Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *  libata-sff.c - helper library for PCI IDE BMDMA
0004  *
0005  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
0006  *  Copyright 2003-2006 Jeff Garzik
0007  *
0008  *  libata documentation is available via 'make {ps|pdf}docs',
0009  *  as Documentation/driver-api/libata.rst
0010  *
0011  *  Hardware documentation available from http://www.t13.org/ and
0012  *  http://www.sata-io.org/
0013  */
0014 
0015 #include <linux/kernel.h>
0016 #include <linux/gfp.h>
0017 #include <linux/pci.h>
0018 #include <linux/module.h>
0019 #include <linux/libata.h>
0020 #include <linux/highmem.h>
0021 #include <trace/events/libata.h>
0022 #include "libata.h"
0023 
0024 static struct workqueue_struct *ata_sff_wq;
0025 
0026 const struct ata_port_operations ata_sff_port_ops = {
0027     .inherits       = &ata_base_port_ops,
0028 
0029     .qc_prep        = ata_noop_qc_prep,
0030     .qc_issue       = ata_sff_qc_issue,
0031     .qc_fill_rtf        = ata_sff_qc_fill_rtf,
0032 
0033     .freeze         = ata_sff_freeze,
0034     .thaw           = ata_sff_thaw,
0035     .prereset       = ata_sff_prereset,
0036     .softreset      = ata_sff_softreset,
0037     .hardreset      = sata_sff_hardreset,
0038     .postreset      = ata_sff_postreset,
0039     .error_handler      = ata_sff_error_handler,
0040 
0041     .sff_dev_select     = ata_sff_dev_select,
0042     .sff_check_status   = ata_sff_check_status,
0043     .sff_tf_load        = ata_sff_tf_load,
0044     .sff_tf_read        = ata_sff_tf_read,
0045     .sff_exec_command   = ata_sff_exec_command,
0046     .sff_data_xfer      = ata_sff_data_xfer,
0047     .sff_drain_fifo     = ata_sff_drain_fifo,
0048 
0049     .lost_interrupt     = ata_sff_lost_interrupt,
0050 };
0051 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
0052 
0053 /**
0054  *  ata_sff_check_status - Read device status reg & clear interrupt
0055  *  @ap: port where the device is
0056  *
0057  *  Reads ATA taskfile status register for currently-selected device
0058  *  and return its value. This also clears pending interrupts
0059  *      from this device
0060  *
0061  *  LOCKING:
0062  *  Inherited from caller.
0063  */
0064 u8 ata_sff_check_status(struct ata_port *ap)
0065 {
0066     return ioread8(ap->ioaddr.status_addr);
0067 }
0068 EXPORT_SYMBOL_GPL(ata_sff_check_status);
0069 
0070 /**
0071  *  ata_sff_altstatus - Read device alternate status reg
0072  *  @ap: port where the device is
0073  *  @status: pointer to a status value
0074  *
0075  *  Reads ATA alternate status register for currently-selected device
0076  *  and return its value.
0077  *
0078  *  RETURN:
0079  *  true if the register exists, false if not.
0080  *
0081  *  LOCKING:
0082  *  Inherited from caller.
0083  */
0084 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
0085 {
0086     u8 tmp;
0087 
0088     if (ap->ops->sff_check_altstatus) {
0089         tmp = ap->ops->sff_check_altstatus(ap);
0090         goto read;
0091     }
0092     if (ap->ioaddr.altstatus_addr) {
0093         tmp = ioread8(ap->ioaddr.altstatus_addr);
0094         goto read;
0095     }
0096     return false;
0097 
0098 read:
0099     if (status)
0100         *status = tmp;
0101     return true;
0102 }
0103 
0104 /**
0105  *  ata_sff_irq_status - Check if the device is busy
0106  *  @ap: port where the device is
0107  *
0108  *  Determine if the port is currently busy. Uses altstatus
0109  *  if available in order to avoid clearing shared IRQ status
0110  *  when finding an IRQ source. Non ctl capable devices don't
0111  *  share interrupt lines fortunately for us.
0112  *
0113  *  LOCKING:
0114  *  Inherited from caller.
0115  */
0116 static u8 ata_sff_irq_status(struct ata_port *ap)
0117 {
0118     u8 status;
0119 
0120     /* Not us: We are busy */
0121     if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
0122         return status;
0123     /* Clear INTRQ latch */
0124     status = ap->ops->sff_check_status(ap);
0125     return status;
0126 }
0127 
0128 /**
0129  *  ata_sff_sync - Flush writes
0130  *  @ap: Port to wait for.
0131  *
0132  *  CAUTION:
0133  *  If we have an mmio device with no ctl and no altstatus
0134  *  method this will fail. No such devices are known to exist.
0135  *
0136  *  LOCKING:
0137  *  Inherited from caller.
0138  */
0139 
0140 static void ata_sff_sync(struct ata_port *ap)
0141 {
0142     ata_sff_altstatus(ap, NULL);
0143 }
0144 
0145 /**
0146  *  ata_sff_pause       -   Flush writes and wait 400nS
0147  *  @ap: Port to pause for.
0148  *
0149  *  CAUTION:
0150  *  If we have an mmio device with no ctl and no altstatus
0151  *  method this will fail. No such devices are known to exist.
0152  *
0153  *  LOCKING:
0154  *  Inherited from caller.
0155  */
0156 
0157 void ata_sff_pause(struct ata_port *ap)
0158 {
0159     ata_sff_sync(ap);
0160     ndelay(400);
0161 }
0162 EXPORT_SYMBOL_GPL(ata_sff_pause);
0163 
0164 /**
0165  *  ata_sff_dma_pause   -   Pause before commencing DMA
0166  *  @ap: Port to pause for.
0167  *
0168  *  Perform I/O fencing and ensure sufficient cycle delays occur
0169  *  for the HDMA1:0 transition
0170  */
0171 
0172 void ata_sff_dma_pause(struct ata_port *ap)
0173 {
0174     /*
0175      * An altstatus read will cause the needed delay without
0176      * messing up the IRQ status
0177      */
0178     if (ata_sff_altstatus(ap, NULL))
0179         return;
0180     /* There are no DMA controllers without ctl. BUG here to ensure
0181        we never violate the HDMA1:0 transition timing and risk
0182        corruption. */
0183     BUG();
0184 }
0185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
0186 
0187 /**
0188  *  ata_sff_busy_sleep - sleep until BSY clears, or timeout
0189  *  @ap: port containing status register to be polled
0190  *  @tmout_pat: impatience timeout in msecs
0191  *  @tmout: overall timeout in msecs
0192  *
0193  *  Sleep until ATA Status register bit BSY clears,
0194  *  or a timeout occurs.
0195  *
0196  *  LOCKING:
0197  *  Kernel thread context (may sleep).
0198  *
0199  *  RETURNS:
0200  *  0 on success, -errno otherwise.
0201  */
0202 int ata_sff_busy_sleep(struct ata_port *ap,
0203                unsigned long tmout_pat, unsigned long tmout)
0204 {
0205     unsigned long timer_start, timeout;
0206     u8 status;
0207 
0208     status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
0209     timer_start = jiffies;
0210     timeout = ata_deadline(timer_start, tmout_pat);
0211     while (status != 0xff && (status & ATA_BUSY) &&
0212            time_before(jiffies, timeout)) {
0213         ata_msleep(ap, 50);
0214         status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
0215     }
0216 
0217     if (status != 0xff && (status & ATA_BUSY))
0218         ata_port_warn(ap,
0219                   "port is slow to respond, please be patient (Status 0x%x)\n",
0220                   status);
0221 
0222     timeout = ata_deadline(timer_start, tmout);
0223     while (status != 0xff && (status & ATA_BUSY) &&
0224            time_before(jiffies, timeout)) {
0225         ata_msleep(ap, 50);
0226         status = ap->ops->sff_check_status(ap);
0227     }
0228 
0229     if (status == 0xff)
0230         return -ENODEV;
0231 
0232     if (status & ATA_BUSY) {
0233         ata_port_err(ap,
0234                  "port failed to respond (%lu secs, Status 0x%x)\n",
0235                  DIV_ROUND_UP(tmout, 1000), status);
0236         return -EBUSY;
0237     }
0238 
0239     return 0;
0240 }
0241 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
0242 
0243 static int ata_sff_check_ready(struct ata_link *link)
0244 {
0245     u8 status = link->ap->ops->sff_check_status(link->ap);
0246 
0247     return ata_check_ready(status);
0248 }
0249 
0250 /**
0251  *  ata_sff_wait_ready - sleep until BSY clears, or timeout
0252  *  @link: SFF link to wait ready status for
0253  *  @deadline: deadline jiffies for the operation
0254  *
0255  *  Sleep until ATA Status register bit BSY clears, or timeout
0256  *  occurs.
0257  *
0258  *  LOCKING:
0259  *  Kernel thread context (may sleep).
0260  *
0261  *  RETURNS:
0262  *  0 on success, -errno otherwise.
0263  */
0264 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
0265 {
0266     return ata_wait_ready(link, deadline, ata_sff_check_ready);
0267 }
0268 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
0269 
0270 /**
0271  *  ata_sff_set_devctl - Write device control reg
0272  *  @ap: port where the device is
0273  *  @ctl: value to write
0274  *
0275  *  Writes ATA device control register.
0276  *
0277  *  RETURN:
0278  *  true if the register exists, false if not.
0279  *
0280  *  LOCKING:
0281  *  Inherited from caller.
0282  */
0283 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
0284 {
0285     if (ap->ops->sff_set_devctl) {
0286         ap->ops->sff_set_devctl(ap, ctl);
0287         return true;
0288     }
0289     if (ap->ioaddr.ctl_addr) {
0290         iowrite8(ctl, ap->ioaddr.ctl_addr);
0291         return true;
0292     }
0293 
0294     return false;
0295 }
0296 
0297 /**
0298  *  ata_sff_dev_select - Select device 0/1 on ATA bus
0299  *  @ap: ATA channel to manipulate
0300  *  @device: ATA device (numbered from zero) to select
0301  *
0302  *  Use the method defined in the ATA specification to
0303  *  make either device 0, or device 1, active on the
0304  *  ATA channel.  Works with both PIO and MMIO.
0305  *
0306  *  May be used as the dev_select() entry in ata_port_operations.
0307  *
0308  *  LOCKING:
0309  *  caller.
0310  */
0311 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
0312 {
0313     u8 tmp;
0314 
0315     if (device == 0)
0316         tmp = ATA_DEVICE_OBS;
0317     else
0318         tmp = ATA_DEVICE_OBS | ATA_DEV1;
0319 
0320     iowrite8(tmp, ap->ioaddr.device_addr);
0321     ata_sff_pause(ap);  /* needed; also flushes, for mmio */
0322 }
0323 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
0324 
0325 /**
0326  *  ata_dev_select - Select device 0/1 on ATA bus
0327  *  @ap: ATA channel to manipulate
0328  *  @device: ATA device (numbered from zero) to select
0329  *  @wait: non-zero to wait for Status register BSY bit to clear
0330  *  @can_sleep: non-zero if context allows sleeping
0331  *
0332  *  Use the method defined in the ATA specification to
0333  *  make either device 0, or device 1, active on the
0334  *  ATA channel.
0335  *
0336  *  This is a high-level version of ata_sff_dev_select(), which
0337  *  additionally provides the services of inserting the proper
0338  *  pauses and status polling, where needed.
0339  *
0340  *  LOCKING:
0341  *  caller.
0342  */
0343 static void ata_dev_select(struct ata_port *ap, unsigned int device,
0344                unsigned int wait, unsigned int can_sleep)
0345 {
0346     if (wait)
0347         ata_wait_idle(ap);
0348 
0349     ap->ops->sff_dev_select(ap, device);
0350 
0351     if (wait) {
0352         if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
0353             ata_msleep(ap, 150);
0354         ata_wait_idle(ap);
0355     }
0356 }
0357 
0358 /**
0359  *  ata_sff_irq_on - Enable interrupts on a port.
0360  *  @ap: Port on which interrupts are enabled.
0361  *
0362  *  Enable interrupts on a legacy IDE device using MMIO or PIO,
0363  *  wait for idle, clear any pending interrupts.
0364  *
0365  *  Note: may NOT be used as the sff_irq_on() entry in
0366  *  ata_port_operations.
0367  *
0368  *  LOCKING:
0369  *  Inherited from caller.
0370  */
0371 void ata_sff_irq_on(struct ata_port *ap)
0372 {
0373     if (ap->ops->sff_irq_on) {
0374         ap->ops->sff_irq_on(ap);
0375         return;
0376     }
0377 
0378     ap->ctl &= ~ATA_NIEN;
0379     ap->last_ctl = ap->ctl;
0380 
0381     ata_sff_set_devctl(ap, ap->ctl);
0382     ata_wait_idle(ap);
0383 
0384     if (ap->ops->sff_irq_clear)
0385         ap->ops->sff_irq_clear(ap);
0386 }
0387 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
0388 
0389 /**
0390  *  ata_sff_tf_load - send taskfile registers to host controller
0391  *  @ap: Port to which output is sent
0392  *  @tf: ATA taskfile register set
0393  *
0394  *  Outputs ATA taskfile to standard ATA host controller.
0395  *
0396  *  LOCKING:
0397  *  Inherited from caller.
0398  */
0399 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
0400 {
0401     struct ata_ioports *ioaddr = &ap->ioaddr;
0402     unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
0403 
0404     if (tf->ctl != ap->last_ctl) {
0405         if (ioaddr->ctl_addr)
0406             iowrite8(tf->ctl, ioaddr->ctl_addr);
0407         ap->last_ctl = tf->ctl;
0408         ata_wait_idle(ap);
0409     }
0410 
0411     if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
0412         WARN_ON_ONCE(!ioaddr->ctl_addr);
0413         iowrite8(tf->hob_feature, ioaddr->feature_addr);
0414         iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
0415         iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
0416         iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
0417         iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
0418     }
0419 
0420     if (is_addr) {
0421         iowrite8(tf->feature, ioaddr->feature_addr);
0422         iowrite8(tf->nsect, ioaddr->nsect_addr);
0423         iowrite8(tf->lbal, ioaddr->lbal_addr);
0424         iowrite8(tf->lbam, ioaddr->lbam_addr);
0425         iowrite8(tf->lbah, ioaddr->lbah_addr);
0426     }
0427 
0428     if (tf->flags & ATA_TFLAG_DEVICE)
0429         iowrite8(tf->device, ioaddr->device_addr);
0430 
0431     ata_wait_idle(ap);
0432 }
0433 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
0434 
0435 /**
0436  *  ata_sff_tf_read - input device's ATA taskfile shadow registers
0437  *  @ap: Port from which input is read
0438  *  @tf: ATA taskfile register set for storing input
0439  *
0440  *  Reads ATA taskfile registers for currently-selected device
0441  *  into @tf. Assumes the device has a fully SFF compliant task file
0442  *  layout and behaviour. If you device does not (eg has a different
0443  *  status method) then you will need to provide a replacement tf_read
0444  *
0445  *  LOCKING:
0446  *  Inherited from caller.
0447  */
0448 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
0449 {
0450     struct ata_ioports *ioaddr = &ap->ioaddr;
0451 
0452     tf->status = ata_sff_check_status(ap);
0453     tf->error = ioread8(ioaddr->error_addr);
0454     tf->nsect = ioread8(ioaddr->nsect_addr);
0455     tf->lbal = ioread8(ioaddr->lbal_addr);
0456     tf->lbam = ioread8(ioaddr->lbam_addr);
0457     tf->lbah = ioread8(ioaddr->lbah_addr);
0458     tf->device = ioread8(ioaddr->device_addr);
0459 
0460     if (tf->flags & ATA_TFLAG_LBA48) {
0461         if (likely(ioaddr->ctl_addr)) {
0462             iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
0463             tf->hob_feature = ioread8(ioaddr->error_addr);
0464             tf->hob_nsect = ioread8(ioaddr->nsect_addr);
0465             tf->hob_lbal = ioread8(ioaddr->lbal_addr);
0466             tf->hob_lbam = ioread8(ioaddr->lbam_addr);
0467             tf->hob_lbah = ioread8(ioaddr->lbah_addr);
0468             iowrite8(tf->ctl, ioaddr->ctl_addr);
0469             ap->last_ctl = tf->ctl;
0470         } else
0471             WARN_ON_ONCE(1);
0472     }
0473 }
0474 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
0475 
0476 /**
0477  *  ata_sff_exec_command - issue ATA command to host controller
0478  *  @ap: port to which command is being issued
0479  *  @tf: ATA taskfile register set
0480  *
0481  *  Issues ATA command, with proper synchronization with interrupt
0482  *  handler / other threads.
0483  *
0484  *  LOCKING:
0485  *  spin_lock_irqsave(host lock)
0486  */
0487 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
0488 {
0489     iowrite8(tf->command, ap->ioaddr.command_addr);
0490     ata_sff_pause(ap);
0491 }
0492 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
0493 
0494 /**
0495  *  ata_tf_to_host - issue ATA taskfile to host controller
0496  *  @ap: port to which command is being issued
0497  *  @tf: ATA taskfile register set
0498  *  @tag: tag of the associated command
0499  *
0500  *  Issues ATA taskfile register set to ATA host controller,
0501  *  with proper synchronization with interrupt handler and
0502  *  other threads.
0503  *
0504  *  LOCKING:
0505  *  spin_lock_irqsave(host lock)
0506  */
0507 static inline void ata_tf_to_host(struct ata_port *ap,
0508                   const struct ata_taskfile *tf,
0509                   unsigned int tag)
0510 {
0511     trace_ata_tf_load(ap, tf);
0512     ap->ops->sff_tf_load(ap, tf);
0513     trace_ata_exec_command(ap, tf, tag);
0514     ap->ops->sff_exec_command(ap, tf);
0515 }
0516 
0517 /**
0518  *  ata_sff_data_xfer - Transfer data by PIO
0519  *  @qc: queued command
0520  *  @buf: data buffer
0521  *  @buflen: buffer length
0522  *  @rw: read/write
0523  *
0524  *  Transfer data from/to the device data register by PIO.
0525  *
0526  *  LOCKING:
0527  *  Inherited from caller.
0528  *
0529  *  RETURNS:
0530  *  Bytes consumed.
0531  */
0532 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
0533                    unsigned int buflen, int rw)
0534 {
0535     struct ata_port *ap = qc->dev->link->ap;
0536     void __iomem *data_addr = ap->ioaddr.data_addr;
0537     unsigned int words = buflen >> 1;
0538 
0539     /* Transfer multiple of 2 bytes */
0540     if (rw == READ)
0541         ioread16_rep(data_addr, buf, words);
0542     else
0543         iowrite16_rep(data_addr, buf, words);
0544 
0545     /* Transfer trailing byte, if any. */
0546     if (unlikely(buflen & 0x01)) {
0547         unsigned char pad[2] = { };
0548 
0549         /* Point buf to the tail of buffer */
0550         buf += buflen - 1;
0551 
0552         /*
0553          * Use io*16_rep() accessors here as well to avoid pointlessly
0554          * swapping bytes to and from on the big endian machines...
0555          */
0556         if (rw == READ) {
0557             ioread16_rep(data_addr, pad, 1);
0558             *buf = pad[0];
0559         } else {
0560             pad[0] = *buf;
0561             iowrite16_rep(data_addr, pad, 1);
0562         }
0563         words++;
0564     }
0565 
0566     return words << 1;
0567 }
0568 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
0569 
0570 /**
0571  *  ata_sff_data_xfer32 - Transfer data by PIO
0572  *  @qc: queued command
0573  *  @buf: data buffer
0574  *  @buflen: buffer length
0575  *  @rw: read/write
0576  *
0577  *  Transfer data from/to the device data register by PIO using 32bit
0578  *  I/O operations.
0579  *
0580  *  LOCKING:
0581  *  Inherited from caller.
0582  *
0583  *  RETURNS:
0584  *  Bytes consumed.
0585  */
0586 
0587 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
0588                    unsigned int buflen, int rw)
0589 {
0590     struct ata_device *dev = qc->dev;
0591     struct ata_port *ap = dev->link->ap;
0592     void __iomem *data_addr = ap->ioaddr.data_addr;
0593     unsigned int words = buflen >> 2;
0594     int slop = buflen & 3;
0595 
0596     if (!(ap->pflags & ATA_PFLAG_PIO32))
0597         return ata_sff_data_xfer(qc, buf, buflen, rw);
0598 
0599     /* Transfer multiple of 4 bytes */
0600     if (rw == READ)
0601         ioread32_rep(data_addr, buf, words);
0602     else
0603         iowrite32_rep(data_addr, buf, words);
0604 
0605     /* Transfer trailing bytes, if any */
0606     if (unlikely(slop)) {
0607         unsigned char pad[4] = { };
0608 
0609         /* Point buf to the tail of buffer */
0610         buf += buflen - slop;
0611 
0612         /*
0613          * Use io*_rep() accessors here as well to avoid pointlessly
0614          * swapping bytes to and from on the big endian machines...
0615          */
0616         if (rw == READ) {
0617             if (slop < 3)
0618                 ioread16_rep(data_addr, pad, 1);
0619             else
0620                 ioread32_rep(data_addr, pad, 1);
0621             memcpy(buf, pad, slop);
0622         } else {
0623             memcpy(pad, buf, slop);
0624             if (slop < 3)
0625                 iowrite16_rep(data_addr, pad, 1);
0626             else
0627                 iowrite32_rep(data_addr, pad, 1);
0628         }
0629     }
0630     return (buflen + 1) & ~1;
0631 }
0632 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
0633 
0634 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
0635         unsigned int offset, size_t xfer_size)
0636 {
0637     bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
0638     unsigned char *buf;
0639 
0640     buf = kmap_atomic(page);
0641     qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
0642     kunmap_atomic(buf);
0643 
0644     if (!do_write && !PageSlab(page))
0645         flush_dcache_page(page);
0646 }
0647 
0648 /**
0649  *  ata_pio_sector - Transfer a sector of data.
0650  *  @qc: Command on going
0651  *
0652  *  Transfer qc->sect_size bytes of data from/to the ATA device.
0653  *
0654  *  LOCKING:
0655  *  Inherited from caller.
0656  */
0657 static void ata_pio_sector(struct ata_queued_cmd *qc)
0658 {
0659     struct ata_port *ap = qc->ap;
0660     struct page *page;
0661     unsigned int offset;
0662 
0663     if (!qc->cursg) {
0664         qc->curbytes = qc->nbytes;
0665         return;
0666     }
0667     if (qc->curbytes == qc->nbytes - qc->sect_size)
0668         ap->hsm_task_state = HSM_ST_LAST;
0669 
0670     page = sg_page(qc->cursg);
0671     offset = qc->cursg->offset + qc->cursg_ofs;
0672 
0673     /* get the current page and offset */
0674     page = nth_page(page, (offset >> PAGE_SHIFT));
0675     offset %= PAGE_SIZE;
0676 
0677     trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
0678 
0679     /*
0680      * Split the transfer when it splits a page boundary.  Note that the
0681      * split still has to be dword aligned like all ATA data transfers.
0682      */
0683     WARN_ON_ONCE(offset % 4);
0684     if (offset + qc->sect_size > PAGE_SIZE) {
0685         unsigned int split_len = PAGE_SIZE - offset;
0686 
0687         ata_pio_xfer(qc, page, offset, split_len);
0688         ata_pio_xfer(qc, nth_page(page, 1), 0,
0689                  qc->sect_size - split_len);
0690     } else {
0691         ata_pio_xfer(qc, page, offset, qc->sect_size);
0692     }
0693 
0694     qc->curbytes += qc->sect_size;
0695     qc->cursg_ofs += qc->sect_size;
0696 
0697     if (qc->cursg_ofs == qc->cursg->length) {
0698         qc->cursg = sg_next(qc->cursg);
0699         if (!qc->cursg)
0700             ap->hsm_task_state = HSM_ST_LAST;
0701         qc->cursg_ofs = 0;
0702     }
0703 }
0704 
0705 /**
0706  *  ata_pio_sectors - Transfer one or many sectors.
0707  *  @qc: Command on going
0708  *
0709  *  Transfer one or many sectors of data from/to the
0710  *  ATA device for the DRQ request.
0711  *
0712  *  LOCKING:
0713  *  Inherited from caller.
0714  */
0715 static void ata_pio_sectors(struct ata_queued_cmd *qc)
0716 {
0717     if (is_multi_taskfile(&qc->tf)) {
0718         /* READ/WRITE MULTIPLE */
0719         unsigned int nsect;
0720 
0721         WARN_ON_ONCE(qc->dev->multi_count == 0);
0722 
0723         nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
0724                 qc->dev->multi_count);
0725         while (nsect--)
0726             ata_pio_sector(qc);
0727     } else
0728         ata_pio_sector(qc);
0729 
0730     ata_sff_sync(qc->ap); /* flush */
0731 }
0732 
0733 /**
0734  *  atapi_send_cdb - Write CDB bytes to hardware
0735  *  @ap: Port to which ATAPI device is attached.
0736  *  @qc: Taskfile currently active
0737  *
0738  *  When device has indicated its readiness to accept
0739  *  a CDB, this function is called.  Send the CDB.
0740  *
0741  *  LOCKING:
0742  *  caller.
0743  */
0744 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
0745 {
0746     /* send SCSI cdb */
0747     trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
0748     WARN_ON_ONCE(qc->dev->cdb_len < 12);
0749 
0750     ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
0751     ata_sff_sync(ap);
0752     /* FIXME: If the CDB is for DMA do we need to do the transition delay
0753        or is bmdma_start guaranteed to do it ? */
0754     switch (qc->tf.protocol) {
0755     case ATAPI_PROT_PIO:
0756         ap->hsm_task_state = HSM_ST;
0757         break;
0758     case ATAPI_PROT_NODATA:
0759         ap->hsm_task_state = HSM_ST_LAST;
0760         break;
0761 #ifdef CONFIG_ATA_BMDMA
0762     case ATAPI_PROT_DMA:
0763         ap->hsm_task_state = HSM_ST_LAST;
0764         /* initiate bmdma */
0765         trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
0766         ap->ops->bmdma_start(qc);
0767         break;
0768 #endif /* CONFIG_ATA_BMDMA */
0769     default:
0770         BUG();
0771     }
0772 }
0773 
0774 /**
0775  *  __atapi_pio_bytes - Transfer data from/to the ATAPI device.
0776  *  @qc: Command on going
0777  *  @bytes: number of bytes
0778  *
0779  *  Transfer Transfer data from/to the ATAPI device.
0780  *
0781  *  LOCKING:
0782  *  Inherited from caller.
0783  *
0784  */
0785 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
0786 {
0787     int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
0788     struct ata_port *ap = qc->ap;
0789     struct ata_device *dev = qc->dev;
0790     struct ata_eh_info *ehi = &dev->link->eh_info;
0791     struct scatterlist *sg;
0792     struct page *page;
0793     unsigned char *buf;
0794     unsigned int offset, count, consumed;
0795 
0796 next_sg:
0797     sg = qc->cursg;
0798     if (unlikely(!sg)) {
0799         ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
0800                   "buf=%u cur=%u bytes=%u",
0801                   qc->nbytes, qc->curbytes, bytes);
0802         return -1;
0803     }
0804 
0805     page = sg_page(sg);
0806     offset = sg->offset + qc->cursg_ofs;
0807 
0808     /* get the current page and offset */
0809     page = nth_page(page, (offset >> PAGE_SHIFT));
0810     offset %= PAGE_SIZE;
0811 
0812     /* don't overrun current sg */
0813     count = min(sg->length - qc->cursg_ofs, bytes);
0814 
0815     /* don't cross page boundaries */
0816     count = min(count, (unsigned int)PAGE_SIZE - offset);
0817 
0818     trace_atapi_pio_transfer_data(qc, offset, count);
0819 
0820     /* do the actual data transfer */
0821     buf = kmap_atomic(page);
0822     consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
0823     kunmap_atomic(buf);
0824 
0825     bytes -= min(bytes, consumed);
0826     qc->curbytes += count;
0827     qc->cursg_ofs += count;
0828 
0829     if (qc->cursg_ofs == sg->length) {
0830         qc->cursg = sg_next(qc->cursg);
0831         qc->cursg_ofs = 0;
0832     }
0833 
0834     /*
0835      * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
0836      * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
0837      * check correctly as it doesn't know if it is the last request being
0838      * made. Somebody should implement a proper sanity check.
0839      */
0840     if (bytes)
0841         goto next_sg;
0842     return 0;
0843 }
0844 
0845 /**
0846  *  atapi_pio_bytes - Transfer data from/to the ATAPI device.
0847  *  @qc: Command on going
0848  *
0849  *  Transfer Transfer data from/to the ATAPI device.
0850  *
0851  *  LOCKING:
0852  *  Inherited from caller.
0853  */
0854 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
0855 {
0856     struct ata_port *ap = qc->ap;
0857     struct ata_device *dev = qc->dev;
0858     struct ata_eh_info *ehi = &dev->link->eh_info;
0859     unsigned int ireason, bc_lo, bc_hi, bytes;
0860     int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
0861 
0862     /* Abuse qc->result_tf for temp storage of intermediate TF
0863      * here to save some kernel stack usage.
0864      * For normal completion, qc->result_tf is not relevant. For
0865      * error, qc->result_tf is later overwritten by ata_qc_complete().
0866      * So, the correctness of qc->result_tf is not affected.
0867      */
0868     ap->ops->sff_tf_read(ap, &qc->result_tf);
0869     ireason = qc->result_tf.nsect;
0870     bc_lo = qc->result_tf.lbam;
0871     bc_hi = qc->result_tf.lbah;
0872     bytes = (bc_hi << 8) | bc_lo;
0873 
0874     /* shall be cleared to zero, indicating xfer of data */
0875     if (unlikely(ireason & ATAPI_COD))
0876         goto atapi_check;
0877 
0878     /* make sure transfer direction matches expected */
0879     i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
0880     if (unlikely(do_write != i_write))
0881         goto atapi_check;
0882 
0883     if (unlikely(!bytes))
0884         goto atapi_check;
0885 
0886     if (unlikely(__atapi_pio_bytes(qc, bytes)))
0887         goto err_out;
0888     ata_sff_sync(ap); /* flush */
0889 
0890     return;
0891 
0892  atapi_check:
0893     ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
0894               ireason, bytes);
0895  err_out:
0896     qc->err_mask |= AC_ERR_HSM;
0897     ap->hsm_task_state = HSM_ST_ERR;
0898 }
0899 
0900 /**
0901  *  ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
0902  *  @ap: the target ata_port
0903  *  @qc: qc on going
0904  *
0905  *  RETURNS:
0906  *  1 if ok in workqueue, 0 otherwise.
0907  */
0908 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
0909                         struct ata_queued_cmd *qc)
0910 {
0911     if (qc->tf.flags & ATA_TFLAG_POLLING)
0912         return 1;
0913 
0914     if (ap->hsm_task_state == HSM_ST_FIRST) {
0915         if (qc->tf.protocol == ATA_PROT_PIO &&
0916            (qc->tf.flags & ATA_TFLAG_WRITE))
0917             return 1;
0918 
0919         if (ata_is_atapi(qc->tf.protocol) &&
0920            !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
0921             return 1;
0922     }
0923 
0924     return 0;
0925 }
0926 
0927 /**
0928  *  ata_hsm_qc_complete - finish a qc running on standard HSM
0929  *  @qc: Command to complete
0930  *  @in_wq: 1 if called from workqueue, 0 otherwise
0931  *
0932  *  Finish @qc which is running on standard HSM.
0933  *
0934  *  LOCKING:
0935  *  If @in_wq is zero, spin_lock_irqsave(host lock).
0936  *  Otherwise, none on entry and grabs host lock.
0937  */
0938 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
0939 {
0940     struct ata_port *ap = qc->ap;
0941 
0942     if (ap->ops->error_handler) {
0943         if (in_wq) {
0944             /* EH might have kicked in while host lock is
0945              * released.
0946              */
0947             qc = ata_qc_from_tag(ap, qc->tag);
0948             if (qc) {
0949                 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
0950                     ata_sff_irq_on(ap);
0951                     ata_qc_complete(qc);
0952                 } else
0953                     ata_port_freeze(ap);
0954             }
0955         } else {
0956             if (likely(!(qc->err_mask & AC_ERR_HSM)))
0957                 ata_qc_complete(qc);
0958             else
0959                 ata_port_freeze(ap);
0960         }
0961     } else {
0962         if (in_wq) {
0963             ata_sff_irq_on(ap);
0964             ata_qc_complete(qc);
0965         } else
0966             ata_qc_complete(qc);
0967     }
0968 }
0969 
0970 /**
0971  *  ata_sff_hsm_move - move the HSM to the next state.
0972  *  @ap: the target ata_port
0973  *  @qc: qc on going
0974  *  @status: current device status
0975  *  @in_wq: 1 if called from workqueue, 0 otherwise
0976  *
0977  *  RETURNS:
0978  *  1 when poll next status needed, 0 otherwise.
0979  */
0980 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
0981              u8 status, int in_wq)
0982 {
0983     struct ata_link *link = qc->dev->link;
0984     struct ata_eh_info *ehi = &link->eh_info;
0985     int poll_next;
0986 
0987     lockdep_assert_held(ap->lock);
0988 
0989     WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
0990 
0991     /* Make sure ata_sff_qc_issue() does not throw things
0992      * like DMA polling into the workqueue. Notice that
0993      * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
0994      */
0995     WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
0996 
0997 fsm_start:
0998     trace_ata_sff_hsm_state(qc, status);
0999 
1000     switch (ap->hsm_task_state) {
1001     case HSM_ST_FIRST:
1002         /* Send first data block or PACKET CDB */
1003 
1004         /* If polling, we will stay in the work queue after
1005          * sending the data. Otherwise, interrupt handler
1006          * takes over after sending the data.
1007          */
1008         poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1009 
1010         /* check device status */
1011         if (unlikely((status & ATA_DRQ) == 0)) {
1012             /* handle BSY=0, DRQ=0 as error */
1013             if (likely(status & (ATA_ERR | ATA_DF)))
1014                 /* device stops HSM for abort/error */
1015                 qc->err_mask |= AC_ERR_DEV;
1016             else {
1017                 /* HSM violation. Let EH handle this */
1018                 ata_ehi_push_desc(ehi,
1019                     "ST_FIRST: !(DRQ|ERR|DF)");
1020                 qc->err_mask |= AC_ERR_HSM;
1021             }
1022 
1023             ap->hsm_task_state = HSM_ST_ERR;
1024             goto fsm_start;
1025         }
1026 
1027         /* Device should not ask for data transfer (DRQ=1)
1028          * when it finds something wrong.
1029          * We ignore DRQ here and stop the HSM by
1030          * changing hsm_task_state to HSM_ST_ERR and
1031          * let the EH abort the command or reset the device.
1032          */
1033         if (unlikely(status & (ATA_ERR | ATA_DF))) {
1034             /* Some ATAPI tape drives forget to clear the ERR bit
1035              * when doing the next command (mostly request sense).
1036              * We ignore ERR here to workaround and proceed sending
1037              * the CDB.
1038              */
1039             if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1040                 ata_ehi_push_desc(ehi, "ST_FIRST: "
1041                     "DRQ=1 with device error, "
1042                     "dev_stat 0x%X", status);
1043                 qc->err_mask |= AC_ERR_HSM;
1044                 ap->hsm_task_state = HSM_ST_ERR;
1045                 goto fsm_start;
1046             }
1047         }
1048 
1049         if (qc->tf.protocol == ATA_PROT_PIO) {
1050             /* PIO data out protocol.
1051              * send first data block.
1052              */
1053 
1054             /* ata_pio_sectors() might change the state
1055              * to HSM_ST_LAST. so, the state is changed here
1056              * before ata_pio_sectors().
1057              */
1058             ap->hsm_task_state = HSM_ST;
1059             ata_pio_sectors(qc);
1060         } else
1061             /* send CDB */
1062             atapi_send_cdb(ap, qc);
1063 
1064         /* if polling, ata_sff_pio_task() handles the rest.
1065          * otherwise, interrupt handler takes over from here.
1066          */
1067         break;
1068 
1069     case HSM_ST:
1070         /* complete command or read/write the data register */
1071         if (qc->tf.protocol == ATAPI_PROT_PIO) {
1072             /* ATAPI PIO protocol */
1073             if ((status & ATA_DRQ) == 0) {
1074                 /* No more data to transfer or device error.
1075                  * Device error will be tagged in HSM_ST_LAST.
1076                  */
1077                 ap->hsm_task_state = HSM_ST_LAST;
1078                 goto fsm_start;
1079             }
1080 
1081             /* Device should not ask for data transfer (DRQ=1)
1082              * when it finds something wrong.
1083              * We ignore DRQ here and stop the HSM by
1084              * changing hsm_task_state to HSM_ST_ERR and
1085              * let the EH abort the command or reset the device.
1086              */
1087             if (unlikely(status & (ATA_ERR | ATA_DF))) {
1088                 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1089                     "DRQ=1 with device error, "
1090                     "dev_stat 0x%X", status);
1091                 qc->err_mask |= AC_ERR_HSM;
1092                 ap->hsm_task_state = HSM_ST_ERR;
1093                 goto fsm_start;
1094             }
1095 
1096             atapi_pio_bytes(qc);
1097 
1098             if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1099                 /* bad ireason reported by device */
1100                 goto fsm_start;
1101 
1102         } else {
1103             /* ATA PIO protocol */
1104             if (unlikely((status & ATA_DRQ) == 0)) {
1105                 /* handle BSY=0, DRQ=0 as error */
1106                 if (likely(status & (ATA_ERR | ATA_DF))) {
1107                     /* device stops HSM for abort/error */
1108                     qc->err_mask |= AC_ERR_DEV;
1109 
1110                     /* If diagnostic failed and this is
1111                      * IDENTIFY, it's likely a phantom
1112                      * device.  Mark hint.
1113                      */
1114                     if (qc->dev->horkage &
1115                         ATA_HORKAGE_DIAGNOSTIC)
1116                         qc->err_mask |=
1117                             AC_ERR_NODEV_HINT;
1118                 } else {
1119                     /* HSM violation. Let EH handle this.
1120                      * Phantom devices also trigger this
1121                      * condition.  Mark hint.
1122                      */
1123                     ata_ehi_push_desc(ehi, "ST-ATA: "
1124                         "DRQ=0 without device error, "
1125                         "dev_stat 0x%X", status);
1126                     qc->err_mask |= AC_ERR_HSM |
1127                             AC_ERR_NODEV_HINT;
1128                 }
1129 
1130                 ap->hsm_task_state = HSM_ST_ERR;
1131                 goto fsm_start;
1132             }
1133 
1134             /* For PIO reads, some devices may ask for
1135              * data transfer (DRQ=1) alone with ERR=1.
1136              * We respect DRQ here and transfer one
1137              * block of junk data before changing the
1138              * hsm_task_state to HSM_ST_ERR.
1139              *
1140              * For PIO writes, ERR=1 DRQ=1 doesn't make
1141              * sense since the data block has been
1142              * transferred to the device.
1143              */
1144             if (unlikely(status & (ATA_ERR | ATA_DF))) {
1145                 /* data might be corrputed */
1146                 qc->err_mask |= AC_ERR_DEV;
1147 
1148                 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1149                     ata_pio_sectors(qc);
1150                     status = ata_wait_idle(ap);
1151                 }
1152 
1153                 if (status & (ATA_BUSY | ATA_DRQ)) {
1154                     ata_ehi_push_desc(ehi, "ST-ATA: "
1155                         "BUSY|DRQ persists on ERR|DF, "
1156                         "dev_stat 0x%X", status);
1157                     qc->err_mask |= AC_ERR_HSM;
1158                 }
1159 
1160                 /* There are oddball controllers with
1161                  * status register stuck at 0x7f and
1162                  * lbal/m/h at zero which makes it
1163                  * pass all other presence detection
1164                  * mechanisms we have.  Set NODEV_HINT
1165                  * for it.  Kernel bz#7241.
1166                  */
1167                 if (status == 0x7f)
1168                     qc->err_mask |= AC_ERR_NODEV_HINT;
1169 
1170                 /* ata_pio_sectors() might change the
1171                  * state to HSM_ST_LAST. so, the state
1172                  * is changed after ata_pio_sectors().
1173                  */
1174                 ap->hsm_task_state = HSM_ST_ERR;
1175                 goto fsm_start;
1176             }
1177 
1178             ata_pio_sectors(qc);
1179 
1180             if (ap->hsm_task_state == HSM_ST_LAST &&
1181                 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1182                 /* all data read */
1183                 status = ata_wait_idle(ap);
1184                 goto fsm_start;
1185             }
1186         }
1187 
1188         poll_next = 1;
1189         break;
1190 
1191     case HSM_ST_LAST:
1192         if (unlikely(!ata_ok(status))) {
1193             qc->err_mask |= __ac_err_mask(status);
1194             ap->hsm_task_state = HSM_ST_ERR;
1195             goto fsm_start;
1196         }
1197 
1198         /* no more data to transfer */
1199         trace_ata_sff_hsm_command_complete(qc, status);
1200 
1201         WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1202 
1203         ap->hsm_task_state = HSM_ST_IDLE;
1204 
1205         /* complete taskfile transaction */
1206         ata_hsm_qc_complete(qc, in_wq);
1207 
1208         poll_next = 0;
1209         break;
1210 
1211     case HSM_ST_ERR:
1212         ap->hsm_task_state = HSM_ST_IDLE;
1213 
1214         /* complete taskfile transaction */
1215         ata_hsm_qc_complete(qc, in_wq);
1216 
1217         poll_next = 0;
1218         break;
1219     default:
1220         poll_next = 0;
1221         WARN(true, "ata%d: SFF host state machine in invalid state %d",
1222              ap->print_id, ap->hsm_task_state);
1223     }
1224 
1225     return poll_next;
1226 }
1227 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1228 
1229 void ata_sff_queue_work(struct work_struct *work)
1230 {
1231     queue_work(ata_sff_wq, work);
1232 }
1233 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1234 
1235 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1236 {
1237     queue_delayed_work(ata_sff_wq, dwork, delay);
1238 }
1239 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1240 
1241 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1242 {
1243     struct ata_port *ap = link->ap;
1244 
1245     WARN_ON((ap->sff_pio_task_link != NULL) &&
1246         (ap->sff_pio_task_link != link));
1247     ap->sff_pio_task_link = link;
1248 
1249     /* may fail if ata_sff_flush_pio_task() in progress */
1250     ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1251 }
1252 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1253 
1254 void ata_sff_flush_pio_task(struct ata_port *ap)
1255 {
1256     trace_ata_sff_flush_pio_task(ap);
1257 
1258     cancel_delayed_work_sync(&ap->sff_pio_task);
1259 
1260     /*
1261      * We wanna reset the HSM state to IDLE.  If we do so without
1262      * grabbing the port lock, critical sections protected by it which
1263      * expect the HSM state to stay stable may get surprised.  For
1264      * example, we may set IDLE in between the time
1265      * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1266      * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1267      */
1268     spin_lock_irq(ap->lock);
1269     ap->hsm_task_state = HSM_ST_IDLE;
1270     spin_unlock_irq(ap->lock);
1271 
1272     ap->sff_pio_task_link = NULL;
1273 }
1274 
1275 static void ata_sff_pio_task(struct work_struct *work)
1276 {
1277     struct ata_port *ap =
1278         container_of(work, struct ata_port, sff_pio_task.work);
1279     struct ata_link *link = ap->sff_pio_task_link;
1280     struct ata_queued_cmd *qc;
1281     u8 status;
1282     int poll_next;
1283 
1284     spin_lock_irq(ap->lock);
1285 
1286     BUG_ON(ap->sff_pio_task_link == NULL);
1287     /* qc can be NULL if timeout occurred */
1288     qc = ata_qc_from_tag(ap, link->active_tag);
1289     if (!qc) {
1290         ap->sff_pio_task_link = NULL;
1291         goto out_unlock;
1292     }
1293 
1294 fsm_start:
1295     WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1296 
1297     /*
1298      * This is purely heuristic.  This is a fast path.
1299      * Sometimes when we enter, BSY will be cleared in
1300      * a chk-status or two.  If not, the drive is probably seeking
1301      * or something.  Snooze for a couple msecs, then
1302      * chk-status again.  If still busy, queue delayed work.
1303      */
1304     status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1305     if (status & ATA_BUSY) {
1306         spin_unlock_irq(ap->lock);
1307         ata_msleep(ap, 2);
1308         spin_lock_irq(ap->lock);
1309 
1310         status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1311         if (status & ATA_BUSY) {
1312             ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1313             goto out_unlock;
1314         }
1315     }
1316 
1317     /*
1318      * hsm_move() may trigger another command to be processed.
1319      * clean the link beforehand.
1320      */
1321     ap->sff_pio_task_link = NULL;
1322     /* move the HSM */
1323     poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1324 
1325     /* another command or interrupt handler
1326      * may be running at this point.
1327      */
1328     if (poll_next)
1329         goto fsm_start;
1330 out_unlock:
1331     spin_unlock_irq(ap->lock);
1332 }
1333 
1334 /**
1335  *  ata_sff_qc_issue - issue taskfile to a SFF controller
1336  *  @qc: command to issue to device
1337  *
1338  *  This function issues a PIO or NODATA command to a SFF
1339  *  controller.
1340  *
1341  *  LOCKING:
1342  *  spin_lock_irqsave(host lock)
1343  *
1344  *  RETURNS:
1345  *  Zero on success, AC_ERR_* mask on failure
1346  */
1347 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1348 {
1349     struct ata_port *ap = qc->ap;
1350     struct ata_link *link = qc->dev->link;
1351 
1352     /* Use polling pio if the LLD doesn't handle
1353      * interrupt driven pio and atapi CDB interrupt.
1354      */
1355     if (ap->flags & ATA_FLAG_PIO_POLLING)
1356         qc->tf.flags |= ATA_TFLAG_POLLING;
1357 
1358     /* select the device */
1359     ata_dev_select(ap, qc->dev->devno, 1, 0);
1360 
1361     /* start the command */
1362     switch (qc->tf.protocol) {
1363     case ATA_PROT_NODATA:
1364         if (qc->tf.flags & ATA_TFLAG_POLLING)
1365             ata_qc_set_polling(qc);
1366 
1367         ata_tf_to_host(ap, &qc->tf, qc->tag);
1368         ap->hsm_task_state = HSM_ST_LAST;
1369 
1370         if (qc->tf.flags & ATA_TFLAG_POLLING)
1371             ata_sff_queue_pio_task(link, 0);
1372 
1373         break;
1374 
1375     case ATA_PROT_PIO:
1376         if (qc->tf.flags & ATA_TFLAG_POLLING)
1377             ata_qc_set_polling(qc);
1378 
1379         ata_tf_to_host(ap, &qc->tf, qc->tag);
1380 
1381         if (qc->tf.flags & ATA_TFLAG_WRITE) {
1382             /* PIO data out protocol */
1383             ap->hsm_task_state = HSM_ST_FIRST;
1384             ata_sff_queue_pio_task(link, 0);
1385 
1386             /* always send first data block using the
1387              * ata_sff_pio_task() codepath.
1388              */
1389         } else {
1390             /* PIO data in protocol */
1391             ap->hsm_task_state = HSM_ST;
1392 
1393             if (qc->tf.flags & ATA_TFLAG_POLLING)
1394                 ata_sff_queue_pio_task(link, 0);
1395 
1396             /* if polling, ata_sff_pio_task() handles the
1397              * rest.  otherwise, interrupt handler takes
1398              * over from here.
1399              */
1400         }
1401 
1402         break;
1403 
1404     case ATAPI_PROT_PIO:
1405     case ATAPI_PROT_NODATA:
1406         if (qc->tf.flags & ATA_TFLAG_POLLING)
1407             ata_qc_set_polling(qc);
1408 
1409         ata_tf_to_host(ap, &qc->tf, qc->tag);
1410 
1411         ap->hsm_task_state = HSM_ST_FIRST;
1412 
1413         /* send cdb by polling if no cdb interrupt */
1414         if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1415             (qc->tf.flags & ATA_TFLAG_POLLING))
1416             ata_sff_queue_pio_task(link, 0);
1417         break;
1418 
1419     default:
1420         return AC_ERR_SYSTEM;
1421     }
1422 
1423     return 0;
1424 }
1425 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1426 
1427 /**
1428  *  ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1429  *  @qc: qc to fill result TF for
1430  *
1431  *  @qc is finished and result TF needs to be filled.  Fill it
1432  *  using ->sff_tf_read.
1433  *
1434  *  LOCKING:
1435  *  spin_lock_irqsave(host lock)
1436  *
1437  *  RETURNS:
1438  *  true indicating that result TF is successfully filled.
1439  */
1440 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1441 {
1442     qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1443     return true;
1444 }
1445 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1446 
1447 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1448 {
1449     ap->stats.idle_irq++;
1450 
1451 #ifdef ATA_IRQ_TRAP
1452     if ((ap->stats.idle_irq % 1000) == 0) {
1453         ap->ops->sff_check_status(ap);
1454         if (ap->ops->sff_irq_clear)
1455             ap->ops->sff_irq_clear(ap);
1456         ata_port_warn(ap, "irq trap\n");
1457         return 1;
1458     }
1459 #endif
1460     return 0;   /* irq not handled */
1461 }
1462 
1463 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1464                     struct ata_queued_cmd *qc,
1465                     bool hsmv_on_idle)
1466 {
1467     u8 status;
1468 
1469     trace_ata_sff_port_intr(qc, hsmv_on_idle);
1470 
1471     /* Check whether we are expecting interrupt in this state */
1472     switch (ap->hsm_task_state) {
1473     case HSM_ST_FIRST:
1474         /* Some pre-ATAPI-4 devices assert INTRQ
1475          * at this state when ready to receive CDB.
1476          */
1477 
1478         /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1479          * The flag was turned on only for atapi devices.  No
1480          * need to check ata_is_atapi(qc->tf.protocol) again.
1481          */
1482         if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1483             return ata_sff_idle_irq(ap);
1484         break;
1485     case HSM_ST_IDLE:
1486         return ata_sff_idle_irq(ap);
1487     default:
1488         break;
1489     }
1490 
1491     /* check main status, clearing INTRQ if needed */
1492     status = ata_sff_irq_status(ap);
1493     if (status & ATA_BUSY) {
1494         if (hsmv_on_idle) {
1495             /* BMDMA engine is already stopped, we're screwed */
1496             qc->err_mask |= AC_ERR_HSM;
1497             ap->hsm_task_state = HSM_ST_ERR;
1498         } else
1499             return ata_sff_idle_irq(ap);
1500     }
1501 
1502     /* clear irq events */
1503     if (ap->ops->sff_irq_clear)
1504         ap->ops->sff_irq_clear(ap);
1505 
1506     ata_sff_hsm_move(ap, qc, status, 0);
1507 
1508     return 1;   /* irq handled */
1509 }
1510 
1511 /**
1512  *  ata_sff_port_intr - Handle SFF port interrupt
1513  *  @ap: Port on which interrupt arrived (possibly...)
1514  *  @qc: Taskfile currently active in engine
1515  *
1516  *  Handle port interrupt for given queued command.
1517  *
1518  *  LOCKING:
1519  *  spin_lock_irqsave(host lock)
1520  *
1521  *  RETURNS:
1522  *  One if interrupt was handled, zero if not (shared irq).
1523  */
1524 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1525 {
1526     return __ata_sff_port_intr(ap, qc, false);
1527 }
1528 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1529 
1530 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1531     unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1532 {
1533     struct ata_host *host = dev_instance;
1534     bool retried = false;
1535     unsigned int i;
1536     unsigned int handled, idle, polling;
1537     unsigned long flags;
1538 
1539     /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1540     spin_lock_irqsave(&host->lock, flags);
1541 
1542 retry:
1543     handled = idle = polling = 0;
1544     for (i = 0; i < host->n_ports; i++) {
1545         struct ata_port *ap = host->ports[i];
1546         struct ata_queued_cmd *qc;
1547 
1548         qc = ata_qc_from_tag(ap, ap->link.active_tag);
1549         if (qc) {
1550             if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1551                 handled |= port_intr(ap, qc);
1552             else
1553                 polling |= 1 << i;
1554         } else
1555             idle |= 1 << i;
1556     }
1557 
1558     /*
1559      * If no port was expecting IRQ but the controller is actually
1560      * asserting IRQ line, nobody cared will ensue.  Check IRQ
1561      * pending status if available and clear spurious IRQ.
1562      */
1563     if (!handled && !retried) {
1564         bool retry = false;
1565 
1566         for (i = 0; i < host->n_ports; i++) {
1567             struct ata_port *ap = host->ports[i];
1568 
1569             if (polling & (1 << i))
1570                 continue;
1571 
1572             if (!ap->ops->sff_irq_check ||
1573                 !ap->ops->sff_irq_check(ap))
1574                 continue;
1575 
1576             if (idle & (1 << i)) {
1577                 ap->ops->sff_check_status(ap);
1578                 if (ap->ops->sff_irq_clear)
1579                     ap->ops->sff_irq_clear(ap);
1580             } else {
1581                 /* clear INTRQ and check if BUSY cleared */
1582                 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1583                     retry |= true;
1584                 /*
1585                  * With command in flight, we can't do
1586                  * sff_irq_clear() w/o racing with completion.
1587                  */
1588             }
1589         }
1590 
1591         if (retry) {
1592             retried = true;
1593             goto retry;
1594         }
1595     }
1596 
1597     spin_unlock_irqrestore(&host->lock, flags);
1598 
1599     return IRQ_RETVAL(handled);
1600 }
1601 
1602 /**
1603  *  ata_sff_interrupt - Default SFF ATA host interrupt handler
1604  *  @irq: irq line (unused)
1605  *  @dev_instance: pointer to our ata_host information structure
1606  *
1607  *  Default interrupt handler for PCI IDE devices.  Calls
1608  *  ata_sff_port_intr() for each port that is not disabled.
1609  *
1610  *  LOCKING:
1611  *  Obtains host lock during operation.
1612  *
1613  *  RETURNS:
1614  *  IRQ_NONE or IRQ_HANDLED.
1615  */
1616 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1617 {
1618     return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1619 }
1620 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1621 
1622 /**
1623  *  ata_sff_lost_interrupt  -   Check for an apparent lost interrupt
1624  *  @ap: port that appears to have timed out
1625  *
1626  *  Called from the libata error handlers when the core code suspects
1627  *  an interrupt has been lost. If it has complete anything we can and
1628  *  then return. Interface must support altstatus for this faster
1629  *  recovery to occur.
1630  *
1631  *  Locking:
1632  *  Caller holds host lock
1633  */
1634 
1635 void ata_sff_lost_interrupt(struct ata_port *ap)
1636 {
1637     u8 status = 0;
1638     struct ata_queued_cmd *qc;
1639 
1640     /* Only one outstanding command per SFF channel */
1641     qc = ata_qc_from_tag(ap, ap->link.active_tag);
1642     /* We cannot lose an interrupt on a non-existent or polled command */
1643     if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1644         return;
1645     /* See if the controller thinks it is still busy - if so the command
1646        isn't a lost IRQ but is still in progress */
1647     if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1648         return;
1649     if (status & ATA_BUSY)
1650         return;
1651 
1652     /* There was a command running, we are no longer busy and we have
1653        no interrupt. */
1654     ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1655     /* Run the host interrupt logic as if the interrupt had not been
1656        lost */
1657     ata_sff_port_intr(ap, qc);
1658 }
1659 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1660 
1661 /**
1662  *  ata_sff_freeze - Freeze SFF controller port
1663  *  @ap: port to freeze
1664  *
1665  *  Freeze SFF controller port.
1666  *
1667  *  LOCKING:
1668  *  Inherited from caller.
1669  */
1670 void ata_sff_freeze(struct ata_port *ap)
1671 {
1672     ap->ctl |= ATA_NIEN;
1673     ap->last_ctl = ap->ctl;
1674 
1675     ata_sff_set_devctl(ap, ap->ctl);
1676 
1677     /* Under certain circumstances, some controllers raise IRQ on
1678      * ATA_NIEN manipulation.  Also, many controllers fail to mask
1679      * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1680      */
1681     ap->ops->sff_check_status(ap);
1682 
1683     if (ap->ops->sff_irq_clear)
1684         ap->ops->sff_irq_clear(ap);
1685 }
1686 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1687 
1688 /**
1689  *  ata_sff_thaw - Thaw SFF controller port
1690  *  @ap: port to thaw
1691  *
1692  *  Thaw SFF controller port.
1693  *
1694  *  LOCKING:
1695  *  Inherited from caller.
1696  */
1697 void ata_sff_thaw(struct ata_port *ap)
1698 {
1699     /* clear & re-enable interrupts */
1700     ap->ops->sff_check_status(ap);
1701     if (ap->ops->sff_irq_clear)
1702         ap->ops->sff_irq_clear(ap);
1703     ata_sff_irq_on(ap);
1704 }
1705 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1706 
1707 /**
1708  *  ata_sff_prereset - prepare SFF link for reset
1709  *  @link: SFF link to be reset
1710  *  @deadline: deadline jiffies for the operation
1711  *
1712  *  SFF link @link is about to be reset.  Initialize it.  It first
1713  *  calls ata_std_prereset() and wait for !BSY if the port is
1714  *  being softreset.
1715  *
1716  *  LOCKING:
1717  *  Kernel thread context (may sleep)
1718  *
1719  *  RETURNS:
1720  *  Always 0.
1721  */
1722 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1723 {
1724     struct ata_eh_context *ehc = &link->eh_context;
1725     int rc;
1726 
1727     /* The standard prereset is best-effort and always returns 0 */
1728     ata_std_prereset(link, deadline);
1729 
1730     /* if we're about to do hardreset, nothing more to do */
1731     if (ehc->i.action & ATA_EH_HARDRESET)
1732         return 0;
1733 
1734     /* wait for !BSY if we don't know that no device is attached */
1735     if (!ata_link_offline(link)) {
1736         rc = ata_sff_wait_ready(link, deadline);
1737         if (rc && rc != -ENODEV) {
1738             ata_link_warn(link,
1739                       "device not ready (errno=%d), forcing hardreset\n",
1740                       rc);
1741             ehc->i.action |= ATA_EH_HARDRESET;
1742         }
1743     }
1744 
1745     return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1748 
1749 /**
1750  *  ata_devchk - PATA device presence detection
1751  *  @ap: ATA channel to examine
1752  *  @device: Device to examine (starting at zero)
1753  *
1754  *  This technique was originally described in
1755  *  Hale Landis's ATADRVR (www.ata-atapi.com), and
1756  *  later found its way into the ATA/ATAPI spec.
1757  *
1758  *  Write a pattern to the ATA shadow registers,
1759  *  and if a device is present, it will respond by
1760  *  correctly storing and echoing back the
1761  *  ATA shadow register contents.
1762  *
1763  *  RETURN:
1764  *  true if device is present, false if not.
1765  *
1766  *  LOCKING:
1767  *  caller.
1768  */
1769 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1770 {
1771     struct ata_ioports *ioaddr = &ap->ioaddr;
1772     u8 nsect, lbal;
1773 
1774     ap->ops->sff_dev_select(ap, device);
1775 
1776     iowrite8(0x55, ioaddr->nsect_addr);
1777     iowrite8(0xaa, ioaddr->lbal_addr);
1778 
1779     iowrite8(0xaa, ioaddr->nsect_addr);
1780     iowrite8(0x55, ioaddr->lbal_addr);
1781 
1782     iowrite8(0x55, ioaddr->nsect_addr);
1783     iowrite8(0xaa, ioaddr->lbal_addr);
1784 
1785     nsect = ioread8(ioaddr->nsect_addr);
1786     lbal = ioread8(ioaddr->lbal_addr);
1787 
1788     if ((nsect == 0x55) && (lbal == 0xaa))
1789         return true;    /* we found a device */
1790 
1791     return false;       /* nothing found */
1792 }
1793 
1794 /**
1795  *  ata_sff_dev_classify - Parse returned ATA device signature
1796  *  @dev: ATA device to classify (starting at zero)
1797  *  @present: device seems present
1798  *  @r_err: Value of error register on completion
1799  *
1800  *  After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1801  *  an ATA/ATAPI-defined set of values is placed in the ATA
1802  *  shadow registers, indicating the results of device detection
1803  *  and diagnostics.
1804  *
1805  *  Select the ATA device, and read the values from the ATA shadow
1806  *  registers.  Then parse according to the Error register value,
1807  *  and the spec-defined values examined by ata_dev_classify().
1808  *
1809  *  LOCKING:
1810  *  caller.
1811  *
1812  *  RETURNS:
1813  *  Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1814  */
1815 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1816                   u8 *r_err)
1817 {
1818     struct ata_port *ap = dev->link->ap;
1819     struct ata_taskfile tf;
1820     unsigned int class;
1821     u8 err;
1822 
1823     ap->ops->sff_dev_select(ap, dev->devno);
1824 
1825     memset(&tf, 0, sizeof(tf));
1826 
1827     ap->ops->sff_tf_read(ap, &tf);
1828     err = tf.error;
1829     if (r_err)
1830         *r_err = err;
1831 
1832     /* see if device passed diags: continue and warn later */
1833     if (err == 0)
1834         /* diagnostic fail : do nothing _YET_ */
1835         dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1836     else if (err == 1)
1837         /* do nothing */ ;
1838     else if ((dev->devno == 0) && (err == 0x81))
1839         /* do nothing */ ;
1840     else
1841         return ATA_DEV_NONE;
1842 
1843     /* determine if device is ATA or ATAPI */
1844     class = ata_port_classify(ap, &tf);
1845     switch (class) {
1846     case ATA_DEV_UNKNOWN:
1847         /*
1848          * If the device failed diagnostic, it's likely to
1849          * have reported incorrect device signature too.
1850          * Assume ATA device if the device seems present but
1851          * device signature is invalid with diagnostic
1852          * failure.
1853          */
1854         if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1855             class = ATA_DEV_ATA;
1856         else
1857             class = ATA_DEV_NONE;
1858         break;
1859     case ATA_DEV_ATA:
1860         if (ap->ops->sff_check_status(ap) == 0)
1861             class = ATA_DEV_NONE;
1862         break;
1863     }
1864     return class;
1865 }
1866 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1867 
1868 /**
1869  *  ata_sff_wait_after_reset - wait for devices to become ready after reset
1870  *  @link: SFF link which is just reset
1871  *  @devmask: mask of present devices
1872  *  @deadline: deadline jiffies for the operation
1873  *
1874  *  Wait devices attached to SFF @link to become ready after
1875  *  reset.  It contains preceding 150ms wait to avoid accessing TF
1876  *  status register too early.
1877  *
1878  *  LOCKING:
1879  *  Kernel thread context (may sleep).
1880  *
1881  *  RETURNS:
1882  *  0 on success, -ENODEV if some or all of devices in @devmask
1883  *  don't seem to exist.  -errno on other errors.
1884  */
1885 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1886                  unsigned long deadline)
1887 {
1888     struct ata_port *ap = link->ap;
1889     struct ata_ioports *ioaddr = &ap->ioaddr;
1890     unsigned int dev0 = devmask & (1 << 0);
1891     unsigned int dev1 = devmask & (1 << 1);
1892     int rc, ret = 0;
1893 
1894     ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1895 
1896     /* always check readiness of the master device */
1897     rc = ata_sff_wait_ready(link, deadline);
1898     /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1899      * and TF status is 0xff, bail out on it too.
1900      */
1901     if (rc)
1902         return rc;
1903 
1904     /* if device 1 was found in ata_devchk, wait for register
1905      * access briefly, then wait for BSY to clear.
1906      */
1907     if (dev1) {
1908         int i;
1909 
1910         ap->ops->sff_dev_select(ap, 1);
1911 
1912         /* Wait for register access.  Some ATAPI devices fail
1913          * to set nsect/lbal after reset, so don't waste too
1914          * much time on it.  We're gonna wait for !BSY anyway.
1915          */
1916         for (i = 0; i < 2; i++) {
1917             u8 nsect, lbal;
1918 
1919             nsect = ioread8(ioaddr->nsect_addr);
1920             lbal = ioread8(ioaddr->lbal_addr);
1921             if ((nsect == 1) && (lbal == 1))
1922                 break;
1923             ata_msleep(ap, 50); /* give drive a breather */
1924         }
1925 
1926         rc = ata_sff_wait_ready(link, deadline);
1927         if (rc) {
1928             if (rc != -ENODEV)
1929                 return rc;
1930             ret = rc;
1931         }
1932     }
1933 
1934     /* is all this really necessary? */
1935     ap->ops->sff_dev_select(ap, 0);
1936     if (dev1)
1937         ap->ops->sff_dev_select(ap, 1);
1938     if (dev0)
1939         ap->ops->sff_dev_select(ap, 0);
1940 
1941     return ret;
1942 }
1943 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1944 
1945 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1946                  unsigned long deadline)
1947 {
1948     struct ata_ioports *ioaddr = &ap->ioaddr;
1949 
1950     if (ap->ioaddr.ctl_addr) {
1951         /* software reset.  causes dev0 to be selected */
1952         iowrite8(ap->ctl, ioaddr->ctl_addr);
1953         udelay(20); /* FIXME: flush */
1954         iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1955         udelay(20); /* FIXME: flush */
1956         iowrite8(ap->ctl, ioaddr->ctl_addr);
1957         ap->last_ctl = ap->ctl;
1958     }
1959 
1960     /* wait the port to become ready */
1961     return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1962 }
1963 
1964 /**
1965  *  ata_sff_softreset - reset host port via ATA SRST
1966  *  @link: ATA link to reset
1967  *  @classes: resulting classes of attached devices
1968  *  @deadline: deadline jiffies for the operation
1969  *
1970  *  Reset host port using ATA SRST.
1971  *
1972  *  LOCKING:
1973  *  Kernel thread context (may sleep)
1974  *
1975  *  RETURNS:
1976  *  0 on success, -errno otherwise.
1977  */
1978 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1979               unsigned long deadline)
1980 {
1981     struct ata_port *ap = link->ap;
1982     unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1983     unsigned int devmask = 0;
1984     int rc;
1985     u8 err;
1986 
1987     /* determine if device 0/1 are present */
1988     if (ata_devchk(ap, 0))
1989         devmask |= (1 << 0);
1990     if (slave_possible && ata_devchk(ap, 1))
1991         devmask |= (1 << 1);
1992 
1993     /* select device 0 again */
1994     ap->ops->sff_dev_select(ap, 0);
1995 
1996     /* issue bus reset */
1997     rc = ata_bus_softreset(ap, devmask, deadline);
1998     /* if link is occupied, -ENODEV too is an error */
1999     if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2000         ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2001         return rc;
2002     }
2003 
2004     /* determine by signature whether we have ATA or ATAPI devices */
2005     classes[0] = ata_sff_dev_classify(&link->device[0],
2006                       devmask & (1 << 0), &err);
2007     if (slave_possible && err != 0x81)
2008         classes[1] = ata_sff_dev_classify(&link->device[1],
2009                           devmask & (1 << 1), &err);
2010 
2011     return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2014 
2015 /**
2016  *  sata_sff_hardreset - reset host port via SATA phy reset
2017  *  @link: link to reset
2018  *  @class: resulting class of attached device
2019  *  @deadline: deadline jiffies for the operation
2020  *
2021  *  SATA phy-reset host port using DET bits of SControl register,
2022  *  wait for !BSY and classify the attached device.
2023  *
2024  *  LOCKING:
2025  *  Kernel thread context (may sleep)
2026  *
2027  *  RETURNS:
2028  *  0 on success, -errno otherwise.
2029  */
2030 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2031                unsigned long deadline)
2032 {
2033     struct ata_eh_context *ehc = &link->eh_context;
2034     const unsigned long *timing = sata_ehc_deb_timing(ehc);
2035     bool online;
2036     int rc;
2037 
2038     rc = sata_link_hardreset(link, timing, deadline, &online,
2039                  ata_sff_check_ready);
2040     if (online)
2041         *class = ata_sff_dev_classify(link->device, 1, NULL);
2042 
2043     return rc;
2044 }
2045 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2046 
2047 /**
2048  *  ata_sff_postreset - SFF postreset callback
2049  *  @link: the target SFF ata_link
2050  *  @classes: classes of attached devices
2051  *
2052  *  This function is invoked after a successful reset.  It first
2053  *  calls ata_std_postreset() and performs SFF specific postreset
2054  *  processing.
2055  *
2056  *  LOCKING:
2057  *  Kernel thread context (may sleep)
2058  */
2059 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2060 {
2061     struct ata_port *ap = link->ap;
2062 
2063     ata_std_postreset(link, classes);
2064 
2065     /* is double-select really necessary? */
2066     if (classes[0] != ATA_DEV_NONE)
2067         ap->ops->sff_dev_select(ap, 1);
2068     if (classes[1] != ATA_DEV_NONE)
2069         ap->ops->sff_dev_select(ap, 0);
2070 
2071     /* bail out if no device is present */
2072     if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2073         return;
2074 
2075     /* set up device control */
2076     if (ata_sff_set_devctl(ap, ap->ctl))
2077         ap->last_ctl = ap->ctl;
2078 }
2079 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2080 
2081 /**
2082  *  ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2083  *  @qc: command
2084  *
2085  *  Drain the FIFO and device of any stuck data following a command
2086  *  failing to complete. In some cases this is necessary before a
2087  *  reset will recover the device.
2088  *
2089  */
2090 
2091 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2092 {
2093     int count;
2094     struct ata_port *ap;
2095 
2096     /* We only need to flush incoming data when a command was running */
2097     if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2098         return;
2099 
2100     ap = qc->ap;
2101     /* Drain up to 64K of data before we give up this recovery method */
2102     for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2103                         && count < 65536; count += 2)
2104         ioread16(ap->ioaddr.data_addr);
2105 
2106     if (count)
2107         ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2108 
2109 }
2110 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2111 
2112 /**
2113  *  ata_sff_error_handler - Stock error handler for SFF controller
2114  *  @ap: port to handle error for
2115  *
2116  *  Stock error handler for SFF controller.  It can handle both
2117  *  PATA and SATA controllers.  Many controllers should be able to
2118  *  use this EH as-is or with some added handling before and
2119  *  after.
2120  *
2121  *  LOCKING:
2122  *  Kernel thread context (may sleep)
2123  */
2124 void ata_sff_error_handler(struct ata_port *ap)
2125 {
2126     ata_reset_fn_t softreset = ap->ops->softreset;
2127     ata_reset_fn_t hardreset = ap->ops->hardreset;
2128     struct ata_queued_cmd *qc;
2129     unsigned long flags;
2130 
2131     qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2132     if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2133         qc = NULL;
2134 
2135     spin_lock_irqsave(ap->lock, flags);
2136 
2137     /*
2138      * We *MUST* do FIFO draining before we issue a reset as
2139      * several devices helpfully clear their internal state and
2140      * will lock solid if we touch the data port post reset. Pass
2141      * qc in case anyone wants to do different PIO/DMA recovery or
2142      * has per command fixups
2143      */
2144     if (ap->ops->sff_drain_fifo)
2145         ap->ops->sff_drain_fifo(qc);
2146 
2147     spin_unlock_irqrestore(ap->lock, flags);
2148 
2149     /* ignore built-in hardresets if SCR access is not available */
2150     if ((hardreset == sata_std_hardreset ||
2151          hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2152         hardreset = NULL;
2153 
2154     ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2155           ap->ops->postreset);
2156 }
2157 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2158 
2159 /**
2160  *  ata_sff_std_ports - initialize ioaddr with standard port offsets.
2161  *  @ioaddr: IO address structure to be initialized
2162  *
2163  *  Utility function which initializes data_addr, error_addr,
2164  *  feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2165  *  device_addr, status_addr, and command_addr to standard offsets
2166  *  relative to cmd_addr.
2167  *
2168  *  Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2169  */
2170 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2171 {
2172     ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2173     ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2174     ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2175     ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2176     ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2177     ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2178     ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2179     ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2180     ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2181     ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2182 }
2183 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2184 
2185 #ifdef CONFIG_PCI
2186 
2187 static bool ata_resources_present(struct pci_dev *pdev, int port)
2188 {
2189     int i;
2190 
2191     /* Check the PCI resources for this channel are enabled */
2192     port *= 2;
2193     for (i = 0; i < 2; i++) {
2194         if (pci_resource_start(pdev, port + i) == 0 ||
2195             pci_resource_len(pdev, port + i) == 0)
2196             return false;
2197     }
2198     return true;
2199 }
2200 
2201 /**
2202  *  ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2203  *  @host: target ATA host
2204  *
2205  *  Acquire native PCI ATA resources for @host and initialize the
2206  *  first two ports of @host accordingly.  Ports marked dummy are
2207  *  skipped and allocation failure makes the port dummy.
2208  *
2209  *  Note that native PCI resources are valid even for legacy hosts
2210  *  as we fix up pdev resources array early in boot, so this
2211  *  function can be used for both native and legacy SFF hosts.
2212  *
2213  *  LOCKING:
2214  *  Inherited from calling layer (may sleep).
2215  *
2216  *  RETURNS:
2217  *  0 if at least one port is initialized, -ENODEV if no port is
2218  *  available.
2219  */
2220 int ata_pci_sff_init_host(struct ata_host *host)
2221 {
2222     struct device *gdev = host->dev;
2223     struct pci_dev *pdev = to_pci_dev(gdev);
2224     unsigned int mask = 0;
2225     int i, rc;
2226 
2227     /* request, iomap BARs and init port addresses accordingly */
2228     for (i = 0; i < 2; i++) {
2229         struct ata_port *ap = host->ports[i];
2230         int base = i * 2;
2231         void __iomem * const *iomap;
2232 
2233         if (ata_port_is_dummy(ap))
2234             continue;
2235 
2236         /* Discard disabled ports.  Some controllers show
2237          * their unused channels this way.  Disabled ports are
2238          * made dummy.
2239          */
2240         if (!ata_resources_present(pdev, i)) {
2241             ap->ops = &ata_dummy_port_ops;
2242             continue;
2243         }
2244 
2245         rc = pcim_iomap_regions(pdev, 0x3 << base,
2246                     dev_driver_string(gdev));
2247         if (rc) {
2248             dev_warn(gdev,
2249                  "failed to request/iomap BARs for port %d (errno=%d)\n",
2250                  i, rc);
2251             if (rc == -EBUSY)
2252                 pcim_pin_device(pdev);
2253             ap->ops = &ata_dummy_port_ops;
2254             continue;
2255         }
2256         host->iomap = iomap = pcim_iomap_table(pdev);
2257 
2258         ap->ioaddr.cmd_addr = iomap[base];
2259         ap->ioaddr.altstatus_addr =
2260         ap->ioaddr.ctl_addr = (void __iomem *)
2261             ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2262         ata_sff_std_ports(&ap->ioaddr);
2263 
2264         ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2265             (unsigned long long)pci_resource_start(pdev, base),
2266             (unsigned long long)pci_resource_start(pdev, base + 1));
2267 
2268         mask |= 1 << i;
2269     }
2270 
2271     if (!mask) {
2272         dev_err(gdev, "no available native port\n");
2273         return -ENODEV;
2274     }
2275 
2276     return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2279 
2280 /**
2281  *  ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2282  *  @pdev: target PCI device
2283  *  @ppi: array of port_info, must be enough for two ports
2284  *  @r_host: out argument for the initialized ATA host
2285  *
2286  *  Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2287  *  all PCI resources and initialize it accordingly in one go.
2288  *
2289  *  LOCKING:
2290  *  Inherited from calling layer (may sleep).
2291  *
2292  *  RETURNS:
2293  *  0 on success, -errno otherwise.
2294  */
2295 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2296                  const struct ata_port_info * const *ppi,
2297                  struct ata_host **r_host)
2298 {
2299     struct ata_host *host;
2300     int rc;
2301 
2302     if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2303         return -ENOMEM;
2304 
2305     host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2306     if (!host) {
2307         dev_err(&pdev->dev, "failed to allocate ATA host\n");
2308         rc = -ENOMEM;
2309         goto err_out;
2310     }
2311 
2312     rc = ata_pci_sff_init_host(host);
2313     if (rc)
2314         goto err_out;
2315 
2316     devres_remove_group(&pdev->dev, NULL);
2317     *r_host = host;
2318     return 0;
2319 
2320 err_out:
2321     devres_release_group(&pdev->dev, NULL);
2322     return rc;
2323 }
2324 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2325 
2326 /**
2327  *  ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2328  *  @host: target SFF ATA host
2329  *  @irq_handler: irq_handler used when requesting IRQ(s)
2330  *  @sht: scsi_host_template to use when registering the host
2331  *
2332  *  This is the counterpart of ata_host_activate() for SFF ATA
2333  *  hosts.  This separate helper is necessary because SFF hosts
2334  *  use two separate interrupts in legacy mode.
2335  *
2336  *  LOCKING:
2337  *  Inherited from calling layer (may sleep).
2338  *
2339  *  RETURNS:
2340  *  0 on success, -errno otherwise.
2341  */
2342 int ata_pci_sff_activate_host(struct ata_host *host,
2343                   irq_handler_t irq_handler,
2344                   struct scsi_host_template *sht)
2345 {
2346     struct device *dev = host->dev;
2347     struct pci_dev *pdev = to_pci_dev(dev);
2348     const char *drv_name = dev_driver_string(host->dev);
2349     int legacy_mode = 0, rc;
2350 
2351     rc = ata_host_start(host);
2352     if (rc)
2353         return rc;
2354 
2355     if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2356         u8 tmp8, mask = 0;
2357 
2358         /*
2359          * ATA spec says we should use legacy mode when one
2360          * port is in legacy mode, but disabled ports on some
2361          * PCI hosts appear as fixed legacy ports, e.g SB600/700
2362          * on which the secondary port is not wired, so
2363          * ignore ports that are marked as 'dummy' during
2364          * this check
2365          */
2366         pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2367         if (!ata_port_is_dummy(host->ports[0]))
2368             mask |= (1 << 0);
2369         if (!ata_port_is_dummy(host->ports[1]))
2370             mask |= (1 << 2);
2371         if ((tmp8 & mask) != mask)
2372             legacy_mode = 1;
2373     }
2374 
2375     if (!devres_open_group(dev, NULL, GFP_KERNEL))
2376         return -ENOMEM;
2377 
2378     if (!legacy_mode && pdev->irq) {
2379         int i;
2380 
2381         rc = devm_request_irq(dev, pdev->irq, irq_handler,
2382                       IRQF_SHARED, drv_name, host);
2383         if (rc)
2384             goto out;
2385 
2386         for (i = 0; i < 2; i++) {
2387             if (ata_port_is_dummy(host->ports[i]))
2388                 continue;
2389             ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2390         }
2391     } else if (legacy_mode) {
2392         if (!ata_port_is_dummy(host->ports[0])) {
2393             rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2394                           irq_handler, IRQF_SHARED,
2395                           drv_name, host);
2396             if (rc)
2397                 goto out;
2398 
2399             ata_port_desc(host->ports[0], "irq %d",
2400                       ATA_PRIMARY_IRQ(pdev));
2401         }
2402 
2403         if (!ata_port_is_dummy(host->ports[1])) {
2404             rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2405                           irq_handler, IRQF_SHARED,
2406                           drv_name, host);
2407             if (rc)
2408                 goto out;
2409 
2410             ata_port_desc(host->ports[1], "irq %d",
2411                       ATA_SECONDARY_IRQ(pdev));
2412         }
2413     }
2414 
2415     rc = ata_host_register(host, sht);
2416 out:
2417     if (rc == 0)
2418         devres_remove_group(dev, NULL);
2419     else
2420         devres_release_group(dev, NULL);
2421 
2422     return rc;
2423 }
2424 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2425 
2426 static const struct ata_port_info *ata_sff_find_valid_pi(
2427                     const struct ata_port_info * const *ppi)
2428 {
2429     int i;
2430 
2431     /* look up the first valid port_info */
2432     for (i = 0; i < 2 && ppi[i]; i++)
2433         if (ppi[i]->port_ops != &ata_dummy_port_ops)
2434             return ppi[i];
2435 
2436     return NULL;
2437 }
2438 
2439 static int ata_pci_init_one(struct pci_dev *pdev,
2440         const struct ata_port_info * const *ppi,
2441         struct scsi_host_template *sht, void *host_priv,
2442         int hflags, bool bmdma)
2443 {
2444     struct device *dev = &pdev->dev;
2445     const struct ata_port_info *pi;
2446     struct ata_host *host = NULL;
2447     int rc;
2448 
2449     pi = ata_sff_find_valid_pi(ppi);
2450     if (!pi) {
2451         dev_err(&pdev->dev, "no valid port_info specified\n");
2452         return -EINVAL;
2453     }
2454 
2455     if (!devres_open_group(dev, NULL, GFP_KERNEL))
2456         return -ENOMEM;
2457 
2458     rc = pcim_enable_device(pdev);
2459     if (rc)
2460         goto out;
2461 
2462 #ifdef CONFIG_ATA_BMDMA
2463     if (bmdma)
2464         /* prepare and activate BMDMA host */
2465         rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2466     else
2467 #endif
2468         /* prepare and activate SFF host */
2469         rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2470     if (rc)
2471         goto out;
2472     host->private_data = host_priv;
2473     host->flags |= hflags;
2474 
2475 #ifdef CONFIG_ATA_BMDMA
2476     if (bmdma) {
2477         pci_set_master(pdev);
2478         rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2479     } else
2480 #endif
2481         rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2482 out:
2483     if (rc == 0)
2484         devres_remove_group(&pdev->dev, NULL);
2485     else
2486         devres_release_group(&pdev->dev, NULL);
2487 
2488     return rc;
2489 }
2490 
2491 /**
2492  *  ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2493  *  @pdev: Controller to be initialized
2494  *  @ppi: array of port_info, must be enough for two ports
2495  *  @sht: scsi_host_template to use when registering the host
2496  *  @host_priv: host private_data
2497  *  @hflag: host flags
2498  *
2499  *  This is a helper function which can be called from a driver's
2500  *  xxx_init_one() probe function if the hardware uses traditional
2501  *  IDE taskfile registers and is PIO only.
2502  *
2503  *  ASSUMPTION:
2504  *  Nobody makes a single channel controller that appears solely as
2505  *  the secondary legacy port on PCI.
2506  *
2507  *  LOCKING:
2508  *  Inherited from PCI layer (may sleep).
2509  *
2510  *  RETURNS:
2511  *  Zero on success, negative on errno-based value on error.
2512  */
2513 int ata_pci_sff_init_one(struct pci_dev *pdev,
2514          const struct ata_port_info * const *ppi,
2515          struct scsi_host_template *sht, void *host_priv, int hflag)
2516 {
2517     return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2518 }
2519 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2520 
2521 #endif /* CONFIG_PCI */
2522 
2523 /*
2524  *  BMDMA support
2525  */
2526 
2527 #ifdef CONFIG_ATA_BMDMA
2528 
2529 const struct ata_port_operations ata_bmdma_port_ops = {
2530     .inherits       = &ata_sff_port_ops,
2531 
2532     .error_handler      = ata_bmdma_error_handler,
2533     .post_internal_cmd  = ata_bmdma_post_internal_cmd,
2534 
2535     .qc_prep        = ata_bmdma_qc_prep,
2536     .qc_issue       = ata_bmdma_qc_issue,
2537 
2538     .sff_irq_clear      = ata_bmdma_irq_clear,
2539     .bmdma_setup        = ata_bmdma_setup,
2540     .bmdma_start        = ata_bmdma_start,
2541     .bmdma_stop     = ata_bmdma_stop,
2542     .bmdma_status       = ata_bmdma_status,
2543 
2544     .port_start     = ata_bmdma_port_start,
2545 };
2546 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2547 
2548 const struct ata_port_operations ata_bmdma32_port_ops = {
2549     .inherits       = &ata_bmdma_port_ops,
2550 
2551     .sff_data_xfer      = ata_sff_data_xfer32,
2552     .port_start     = ata_bmdma_port_start32,
2553 };
2554 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2555 
2556 /**
2557  *  ata_bmdma_fill_sg - Fill PCI IDE PRD table
2558  *  @qc: Metadata associated with taskfile to be transferred
2559  *
2560  *  Fill PCI IDE PRD (scatter-gather) table with segments
2561  *  associated with the current disk command.
2562  *
2563  *  LOCKING:
2564  *  spin_lock_irqsave(host lock)
2565  *
2566  */
2567 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2568 {
2569     struct ata_port *ap = qc->ap;
2570     struct ata_bmdma_prd *prd = ap->bmdma_prd;
2571     struct scatterlist *sg;
2572     unsigned int si, pi;
2573 
2574     pi = 0;
2575     for_each_sg(qc->sg, sg, qc->n_elem, si) {
2576         u32 addr, offset;
2577         u32 sg_len, len;
2578 
2579         /* determine if physical DMA addr spans 64K boundary.
2580          * Note h/w doesn't support 64-bit, so we unconditionally
2581          * truncate dma_addr_t to u32.
2582          */
2583         addr = (u32) sg_dma_address(sg);
2584         sg_len = sg_dma_len(sg);
2585 
2586         while (sg_len) {
2587             offset = addr & 0xffff;
2588             len = sg_len;
2589             if ((offset + sg_len) > 0x10000)
2590                 len = 0x10000 - offset;
2591 
2592             prd[pi].addr = cpu_to_le32(addr);
2593             prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2594 
2595             pi++;
2596             sg_len -= len;
2597             addr += len;
2598         }
2599     }
2600 
2601     prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2602 }
2603 
2604 /**
2605  *  ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2606  *  @qc: Metadata associated with taskfile to be transferred
2607  *
2608  *  Fill PCI IDE PRD (scatter-gather) table with segments
2609  *  associated with the current disk command. Perform the fill
2610  *  so that we avoid writing any length 64K records for
2611  *  controllers that don't follow the spec.
2612  *
2613  *  LOCKING:
2614  *  spin_lock_irqsave(host lock)
2615  *
2616  */
2617 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2618 {
2619     struct ata_port *ap = qc->ap;
2620     struct ata_bmdma_prd *prd = ap->bmdma_prd;
2621     struct scatterlist *sg;
2622     unsigned int si, pi;
2623 
2624     pi = 0;
2625     for_each_sg(qc->sg, sg, qc->n_elem, si) {
2626         u32 addr, offset;
2627         u32 sg_len, len, blen;
2628 
2629         /* determine if physical DMA addr spans 64K boundary.
2630          * Note h/w doesn't support 64-bit, so we unconditionally
2631          * truncate dma_addr_t to u32.
2632          */
2633         addr = (u32) sg_dma_address(sg);
2634         sg_len = sg_dma_len(sg);
2635 
2636         while (sg_len) {
2637             offset = addr & 0xffff;
2638             len = sg_len;
2639             if ((offset + sg_len) > 0x10000)
2640                 len = 0x10000 - offset;
2641 
2642             blen = len & 0xffff;
2643             prd[pi].addr = cpu_to_le32(addr);
2644             if (blen == 0) {
2645                 /* Some PATA chipsets like the CS5530 can't
2646                    cope with 0x0000 meaning 64K as the spec
2647                    says */
2648                 prd[pi].flags_len = cpu_to_le32(0x8000);
2649                 blen = 0x8000;
2650                 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2651             }
2652             prd[pi].flags_len = cpu_to_le32(blen);
2653 
2654             pi++;
2655             sg_len -= len;
2656             addr += len;
2657         }
2658     }
2659 
2660     prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2661 }
2662 
2663 /**
2664  *  ata_bmdma_qc_prep - Prepare taskfile for submission
2665  *  @qc: Metadata associated with taskfile to be prepared
2666  *
2667  *  Prepare ATA taskfile for submission.
2668  *
2669  *  LOCKING:
2670  *  spin_lock_irqsave(host lock)
2671  */
2672 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2673 {
2674     if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2675         return AC_ERR_OK;
2676 
2677     ata_bmdma_fill_sg(qc);
2678 
2679     return AC_ERR_OK;
2680 }
2681 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2682 
2683 /**
2684  *  ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2685  *  @qc: Metadata associated with taskfile to be prepared
2686  *
2687  *  Prepare ATA taskfile for submission.
2688  *
2689  *  LOCKING:
2690  *  spin_lock_irqsave(host lock)
2691  */
2692 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2693 {
2694     if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2695         return AC_ERR_OK;
2696 
2697     ata_bmdma_fill_sg_dumb(qc);
2698 
2699     return AC_ERR_OK;
2700 }
2701 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2702 
2703 /**
2704  *  ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2705  *  @qc: command to issue to device
2706  *
2707  *  This function issues a PIO, NODATA or DMA command to a
2708  *  SFF/BMDMA controller.  PIO and NODATA are handled by
2709  *  ata_sff_qc_issue().
2710  *
2711  *  LOCKING:
2712  *  spin_lock_irqsave(host lock)
2713  *
2714  *  RETURNS:
2715  *  Zero on success, AC_ERR_* mask on failure
2716  */
2717 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2718 {
2719     struct ata_port *ap = qc->ap;
2720     struct ata_link *link = qc->dev->link;
2721 
2722     /* defer PIO handling to sff_qc_issue */
2723     if (!ata_is_dma(qc->tf.protocol))
2724         return ata_sff_qc_issue(qc);
2725 
2726     /* select the device */
2727     ata_dev_select(ap, qc->dev->devno, 1, 0);
2728 
2729     /* start the command */
2730     switch (qc->tf.protocol) {
2731     case ATA_PROT_DMA:
2732         WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2733 
2734         trace_ata_tf_load(ap, &qc->tf);
2735         ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2736         trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2737         ap->ops->bmdma_setup(qc);       /* set up bmdma */
2738         trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2739         ap->ops->bmdma_start(qc);       /* initiate bmdma */
2740         ap->hsm_task_state = HSM_ST_LAST;
2741         break;
2742 
2743     case ATAPI_PROT_DMA:
2744         WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2745 
2746         trace_ata_tf_load(ap, &qc->tf);
2747         ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2748         trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2749         ap->ops->bmdma_setup(qc);       /* set up bmdma */
2750         ap->hsm_task_state = HSM_ST_FIRST;
2751 
2752         /* send cdb by polling if no cdb interrupt */
2753         if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2754             ata_sff_queue_pio_task(link, 0);
2755         break;
2756 
2757     default:
2758         WARN_ON(1);
2759         return AC_ERR_SYSTEM;
2760     }
2761 
2762     return 0;
2763 }
2764 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2765 
2766 /**
2767  *  ata_bmdma_port_intr - Handle BMDMA port interrupt
2768  *  @ap: Port on which interrupt arrived (possibly...)
2769  *  @qc: Taskfile currently active in engine
2770  *
2771  *  Handle port interrupt for given queued command.
2772  *
2773  *  LOCKING:
2774  *  spin_lock_irqsave(host lock)
2775  *
2776  *  RETURNS:
2777  *  One if interrupt was handled, zero if not (shared irq).
2778  */
2779 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2780 {
2781     struct ata_eh_info *ehi = &ap->link.eh_info;
2782     u8 host_stat = 0;
2783     bool bmdma_stopped = false;
2784     unsigned int handled;
2785 
2786     if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2787         /* check status of DMA engine */
2788         host_stat = ap->ops->bmdma_status(ap);
2789         trace_ata_bmdma_status(ap, host_stat);
2790 
2791         /* if it's not our irq... */
2792         if (!(host_stat & ATA_DMA_INTR))
2793             return ata_sff_idle_irq(ap);
2794 
2795         /* before we do anything else, clear DMA-Start bit */
2796         trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2797         ap->ops->bmdma_stop(qc);
2798         bmdma_stopped = true;
2799 
2800         if (unlikely(host_stat & ATA_DMA_ERR)) {
2801             /* error when transferring data to/from memory */
2802             qc->err_mask |= AC_ERR_HOST_BUS;
2803             ap->hsm_task_state = HSM_ST_ERR;
2804         }
2805     }
2806 
2807     handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2808 
2809     if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2810         ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2811 
2812     return handled;
2813 }
2814 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2815 
2816 /**
2817  *  ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818  *  @irq: irq line (unused)
2819  *  @dev_instance: pointer to our ata_host information structure
2820  *
2821  *  Default interrupt handler for PCI IDE devices.  Calls
2822  *  ata_bmdma_port_intr() for each port that is not disabled.
2823  *
2824  *  LOCKING:
2825  *  Obtains host lock during operation.
2826  *
2827  *  RETURNS:
2828  *  IRQ_NONE or IRQ_HANDLED.
2829  */
2830 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2831 {
2832     return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2833 }
2834 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2835 
2836 /**
2837  *  ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838  *  @ap: port to handle error for
2839  *
2840  *  Stock error handler for BMDMA controller.  It can handle both
2841  *  PATA and SATA controllers.  Most BMDMA controllers should be
2842  *  able to use this EH as-is or with some added handling before
2843  *  and after.
2844  *
2845  *  LOCKING:
2846  *  Kernel thread context (may sleep)
2847  */
2848 void ata_bmdma_error_handler(struct ata_port *ap)
2849 {
2850     struct ata_queued_cmd *qc;
2851     unsigned long flags;
2852     bool thaw = false;
2853 
2854     qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2855     if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2856         qc = NULL;
2857 
2858     /* reset PIO HSM and stop DMA engine */
2859     spin_lock_irqsave(ap->lock, flags);
2860 
2861     if (qc && ata_is_dma(qc->tf.protocol)) {
2862         u8 host_stat;
2863 
2864         host_stat = ap->ops->bmdma_status(ap);
2865         trace_ata_bmdma_status(ap, host_stat);
2866 
2867         /* BMDMA controllers indicate host bus error by
2868          * setting DMA_ERR bit and timing out.  As it wasn't
2869          * really a timeout event, adjust error mask and
2870          * cancel frozen state.
2871          */
2872         if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2873             qc->err_mask = AC_ERR_HOST_BUS;
2874             thaw = true;
2875         }
2876 
2877         trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2878         ap->ops->bmdma_stop(qc);
2879 
2880         /* if we're gonna thaw, make sure IRQ is clear */
2881         if (thaw) {
2882             ap->ops->sff_check_status(ap);
2883             if (ap->ops->sff_irq_clear)
2884                 ap->ops->sff_irq_clear(ap);
2885         }
2886     }
2887 
2888     spin_unlock_irqrestore(ap->lock, flags);
2889 
2890     if (thaw)
2891         ata_eh_thaw_port(ap);
2892 
2893     ata_sff_error_handler(ap);
2894 }
2895 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2896 
2897 /**
2898  *  ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2899  *  @qc: internal command to clean up
2900  *
2901  *  LOCKING:
2902  *  Kernel thread context (may sleep)
2903  */
2904 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2905 {
2906     struct ata_port *ap = qc->ap;
2907     unsigned long flags;
2908 
2909     if (ata_is_dma(qc->tf.protocol)) {
2910         spin_lock_irqsave(ap->lock, flags);
2911         trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2912         ap->ops->bmdma_stop(qc);
2913         spin_unlock_irqrestore(ap->lock, flags);
2914     }
2915 }
2916 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2917 
2918 /**
2919  *  ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2920  *  @ap: Port associated with this ATA transaction.
2921  *
2922  *  Clear interrupt and error flags in DMA status register.
2923  *
2924  *  May be used as the irq_clear() entry in ata_port_operations.
2925  *
2926  *  LOCKING:
2927  *  spin_lock_irqsave(host lock)
2928  */
2929 void ata_bmdma_irq_clear(struct ata_port *ap)
2930 {
2931     void __iomem *mmio = ap->ioaddr.bmdma_addr;
2932 
2933     if (!mmio)
2934         return;
2935 
2936     iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2937 }
2938 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2939 
2940 /**
2941  *  ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2942  *  @qc: Info associated with this ATA transaction.
2943  *
2944  *  LOCKING:
2945  *  spin_lock_irqsave(host lock)
2946  */
2947 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2948 {
2949     struct ata_port *ap = qc->ap;
2950     unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2951     u8 dmactl;
2952 
2953     /* load PRD table addr. */
2954     mb();   /* make sure PRD table writes are visible to controller */
2955     iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2956 
2957     /* specify data direction, triple-check start bit is clear */
2958     dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2959     dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2960     if (!rw)
2961         dmactl |= ATA_DMA_WR;
2962     iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2963 
2964     /* issue r/w command */
2965     ap->ops->sff_exec_command(ap, &qc->tf);
2966 }
2967 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2968 
2969 /**
2970  *  ata_bmdma_start - Start a PCI IDE BMDMA transaction
2971  *  @qc: Info associated with this ATA transaction.
2972  *
2973  *  LOCKING:
2974  *  spin_lock_irqsave(host lock)
2975  */
2976 void ata_bmdma_start(struct ata_queued_cmd *qc)
2977 {
2978     struct ata_port *ap = qc->ap;
2979     u8 dmactl;
2980 
2981     /* start host DMA transaction */
2982     dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2983     iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2984 
2985     /* Strictly, one may wish to issue an ioread8() here, to
2986      * flush the mmio write.  However, control also passes
2987      * to the hardware at this point, and it will interrupt
2988      * us when we are to resume control.  So, in effect,
2989      * we don't care when the mmio write flushes.
2990      * Further, a read of the DMA status register _immediately_
2991      * following the write may not be what certain flaky hardware
2992      * is expected, so I think it is best to not add a readb()
2993      * without first all the MMIO ATA cards/mobos.
2994      * Or maybe I'm just being paranoid.
2995      *
2996      * FIXME: The posting of this write means I/O starts are
2997      * unnecessarily delayed for MMIO
2998      */
2999 }
3000 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3001 
3002 /**
3003  *  ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3004  *  @qc: Command we are ending DMA for
3005  *
3006  *  Clears the ATA_DMA_START flag in the dma control register
3007  *
3008  *  May be used as the bmdma_stop() entry in ata_port_operations.
3009  *
3010  *  LOCKING:
3011  *  spin_lock_irqsave(host lock)
3012  */
3013 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3014 {
3015     struct ata_port *ap = qc->ap;
3016     void __iomem *mmio = ap->ioaddr.bmdma_addr;
3017 
3018     /* clear start/stop bit */
3019     iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3020          mmio + ATA_DMA_CMD);
3021 
3022     /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3023     ata_sff_dma_pause(ap);
3024 }
3025 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3026 
3027 /**
3028  *  ata_bmdma_status - Read PCI IDE BMDMA status
3029  *  @ap: Port associated with this ATA transaction.
3030  *
3031  *  Read and return BMDMA status register.
3032  *
3033  *  May be used as the bmdma_status() entry in ata_port_operations.
3034  *
3035  *  LOCKING:
3036  *  spin_lock_irqsave(host lock)
3037  */
3038 u8 ata_bmdma_status(struct ata_port *ap)
3039 {
3040     return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3041 }
3042 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3043 
3044 
3045 /**
3046  *  ata_bmdma_port_start - Set port up for bmdma.
3047  *  @ap: Port to initialize
3048  *
3049  *  Called just after data structures for each port are
3050  *  initialized.  Allocates space for PRD table.
3051  *
3052  *  May be used as the port_start() entry in ata_port_operations.
3053  *
3054  *  LOCKING:
3055  *  Inherited from caller.
3056  */
3057 int ata_bmdma_port_start(struct ata_port *ap)
3058 {
3059     if (ap->mwdma_mask || ap->udma_mask) {
3060         ap->bmdma_prd =
3061             dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3062                         &ap->bmdma_prd_dma, GFP_KERNEL);
3063         if (!ap->bmdma_prd)
3064             return -ENOMEM;
3065     }
3066 
3067     return 0;
3068 }
3069 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3070 
3071 /**
3072  *  ata_bmdma_port_start32 - Set port up for dma.
3073  *  @ap: Port to initialize
3074  *
3075  *  Called just after data structures for each port are
3076  *  initialized.  Enables 32bit PIO and allocates space for PRD
3077  *  table.
3078  *
3079  *  May be used as the port_start() entry in ata_port_operations for
3080  *  devices that are capable of 32bit PIO.
3081  *
3082  *  LOCKING:
3083  *  Inherited from caller.
3084  */
3085 int ata_bmdma_port_start32(struct ata_port *ap)
3086 {
3087     ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3088     return ata_bmdma_port_start(ap);
3089 }
3090 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3091 
3092 #ifdef CONFIG_PCI
3093 
3094 /**
3095  *  ata_pci_bmdma_clear_simplex -   attempt to kick device out of simplex
3096  *  @pdev: PCI device
3097  *
3098  *  Some PCI ATA devices report simplex mode but in fact can be told to
3099  *  enter non simplex mode. This implements the necessary logic to
3100  *  perform the task on such devices. Calling it on other devices will
3101  *  have -undefined- behaviour.
3102  */
3103 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3104 {
3105     unsigned long bmdma = pci_resource_start(pdev, 4);
3106     u8 simplex;
3107 
3108     if (bmdma == 0)
3109         return -ENOENT;
3110 
3111     simplex = inb(bmdma + 0x02);
3112     outb(simplex & 0x60, bmdma + 0x02);
3113     simplex = inb(bmdma + 0x02);
3114     if (simplex & 0x80)
3115         return -EOPNOTSUPP;
3116     return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3119 
3120 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3121 {
3122     int i;
3123 
3124     dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3125 
3126     for (i = 0; i < 2; i++) {
3127         host->ports[i]->mwdma_mask = 0;
3128         host->ports[i]->udma_mask = 0;
3129     }
3130 }
3131 
3132 /**
3133  *  ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3134  *  @host: target ATA host
3135  *
3136  *  Acquire PCI BMDMA resources and initialize @host accordingly.
3137  *
3138  *  LOCKING:
3139  *  Inherited from calling layer (may sleep).
3140  */
3141 void ata_pci_bmdma_init(struct ata_host *host)
3142 {
3143     struct device *gdev = host->dev;
3144     struct pci_dev *pdev = to_pci_dev(gdev);
3145     int i, rc;
3146 
3147     /* No BAR4 allocation: No DMA */
3148     if (pci_resource_start(pdev, 4) == 0) {
3149         ata_bmdma_nodma(host, "BAR4 is zero");
3150         return;
3151     }
3152 
3153     /*
3154      * Some controllers require BMDMA region to be initialized
3155      * even if DMA is not in use to clear IRQ status via
3156      * ->sff_irq_clear method.  Try to initialize bmdma_addr
3157      * regardless of dma masks.
3158      */
3159     rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3160     if (rc)
3161         ata_bmdma_nodma(host, "failed to set dma mask");
3162 
3163     /* request and iomap DMA region */
3164     rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3165     if (rc) {
3166         ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3167         return;
3168     }
3169     host->iomap = pcim_iomap_table(pdev);
3170 
3171     for (i = 0; i < 2; i++) {
3172         struct ata_port *ap = host->ports[i];
3173         void __iomem *bmdma = host->iomap[4] + 8 * i;
3174 
3175         if (ata_port_is_dummy(ap))
3176             continue;
3177 
3178         ap->ioaddr.bmdma_addr = bmdma;
3179         if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3180             (ioread8(bmdma + 2) & 0x80))
3181             host->flags |= ATA_HOST_SIMPLEX;
3182 
3183         ata_port_desc(ap, "bmdma 0x%llx",
3184             (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3185     }
3186 }
3187 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3188 
3189 /**
3190  *  ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3191  *  @pdev: target PCI device
3192  *  @ppi: array of port_info, must be enough for two ports
3193  *  @r_host: out argument for the initialized ATA host
3194  *
3195  *  Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3196  *  resources and initialize it accordingly in one go.
3197  *
3198  *  LOCKING:
3199  *  Inherited from calling layer (may sleep).
3200  *
3201  *  RETURNS:
3202  *  0 on success, -errno otherwise.
3203  */
3204 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3205                    const struct ata_port_info * const * ppi,
3206                    struct ata_host **r_host)
3207 {
3208     int rc;
3209 
3210     rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3211     if (rc)
3212         return rc;
3213 
3214     ata_pci_bmdma_init(*r_host);
3215     return 0;
3216 }
3217 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3218 
3219 /**
3220  *  ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3221  *  @pdev: Controller to be initialized
3222  *  @ppi: array of port_info, must be enough for two ports
3223  *  @sht: scsi_host_template to use when registering the host
3224  *  @host_priv: host private_data
3225  *  @hflags: host flags
3226  *
3227  *  This function is similar to ata_pci_sff_init_one() but also
3228  *  takes care of BMDMA initialization.
3229  *
3230  *  LOCKING:
3231  *  Inherited from PCI layer (may sleep).
3232  *
3233  *  RETURNS:
3234  *  Zero on success, negative on errno-based value on error.
3235  */
3236 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3237                const struct ata_port_info * const * ppi,
3238                struct scsi_host_template *sht, void *host_priv,
3239                int hflags)
3240 {
3241     return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3242 }
3243 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3244 
3245 #endif /* CONFIG_PCI */
3246 #endif /* CONFIG_ATA_BMDMA */
3247 
3248 /**
3249  *  ata_sff_port_init - Initialize SFF/BMDMA ATA port
3250  *  @ap: Port to initialize
3251  *
3252  *  Called on port allocation to initialize SFF/BMDMA specific
3253  *  fields.
3254  *
3255  *  LOCKING:
3256  *  None.
3257  */
3258 void ata_sff_port_init(struct ata_port *ap)
3259 {
3260     INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3261     ap->ctl = ATA_DEVCTL_OBS;
3262     ap->last_ctl = 0xFF;
3263 }
3264 
3265 int __init ata_sff_init(void)
3266 {
3267     ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3268     if (!ata_sff_wq)
3269         return -ENOMEM;
3270 
3271     return 0;
3272 }
3273 
3274 void ata_sff_exit(void)
3275 {
3276     destroy_workqueue(ata_sff_wq);
3277 }