Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * scan.c - support for transforming the ACPI namespace into individual objects
0004  */
0005 
0006 #define pr_fmt(fmt) "ACPI: " fmt
0007 
0008 #include <linux/module.h>
0009 #include <linux/init.h>
0010 #include <linux/slab.h>
0011 #include <linux/kernel.h>
0012 #include <linux/acpi.h>
0013 #include <linux/acpi_iort.h>
0014 #include <linux/acpi_viot.h>
0015 #include <linux/iommu.h>
0016 #include <linux/signal.h>
0017 #include <linux/kthread.h>
0018 #include <linux/dmi.h>
0019 #include <linux/dma-map-ops.h>
0020 #include <linux/platform_data/x86/apple.h>
0021 #include <linux/pgtable.h>
0022 #include <linux/crc32.h>
0023 
0024 #include "internal.h"
0025 
0026 extern struct acpi_device *acpi_root;
0027 
0028 #define ACPI_BUS_CLASS          "system_bus"
0029 #define ACPI_BUS_HID            "LNXSYBUS"
0030 #define ACPI_BUS_DEVICE_NAME        "System Bus"
0031 
0032 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
0033 
0034 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
0035 
0036 static const char *dummy_hid = "device";
0037 
0038 static LIST_HEAD(acpi_dep_list);
0039 static DEFINE_MUTEX(acpi_dep_list_lock);
0040 LIST_HEAD(acpi_bus_id_list);
0041 static DEFINE_MUTEX(acpi_scan_lock);
0042 static LIST_HEAD(acpi_scan_handlers_list);
0043 DEFINE_MUTEX(acpi_device_lock);
0044 LIST_HEAD(acpi_wakeup_device_list);
0045 static DEFINE_MUTEX(acpi_hp_context_lock);
0046 
0047 /*
0048  * The UART device described by the SPCR table is the only object which needs
0049  * special-casing. Everything else is covered by ACPI namespace paths in STAO
0050  * table.
0051  */
0052 static u64 spcr_uart_addr;
0053 
0054 void acpi_scan_lock_acquire(void)
0055 {
0056     mutex_lock(&acpi_scan_lock);
0057 }
0058 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
0059 
0060 void acpi_scan_lock_release(void)
0061 {
0062     mutex_unlock(&acpi_scan_lock);
0063 }
0064 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
0065 
0066 void acpi_lock_hp_context(void)
0067 {
0068     mutex_lock(&acpi_hp_context_lock);
0069 }
0070 
0071 void acpi_unlock_hp_context(void)
0072 {
0073     mutex_unlock(&acpi_hp_context_lock);
0074 }
0075 
0076 void acpi_initialize_hp_context(struct acpi_device *adev,
0077                 struct acpi_hotplug_context *hp,
0078                 int (*notify)(struct acpi_device *, u32),
0079                 void (*uevent)(struct acpi_device *, u32))
0080 {
0081     acpi_lock_hp_context();
0082     hp->notify = notify;
0083     hp->uevent = uevent;
0084     acpi_set_hp_context(adev, hp);
0085     acpi_unlock_hp_context();
0086 }
0087 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
0088 
0089 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
0090 {
0091     if (!handler)
0092         return -EINVAL;
0093 
0094     list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
0095     return 0;
0096 }
0097 
0098 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
0099                        const char *hotplug_profile_name)
0100 {
0101     int error;
0102 
0103     error = acpi_scan_add_handler(handler);
0104     if (error)
0105         return error;
0106 
0107     acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
0108     return 0;
0109 }
0110 
0111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
0112 {
0113     struct acpi_device_physical_node *pn;
0114     bool offline = true;
0115     char *envp[] = { "EVENT=offline", NULL };
0116 
0117     /*
0118      * acpi_container_offline() calls this for all of the container's
0119      * children under the container's physical_node_lock lock.
0120      */
0121     mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
0122 
0123     list_for_each_entry(pn, &adev->physical_node_list, node)
0124         if (device_supports_offline(pn->dev) && !pn->dev->offline) {
0125             if (uevent)
0126                 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
0127 
0128             offline = false;
0129             break;
0130         }
0131 
0132     mutex_unlock(&adev->physical_node_lock);
0133     return offline;
0134 }
0135 
0136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
0137                     void **ret_p)
0138 {
0139     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
0140     struct acpi_device_physical_node *pn;
0141     bool second_pass = (bool)data;
0142     acpi_status status = AE_OK;
0143 
0144     if (!device)
0145         return AE_OK;
0146 
0147     if (device->handler && !device->handler->hotplug.enabled) {
0148         *ret_p = &device->dev;
0149         return AE_SUPPORT;
0150     }
0151 
0152     mutex_lock(&device->physical_node_lock);
0153 
0154     list_for_each_entry(pn, &device->physical_node_list, node) {
0155         int ret;
0156 
0157         if (second_pass) {
0158             /* Skip devices offlined by the first pass. */
0159             if (pn->put_online)
0160                 continue;
0161         } else {
0162             pn->put_online = false;
0163         }
0164         ret = device_offline(pn->dev);
0165         if (ret >= 0) {
0166             pn->put_online = !ret;
0167         } else {
0168             *ret_p = pn->dev;
0169             if (second_pass) {
0170                 status = AE_ERROR;
0171                 break;
0172             }
0173         }
0174     }
0175 
0176     mutex_unlock(&device->physical_node_lock);
0177 
0178     return status;
0179 }
0180 
0181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
0182                    void **ret_p)
0183 {
0184     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
0185     struct acpi_device_physical_node *pn;
0186 
0187     if (!device)
0188         return AE_OK;
0189 
0190     mutex_lock(&device->physical_node_lock);
0191 
0192     list_for_each_entry(pn, &device->physical_node_list, node)
0193         if (pn->put_online) {
0194             device_online(pn->dev);
0195             pn->put_online = false;
0196         }
0197 
0198     mutex_unlock(&device->physical_node_lock);
0199 
0200     return AE_OK;
0201 }
0202 
0203 static int acpi_scan_try_to_offline(struct acpi_device *device)
0204 {
0205     acpi_handle handle = device->handle;
0206     struct device *errdev = NULL;
0207     acpi_status status;
0208 
0209     /*
0210      * Carry out two passes here and ignore errors in the first pass,
0211      * because if the devices in question are memory blocks and
0212      * CONFIG_MEMCG is set, one of the blocks may hold data structures
0213      * that the other blocks depend on, but it is not known in advance which
0214      * block holds them.
0215      *
0216      * If the first pass is successful, the second one isn't needed, though.
0217      */
0218     status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
0219                      NULL, acpi_bus_offline, (void *)false,
0220                      (void **)&errdev);
0221     if (status == AE_SUPPORT) {
0222         dev_warn(errdev, "Offline disabled.\n");
0223         acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
0224                     acpi_bus_online, NULL, NULL, NULL);
0225         return -EPERM;
0226     }
0227     acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
0228     if (errdev) {
0229         errdev = NULL;
0230         acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
0231                     NULL, acpi_bus_offline, (void *)true,
0232                     (void **)&errdev);
0233         if (!errdev)
0234             acpi_bus_offline(handle, 0, (void *)true,
0235                      (void **)&errdev);
0236 
0237         if (errdev) {
0238             dev_warn(errdev, "Offline failed.\n");
0239             acpi_bus_online(handle, 0, NULL, NULL);
0240             acpi_walk_namespace(ACPI_TYPE_ANY, handle,
0241                         ACPI_UINT32_MAX, acpi_bus_online,
0242                         NULL, NULL, NULL);
0243             return -EBUSY;
0244         }
0245     }
0246     return 0;
0247 }
0248 
0249 static int acpi_scan_hot_remove(struct acpi_device *device)
0250 {
0251     acpi_handle handle = device->handle;
0252     unsigned long long sta;
0253     acpi_status status;
0254 
0255     if (device->handler && device->handler->hotplug.demand_offline) {
0256         if (!acpi_scan_is_offline(device, true))
0257             return -EBUSY;
0258     } else {
0259         int error = acpi_scan_try_to_offline(device);
0260         if (error)
0261             return error;
0262     }
0263 
0264     acpi_handle_debug(handle, "Ejecting\n");
0265 
0266     acpi_bus_trim(device);
0267 
0268     acpi_evaluate_lck(handle, 0);
0269     /*
0270      * TBD: _EJD support.
0271      */
0272     status = acpi_evaluate_ej0(handle);
0273     if (status == AE_NOT_FOUND)
0274         return -ENODEV;
0275     else if (ACPI_FAILURE(status))
0276         return -EIO;
0277 
0278     /*
0279      * Verify if eject was indeed successful.  If not, log an error
0280      * message.  No need to call _OST since _EJ0 call was made OK.
0281      */
0282     status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
0283     if (ACPI_FAILURE(status)) {
0284         acpi_handle_warn(handle,
0285             "Status check after eject failed (0x%x)\n", status);
0286     } else if (sta & ACPI_STA_DEVICE_ENABLED) {
0287         acpi_handle_warn(handle,
0288             "Eject incomplete - status 0x%llx\n", sta);
0289     }
0290 
0291     return 0;
0292 }
0293 
0294 static int acpi_scan_device_not_present(struct acpi_device *adev)
0295 {
0296     if (!acpi_device_enumerated(adev)) {
0297         dev_warn(&adev->dev, "Still not present\n");
0298         return -EALREADY;
0299     }
0300     acpi_bus_trim(adev);
0301     return 0;
0302 }
0303 
0304 static int acpi_scan_device_check(struct acpi_device *adev)
0305 {
0306     int error;
0307 
0308     acpi_bus_get_status(adev);
0309     if (adev->status.present || adev->status.functional) {
0310         /*
0311          * This function is only called for device objects for which
0312          * matching scan handlers exist.  The only situation in which
0313          * the scan handler is not attached to this device object yet
0314          * is when the device has just appeared (either it wasn't
0315          * present at all before or it was removed and then added
0316          * again).
0317          */
0318         if (adev->handler) {
0319             dev_warn(&adev->dev, "Already enumerated\n");
0320             return -EALREADY;
0321         }
0322         error = acpi_bus_scan(adev->handle);
0323         if (error) {
0324             dev_warn(&adev->dev, "Namespace scan failure\n");
0325             return error;
0326         }
0327         if (!adev->handler) {
0328             dev_warn(&adev->dev, "Enumeration failure\n");
0329             error = -ENODEV;
0330         }
0331     } else {
0332         error = acpi_scan_device_not_present(adev);
0333     }
0334     return error;
0335 }
0336 
0337 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
0338 {
0339     struct acpi_scan_handler *handler = adev->handler;
0340     int error;
0341 
0342     acpi_bus_get_status(adev);
0343     if (!(adev->status.present || adev->status.functional)) {
0344         acpi_scan_device_not_present(adev);
0345         return 0;
0346     }
0347     if (handler && handler->hotplug.scan_dependent)
0348         return handler->hotplug.scan_dependent(adev);
0349 
0350     error = acpi_bus_scan(adev->handle);
0351     if (error) {
0352         dev_warn(&adev->dev, "Namespace scan failure\n");
0353         return error;
0354     }
0355     return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
0356 }
0357 
0358 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
0359 {
0360     switch (type) {
0361     case ACPI_NOTIFY_BUS_CHECK:
0362         return acpi_scan_bus_check(adev, NULL);
0363     case ACPI_NOTIFY_DEVICE_CHECK:
0364         return acpi_scan_device_check(adev);
0365     case ACPI_NOTIFY_EJECT_REQUEST:
0366     case ACPI_OST_EC_OSPM_EJECT:
0367         if (adev->handler && !adev->handler->hotplug.enabled) {
0368             dev_info(&adev->dev, "Eject disabled\n");
0369             return -EPERM;
0370         }
0371         acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
0372                   ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
0373         return acpi_scan_hot_remove(adev);
0374     }
0375     return -EINVAL;
0376 }
0377 
0378 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
0379 {
0380     u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
0381     int error = -ENODEV;
0382 
0383     lock_device_hotplug();
0384     mutex_lock(&acpi_scan_lock);
0385 
0386     /*
0387      * The device object's ACPI handle cannot become invalid as long as we
0388      * are holding acpi_scan_lock, but it might have become invalid before
0389      * that lock was acquired.
0390      */
0391     if (adev->handle == INVALID_ACPI_HANDLE)
0392         goto err_out;
0393 
0394     if (adev->flags.is_dock_station) {
0395         error = dock_notify(adev, src);
0396     } else if (adev->flags.hotplug_notify) {
0397         error = acpi_generic_hotplug_event(adev, src);
0398     } else {
0399         int (*notify)(struct acpi_device *, u32);
0400 
0401         acpi_lock_hp_context();
0402         notify = adev->hp ? adev->hp->notify : NULL;
0403         acpi_unlock_hp_context();
0404         /*
0405          * There may be additional notify handlers for device objects
0406          * without the .event() callback, so ignore them here.
0407          */
0408         if (notify)
0409             error = notify(adev, src);
0410         else
0411             goto out;
0412     }
0413     switch (error) {
0414     case 0:
0415         ost_code = ACPI_OST_SC_SUCCESS;
0416         break;
0417     case -EPERM:
0418         ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
0419         break;
0420     case -EBUSY:
0421         ost_code = ACPI_OST_SC_DEVICE_BUSY;
0422         break;
0423     default:
0424         ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
0425         break;
0426     }
0427 
0428  err_out:
0429     acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
0430 
0431  out:
0432     acpi_bus_put_acpi_device(adev);
0433     mutex_unlock(&acpi_scan_lock);
0434     unlock_device_hotplug();
0435 }
0436 
0437 static void acpi_free_power_resources_lists(struct acpi_device *device)
0438 {
0439     int i;
0440 
0441     if (device->wakeup.flags.valid)
0442         acpi_power_resources_list_free(&device->wakeup.resources);
0443 
0444     if (!device->power.flags.power_resources)
0445         return;
0446 
0447     for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
0448         struct acpi_device_power_state *ps = &device->power.states[i];
0449         acpi_power_resources_list_free(&ps->resources);
0450     }
0451 }
0452 
0453 static void acpi_device_release(struct device *dev)
0454 {
0455     struct acpi_device *acpi_dev = to_acpi_device(dev);
0456 
0457     acpi_free_properties(acpi_dev);
0458     acpi_free_pnp_ids(&acpi_dev->pnp);
0459     acpi_free_power_resources_lists(acpi_dev);
0460     kfree(acpi_dev);
0461 }
0462 
0463 static void acpi_device_del(struct acpi_device *device)
0464 {
0465     struct acpi_device_bus_id *acpi_device_bus_id;
0466 
0467     mutex_lock(&acpi_device_lock);
0468 
0469     list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
0470         if (!strcmp(acpi_device_bus_id->bus_id,
0471                 acpi_device_hid(device))) {
0472             ida_free(&acpi_device_bus_id->instance_ida,
0473                  device->pnp.instance_no);
0474             if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
0475                 list_del(&acpi_device_bus_id->node);
0476                 kfree_const(acpi_device_bus_id->bus_id);
0477                 kfree(acpi_device_bus_id);
0478             }
0479             break;
0480         }
0481 
0482     list_del(&device->wakeup_list);
0483 
0484     mutex_unlock(&acpi_device_lock);
0485 
0486     acpi_power_add_remove_device(device, false);
0487     acpi_device_remove_files(device);
0488     if (device->remove)
0489         device->remove(device);
0490 
0491     device_del(&device->dev);
0492 }
0493 
0494 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
0495 
0496 static LIST_HEAD(acpi_device_del_list);
0497 static DEFINE_MUTEX(acpi_device_del_lock);
0498 
0499 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
0500 {
0501     for (;;) {
0502         struct acpi_device *adev;
0503 
0504         mutex_lock(&acpi_device_del_lock);
0505 
0506         if (list_empty(&acpi_device_del_list)) {
0507             mutex_unlock(&acpi_device_del_lock);
0508             break;
0509         }
0510         adev = list_first_entry(&acpi_device_del_list,
0511                     struct acpi_device, del_list);
0512         list_del(&adev->del_list);
0513 
0514         mutex_unlock(&acpi_device_del_lock);
0515 
0516         blocking_notifier_call_chain(&acpi_reconfig_chain,
0517                          ACPI_RECONFIG_DEVICE_REMOVE, adev);
0518 
0519         acpi_device_del(adev);
0520         /*
0521          * Drop references to all power resources that might have been
0522          * used by the device.
0523          */
0524         acpi_power_transition(adev, ACPI_STATE_D3_COLD);
0525         acpi_dev_put(adev);
0526     }
0527 }
0528 
0529 /**
0530  * acpi_scan_drop_device - Drop an ACPI device object.
0531  * @handle: Handle of an ACPI namespace node, not used.
0532  * @context: Address of the ACPI device object to drop.
0533  *
0534  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
0535  * namespace node the device object pointed to by @context is attached to.
0536  *
0537  * The unregistration is carried out asynchronously to avoid running
0538  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
0539  * ensure the correct ordering (the device objects must be unregistered in the
0540  * same order in which the corresponding namespace nodes are deleted).
0541  */
0542 static void acpi_scan_drop_device(acpi_handle handle, void *context)
0543 {
0544     static DECLARE_WORK(work, acpi_device_del_work_fn);
0545     struct acpi_device *adev = context;
0546 
0547     mutex_lock(&acpi_device_del_lock);
0548 
0549     /*
0550      * Use the ACPI hotplug workqueue which is ordered, so this work item
0551      * won't run after any hotplug work items submitted subsequently.  That
0552      * prevents attempts to register device objects identical to those being
0553      * deleted from happening concurrently (such attempts result from
0554      * hotplug events handled via the ACPI hotplug workqueue).  It also will
0555      * run after all of the work items submitted previously, which helps
0556      * those work items to ensure that they are not accessing stale device
0557      * objects.
0558      */
0559     if (list_empty(&acpi_device_del_list))
0560         acpi_queue_hotplug_work(&work);
0561 
0562     list_add_tail(&adev->del_list, &acpi_device_del_list);
0563     /* Make acpi_ns_validate_handle() return NULL for this handle. */
0564     adev->handle = INVALID_ACPI_HANDLE;
0565 
0566     mutex_unlock(&acpi_device_del_lock);
0567 }
0568 
0569 static struct acpi_device *handle_to_device(acpi_handle handle,
0570                         void (*callback)(void *))
0571 {
0572     struct acpi_device *adev = NULL;
0573     acpi_status status;
0574 
0575     status = acpi_get_data_full(handle, acpi_scan_drop_device,
0576                     (void **)&adev, callback);
0577     if (ACPI_FAILURE(status) || !adev) {
0578         acpi_handle_debug(handle, "No context!\n");
0579         return NULL;
0580     }
0581     return adev;
0582 }
0583 
0584 /**
0585  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
0586  * @handle: ACPI handle associated with the requested ACPI device object.
0587  *
0588  * Return a pointer to the ACPI device object associated with @handle, if
0589  * present, or NULL otherwise.
0590  */
0591 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
0592 {
0593     return handle_to_device(handle, NULL);
0594 }
0595 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
0596 
0597 static void get_acpi_device(void *dev)
0598 {
0599     acpi_dev_get(dev);
0600 }
0601 
0602 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
0603 {
0604     return handle_to_device(handle, get_acpi_device);
0605 }
0606 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
0607 
0608 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
0609 {
0610     struct acpi_device_bus_id *acpi_device_bus_id;
0611 
0612     /* Find suitable bus_id and instance number in acpi_bus_id_list. */
0613     list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
0614         if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
0615             return acpi_device_bus_id;
0616     }
0617     return NULL;
0618 }
0619 
0620 static int acpi_device_set_name(struct acpi_device *device,
0621                 struct acpi_device_bus_id *acpi_device_bus_id)
0622 {
0623     struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
0624     int result;
0625 
0626     result = ida_alloc(instance_ida, GFP_KERNEL);
0627     if (result < 0)
0628         return result;
0629 
0630     device->pnp.instance_no = result;
0631     dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
0632     return 0;
0633 }
0634 
0635 static int acpi_tie_acpi_dev(struct acpi_device *adev)
0636 {
0637     acpi_handle handle = adev->handle;
0638     acpi_status status;
0639 
0640     if (!handle)
0641         return 0;
0642 
0643     status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
0644     if (ACPI_FAILURE(status)) {
0645         acpi_handle_err(handle, "Unable to attach device data\n");
0646         return -ENODEV;
0647     }
0648 
0649     return 0;
0650 }
0651 
0652 static void acpi_store_pld_crc(struct acpi_device *adev)
0653 {
0654     struct acpi_pld_info *pld;
0655     acpi_status status;
0656 
0657     status = acpi_get_physical_device_location(adev->handle, &pld);
0658     if (ACPI_FAILURE(status))
0659         return;
0660 
0661     adev->pld_crc = crc32(~0, pld, sizeof(*pld));
0662     ACPI_FREE(pld);
0663 }
0664 
0665 static int __acpi_device_add(struct acpi_device *device,
0666                  void (*release)(struct device *))
0667 {
0668     struct acpi_device_bus_id *acpi_device_bus_id;
0669     int result;
0670 
0671     /*
0672      * Linkage
0673      * -------
0674      * Link this device to its parent and siblings.
0675      */
0676     INIT_LIST_HEAD(&device->wakeup_list);
0677     INIT_LIST_HEAD(&device->physical_node_list);
0678     INIT_LIST_HEAD(&device->del_list);
0679     mutex_init(&device->physical_node_lock);
0680 
0681     mutex_lock(&acpi_device_lock);
0682 
0683     acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
0684     if (acpi_device_bus_id) {
0685         result = acpi_device_set_name(device, acpi_device_bus_id);
0686         if (result)
0687             goto err_unlock;
0688     } else {
0689         acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
0690                          GFP_KERNEL);
0691         if (!acpi_device_bus_id) {
0692             result = -ENOMEM;
0693             goto err_unlock;
0694         }
0695         acpi_device_bus_id->bus_id =
0696             kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
0697         if (!acpi_device_bus_id->bus_id) {
0698             kfree(acpi_device_bus_id);
0699             result = -ENOMEM;
0700             goto err_unlock;
0701         }
0702 
0703         ida_init(&acpi_device_bus_id->instance_ida);
0704 
0705         result = acpi_device_set_name(device, acpi_device_bus_id);
0706         if (result) {
0707             kfree_const(acpi_device_bus_id->bus_id);
0708             kfree(acpi_device_bus_id);
0709             goto err_unlock;
0710         }
0711 
0712         list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
0713     }
0714 
0715     if (device->wakeup.flags.valid)
0716         list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
0717 
0718     acpi_store_pld_crc(device);
0719 
0720     mutex_unlock(&acpi_device_lock);
0721 
0722     if (device->parent)
0723         device->dev.parent = &device->parent->dev;
0724 
0725     device->dev.bus = &acpi_bus_type;
0726     device->dev.release = release;
0727     result = device_add(&device->dev);
0728     if (result) {
0729         dev_err(&device->dev, "Error registering device\n");
0730         goto err;
0731     }
0732 
0733     result = acpi_device_setup_files(device);
0734     if (result)
0735         pr_err("Error creating sysfs interface for device %s\n",
0736                dev_name(&device->dev));
0737 
0738     return 0;
0739 
0740 err:
0741     mutex_lock(&acpi_device_lock);
0742 
0743     list_del(&device->wakeup_list);
0744 
0745 err_unlock:
0746     mutex_unlock(&acpi_device_lock);
0747 
0748     acpi_detach_data(device->handle, acpi_scan_drop_device);
0749 
0750     return result;
0751 }
0752 
0753 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
0754 {
0755     int ret;
0756 
0757     ret = acpi_tie_acpi_dev(adev);
0758     if (ret)
0759         return ret;
0760 
0761     return __acpi_device_add(adev, release);
0762 }
0763 
0764 /* --------------------------------------------------------------------------
0765                                  Device Enumeration
0766    -------------------------------------------------------------------------- */
0767 static bool acpi_info_matches_ids(struct acpi_device_info *info,
0768                   const char * const ids[])
0769 {
0770     struct acpi_pnp_device_id_list *cid_list = NULL;
0771     int i, index;
0772 
0773     if (!(info->valid & ACPI_VALID_HID))
0774         return false;
0775 
0776     index = match_string(ids, -1, info->hardware_id.string);
0777     if (index >= 0)
0778         return true;
0779 
0780     if (info->valid & ACPI_VALID_CID)
0781         cid_list = &info->compatible_id_list;
0782 
0783     if (!cid_list)
0784         return false;
0785 
0786     for (i = 0; i < cid_list->count; i++) {
0787         index = match_string(ids, -1, cid_list->ids[i].string);
0788         if (index >= 0)
0789             return true;
0790     }
0791 
0792     return false;
0793 }
0794 
0795 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
0796 static const char * const acpi_ignore_dep_ids[] = {
0797     "PNP0D80", /* Windows-compatible System Power Management Controller */
0798     "INT33BD", /* Intel Baytrail Mailbox Device */
0799     NULL
0800 };
0801 
0802 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
0803 static const char * const acpi_honor_dep_ids[] = {
0804     "INT3472", /* Camera sensor PMIC / clk and regulator info */
0805     NULL
0806 };
0807 
0808 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
0809 {
0810     struct acpi_device *device;
0811     acpi_status status;
0812 
0813     /*
0814      * Fixed hardware devices do not appear in the namespace and do not
0815      * have handles, but we fabricate acpi_devices for them, so we have
0816      * to deal with them specially.
0817      */
0818     if (!handle)
0819         return acpi_root;
0820 
0821     do {
0822         status = acpi_get_parent(handle, &handle);
0823         if (ACPI_FAILURE(status))
0824             return status == AE_NULL_ENTRY ? NULL : acpi_root;
0825 
0826         device = acpi_fetch_acpi_dev(handle);
0827     } while (!device);
0828     return device;
0829 }
0830 
0831 acpi_status
0832 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
0833 {
0834     acpi_status status;
0835     acpi_handle tmp;
0836     struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
0837     union acpi_object *obj;
0838 
0839     status = acpi_get_handle(handle, "_EJD", &tmp);
0840     if (ACPI_FAILURE(status))
0841         return status;
0842 
0843     status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
0844     if (ACPI_SUCCESS(status)) {
0845         obj = buffer.pointer;
0846         status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
0847                      ejd);
0848         kfree(buffer.pointer);
0849     }
0850     return status;
0851 }
0852 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
0853 
0854 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
0855 {
0856     acpi_handle handle = dev->handle;
0857     struct acpi_device_wakeup *wakeup = &dev->wakeup;
0858     struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
0859     union acpi_object *package = NULL;
0860     union acpi_object *element = NULL;
0861     acpi_status status;
0862     int err = -ENODATA;
0863 
0864     INIT_LIST_HEAD(&wakeup->resources);
0865 
0866     /* _PRW */
0867     status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
0868     if (ACPI_FAILURE(status)) {
0869         acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
0870                  acpi_format_exception(status));
0871         return err;
0872     }
0873 
0874     package = (union acpi_object *)buffer.pointer;
0875 
0876     if (!package || package->package.count < 2)
0877         goto out;
0878 
0879     element = &(package->package.elements[0]);
0880     if (!element)
0881         goto out;
0882 
0883     if (element->type == ACPI_TYPE_PACKAGE) {
0884         if ((element->package.count < 2) ||
0885             (element->package.elements[0].type !=
0886              ACPI_TYPE_LOCAL_REFERENCE)
0887             || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
0888             goto out;
0889 
0890         wakeup->gpe_device =
0891             element->package.elements[0].reference.handle;
0892         wakeup->gpe_number =
0893             (u32) element->package.elements[1].integer.value;
0894     } else if (element->type == ACPI_TYPE_INTEGER) {
0895         wakeup->gpe_device = NULL;
0896         wakeup->gpe_number = element->integer.value;
0897     } else {
0898         goto out;
0899     }
0900 
0901     element = &(package->package.elements[1]);
0902     if (element->type != ACPI_TYPE_INTEGER)
0903         goto out;
0904 
0905     wakeup->sleep_state = element->integer.value;
0906 
0907     err = acpi_extract_power_resources(package, 2, &wakeup->resources);
0908     if (err)
0909         goto out;
0910 
0911     if (!list_empty(&wakeup->resources)) {
0912         int sleep_state;
0913 
0914         err = acpi_power_wakeup_list_init(&wakeup->resources,
0915                           &sleep_state);
0916         if (err) {
0917             acpi_handle_warn(handle, "Retrieving current states "
0918                      "of wakeup power resources failed\n");
0919             acpi_power_resources_list_free(&wakeup->resources);
0920             goto out;
0921         }
0922         if (sleep_state < wakeup->sleep_state) {
0923             acpi_handle_warn(handle, "Overriding _PRW sleep state "
0924                      "(S%d) by S%d from power resources\n",
0925                      (int)wakeup->sleep_state, sleep_state);
0926             wakeup->sleep_state = sleep_state;
0927         }
0928     }
0929 
0930  out:
0931     kfree(buffer.pointer);
0932     return err;
0933 }
0934 
0935 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
0936 {
0937     static const struct acpi_device_id button_device_ids[] = {
0938         {"PNP0C0C", 0},     /* Power button */
0939         {"PNP0C0D", 0},     /* Lid */
0940         {"PNP0C0E", 0},     /* Sleep button */
0941         {"", 0},
0942     };
0943     struct acpi_device_wakeup *wakeup = &device->wakeup;
0944     acpi_status status;
0945 
0946     wakeup->flags.notifier_present = 0;
0947 
0948     /* Power button, Lid switch always enable wakeup */
0949     if (!acpi_match_device_ids(device, button_device_ids)) {
0950         if (!acpi_match_device_ids(device, &button_device_ids[1])) {
0951             /* Do not use Lid/sleep button for S5 wakeup */
0952             if (wakeup->sleep_state == ACPI_STATE_S5)
0953                 wakeup->sleep_state = ACPI_STATE_S4;
0954         }
0955         acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
0956         device_set_wakeup_capable(&device->dev, true);
0957         return true;
0958     }
0959 
0960     status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
0961                      wakeup->gpe_number);
0962     return ACPI_SUCCESS(status);
0963 }
0964 
0965 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
0966 {
0967     int err;
0968 
0969     /* Presence of _PRW indicates wake capable */
0970     if (!acpi_has_method(device->handle, "_PRW"))
0971         return;
0972 
0973     err = acpi_bus_extract_wakeup_device_power_package(device);
0974     if (err) {
0975         dev_err(&device->dev, "Unable to extract wakeup power resources");
0976         return;
0977     }
0978 
0979     device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
0980     device->wakeup.prepare_count = 0;
0981     /*
0982      * Call _PSW/_DSW object to disable its ability to wake the sleeping
0983      * system for the ACPI device with the _PRW object.
0984      * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
0985      * So it is necessary to call _DSW object first. Only when it is not
0986      * present will the _PSW object used.
0987      */
0988     err = acpi_device_sleep_wake(device, 0, 0, 0);
0989     if (err)
0990         pr_debug("error in _DSW or _PSW evaluation\n");
0991 }
0992 
0993 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
0994 {
0995     struct acpi_device_power_state *ps = &device->power.states[state];
0996     char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
0997     struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
0998     acpi_status status;
0999 
1000     INIT_LIST_HEAD(&ps->resources);
1001 
1002     /* Evaluate "_PRx" to get referenced power resources */
1003     status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1004     if (ACPI_SUCCESS(status)) {
1005         union acpi_object *package = buffer.pointer;
1006 
1007         if (buffer.length && package
1008             && package->type == ACPI_TYPE_PACKAGE
1009             && package->package.count)
1010             acpi_extract_power_resources(package, 0, &ps->resources);
1011 
1012         ACPI_FREE(buffer.pointer);
1013     }
1014 
1015     /* Evaluate "_PSx" to see if we can do explicit sets */
1016     pathname[2] = 'S';
1017     if (acpi_has_method(device->handle, pathname))
1018         ps->flags.explicit_set = 1;
1019 
1020     /* State is valid if there are means to put the device into it. */
1021     if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1022         ps->flags.valid = 1;
1023 
1024     ps->power = -1;     /* Unknown - driver assigned */
1025     ps->latency = -1;   /* Unknown - driver assigned */
1026 }
1027 
1028 static void acpi_bus_get_power_flags(struct acpi_device *device)
1029 {
1030     unsigned long long dsc = ACPI_STATE_D0;
1031     u32 i;
1032 
1033     /* Presence of _PS0|_PR0 indicates 'power manageable' */
1034     if (!acpi_has_method(device->handle, "_PS0") &&
1035         !acpi_has_method(device->handle, "_PR0"))
1036         return;
1037 
1038     device->flags.power_manageable = 1;
1039 
1040     /*
1041      * Power Management Flags
1042      */
1043     if (acpi_has_method(device->handle, "_PSC"))
1044         device->power.flags.explicit_get = 1;
1045 
1046     if (acpi_has_method(device->handle, "_IRC"))
1047         device->power.flags.inrush_current = 1;
1048 
1049     if (acpi_has_method(device->handle, "_DSW"))
1050         device->power.flags.dsw_present = 1;
1051 
1052     acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1053     device->power.state_for_enumeration = dsc;
1054 
1055     /*
1056      * Enumerate supported power management states
1057      */
1058     for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1059         acpi_bus_init_power_state(device, i);
1060 
1061     INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1062 
1063     /* Set the defaults for D0 and D3hot (always supported). */
1064     device->power.states[ACPI_STATE_D0].flags.valid = 1;
1065     device->power.states[ACPI_STATE_D0].power = 100;
1066     device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1067 
1068     /*
1069      * Use power resources only if the D0 list of them is populated, because
1070      * some platforms may provide _PR3 only to indicate D3cold support and
1071      * in those cases the power resources list returned by it may be bogus.
1072      */
1073     if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1074         device->power.flags.power_resources = 1;
1075         /*
1076          * D3cold is supported if the D3hot list of power resources is
1077          * not empty.
1078          */
1079         if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1080             device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1081     }
1082 
1083     if (acpi_bus_init_power(device))
1084         device->flags.power_manageable = 0;
1085 }
1086 
1087 static void acpi_bus_get_flags(struct acpi_device *device)
1088 {
1089     /* Presence of _STA indicates 'dynamic_status' */
1090     if (acpi_has_method(device->handle, "_STA"))
1091         device->flags.dynamic_status = 1;
1092 
1093     /* Presence of _RMV indicates 'removable' */
1094     if (acpi_has_method(device->handle, "_RMV"))
1095         device->flags.removable = 1;
1096 
1097     /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1098     if (acpi_has_method(device->handle, "_EJD") ||
1099         acpi_has_method(device->handle, "_EJ0"))
1100         device->flags.ejectable = 1;
1101 }
1102 
1103 static void acpi_device_get_busid(struct acpi_device *device)
1104 {
1105     char bus_id[5] = { '?', 0 };
1106     struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1107     int i = 0;
1108 
1109     /*
1110      * Bus ID
1111      * ------
1112      * The device's Bus ID is simply the object name.
1113      * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1114      */
1115     if (ACPI_IS_ROOT_DEVICE(device)) {
1116         strcpy(device->pnp.bus_id, "ACPI");
1117         return;
1118     }
1119 
1120     switch (device->device_type) {
1121     case ACPI_BUS_TYPE_POWER_BUTTON:
1122         strcpy(device->pnp.bus_id, "PWRF");
1123         break;
1124     case ACPI_BUS_TYPE_SLEEP_BUTTON:
1125         strcpy(device->pnp.bus_id, "SLPF");
1126         break;
1127     case ACPI_BUS_TYPE_ECDT_EC:
1128         strcpy(device->pnp.bus_id, "ECDT");
1129         break;
1130     default:
1131         acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1132         /* Clean up trailing underscores (if any) */
1133         for (i = 3; i > 1; i--) {
1134             if (bus_id[i] == '_')
1135                 bus_id[i] = '\0';
1136             else
1137                 break;
1138         }
1139         strcpy(device->pnp.bus_id, bus_id);
1140         break;
1141     }
1142 }
1143 
1144 /*
1145  * acpi_ata_match - see if an acpi object is an ATA device
1146  *
1147  * If an acpi object has one of the ACPI ATA methods defined,
1148  * then we can safely call it an ATA device.
1149  */
1150 bool acpi_ata_match(acpi_handle handle)
1151 {
1152     return acpi_has_method(handle, "_GTF") ||
1153            acpi_has_method(handle, "_GTM") ||
1154            acpi_has_method(handle, "_STM") ||
1155            acpi_has_method(handle, "_SDD");
1156 }
1157 
1158 /*
1159  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1160  *
1161  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1162  * then we can safely call it an ejectable drive bay
1163  */
1164 bool acpi_bay_match(acpi_handle handle)
1165 {
1166     acpi_handle phandle;
1167 
1168     if (!acpi_has_method(handle, "_EJ0"))
1169         return false;
1170     if (acpi_ata_match(handle))
1171         return true;
1172     if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1173         return false;
1174 
1175     return acpi_ata_match(phandle);
1176 }
1177 
1178 bool acpi_device_is_battery(struct acpi_device *adev)
1179 {
1180     struct acpi_hardware_id *hwid;
1181 
1182     list_for_each_entry(hwid, &adev->pnp.ids, list)
1183         if (!strcmp("PNP0C0A", hwid->id))
1184             return true;
1185 
1186     return false;
1187 }
1188 
1189 static bool is_ejectable_bay(struct acpi_device *adev)
1190 {
1191     acpi_handle handle = adev->handle;
1192 
1193     if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1194         return true;
1195 
1196     return acpi_bay_match(handle);
1197 }
1198 
1199 /*
1200  * acpi_dock_match - see if an acpi object has a _DCK method
1201  */
1202 bool acpi_dock_match(acpi_handle handle)
1203 {
1204     return acpi_has_method(handle, "_DCK");
1205 }
1206 
1207 static acpi_status
1208 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1209               void **return_value)
1210 {
1211     long *cap = context;
1212 
1213     if (acpi_has_method(handle, "_BCM") &&
1214         acpi_has_method(handle, "_BCL")) {
1215         acpi_handle_debug(handle, "Found generic backlight support\n");
1216         *cap |= ACPI_VIDEO_BACKLIGHT;
1217         /* We have backlight support, no need to scan further */
1218         return AE_CTRL_TERMINATE;
1219     }
1220     return 0;
1221 }
1222 
1223 /* Returns true if the ACPI object is a video device which can be
1224  * handled by video.ko.
1225  * The device will get a Linux specific CID added in scan.c to
1226  * identify the device as an ACPI graphics device
1227  * Be aware that the graphics device may not be physically present
1228  * Use acpi_video_get_capabilities() to detect general ACPI video
1229  * capabilities of present cards
1230  */
1231 long acpi_is_video_device(acpi_handle handle)
1232 {
1233     long video_caps = 0;
1234 
1235     /* Is this device able to support video switching ? */
1236     if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1237         video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1238 
1239     /* Is this device able to retrieve a video ROM ? */
1240     if (acpi_has_method(handle, "_ROM"))
1241         video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1242 
1243     /* Is this device able to configure which video head to be POSTed ? */
1244     if (acpi_has_method(handle, "_VPO") &&
1245         acpi_has_method(handle, "_GPD") &&
1246         acpi_has_method(handle, "_SPD"))
1247         video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1248 
1249     /* Only check for backlight functionality if one of the above hit. */
1250     if (video_caps)
1251         acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1252                     ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1253                     &video_caps, NULL);
1254 
1255     return video_caps;
1256 }
1257 EXPORT_SYMBOL(acpi_is_video_device);
1258 
1259 const char *acpi_device_hid(struct acpi_device *device)
1260 {
1261     struct acpi_hardware_id *hid;
1262 
1263     if (list_empty(&device->pnp.ids))
1264         return dummy_hid;
1265 
1266     hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1267     return hid->id;
1268 }
1269 EXPORT_SYMBOL(acpi_device_hid);
1270 
1271 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1272 {
1273     struct acpi_hardware_id *id;
1274 
1275     id = kmalloc(sizeof(*id), GFP_KERNEL);
1276     if (!id)
1277         return;
1278 
1279     id->id = kstrdup_const(dev_id, GFP_KERNEL);
1280     if (!id->id) {
1281         kfree(id);
1282         return;
1283     }
1284 
1285     list_add_tail(&id->list, &pnp->ids);
1286     pnp->type.hardware_id = 1;
1287 }
1288 
1289 /*
1290  * Old IBM workstations have a DSDT bug wherein the SMBus object
1291  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1292  * prefix.  Work around this.
1293  */
1294 static bool acpi_ibm_smbus_match(acpi_handle handle)
1295 {
1296     char node_name[ACPI_PATH_SEGMENT_LENGTH];
1297     struct acpi_buffer path = { sizeof(node_name), node_name };
1298 
1299     if (!dmi_name_in_vendors("IBM"))
1300         return false;
1301 
1302     /* Look for SMBS object */
1303     if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1304         strcmp("SMBS", path.pointer))
1305         return false;
1306 
1307     /* Does it have the necessary (but misnamed) methods? */
1308     if (acpi_has_method(handle, "SBI") &&
1309         acpi_has_method(handle, "SBR") &&
1310         acpi_has_method(handle, "SBW"))
1311         return true;
1312 
1313     return false;
1314 }
1315 
1316 static bool acpi_object_is_system_bus(acpi_handle handle)
1317 {
1318     acpi_handle tmp;
1319 
1320     if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1321         tmp == handle)
1322         return true;
1323     if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1324         tmp == handle)
1325         return true;
1326 
1327     return false;
1328 }
1329 
1330 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1331                  int device_type)
1332 {
1333     struct acpi_device_info *info = NULL;
1334     struct acpi_pnp_device_id_list *cid_list;
1335     int i;
1336 
1337     switch (device_type) {
1338     case ACPI_BUS_TYPE_DEVICE:
1339         if (handle == ACPI_ROOT_OBJECT) {
1340             acpi_add_id(pnp, ACPI_SYSTEM_HID);
1341             break;
1342         }
1343 
1344         acpi_get_object_info(handle, &info);
1345         if (!info) {
1346             pr_err("%s: Error reading device info\n", __func__);
1347             return;
1348         }
1349 
1350         if (info->valid & ACPI_VALID_HID) {
1351             acpi_add_id(pnp, info->hardware_id.string);
1352             pnp->type.platform_id = 1;
1353         }
1354         if (info->valid & ACPI_VALID_CID) {
1355             cid_list = &info->compatible_id_list;
1356             for (i = 0; i < cid_list->count; i++)
1357                 acpi_add_id(pnp, cid_list->ids[i].string);
1358         }
1359         if (info->valid & ACPI_VALID_ADR) {
1360             pnp->bus_address = info->address;
1361             pnp->type.bus_address = 1;
1362         }
1363         if (info->valid & ACPI_VALID_UID)
1364             pnp->unique_id = kstrdup(info->unique_id.string,
1365                             GFP_KERNEL);
1366         if (info->valid & ACPI_VALID_CLS)
1367             acpi_add_id(pnp, info->class_code.string);
1368 
1369         kfree(info);
1370 
1371         /*
1372          * Some devices don't reliably have _HIDs & _CIDs, so add
1373          * synthetic HIDs to make sure drivers can find them.
1374          */
1375         if (acpi_is_video_device(handle))
1376             acpi_add_id(pnp, ACPI_VIDEO_HID);
1377         else if (acpi_bay_match(handle))
1378             acpi_add_id(pnp, ACPI_BAY_HID);
1379         else if (acpi_dock_match(handle))
1380             acpi_add_id(pnp, ACPI_DOCK_HID);
1381         else if (acpi_ibm_smbus_match(handle))
1382             acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1383         else if (list_empty(&pnp->ids) &&
1384              acpi_object_is_system_bus(handle)) {
1385             /* \_SB, \_TZ, LNXSYBUS */
1386             acpi_add_id(pnp, ACPI_BUS_HID);
1387             strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1388             strcpy(pnp->device_class, ACPI_BUS_CLASS);
1389         }
1390 
1391         break;
1392     case ACPI_BUS_TYPE_POWER:
1393         acpi_add_id(pnp, ACPI_POWER_HID);
1394         break;
1395     case ACPI_BUS_TYPE_PROCESSOR:
1396         acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1397         break;
1398     case ACPI_BUS_TYPE_THERMAL:
1399         acpi_add_id(pnp, ACPI_THERMAL_HID);
1400         break;
1401     case ACPI_BUS_TYPE_POWER_BUTTON:
1402         acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1403         break;
1404     case ACPI_BUS_TYPE_SLEEP_BUTTON:
1405         acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1406         break;
1407     case ACPI_BUS_TYPE_ECDT_EC:
1408         acpi_add_id(pnp, ACPI_ECDT_HID);
1409         break;
1410     }
1411 }
1412 
1413 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1414 {
1415     struct acpi_hardware_id *id, *tmp;
1416 
1417     list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1418         kfree_const(id->id);
1419         kfree(id);
1420     }
1421     kfree(pnp->unique_id);
1422 }
1423 
1424 /**
1425  * acpi_dma_supported - Check DMA support for the specified device.
1426  * @adev: The pointer to acpi device
1427  *
1428  * Return false if DMA is not supported. Otherwise, return true
1429  */
1430 bool acpi_dma_supported(const struct acpi_device *adev)
1431 {
1432     if (!adev)
1433         return false;
1434 
1435     if (adev->flags.cca_seen)
1436         return true;
1437 
1438     /*
1439     * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1440     * DMA on "Intel platforms".  Presumably that includes all x86 and
1441     * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1442     */
1443     if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1444         return true;
1445 
1446     return false;
1447 }
1448 
1449 /**
1450  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1451  * @adev: The pointer to acpi device
1452  *
1453  * Return enum dev_dma_attr.
1454  */
1455 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1456 {
1457     if (!acpi_dma_supported(adev))
1458         return DEV_DMA_NOT_SUPPORTED;
1459 
1460     if (adev->flags.coherent_dma)
1461         return DEV_DMA_COHERENT;
1462     else
1463         return DEV_DMA_NON_COHERENT;
1464 }
1465 
1466 /**
1467  * acpi_dma_get_range() - Get device DMA parameters.
1468  *
1469  * @dev: device to configure
1470  * @dma_addr: pointer device DMA address result
1471  * @offset: pointer to the DMA offset result
1472  * @size: pointer to DMA range size result
1473  *
1474  * Evaluate DMA regions and return respectively DMA region start, offset
1475  * and size in dma_addr, offset and size on parsing success; it does not
1476  * update the passed in values on failure.
1477  *
1478  * Return 0 on success, < 0 on failure.
1479  */
1480 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1481                u64 *size)
1482 {
1483     struct acpi_device *adev;
1484     LIST_HEAD(list);
1485     struct resource_entry *rentry;
1486     int ret;
1487     struct device *dma_dev = dev;
1488     u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1489 
1490     /*
1491      * Walk the device tree chasing an ACPI companion with a _DMA
1492      * object while we go. Stop if we find a device with an ACPI
1493      * companion containing a _DMA method.
1494      */
1495     do {
1496         adev = ACPI_COMPANION(dma_dev);
1497         if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1498             break;
1499 
1500         dma_dev = dma_dev->parent;
1501     } while (dma_dev);
1502 
1503     if (!dma_dev)
1504         return -ENODEV;
1505 
1506     if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1507         acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1508         return -EINVAL;
1509     }
1510 
1511     ret = acpi_dev_get_dma_resources(adev, &list);
1512     if (ret > 0) {
1513         list_for_each_entry(rentry, &list, node) {
1514             if (dma_offset && rentry->offset != dma_offset) {
1515                 ret = -EINVAL;
1516                 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1517                 goto out;
1518             }
1519             dma_offset = rentry->offset;
1520 
1521             /* Take lower and upper limits */
1522             if (rentry->res->start < dma_start)
1523                 dma_start = rentry->res->start;
1524             if (rentry->res->end > dma_end)
1525                 dma_end = rentry->res->end;
1526         }
1527 
1528         if (dma_start >= dma_end) {
1529             ret = -EINVAL;
1530             dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1531             goto out;
1532         }
1533 
1534         *dma_addr = dma_start - dma_offset;
1535         len = dma_end - dma_start;
1536         *size = max(len, len + 1);
1537         *offset = dma_offset;
1538     }
1539  out:
1540     acpi_dev_free_resource_list(&list);
1541 
1542     return ret >= 0 ? 0 : ret;
1543 }
1544 
1545 #ifdef CONFIG_IOMMU_API
1546 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1547                struct fwnode_handle *fwnode,
1548                const struct iommu_ops *ops)
1549 {
1550     int ret = iommu_fwspec_init(dev, fwnode, ops);
1551 
1552     if (!ret)
1553         ret = iommu_fwspec_add_ids(dev, &id, 1);
1554 
1555     return ret;
1556 }
1557 
1558 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1559 {
1560     struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1561 
1562     return fwspec ? fwspec->ops : NULL;
1563 }
1564 
1565 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1566                                const u32 *id_in)
1567 {
1568     int err;
1569     const struct iommu_ops *ops;
1570 
1571     /*
1572      * If we already translated the fwspec there is nothing left to do,
1573      * return the iommu_ops.
1574      */
1575     ops = acpi_iommu_fwspec_ops(dev);
1576     if (ops)
1577         return ops;
1578 
1579     err = iort_iommu_configure_id(dev, id_in);
1580     if (err && err != -EPROBE_DEFER)
1581         err = viot_iommu_configure(dev);
1582 
1583     /*
1584      * If we have reason to believe the IOMMU driver missed the initial
1585      * iommu_probe_device() call for dev, replay it to get things in order.
1586      */
1587     if (!err && dev->bus && !device_iommu_mapped(dev))
1588         err = iommu_probe_device(dev);
1589 
1590     /* Ignore all other errors apart from EPROBE_DEFER */
1591     if (err == -EPROBE_DEFER) {
1592         return ERR_PTR(err);
1593     } else if (err) {
1594         dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1595         return NULL;
1596     }
1597     return acpi_iommu_fwspec_ops(dev);
1598 }
1599 
1600 #else /* !CONFIG_IOMMU_API */
1601 
1602 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1603                struct fwnode_handle *fwnode,
1604                const struct iommu_ops *ops)
1605 {
1606     return -ENODEV;
1607 }
1608 
1609 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1610                                const u32 *id_in)
1611 {
1612     return NULL;
1613 }
1614 
1615 #endif /* !CONFIG_IOMMU_API */
1616 
1617 /**
1618  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1619  * @dev: The pointer to the device
1620  * @attr: device dma attributes
1621  * @input_id: input device id const value pointer
1622  */
1623 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1624               const u32 *input_id)
1625 {
1626     const struct iommu_ops *iommu;
1627     u64 dma_addr = 0, size = 0;
1628 
1629     if (attr == DEV_DMA_NOT_SUPPORTED) {
1630         set_dma_ops(dev, &dma_dummy_ops);
1631         return 0;
1632     }
1633 
1634     acpi_arch_dma_setup(dev, &dma_addr, &size);
1635 
1636     iommu = acpi_iommu_configure_id(dev, input_id);
1637     if (PTR_ERR(iommu) == -EPROBE_DEFER)
1638         return -EPROBE_DEFER;
1639 
1640     arch_setup_dma_ops(dev, dma_addr, size,
1641                 iommu, attr == DEV_DMA_COHERENT);
1642 
1643     return 0;
1644 }
1645 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1646 
1647 static void acpi_init_coherency(struct acpi_device *adev)
1648 {
1649     unsigned long long cca = 0;
1650     acpi_status status;
1651     struct acpi_device *parent = adev->parent;
1652 
1653     if (parent && parent->flags.cca_seen) {
1654         /*
1655          * From ACPI spec, OSPM will ignore _CCA if an ancestor
1656          * already saw one.
1657          */
1658         adev->flags.cca_seen = 1;
1659         cca = parent->flags.coherent_dma;
1660     } else {
1661         status = acpi_evaluate_integer(adev->handle, "_CCA",
1662                            NULL, &cca);
1663         if (ACPI_SUCCESS(status))
1664             adev->flags.cca_seen = 1;
1665         else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1666             /*
1667              * If architecture does not specify that _CCA is
1668              * required for DMA-able devices (e.g. x86),
1669              * we default to _CCA=1.
1670              */
1671             cca = 1;
1672         else
1673             acpi_handle_debug(adev->handle,
1674                       "ACPI device is missing _CCA.\n");
1675     }
1676 
1677     adev->flags.coherent_dma = cca;
1678 }
1679 
1680 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1681 {
1682     bool *is_serial_bus_slave_p = data;
1683 
1684     if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1685         return 1;
1686 
1687     *is_serial_bus_slave_p = true;
1688 
1689      /* no need to do more checking */
1690     return -1;
1691 }
1692 
1693 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1694 {
1695     struct acpi_device *parent = device->parent;
1696     static const struct acpi_device_id indirect_io_hosts[] = {
1697         {"HISI0191", 0},
1698         {}
1699     };
1700 
1701     return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1702 }
1703 
1704 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1705 {
1706     struct list_head resource_list;
1707     bool is_serial_bus_slave = false;
1708     static const struct acpi_device_id ignore_serial_bus_ids[] = {
1709     /*
1710      * These devices have multiple SerialBus resources and a client
1711      * device must be instantiated for each of them, each with
1712      * its own device id.
1713      * Normally we only instantiate one client device for the first
1714      * resource, using the ACPI HID as id. These special cases are handled
1715      * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1716      * knows which client device id to use for each resource.
1717      */
1718         {"BSG1160", },
1719         {"BSG2150", },
1720         {"CSC3551", },
1721         {"INT33FE", },
1722         {"INT3515", },
1723         /* Non-conforming _HID for Cirrus Logic already released */
1724         {"CLSA0100", },
1725         {"CLSA0101", },
1726     /*
1727      * Some ACPI devs contain SerialBus resources even though they are not
1728      * attached to a serial bus at all.
1729      */
1730         {"MSHW0028", },
1731     /*
1732      * HIDs of device with an UartSerialBusV2 resource for which userspace
1733      * expects a regular tty cdev to be created (instead of the in kernel
1734      * serdev) and which have a kernel driver which expects a platform_dev
1735      * such as the rfkill-gpio driver.
1736      */
1737         {"BCM4752", },
1738         {"LNV4752", },
1739         {}
1740     };
1741 
1742     if (acpi_is_indirect_io_slave(device))
1743         return true;
1744 
1745     /* Macs use device properties in lieu of _CRS resources */
1746     if (x86_apple_machine &&
1747         (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1748          fwnode_property_present(&device->fwnode, "i2cAddress") ||
1749          fwnode_property_present(&device->fwnode, "baud")))
1750         return true;
1751 
1752     if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1753         return false;
1754 
1755     INIT_LIST_HEAD(&resource_list);
1756     acpi_dev_get_resources(device, &resource_list,
1757                    acpi_check_serial_bus_slave,
1758                    &is_serial_bus_slave);
1759     acpi_dev_free_resource_list(&resource_list);
1760 
1761     return is_serial_bus_slave;
1762 }
1763 
1764 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1765                  int type)
1766 {
1767     INIT_LIST_HEAD(&device->pnp.ids);
1768     device->device_type = type;
1769     device->handle = handle;
1770     device->parent = acpi_bus_get_parent(handle);
1771     fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1772     acpi_set_device_status(device, ACPI_STA_DEFAULT);
1773     acpi_device_get_busid(device);
1774     acpi_set_pnp_ids(handle, &device->pnp, type);
1775     acpi_init_properties(device);
1776     acpi_bus_get_flags(device);
1777     device->flags.match_driver = false;
1778     device->flags.initialized = true;
1779     device->flags.enumeration_by_parent =
1780         acpi_device_enumeration_by_parent(device);
1781     acpi_device_clear_enumerated(device);
1782     device_initialize(&device->dev);
1783     dev_set_uevent_suppress(&device->dev, true);
1784     acpi_init_coherency(device);
1785 }
1786 
1787 static void acpi_scan_dep_init(struct acpi_device *adev)
1788 {
1789     struct acpi_dep_data *dep;
1790 
1791     list_for_each_entry(dep, &acpi_dep_list, node) {
1792         if (dep->consumer == adev->handle) {
1793             if (dep->honor_dep)
1794                 adev->flags.honor_deps = 1;
1795 
1796             adev->dep_unmet++;
1797         }
1798     }
1799 }
1800 
1801 void acpi_device_add_finalize(struct acpi_device *device)
1802 {
1803     dev_set_uevent_suppress(&device->dev, false);
1804     kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1805 }
1806 
1807 static void acpi_scan_init_status(struct acpi_device *adev)
1808 {
1809     if (acpi_bus_get_status(adev))
1810         acpi_set_device_status(adev, 0);
1811 }
1812 
1813 static int acpi_add_single_object(struct acpi_device **child,
1814                   acpi_handle handle, int type, bool dep_init)
1815 {
1816     struct acpi_device *device;
1817     bool release_dep_lock = false;
1818     int result;
1819 
1820     device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1821     if (!device)
1822         return -ENOMEM;
1823 
1824     acpi_init_device_object(device, handle, type);
1825     /*
1826      * Getting the status is delayed till here so that we can call
1827      * acpi_bus_get_status() and use its quirk handling.  Note that
1828      * this must be done before the get power-/wakeup_dev-flags calls.
1829      */
1830     if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1831         if (dep_init) {
1832             mutex_lock(&acpi_dep_list_lock);
1833             /*
1834              * Hold the lock until the acpi_tie_acpi_dev() call
1835              * below to prevent concurrent acpi_scan_clear_dep()
1836              * from deleting a dependency list entry without
1837              * updating dep_unmet for the device.
1838              */
1839             release_dep_lock = true;
1840             acpi_scan_dep_init(device);
1841         }
1842         acpi_scan_init_status(device);
1843     }
1844 
1845     acpi_bus_get_power_flags(device);
1846     acpi_bus_get_wakeup_device_flags(device);
1847 
1848     result = acpi_tie_acpi_dev(device);
1849 
1850     if (release_dep_lock)
1851         mutex_unlock(&acpi_dep_list_lock);
1852 
1853     if (!result)
1854         result = __acpi_device_add(device, acpi_device_release);
1855 
1856     if (result) {
1857         acpi_device_release(&device->dev);
1858         return result;
1859     }
1860 
1861     acpi_power_add_remove_device(device, true);
1862     acpi_device_add_finalize(device);
1863 
1864     acpi_handle_debug(handle, "Added as %s, parent %s\n",
1865               dev_name(&device->dev), device->parent ?
1866                 dev_name(&device->parent->dev) : "(null)");
1867 
1868     *child = device;
1869     return 0;
1870 }
1871 
1872 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1873                         void *context)
1874 {
1875     struct resource *res = context;
1876 
1877     if (acpi_dev_resource_memory(ares, res))
1878         return AE_CTRL_TERMINATE;
1879 
1880     return AE_OK;
1881 }
1882 
1883 static bool acpi_device_should_be_hidden(acpi_handle handle)
1884 {
1885     acpi_status status;
1886     struct resource res;
1887 
1888     /* Check if it should ignore the UART device */
1889     if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1890         return false;
1891 
1892     /*
1893      * The UART device described in SPCR table is assumed to have only one
1894      * memory resource present. So we only look for the first one here.
1895      */
1896     status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1897                      acpi_get_resource_memory, &res);
1898     if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1899         return false;
1900 
1901     acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1902              &res.start);
1903 
1904     return true;
1905 }
1906 
1907 bool acpi_device_is_present(const struct acpi_device *adev)
1908 {
1909     return adev->status.present || adev->status.functional;
1910 }
1911 
1912 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1913                        const char *idstr,
1914                        const struct acpi_device_id **matchid)
1915 {
1916     const struct acpi_device_id *devid;
1917 
1918     if (handler->match)
1919         return handler->match(idstr, matchid);
1920 
1921     for (devid = handler->ids; devid->id[0]; devid++)
1922         if (!strcmp((char *)devid->id, idstr)) {
1923             if (matchid)
1924                 *matchid = devid;
1925 
1926             return true;
1927         }
1928 
1929     return false;
1930 }
1931 
1932 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1933                     const struct acpi_device_id **matchid)
1934 {
1935     struct acpi_scan_handler *handler;
1936 
1937     list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1938         if (acpi_scan_handler_matching(handler, idstr, matchid))
1939             return handler;
1940 
1941     return NULL;
1942 }
1943 
1944 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1945 {
1946     if (!!hotplug->enabled == !!val)
1947         return;
1948 
1949     mutex_lock(&acpi_scan_lock);
1950 
1951     hotplug->enabled = val;
1952 
1953     mutex_unlock(&acpi_scan_lock);
1954 }
1955 
1956 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1957 {
1958     struct acpi_hardware_id *hwid;
1959 
1960     if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1961         acpi_dock_add(adev);
1962         return;
1963     }
1964     list_for_each_entry(hwid, &adev->pnp.ids, list) {
1965         struct acpi_scan_handler *handler;
1966 
1967         handler = acpi_scan_match_handler(hwid->id, NULL);
1968         if (handler) {
1969             adev->flags.hotplug_notify = true;
1970             break;
1971         }
1972     }
1973 }
1974 
1975 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1976 {
1977     struct acpi_handle_list dep_devices;
1978     acpi_status status;
1979     u32 count;
1980     int i;
1981 
1982     /*
1983      * Check for _HID here to avoid deferring the enumeration of:
1984      * 1. PCI devices.
1985      * 2. ACPI nodes describing USB ports.
1986      * Still, checking for _HID catches more then just these cases ...
1987      */
1988     if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1989         !acpi_has_method(handle, "_HID"))
1990         return 0;
1991 
1992     status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1993     if (ACPI_FAILURE(status)) {
1994         acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1995         return 0;
1996     }
1997 
1998     for (count = 0, i = 0; i < dep_devices.count; i++) {
1999         struct acpi_device_info *info;
2000         struct acpi_dep_data *dep;
2001         bool skip, honor_dep;
2002 
2003         status = acpi_get_object_info(dep_devices.handles[i], &info);
2004         if (ACPI_FAILURE(status)) {
2005             acpi_handle_debug(handle, "Error reading _DEP device info\n");
2006             continue;
2007         }
2008 
2009         skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2010         honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2011         kfree(info);
2012 
2013         if (skip)
2014             continue;
2015 
2016         dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2017         if (!dep)
2018             continue;
2019 
2020         count++;
2021 
2022         dep->supplier = dep_devices.handles[i];
2023         dep->consumer = handle;
2024         dep->honor_dep = honor_dep;
2025 
2026         mutex_lock(&acpi_dep_list_lock);
2027         list_add_tail(&dep->node , &acpi_dep_list);
2028         mutex_unlock(&acpi_dep_list_lock);
2029     }
2030 
2031     return count;
2032 }
2033 
2034 static bool acpi_bus_scan_second_pass;
2035 
2036 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2037                       struct acpi_device **adev_p)
2038 {
2039     struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2040     acpi_object_type acpi_type;
2041     int type;
2042 
2043     if (device)
2044         goto out;
2045 
2046     if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2047         return AE_OK;
2048 
2049     switch (acpi_type) {
2050     case ACPI_TYPE_DEVICE:
2051         if (acpi_device_should_be_hidden(handle))
2052             return AE_OK;
2053 
2054         /* Bail out if there are dependencies. */
2055         if (acpi_scan_check_dep(handle, check_dep) > 0) {
2056             acpi_bus_scan_second_pass = true;
2057             return AE_CTRL_DEPTH;
2058         }
2059 
2060         fallthrough;
2061     case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2062         type = ACPI_BUS_TYPE_DEVICE;
2063         break;
2064 
2065     case ACPI_TYPE_PROCESSOR:
2066         type = ACPI_BUS_TYPE_PROCESSOR;
2067         break;
2068 
2069     case ACPI_TYPE_THERMAL:
2070         type = ACPI_BUS_TYPE_THERMAL;
2071         break;
2072 
2073     case ACPI_TYPE_POWER:
2074         acpi_add_power_resource(handle);
2075         fallthrough;
2076     default:
2077         return AE_OK;
2078     }
2079 
2080     /*
2081      * If check_dep is true at this point, the device has no dependencies,
2082      * or the creation of the device object would have been postponed above.
2083      */
2084     acpi_add_single_object(&device, handle, type, !check_dep);
2085     if (!device)
2086         return AE_CTRL_DEPTH;
2087 
2088     acpi_scan_init_hotplug(device);
2089 
2090 out:
2091     if (!*adev_p)
2092         *adev_p = device;
2093 
2094     return AE_OK;
2095 }
2096 
2097 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2098                     void *not_used, void **ret_p)
2099 {
2100     return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2101 }
2102 
2103 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2104                     void *not_used, void **ret_p)
2105 {
2106     return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2107 }
2108 
2109 static void acpi_default_enumeration(struct acpi_device *device)
2110 {
2111     /*
2112      * Do not enumerate devices with enumeration_by_parent flag set as
2113      * they will be enumerated by their respective parents.
2114      */
2115     if (!device->flags.enumeration_by_parent) {
2116         acpi_create_platform_device(device, NULL);
2117         acpi_device_set_enumerated(device);
2118     } else {
2119         blocking_notifier_call_chain(&acpi_reconfig_chain,
2120                          ACPI_RECONFIG_DEVICE_ADD, device);
2121     }
2122 }
2123 
2124 static const struct acpi_device_id generic_device_ids[] = {
2125     {ACPI_DT_NAMESPACE_HID, },
2126     {"", },
2127 };
2128 
2129 static int acpi_generic_device_attach(struct acpi_device *adev,
2130                       const struct acpi_device_id *not_used)
2131 {
2132     /*
2133      * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2134      * below can be unconditional.
2135      */
2136     if (adev->data.of_compatible)
2137         acpi_default_enumeration(adev);
2138 
2139     return 1;
2140 }
2141 
2142 static struct acpi_scan_handler generic_device_handler = {
2143     .ids = generic_device_ids,
2144     .attach = acpi_generic_device_attach,
2145 };
2146 
2147 static int acpi_scan_attach_handler(struct acpi_device *device)
2148 {
2149     struct acpi_hardware_id *hwid;
2150     int ret = 0;
2151 
2152     list_for_each_entry(hwid, &device->pnp.ids, list) {
2153         const struct acpi_device_id *devid;
2154         struct acpi_scan_handler *handler;
2155 
2156         handler = acpi_scan_match_handler(hwid->id, &devid);
2157         if (handler) {
2158             if (!handler->attach) {
2159                 device->pnp.type.platform_id = 0;
2160                 continue;
2161             }
2162             device->handler = handler;
2163             ret = handler->attach(device, devid);
2164             if (ret > 0)
2165                 break;
2166 
2167             device->handler = NULL;
2168             if (ret < 0)
2169                 break;
2170         }
2171     }
2172 
2173     return ret;
2174 }
2175 
2176 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2177 {
2178     bool skip = !first_pass && device->flags.visited;
2179     acpi_handle ejd;
2180     int ret;
2181 
2182     if (skip)
2183         goto ok;
2184 
2185     if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2186         register_dock_dependent_device(device, ejd);
2187 
2188     acpi_bus_get_status(device);
2189     /* Skip devices that are not ready for enumeration (e.g. not present) */
2190     if (!acpi_dev_ready_for_enumeration(device)) {
2191         device->flags.initialized = false;
2192         acpi_device_clear_enumerated(device);
2193         device->flags.power_manageable = 0;
2194         return 0;
2195     }
2196     if (device->handler)
2197         goto ok;
2198 
2199     if (!device->flags.initialized) {
2200         device->flags.power_manageable =
2201             device->power.states[ACPI_STATE_D0].flags.valid;
2202         if (acpi_bus_init_power(device))
2203             device->flags.power_manageable = 0;
2204 
2205         device->flags.initialized = true;
2206     } else if (device->flags.visited) {
2207         goto ok;
2208     }
2209 
2210     ret = acpi_scan_attach_handler(device);
2211     if (ret < 0)
2212         return 0;
2213 
2214     device->flags.match_driver = true;
2215     if (ret > 0 && !device->flags.enumeration_by_parent) {
2216         acpi_device_set_enumerated(device);
2217         goto ok;
2218     }
2219 
2220     ret = device_attach(&device->dev);
2221     if (ret < 0)
2222         return 0;
2223 
2224     if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2225         acpi_default_enumeration(device);
2226     else
2227         acpi_device_set_enumerated(device);
2228 
2229 ok:
2230     acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2231 
2232     if (!skip && device->handler && device->handler->hotplug.notify_online)
2233         device->handler->hotplug.notify_online(device);
2234 
2235     return 0;
2236 }
2237 
2238 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2239 {
2240     struct acpi_device *adev;
2241 
2242     adev = acpi_bus_get_acpi_device(dep->consumer);
2243     if (adev) {
2244         *(struct acpi_device **)data = adev;
2245         return 1;
2246     }
2247     /* Continue parsing if the device object is not present. */
2248     return 0;
2249 }
2250 
2251 struct acpi_scan_clear_dep_work {
2252     struct work_struct work;
2253     struct acpi_device *adev;
2254 };
2255 
2256 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2257 {
2258     struct acpi_scan_clear_dep_work *cdw;
2259 
2260     cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2261 
2262     acpi_scan_lock_acquire();
2263     acpi_bus_attach(cdw->adev, (void *)true);
2264     acpi_scan_lock_release();
2265 
2266     acpi_dev_put(cdw->adev);
2267     kfree(cdw);
2268 }
2269 
2270 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2271 {
2272     struct acpi_scan_clear_dep_work *cdw;
2273 
2274     if (adev->dep_unmet)
2275         return false;
2276 
2277     cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2278     if (!cdw)
2279         return false;
2280 
2281     cdw->adev = adev;
2282     INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2283     /*
2284      * Since the work function may block on the lock until the entire
2285      * initial enumeration of devices is complete, put it into the unbound
2286      * workqueue.
2287      */
2288     queue_work(system_unbound_wq, &cdw->work);
2289 
2290     return true;
2291 }
2292 
2293 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2294 {
2295     struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2296 
2297     if (adev) {
2298         adev->dep_unmet--;
2299         if (!acpi_scan_clear_dep_queue(adev))
2300             acpi_dev_put(adev);
2301     }
2302 
2303     list_del(&dep->node);
2304     kfree(dep);
2305 
2306     return 0;
2307 }
2308 
2309 /**
2310  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2311  * @handle: The ACPI handle of the supplier device
2312  * @callback:   Pointer to the callback function to apply
2313  * @data:   Pointer to some data to pass to the callback
2314  *
2315  * The return value of the callback determines this function's behaviour. If 0
2316  * is returned we continue to iterate over acpi_dep_list. If a positive value
2317  * is returned then the loop is broken but this function returns 0. If a
2318  * negative value is returned by the callback then the loop is broken and that
2319  * value is returned as the final error.
2320  */
2321 static int acpi_walk_dep_device_list(acpi_handle handle,
2322                 int (*callback)(struct acpi_dep_data *, void *),
2323                 void *data)
2324 {
2325     struct acpi_dep_data *dep, *tmp;
2326     int ret = 0;
2327 
2328     mutex_lock(&acpi_dep_list_lock);
2329     list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2330         if (dep->supplier == handle) {
2331             ret = callback(dep, data);
2332             if (ret)
2333                 break;
2334         }
2335     }
2336     mutex_unlock(&acpi_dep_list_lock);
2337 
2338     return ret > 0 ? 0 : ret;
2339 }
2340 
2341 /**
2342  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2343  * @supplier: Pointer to the supplier &struct acpi_device
2344  *
2345  * Clear dependencies on the given device.
2346  */
2347 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2348 {
2349     acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2350 }
2351 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2352 
2353 /**
2354  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2355  * @device: Pointer to the &struct acpi_device to check
2356  *
2357  * Check if the device is present and has no unmet dependencies.
2358  *
2359  * Return true if the device is ready for enumeratino. Otherwise, return false.
2360  */
2361 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2362 {
2363     if (device->flags.honor_deps && device->dep_unmet)
2364         return false;
2365 
2366     return acpi_device_is_present(device);
2367 }
2368 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2369 
2370 /**
2371  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2372  * @supplier: Pointer to the dependee device
2373  *
2374  * Returns the first &struct acpi_device which declares itself dependent on
2375  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2376  *
2377  * The caller is responsible for putting the reference to adev when it is no
2378  * longer needed.
2379  */
2380 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2381 {
2382     struct acpi_device *adev = NULL;
2383 
2384     acpi_walk_dep_device_list(supplier->handle,
2385                   acpi_dev_get_first_consumer_dev_cb, &adev);
2386 
2387     return adev;
2388 }
2389 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2390 
2391 /**
2392  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2393  * @handle: Root of the namespace scope to scan.
2394  *
2395  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2396  * found devices.
2397  *
2398  * If no devices were found, -ENODEV is returned, but it does not mean that
2399  * there has been a real error.  There just have been no suitable ACPI objects
2400  * in the table trunk from which the kernel could create a device and add an
2401  * appropriate driver.
2402  *
2403  * Must be called under acpi_scan_lock.
2404  */
2405 int acpi_bus_scan(acpi_handle handle)
2406 {
2407     struct acpi_device *device = NULL;
2408 
2409     acpi_bus_scan_second_pass = false;
2410 
2411     /* Pass 1: Avoid enumerating devices with missing dependencies. */
2412 
2413     if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2414         acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2415                     acpi_bus_check_add_1, NULL, NULL,
2416                     (void **)&device);
2417 
2418     if (!device)
2419         return -ENODEV;
2420 
2421     acpi_bus_attach(device, (void *)true);
2422 
2423     if (!acpi_bus_scan_second_pass)
2424         return 0;
2425 
2426     /* Pass 2: Enumerate all of the remaining devices. */
2427 
2428     device = NULL;
2429 
2430     if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2431         acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2432                     acpi_bus_check_add_2, NULL, NULL,
2433                     (void **)&device);
2434 
2435     acpi_bus_attach(device, NULL);
2436 
2437     return 0;
2438 }
2439 EXPORT_SYMBOL(acpi_bus_scan);
2440 
2441 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2442 {
2443     struct acpi_scan_handler *handler = adev->handler;
2444 
2445     acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2446 
2447     adev->flags.match_driver = false;
2448     if (handler) {
2449         if (handler->detach)
2450             handler->detach(adev);
2451 
2452         adev->handler = NULL;
2453     } else {
2454         device_release_driver(&adev->dev);
2455     }
2456     /*
2457      * Most likely, the device is going away, so put it into D3cold before
2458      * that.
2459      */
2460     acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2461     adev->flags.initialized = false;
2462     acpi_device_clear_enumerated(adev);
2463 
2464     return 0;
2465 }
2466 
2467 /**
2468  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2469  * @adev: Root of the ACPI namespace scope to walk.
2470  *
2471  * Must be called under acpi_scan_lock.
2472  */
2473 void acpi_bus_trim(struct acpi_device *adev)
2474 {
2475     acpi_bus_trim_one(adev, NULL);
2476 }
2477 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2478 
2479 int acpi_bus_register_early_device(int type)
2480 {
2481     struct acpi_device *device = NULL;
2482     int result;
2483 
2484     result = acpi_add_single_object(&device, NULL, type, false);
2485     if (result)
2486         return result;
2487 
2488     device->flags.match_driver = true;
2489     return device_attach(&device->dev);
2490 }
2491 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2492 
2493 static void acpi_bus_scan_fixed(void)
2494 {
2495     if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2496         struct acpi_device *adev = NULL;
2497 
2498         acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2499                        false);
2500         if (adev) {
2501             adev->flags.match_driver = true;
2502             if (device_attach(&adev->dev) >= 0)
2503                 device_init_wakeup(&adev->dev, true);
2504             else
2505                 dev_dbg(&adev->dev, "No driver\n");
2506         }
2507     }
2508 
2509     if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2510         struct acpi_device *adev = NULL;
2511 
2512         acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2513                        false);
2514         if (adev) {
2515             adev->flags.match_driver = true;
2516             if (device_attach(&adev->dev) < 0)
2517                 dev_dbg(&adev->dev, "No driver\n");
2518         }
2519     }
2520 }
2521 
2522 static void __init acpi_get_spcr_uart_addr(void)
2523 {
2524     acpi_status status;
2525     struct acpi_table_spcr *spcr_ptr;
2526 
2527     status = acpi_get_table(ACPI_SIG_SPCR, 0,
2528                 (struct acpi_table_header **)&spcr_ptr);
2529     if (ACPI_FAILURE(status)) {
2530         pr_warn("STAO table present, but SPCR is missing\n");
2531         return;
2532     }
2533 
2534     spcr_uart_addr = spcr_ptr->serial_port.address;
2535     acpi_put_table((struct acpi_table_header *)spcr_ptr);
2536 }
2537 
2538 static bool acpi_scan_initialized;
2539 
2540 void __init acpi_scan_init(void)
2541 {
2542     acpi_status status;
2543     struct acpi_table_stao *stao_ptr;
2544 
2545     acpi_pci_root_init();
2546     acpi_pci_link_init();
2547     acpi_processor_init();
2548     acpi_platform_init();
2549     acpi_lpss_init();
2550     acpi_apd_init();
2551     acpi_cmos_rtc_init();
2552     acpi_container_init();
2553     acpi_memory_hotplug_init();
2554     acpi_watchdog_init();
2555     acpi_pnp_init();
2556     acpi_int340x_thermal_init();
2557     acpi_amba_init();
2558     acpi_init_lpit();
2559 
2560     acpi_scan_add_handler(&generic_device_handler);
2561 
2562     /*
2563      * If there is STAO table, check whether it needs to ignore the UART
2564      * device in SPCR table.
2565      */
2566     status = acpi_get_table(ACPI_SIG_STAO, 0,
2567                 (struct acpi_table_header **)&stao_ptr);
2568     if (ACPI_SUCCESS(status)) {
2569         if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2570             pr_info("STAO Name List not yet supported.\n");
2571 
2572         if (stao_ptr->ignore_uart)
2573             acpi_get_spcr_uart_addr();
2574 
2575         acpi_put_table((struct acpi_table_header *)stao_ptr);
2576     }
2577 
2578     acpi_gpe_apply_masked_gpes();
2579     acpi_update_all_gpes();
2580 
2581     /*
2582      * Although we call __add_memory() that is documented to require the
2583      * device_hotplug_lock, it is not necessary here because this is an
2584      * early code when userspace or any other code path cannot trigger
2585      * hotplug/hotunplug operations.
2586      */
2587     mutex_lock(&acpi_scan_lock);
2588     /*
2589      * Enumerate devices in the ACPI namespace.
2590      */
2591     if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2592         goto unlock;
2593 
2594     acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2595     if (!acpi_root)
2596         goto unlock;
2597 
2598     /* Fixed feature devices do not exist on HW-reduced platform */
2599     if (!acpi_gbl_reduced_hardware)
2600         acpi_bus_scan_fixed();
2601 
2602     acpi_turn_off_unused_power_resources();
2603 
2604     acpi_scan_initialized = true;
2605 
2606 unlock:
2607     mutex_unlock(&acpi_scan_lock);
2608 }
2609 
2610 static struct acpi_probe_entry *ape;
2611 static int acpi_probe_count;
2612 static DEFINE_MUTEX(acpi_probe_mutex);
2613 
2614 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2615                   const unsigned long end)
2616 {
2617     if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2618         if (!ape->probe_subtbl(header, end))
2619             acpi_probe_count++;
2620 
2621     return 0;
2622 }
2623 
2624 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2625 {
2626     int count = 0;
2627 
2628     if (acpi_disabled)
2629         return 0;
2630 
2631     mutex_lock(&acpi_probe_mutex);
2632     for (ape = ap_head; nr; ape++, nr--) {
2633         if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2634             acpi_probe_count = 0;
2635             acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2636             count += acpi_probe_count;
2637         } else {
2638             int res;
2639             res = acpi_table_parse(ape->id, ape->probe_table);
2640             if (!res)
2641                 count++;
2642         }
2643     }
2644     mutex_unlock(&acpi_probe_mutex);
2645 
2646     return count;
2647 }
2648 
2649 static void acpi_table_events_fn(struct work_struct *work)
2650 {
2651     acpi_scan_lock_acquire();
2652     acpi_bus_scan(ACPI_ROOT_OBJECT);
2653     acpi_scan_lock_release();
2654 
2655     kfree(work);
2656 }
2657 
2658 void acpi_scan_table_notify(void)
2659 {
2660     struct work_struct *work;
2661 
2662     if (!acpi_scan_initialized)
2663         return;
2664 
2665     work = kmalloc(sizeof(*work), GFP_KERNEL);
2666     if (!work)
2667         return;
2668 
2669     INIT_WORK(work, acpi_table_events_fn);
2670     schedule_work(work);
2671 }
2672 
2673 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2674 {
2675     return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2676 }
2677 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2678 
2679 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2680 {
2681     return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2682 }
2683 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);