const struct mbus_dram_target_info *dram;
4046     const struct ata_port_info *ppi[] =
4047         { &mv_port_info[chip_soc], NULL };
4048     struct ata_host *host;
4049     struct mv_host_priv *hpriv;
4050     struct resource *res;
4051     int n_ports = 0, irq = 0;
4052     int rc;
4053     int port;
4054 
4055     ata_print_version_once(&pdev->dev, DRV_VERSION);
4056 
4057     /*
4058      * Simple resource validation ..
4059      */
4060     if (unlikely(pdev->num_resources != 1)) {
4061         dev_err(&pdev->dev, "invalid number of resources\n");
4062         return -EINVAL;
4063     }
4064 
4065     /*
4066      * Get the register base first
4067      */
4068     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4069     if (res == NULL)
4070         return -EINVAL;
4071 
4072     /* allocate host */
4073     if (pdev->dev.of_node) {
4074         rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4075                        &n_ports);
4076         if (rc) {
4077             dev_err(&pdev->dev,
4078                 "error parsing nr-ports property: %d\n", rc);
4079             return rc;
4080         }
4081 
4082         if (n_ports <= 0) {
4083             dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4084                 n_ports);
4085             return -EINVAL;
4086         }
4087 
4088         irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4089     } else {
4090         mv_platform_data = dev_get_platdata(&pdev->dev);
4091         n_ports = mv_platform_data->n_ports;
4092         irq = platform_get_irq(pdev, 0);
4093     }
4094     if (irq < 0)
4095         return irq;
4096     if (!irq)
4097         return -EINVAL;
4098 
4099     host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4100     hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4101 
4102     if (!host || !hpriv)
4103         return -ENOMEM;
4104     hpriv->port_clks = devm_kcalloc(&pdev->dev,
4105                     n_ports, sizeof(struct clk *),
4106                     GFP_KERNEL);
4107     if (!hpriv->port_clks)
4108         return -ENOMEM;
4109     hpriv->port_phys = devm_kcalloc(&pdev->dev,
4110                     n_ports, sizeof(struct phy *),
4111                     GFP_KERNEL);
4112     if (!hpriv->port_phys)
4113         return -ENOMEM;
4114     host->private_data = hpriv;
4115     hpriv->board_idx = chip_soc;
4116 
4117     host->iomap = NULL;
4118     hpriv->base = devm_ioremap(&pdev->dev, res->start,
4119                    resource_size(res));
4120     if (!hpriv->base)
4121         return -ENOMEM;
4122 
4123     hpriv->base -= SATAHC0_REG_BASE;
4124 
4125     hpriv->clk = clk_get(&pdev->dev, NULL);
4126     if (IS_ERR(hpriv->clk))
4127         dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4128     else
4129         clk_prepare_enable(hpriv->clk);
4130 
4131     for (port = 0; port < n_ports; port++) {
4132         char port_number[16];
4133         sprintf(port_number, "%d", port);
4134         hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4135         if (!IS_ERR(hpriv->port_clks[port]))
4136             clk_prepare_enable(hpriv->port_clks[port]);
4137 
4138         sprintf(port_number, "port%d", port);
4139         hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4140                                    port_number);
4141         if (IS_ERR(hpriv->port_phys[port])) {
4142             rc = PTR_ERR(hpriv->port_phys[port]);
4143             hpriv->port_phys[port] = NULL;
4144             if (rc != -EPROBE_DEFER)
4145                 dev_warn(&pdev->dev, "error getting phy %d", rc);
4146 
4147             /* Cleanup only the initialized ports */
4148             hpriv->n_ports = port;
4149             goto err;
4150         } else
4151             phy_power_on(hpriv->port_phys[port]);
4152     }
4153 
4154     /* All the ports have been initialized */
4155     hpriv->n_ports = n_ports;
4156 
4157     /*
4158      * (Re-)program MBUS remapping windows if we are asked to.
4159      */
4160     dram = mv_mbus_dram_info();
4161     if (dram)
4162         mv_conf_mbus_windows(hpriv, dram);
4163 
4164     rc = mv_create_dma_pools(hpriv, &pdev->dev);
4165     if (rc)
4166         goto err;
4167 
4168     /*
4169      * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4170      * updated in the LP_PHY_CTL register.
4171      */
4172     if (pdev->dev.of_node &&
4173         of_device_is_compatible(pdev->dev.of_node,
4174                     "marvell,armada-370-sata"))
4175         hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4176 
4177     /* initialize adapter */
4178     rc = mv_init_host(host);
4179     if (rc)
4180         goto err;
4181 
4182     dev_info(&pdev->dev, "slots %u ports %d\n",
4183          (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4184 
4185     rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4186     if (!rc)
4187         return 0;
4188 
4189 err:
4190     if (!IS_ERR(hpriv->clk)) {
4191         clk_disable_unprepare(hpriv->clk);
4192         clk_put(hpriv->clk);
4193     }
4194     for (port = 0; port < hpriv->n_ports; port++) {
4195         if (!IS_ERR(hpriv->port_clks[port])) {
4196             clk_disable_unprepare(hpriv->port_clks[port]);
4197             clk_put(hpriv->port_clks[port]);
4198         }
4199         phy_power_off(hpriv->port_phys[port]);
4200     }
4201 
4202     return rc;
4203 }
4204 
4205 /*
4206  *
4207  *      mv_platform_remove    -       unplug a platform interface
4208  *      @pdev: platform device
4209  *
4210  *      A platform bus SATA device has been unplugged. Perform the needed
4211  *      cleanup. Also called on module unload for any active devices.
4212  */
4213 static int mv_platform_remove(struct platform_device *pdev)
4214 {
4215     struct ata_host *host = platform_get_drvdata(pdev);
4216     struct mv_host_priv *hpriv = host->private_data;
4217     int port;
4218     ata_host_detach(host);
4219 
4220     if (!IS_ERR(hpriv->clk)) {
4221         clk_disable_unprepare(hpriv->clk);
4222         clk_put(hpriv->clk);
4223     }
4224     for (port = 0; port < host->n_ports; port++) {
4225         if (!IS_ERR(hpriv->port_clks[port])) {
4226             clk_disable_unprepare(hpriv->port_clks[port]);
4227             clk_put(hpriv->port_clks[port]);
4228         }
4229         phy_power_off(hpriv->port_phys[port]);
4230     }
4231     return 0;
4232 }
4233 
4234 #ifdef CONFIG_PM_SLEEP
4235 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4236 {
4237     struct ata_host *host = platform_get_drvdata(pdev);
4238 
4239     if (host)
4240         ata_host_suspend(host, state);
4241     return 0;
4242 }
4243 
4244 static int mv_platform_resume(struct platform_device *pdev)
4245 {
4246     struct ata_host *host = platform_get_drvdata(pdev);
4247     const struct mbus_dram_target_info *dram;
4248     int ret;
4249 
4250     if (host) {
4251         struct mv_host_priv *hpriv = host->private_data;
4252 
4253         /*
4254          * (Re-)program MBUS remapping windows if we are asked to.
4255          */
4256         dram = mv_mbus_dram_info();
4257         if (dram)
4258             mv_conf_mbus_windows(hpriv, dram);
4259 
4260         /* initialize adapter */
4261         ret = mv_init_host(host);
4262         if (ret) {
4263             dev_err(&pdev->dev, "Error during HW init\n");
4264             return ret;
4265         }
4266         ata_host_resume(host);
4267     }
4268 
4269     return 0;
4270 }
4271 #else
4272 #define mv_platform_suspend NULL
4273 #define mv_platform_resume NULL
4274 #endif
4275 
4276 #ifdef CONFIG_OF
4277 static const struct of_device_id mv_sata_dt_ids[] = {
4278     { .compatible = "marvell,armada-370-sata", },
4279     { .compatible = "marvell,orion-sata", },
4280     { /* sentinel */ }
4281 };
4282 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4283 #endif
4284 
4285 static struct platform_driver mv_platform_driver = {
4286     .probe      = mv_platform_probe,
4287     .remove     = mv_platform_remove,
4288     .suspend    = mv_platform_suspend,
4289     .resume     = mv_platform_resume,
4290     .driver     = {
4291         .name = DRV_NAME,
4292         .of_match_table = of_match_ptr(mv_sata_dt_ids),
4293     },
4294 };
4295 
4296 
4297 #ifdef CONFIG_PCI
4298 static int mv_pci_init_one(struct pci_dev *pdev,
4299                const struct pci_device_id *ent);
4300 #ifdef CONFIG_PM_SLEEP
4301 static int mv_pci_device_resume(struct pci_dev *pdev);
4302 #endif
4303 
4304 
4305 static struct pci_driver mv_pci_driver = {
4306     .name           = DRV_NAME,
4307     .id_table       = mv_pci_tbl,
4308     .probe          = mv_pci_init_one,
4309     .remove         = ata_pci_remove_one,
4310 #ifdef CONFIG_PM_SLEEP
4311     .suspend        = ata_pci_device_suspend,
4312     .resume         = mv_pci_device_resume,
4313 #endif
4314 
4315 };
4316 
4317 /**
4318  *      mv_print_info - Dump key info to kernel log for perusal.
4319  *      @host: ATA host to print info about
4320  *
4321  *      FIXME: complete this.
4322  *
4323  *      LOCKING:
4324  *      Inherited from caller.
4325  */
4326 static void mv_print_info(struct ata_host *host)
4327 {
4328     struct pci_dev *pdev = to_pci_dev(host->dev);
4329     struct mv_host_priv *hpriv = host->private_data;
4330     u8 scc;
4331     const char *scc_s, *gen;
4332 
4333     /* Use this to determine the HW stepping of the chip so we know
4334      * what errata to workaround
4335      */
4336     pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4337     if (scc == 0)
4338         scc_s = "SCSI";
4339     else if (scc == 0x01)
4340         scc_s = "RAID";
4341     else
4342         scc_s = "?";
4343 
4344     if (IS_GEN_I(hpriv))
4345         gen = "I";
4346     else if (IS_GEN_II(hpriv))
4347         gen = "II";
4348     else if (IS_GEN_IIE(hpriv))
4349         gen = "IIE";
4350     else
4351         gen = "?";
4352 
4353     dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4354          gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4355          scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4356 }
4357 
4358 /**
4359  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4360  *      @pdev: PCI device found
4361  *      @ent: PCI device ID entry for the matched host
4362  *
4363  *      LOCKING:
4364  *      Inherited from caller.
4365  */
4366 static int mv_pci_init_one(struct pci_dev *pdev,
4367                const struct pci_device_id *ent)
4368 {
4369     unsigned int board_idx = (unsigned int)ent->driver_data;
4370     const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4371     struct ata_host *host;
4372     struct mv_host_priv *hpriv;
4373     int n_ports, port, rc;
4374 
4375     ata_print_version_once(&pdev->dev, DRV_VERSION);
4376 
4377     /* allocate host */
4378     n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4379 
4380     host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4381     hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4382     if (!host || !hpriv)
4383         return -ENOMEM;
4384     host->private_data = hpriv;
4385     hpriv->n_ports = n_ports;
4386     hpriv->board_idx = board_idx;
4387 
4388     /* acquire resources */
4389     rc = pcim_enable_device(pdev);
4390     if (rc)
4391         return rc;
4392 
4393     rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4394     if (rc == -EBUSY)
4395         pcim_pin_device(pdev);
4396     if (rc)
4397         return rc;
4398     host->iomap = pcim_iomap_table(pdev);
4399     hpriv->base = host->iomap[MV_PRIMARY_BAR];
4400 
4401     rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4402     if (rc) {
4403         dev_err(&pdev->dev, "DMA enable failed\n");
4404         return rc;
4405     }
4406 
4407     rc = mv_create_dma_pools(hpriv, &pdev->dev);
4408     if (rc)
4409         return rc;
4410 
4411     for (port = 0; port < host->n_ports; port++) {
4412         struct ata_port *ap = host->ports[port];
4413         void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4414         unsigned int offset = port_mmio - hpriv->base;
4415 
4416         ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4417         ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4418     }
4419 
4420     /* initialize adapter */
4421     rc = mv_init_host(host);
4422     if (rc)
4423         return rc;
4424 
4425     /* Enable message-switched interrupts, if requested */
4426     if (msi && pci_enable_msi(pdev) == 0)
4427         hpriv->hp_flags |= MV_HP_FLAG_MSI;
4428 
4429     mv_dump_pci_cfg(pdev, 0x68);
4430     mv_print_info(host);
4431 
4432     pci_set_master(pdev);
4433     pci_try_set_mwi(pdev);
4434     return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4435                  IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4436 }
4437 
4438 #ifdef CONFIG_PM_SLEEP
4439 static int mv_pci_device_resume(struct pci_dev *pdev)
4440 {
4441     struct ata_host *host = pci_get_drvdata(pdev);
4442     int rc;
4443 
4444     rc = ata_pci_device_do_resume(pdev);
4445     if (rc)
4446         return rc;
4447 
4448     /* initialize adapter */
4449     rc = mv_init_host(host);
4450     if (rc)
4451         return rc;
4452 
4453     ata_host_resume(host);
4454 
4455     return 0;
4456 }
4457 #endif
4458 #endif
4459 
4460 static int __init mv_init(void)
4461 {
4462     int rc = -ENODEV;
4463 #ifdef CONFIG_PCI
4464     rc = pci_register_driver(&mv_pci_driver);
4465     if (rc < 0)
4466         return rc;
4467 #endif
4468     rc = platform_driver_register(&mv_platform_driver);
4469 
4470 #ifdef CONFIG_PCI
4471     if (rc < 0)
4472         pci_unregister_driver(&mv_pci_driver);
4473 #endif
4474     return rc;
4475 }
4476 
4477 static void __exit mv_exit(void)
4478 {
4479 #ifdef CONFIG_PCI
4480     pci_unregister_driver(&mv_pci_driver);
4481 #endif
4482     platform_driver_unregister(&mv_platform_driver);
4483 }
4484 
4485 MODULE_AUTHOR("Brett Russ");
4486 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4487 MODULE_LICENSE("GPL v2");
4488 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4489 MODULE_VERSION(DRV_VERSION);
4490 MODULE_ALIAS("platform:" DRV_NAME);
4491 
4492 module_init(mv_init);
4493 module_exit(mv_exit);