0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013 #define pr_fmt(fmt) "ACPI: " fmt
0014
0015 #include <linux/module.h>
0016 #include <linux/acpi.h>
0017 #include <linux/dmi.h>
0018 #include <linux/sched.h> /* need_resched() */
0019 #include <linux/sort.h>
0020 #include <linux/tick.h>
0021 #include <linux/cpuidle.h>
0022 #include <linux/cpu.h>
0023 #include <linux/minmax.h>
0024 #include <linux/perf_event.h>
0025 #include <acpi/processor.h>
0026 #include <linux/context_tracking.h>
0027
0028
0029
0030
0031
0032
0033
0034 #ifdef CONFIG_X86
0035 #include <asm/apic.h>
0036 #include <asm/cpu.h>
0037 #endif
0038
0039 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
0040
0041 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
0042 module_param(max_cstate, uint, 0400);
0043 static bool nocst __read_mostly;
0044 module_param(nocst, bool, 0400);
0045 static bool bm_check_disable __read_mostly;
0046 module_param(bm_check_disable, bool, 0400);
0047
0048 static unsigned int latency_factor __read_mostly = 2;
0049 module_param(latency_factor, uint, 0644);
0050
0051 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
0052
0053 struct cpuidle_driver acpi_idle_driver = {
0054 .name = "acpi_idle",
0055 .owner = THIS_MODULE,
0056 };
0057
0058 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
0059 static
0060 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
0061
0062 static int disabled_by_idle_boot_param(void)
0063 {
0064 return boot_option_idle_override == IDLE_POLL ||
0065 boot_option_idle_override == IDLE_HALT;
0066 }
0067
0068
0069
0070
0071
0072
0073
0074 static int set_max_cstate(const struct dmi_system_id *id)
0075 {
0076 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
0077 return 0;
0078
0079 pr_notice("%s detected - limiting to C%ld max_cstate."
0080 " Override with \"processor.max_cstate=%d\"\n", id->ident,
0081 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
0082
0083 max_cstate = (long)id->driver_data;
0084
0085 return 0;
0086 }
0087
0088 static const struct dmi_system_id processor_power_dmi_table[] = {
0089 { set_max_cstate, "Clevo 5600D", {
0090 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
0091 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
0092 (void *)2},
0093 { set_max_cstate, "Pavilion zv5000", {
0094 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
0095 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
0096 (void *)1},
0097 { set_max_cstate, "Asus L8400B", {
0098 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
0099 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
0100 (void *)1},
0101 {},
0102 };
0103
0104
0105
0106
0107
0108
0109 static void __cpuidle acpi_safe_halt(void)
0110 {
0111 if (!tif_need_resched()) {
0112 safe_halt();
0113 local_irq_disable();
0114 }
0115 }
0116
0117 #ifdef ARCH_APICTIMER_STOPS_ON_C3
0118
0119
0120
0121
0122
0123
0124
0125 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
0126 struct acpi_processor_cx *cx)
0127 {
0128 struct acpi_processor_power *pwr = &pr->power;
0129 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
0130
0131 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
0132 return;
0133
0134 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
0135 type = ACPI_STATE_C1;
0136
0137
0138
0139
0140
0141 if (pwr->timer_broadcast_on_state < state)
0142 return;
0143
0144 if (cx->type >= type)
0145 pr->power.timer_broadcast_on_state = state;
0146 }
0147
0148 static void __lapic_timer_propagate_broadcast(void *arg)
0149 {
0150 struct acpi_processor *pr = (struct acpi_processor *) arg;
0151
0152 if (pr->power.timer_broadcast_on_state < INT_MAX)
0153 tick_broadcast_enable();
0154 else
0155 tick_broadcast_disable();
0156 }
0157
0158 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
0159 {
0160 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
0161 (void *)pr, 1);
0162 }
0163
0164
0165 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
0166 struct acpi_processor_cx *cx)
0167 {
0168 return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
0169 }
0170
0171 #else
0172
0173 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
0174 struct acpi_processor_cx *cstate) { }
0175 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
0176
0177 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
0178 struct acpi_processor_cx *cx)
0179 {
0180 return false;
0181 }
0182
0183 #endif
0184
0185 #if defined(CONFIG_X86)
0186 static void tsc_check_state(int state)
0187 {
0188 switch (boot_cpu_data.x86_vendor) {
0189 case X86_VENDOR_HYGON:
0190 case X86_VENDOR_AMD:
0191 case X86_VENDOR_INTEL:
0192 case X86_VENDOR_CENTAUR:
0193 case X86_VENDOR_ZHAOXIN:
0194
0195
0196
0197
0198 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
0199 return;
0200 fallthrough;
0201 default:
0202
0203 if (state > ACPI_STATE_C1)
0204 mark_tsc_unstable("TSC halts in idle");
0205 }
0206 }
0207 #else
0208 static void tsc_check_state(int state) { return; }
0209 #endif
0210
0211 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
0212 {
0213
0214 if (!pr->pblk)
0215 return -ENODEV;
0216
0217
0218 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
0219 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
0220
0221 #ifndef CONFIG_HOTPLUG_CPU
0222
0223
0224
0225
0226 if ((num_online_cpus() > 1) &&
0227 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
0228 return -ENODEV;
0229 #endif
0230
0231
0232 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
0233 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
0234
0235
0236 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
0237 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
0238
0239
0240
0241
0242
0243 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
0244 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
0245 acpi_gbl_FADT.c2_latency);
0246
0247 pr->power.states[ACPI_STATE_C2].address = 0;
0248 }
0249
0250
0251
0252
0253
0254 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
0255 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
0256 acpi_gbl_FADT.c3_latency);
0257
0258 pr->power.states[ACPI_STATE_C3].address = 0;
0259 }
0260
0261 acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
0262 pr->power.states[ACPI_STATE_C2].address,
0263 pr->power.states[ACPI_STATE_C3].address);
0264
0265 snprintf(pr->power.states[ACPI_STATE_C2].desc,
0266 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
0267 pr->power.states[ACPI_STATE_C2].address);
0268 snprintf(pr->power.states[ACPI_STATE_C3].desc,
0269 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
0270 pr->power.states[ACPI_STATE_C3].address);
0271
0272 return 0;
0273 }
0274
0275 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
0276 {
0277 if (!pr->power.states[ACPI_STATE_C1].valid) {
0278
0279
0280 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
0281 pr->power.states[ACPI_STATE_C1].valid = 1;
0282 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
0283
0284 snprintf(pr->power.states[ACPI_STATE_C1].desc,
0285 ACPI_CX_DESC_LEN, "ACPI HLT");
0286 }
0287
0288 pr->power.states[ACPI_STATE_C0].valid = 1;
0289 return 0;
0290 }
0291
0292 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
0293 {
0294 int ret;
0295
0296 if (nocst)
0297 return -ENODEV;
0298
0299 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
0300 if (ret)
0301 return ret;
0302
0303 if (!pr->power.count)
0304 return -EFAULT;
0305
0306 pr->flags.has_cst = 1;
0307 return 0;
0308 }
0309
0310 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
0311 struct acpi_processor_cx *cx)
0312 {
0313 static int bm_check_flag = -1;
0314 static int bm_control_flag = -1;
0315
0316
0317 if (!cx->address)
0318 return;
0319
0320
0321
0322
0323
0324
0325
0326
0327 else if (errata.piix4.fdma) {
0328 acpi_handle_debug(pr->handle,
0329 "C3 not supported on PIIX4 with Type-F DMA\n");
0330 return;
0331 }
0332
0333
0334 if (bm_check_flag == -1) {
0335
0336 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
0337 bm_check_flag = pr->flags.bm_check;
0338 bm_control_flag = pr->flags.bm_control;
0339 } else {
0340 pr->flags.bm_check = bm_check_flag;
0341 pr->flags.bm_control = bm_control_flag;
0342 }
0343
0344 if (pr->flags.bm_check) {
0345 if (!pr->flags.bm_control) {
0346 if (pr->flags.has_cst != 1) {
0347
0348 acpi_handle_debug(pr->handle,
0349 "C3 support requires BM control\n");
0350 return;
0351 } else {
0352
0353 acpi_handle_debug(pr->handle,
0354 "C3 support without BM control\n");
0355 }
0356 }
0357 } else {
0358
0359
0360
0361
0362 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
0363 acpi_handle_debug(pr->handle,
0364 "Cache invalidation should work properly"
0365 " for C3 to be enabled on SMP systems\n");
0366 return;
0367 }
0368 }
0369
0370
0371
0372
0373
0374
0375
0376 cx->valid = 1;
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
0387
0388 return;
0389 }
0390
0391 static int acpi_cst_latency_cmp(const void *a, const void *b)
0392 {
0393 const struct acpi_processor_cx *x = a, *y = b;
0394
0395 if (!(x->valid && y->valid))
0396 return 0;
0397 if (x->latency > y->latency)
0398 return 1;
0399 if (x->latency < y->latency)
0400 return -1;
0401 return 0;
0402 }
0403 static void acpi_cst_latency_swap(void *a, void *b, int n)
0404 {
0405 struct acpi_processor_cx *x = a, *y = b;
0406
0407 if (!(x->valid && y->valid))
0408 return;
0409 swap(x->latency, y->latency);
0410 }
0411
0412 static int acpi_processor_power_verify(struct acpi_processor *pr)
0413 {
0414 unsigned int i;
0415 unsigned int working = 0;
0416 unsigned int last_latency = 0;
0417 unsigned int last_type = 0;
0418 bool buggy_latency = false;
0419
0420 pr->power.timer_broadcast_on_state = INT_MAX;
0421
0422 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
0423 struct acpi_processor_cx *cx = &pr->power.states[i];
0424
0425 switch (cx->type) {
0426 case ACPI_STATE_C1:
0427 cx->valid = 1;
0428 break;
0429
0430 case ACPI_STATE_C2:
0431 if (!cx->address)
0432 break;
0433 cx->valid = 1;
0434 break;
0435
0436 case ACPI_STATE_C3:
0437 acpi_processor_power_verify_c3(pr, cx);
0438 break;
0439 }
0440 if (!cx->valid)
0441 continue;
0442 if (cx->type >= last_type && cx->latency < last_latency)
0443 buggy_latency = true;
0444 last_latency = cx->latency;
0445 last_type = cx->type;
0446
0447 lapic_timer_check_state(i, pr, cx);
0448 tsc_check_state(cx->type);
0449 working++;
0450 }
0451
0452 if (buggy_latency) {
0453 pr_notice("FW issue: working around C-state latencies out of order\n");
0454 sort(&pr->power.states[1], max_cstate,
0455 sizeof(struct acpi_processor_cx),
0456 acpi_cst_latency_cmp,
0457 acpi_cst_latency_swap);
0458 }
0459
0460 lapic_timer_propagate_broadcast(pr);
0461
0462 return (working);
0463 }
0464
0465 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
0466 {
0467 unsigned int i;
0468 int result;
0469
0470
0471
0472
0473
0474
0475 memset(pr->power.states, 0, sizeof(pr->power.states));
0476
0477 result = acpi_processor_get_power_info_cst(pr);
0478 if (result == -ENODEV)
0479 result = acpi_processor_get_power_info_fadt(pr);
0480
0481 if (result)
0482 return result;
0483
0484 acpi_processor_get_power_info_default(pr);
0485
0486 pr->power.count = acpi_processor_power_verify(pr);
0487
0488
0489
0490
0491
0492 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
0493 if (pr->power.states[i].valid) {
0494 pr->power.count = i;
0495 pr->flags.power = 1;
0496 }
0497 }
0498
0499 return 0;
0500 }
0501
0502
0503
0504
0505 static int acpi_idle_bm_check(void)
0506 {
0507 u32 bm_status = 0;
0508
0509 if (bm_check_disable)
0510 return 0;
0511
0512 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
0513 if (bm_status)
0514 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
0515
0516
0517
0518
0519
0520 else if (errata.piix4.bmisx) {
0521 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
0522 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
0523 bm_status = 1;
0524 }
0525 return bm_status;
0526 }
0527
0528 static void wait_for_freeze(void)
0529 {
0530 #ifdef CONFIG_X86
0531
0532 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
0533 return;
0534
0535
0536
0537
0538
0539
0540 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
0541 return;
0542 #endif
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555 inl(acpi_gbl_FADT.xpm_timer_block.address);
0556 }
0557
0558
0559
0560
0561
0562
0563
0564 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
0565 {
0566 perf_lopwr_cb(true);
0567
0568 if (cx->entry_method == ACPI_CSTATE_FFH) {
0569
0570 acpi_processor_ffh_cstate_enter(cx);
0571 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
0572 acpi_safe_halt();
0573 } else {
0574
0575 inb(cx->address);
0576 wait_for_freeze();
0577 }
0578
0579 perf_lopwr_cb(false);
0580 }
0581
0582
0583
0584
0585
0586
0587 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
0588 {
0589 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
0590
0591 ACPI_FLUSH_CPU_CACHE();
0592
0593 while (1) {
0594
0595 if (cx->entry_method == ACPI_CSTATE_HALT)
0596 safe_halt();
0597 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
0598 inb(cx->address);
0599 wait_for_freeze();
0600 } else
0601 return -ENODEV;
0602
0603 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
0604 cond_wakeup_cpu0();
0605 #endif
0606 }
0607
0608
0609 return 0;
0610 }
0611
0612 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
0613 {
0614 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
0615 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
0616 }
0617
0618 static int c3_cpu_count;
0619 static DEFINE_RAW_SPINLOCK(c3_lock);
0620
0621
0622
0623
0624
0625
0626
0627
0628 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
0629 struct acpi_processor *pr,
0630 struct acpi_processor_cx *cx,
0631 int index)
0632 {
0633 static struct acpi_processor_cx safe_cx = {
0634 .entry_method = ACPI_CSTATE_HALT,
0635 };
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645 bool dis_bm = pr->flags.bm_control;
0646
0647
0648 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
0649 dis_bm = false;
0650 index = drv->safe_state_index;
0651 if (index >= 0) {
0652 cx = this_cpu_read(acpi_cstate[index]);
0653 } else {
0654 cx = &safe_cx;
0655 index = -EBUSY;
0656 }
0657 }
0658
0659 if (dis_bm) {
0660 raw_spin_lock(&c3_lock);
0661 c3_cpu_count++;
0662
0663 if (c3_cpu_count == num_online_cpus())
0664 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
0665 raw_spin_unlock(&c3_lock);
0666 }
0667
0668 ct_idle_enter();
0669
0670 acpi_idle_do_entry(cx);
0671
0672 ct_idle_exit();
0673
0674
0675 if (dis_bm) {
0676 raw_spin_lock(&c3_lock);
0677 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
0678 c3_cpu_count--;
0679 raw_spin_unlock(&c3_lock);
0680 }
0681
0682 return index;
0683 }
0684
0685 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
0686 struct cpuidle_driver *drv, int index)
0687 {
0688 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
0689 struct acpi_processor *pr;
0690
0691 pr = __this_cpu_read(processors);
0692 if (unlikely(!pr))
0693 return -EINVAL;
0694
0695 if (cx->type != ACPI_STATE_C1) {
0696 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
0697 return acpi_idle_enter_bm(drv, pr, cx, index);
0698
0699
0700 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
0701 index = ACPI_IDLE_STATE_START;
0702 cx = per_cpu(acpi_cstate[index], dev->cpu);
0703 }
0704 }
0705
0706 if (cx->type == ACPI_STATE_C3)
0707 ACPI_FLUSH_CPU_CACHE();
0708
0709 acpi_idle_do_entry(cx);
0710
0711 return index;
0712 }
0713
0714 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
0715 struct cpuidle_driver *drv, int index)
0716 {
0717 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
0718
0719 if (cx->type == ACPI_STATE_C3) {
0720 struct acpi_processor *pr = __this_cpu_read(processors);
0721
0722 if (unlikely(!pr))
0723 return 0;
0724
0725 if (pr->flags.bm_check) {
0726 u8 bm_sts_skip = cx->bm_sts_skip;
0727
0728
0729 cx->bm_sts_skip = 1;
0730 acpi_idle_enter_bm(drv, pr, cx, index);
0731 cx->bm_sts_skip = bm_sts_skip;
0732
0733 return 0;
0734 } else {
0735 ACPI_FLUSH_CPU_CACHE();
0736 }
0737 }
0738 acpi_idle_do_entry(cx);
0739
0740 return 0;
0741 }
0742
0743 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
0744 struct cpuidle_device *dev)
0745 {
0746 int i, count = ACPI_IDLE_STATE_START;
0747 struct acpi_processor_cx *cx;
0748 struct cpuidle_state *state;
0749
0750 if (max_cstate == 0)
0751 max_cstate = 1;
0752
0753 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
0754 state = &acpi_idle_driver.states[count];
0755 cx = &pr->power.states[i];
0756
0757 if (!cx->valid)
0758 continue;
0759
0760 per_cpu(acpi_cstate[count], dev->cpu) = cx;
0761
0762 if (lapic_timer_needs_broadcast(pr, cx))
0763 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
0764
0765 if (cx->type == ACPI_STATE_C3) {
0766 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
0767 if (pr->flags.bm_check)
0768 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
0769 }
0770
0771 count++;
0772 if (count == CPUIDLE_STATE_MAX)
0773 break;
0774 }
0775
0776 if (!count)
0777 return -EINVAL;
0778
0779 return 0;
0780 }
0781
0782 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
0783 {
0784 int i, count;
0785 struct acpi_processor_cx *cx;
0786 struct cpuidle_state *state;
0787 struct cpuidle_driver *drv = &acpi_idle_driver;
0788
0789 if (max_cstate == 0)
0790 max_cstate = 1;
0791
0792 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
0793 cpuidle_poll_state_init(drv);
0794 count = 1;
0795 } else {
0796 count = 0;
0797 }
0798
0799 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
0800 cx = &pr->power.states[i];
0801
0802 if (!cx->valid)
0803 continue;
0804
0805 state = &drv->states[count];
0806 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
0807 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
0808 state->exit_latency = cx->latency;
0809 state->target_residency = cx->latency * latency_factor;
0810 state->enter = acpi_idle_enter;
0811
0812 state->flags = 0;
0813 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
0814 cx->type == ACPI_STATE_C3) {
0815 state->enter_dead = acpi_idle_play_dead;
0816 if (cx->type != ACPI_STATE_C3)
0817 drv->safe_state_index = count;
0818 }
0819
0820
0821
0822
0823
0824
0825
0826 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
0827 state->enter_s2idle = acpi_idle_enter_s2idle;
0828
0829 count++;
0830 if (count == CPUIDLE_STATE_MAX)
0831 break;
0832 }
0833
0834 drv->state_count = count;
0835
0836 if (!count)
0837 return -EINVAL;
0838
0839 return 0;
0840 }
0841
0842 static inline void acpi_processor_cstate_first_run_checks(void)
0843 {
0844 static int first_run;
0845
0846 if (first_run)
0847 return;
0848 dmi_check_system(processor_power_dmi_table);
0849 max_cstate = acpi_processor_cstate_check(max_cstate);
0850 if (max_cstate < ACPI_C_STATES_MAX)
0851 pr_notice("processor limited to max C-state %d\n", max_cstate);
0852
0853 first_run++;
0854
0855 if (nocst)
0856 return;
0857
0858 acpi_processor_claim_cst_control();
0859 }
0860 #else
0861
0862 static inline int disabled_by_idle_boot_param(void) { return 0; }
0863 static inline void acpi_processor_cstate_first_run_checks(void) { }
0864 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
0865 {
0866 return -ENODEV;
0867 }
0868
0869 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
0870 struct cpuidle_device *dev)
0871 {
0872 return -EINVAL;
0873 }
0874
0875 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
0876 {
0877 return -EINVAL;
0878 }
0879
0880 #endif
0881
0882 struct acpi_lpi_states_array {
0883 unsigned int size;
0884 unsigned int composite_states_size;
0885 struct acpi_lpi_state *entries;
0886 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
0887 };
0888
0889 static int obj_get_integer(union acpi_object *obj, u32 *value)
0890 {
0891 if (obj->type != ACPI_TYPE_INTEGER)
0892 return -EINVAL;
0893
0894 *value = obj->integer.value;
0895 return 0;
0896 }
0897
0898 static int acpi_processor_evaluate_lpi(acpi_handle handle,
0899 struct acpi_lpi_states_array *info)
0900 {
0901 acpi_status status;
0902 int ret = 0;
0903 int pkg_count, state_idx = 1, loop;
0904 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
0905 union acpi_object *lpi_data;
0906 struct acpi_lpi_state *lpi_state;
0907
0908 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
0909 if (ACPI_FAILURE(status)) {
0910 acpi_handle_debug(handle, "No _LPI, giving up\n");
0911 return -ENODEV;
0912 }
0913
0914 lpi_data = buffer.pointer;
0915
0916
0917 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
0918 lpi_data->package.count < 4) {
0919 pr_debug("not enough elements in _LPI\n");
0920 ret = -ENODATA;
0921 goto end;
0922 }
0923
0924 pkg_count = lpi_data->package.elements[2].integer.value;
0925
0926
0927 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
0928 pr_debug("count given by _LPI is not valid\n");
0929 ret = -ENODATA;
0930 goto end;
0931 }
0932
0933 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
0934 if (!lpi_state) {
0935 ret = -ENOMEM;
0936 goto end;
0937 }
0938
0939 info->size = pkg_count;
0940 info->entries = lpi_state;
0941
0942
0943 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
0944 union acpi_object *element, *pkg_elem, *obj;
0945
0946 element = &lpi_data->package.elements[loop];
0947 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
0948 continue;
0949
0950 pkg_elem = element->package.elements;
0951
0952 obj = pkg_elem + 6;
0953 if (obj->type == ACPI_TYPE_BUFFER) {
0954 struct acpi_power_register *reg;
0955
0956 reg = (struct acpi_power_register *)obj->buffer.pointer;
0957 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
0958 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
0959 continue;
0960
0961 lpi_state->address = reg->address;
0962 lpi_state->entry_method =
0963 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
0964 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
0965 } else if (obj->type == ACPI_TYPE_INTEGER) {
0966 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
0967 lpi_state->address = obj->integer.value;
0968 } else {
0969 continue;
0970 }
0971
0972
0973
0974 obj = pkg_elem + 9;
0975 if (obj->type == ACPI_TYPE_STRING)
0976 strlcpy(lpi_state->desc, obj->string.pointer,
0977 ACPI_CX_DESC_LEN);
0978
0979 lpi_state->index = state_idx;
0980 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
0981 pr_debug("No min. residency found, assuming 10 us\n");
0982 lpi_state->min_residency = 10;
0983 }
0984
0985 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
0986 pr_debug("No wakeup residency found, assuming 10 us\n");
0987 lpi_state->wake_latency = 10;
0988 }
0989
0990 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
0991 lpi_state->flags = 0;
0992
0993 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
0994 lpi_state->arch_flags = 0;
0995
0996 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
0997 lpi_state->res_cnt_freq = 1;
0998
0999 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1000 lpi_state->enable_parent_state = 0;
1001 }
1002
1003 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1004 end:
1005 kfree(buffer.pointer);
1006 return ret;
1007 }
1008
1009
1010
1011
1012 static int flat_state_cnt;
1013
1014
1015
1016
1017
1018
1019
1020
1021 static bool combine_lpi_states(struct acpi_lpi_state *local,
1022 struct acpi_lpi_state *parent,
1023 struct acpi_lpi_state *result)
1024 {
1025 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1026 if (!parent->address)
1027 return false;
1028 result->address = local->address + parent->address;
1029 } else {
1030 result->address = parent->address;
1031 }
1032
1033 result->min_residency = max(local->min_residency, parent->min_residency);
1034 result->wake_latency = local->wake_latency + parent->wake_latency;
1035 result->enable_parent_state = parent->enable_parent_state;
1036 result->entry_method = local->entry_method;
1037
1038 result->flags = parent->flags;
1039 result->arch_flags = parent->arch_flags;
1040 result->index = parent->index;
1041
1042 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1043 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1044 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1045 return true;
1046 }
1047
1048 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1049
1050 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1051 struct acpi_lpi_state *t)
1052 {
1053 curr_level->composite_states[curr_level->composite_states_size++] = t;
1054 }
1055
1056 static int flatten_lpi_states(struct acpi_processor *pr,
1057 struct acpi_lpi_states_array *curr_level,
1058 struct acpi_lpi_states_array *prev_level)
1059 {
1060 int i, j, state_count = curr_level->size;
1061 struct acpi_lpi_state *p, *t = curr_level->entries;
1062
1063 curr_level->composite_states_size = 0;
1064 for (j = 0; j < state_count; j++, t++) {
1065 struct acpi_lpi_state *flpi;
1066
1067 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1068 continue;
1069
1070 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1071 pr_warn("Limiting number of LPI states to max (%d)\n",
1072 ACPI_PROCESSOR_MAX_POWER);
1073 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1074 break;
1075 }
1076
1077 flpi = &pr->power.lpi_states[flat_state_cnt];
1078
1079 if (!prev_level) {
1080 memcpy(flpi, t, sizeof(*t));
1081 stash_composite_state(curr_level, flpi);
1082 flat_state_cnt++;
1083 continue;
1084 }
1085
1086 for (i = 0; i < prev_level->composite_states_size; i++) {
1087 p = prev_level->composite_states[i];
1088 if (t->index <= p->enable_parent_state &&
1089 combine_lpi_states(p, t, flpi)) {
1090 stash_composite_state(curr_level, flpi);
1091 flat_state_cnt++;
1092 flpi++;
1093 }
1094 }
1095 }
1096
1097 kfree(curr_level->entries);
1098 return 0;
1099 }
1100
1101 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1102 {
1103 return -EOPNOTSUPP;
1104 }
1105
1106 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1107 {
1108 int ret, i;
1109 acpi_status status;
1110 acpi_handle handle = pr->handle, pr_ahandle;
1111 struct acpi_device *d = NULL;
1112 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1113
1114
1115 ret = acpi_processor_ffh_lpi_probe(pr->id);
1116 if (ret == -EOPNOTSUPP)
1117 return ret;
1118
1119 if (!osc_pc_lpi_support_confirmed)
1120 return -EOPNOTSUPP;
1121
1122 if (!acpi_has_method(handle, "_LPI"))
1123 return -EINVAL;
1124
1125 flat_state_cnt = 0;
1126 prev = &info[0];
1127 curr = &info[1];
1128 handle = pr->handle;
1129 ret = acpi_processor_evaluate_lpi(handle, prev);
1130 if (ret)
1131 return ret;
1132 flatten_lpi_states(pr, prev, NULL);
1133
1134 status = acpi_get_parent(handle, &pr_ahandle);
1135 while (ACPI_SUCCESS(status)) {
1136 d = acpi_fetch_acpi_dev(pr_ahandle);
1137 handle = pr_ahandle;
1138
1139 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1140 break;
1141
1142
1143 if (!acpi_has_method(handle, "_LPI"))
1144 break;
1145
1146 ret = acpi_processor_evaluate_lpi(handle, curr);
1147 if (ret)
1148 break;
1149
1150
1151 flatten_lpi_states(pr, curr, prev);
1152
1153 tmp = prev, prev = curr, curr = tmp;
1154
1155 status = acpi_get_parent(handle, &pr_ahandle);
1156 }
1157
1158 pr->power.count = flat_state_cnt;
1159
1160 for (i = 0; i < pr->power.count; i++)
1161 pr->power.lpi_states[i].index = i;
1162
1163
1164 pr->flags.has_lpi = 1;
1165 pr->flags.power = 1;
1166
1167 return 0;
1168 }
1169
1170 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1171 {
1172 return -ENODEV;
1173 }
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1184 struct cpuidle_driver *drv, int index)
1185 {
1186 struct acpi_processor *pr;
1187 struct acpi_lpi_state *lpi;
1188
1189 pr = __this_cpu_read(processors);
1190
1191 if (unlikely(!pr))
1192 return -EINVAL;
1193
1194 lpi = &pr->power.lpi_states[index];
1195 if (lpi->entry_method == ACPI_CSTATE_FFH)
1196 return acpi_processor_ffh_lpi_enter(lpi);
1197
1198 return -EINVAL;
1199 }
1200
1201 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1202 {
1203 int i;
1204 struct acpi_lpi_state *lpi;
1205 struct cpuidle_state *state;
1206 struct cpuidle_driver *drv = &acpi_idle_driver;
1207
1208 if (!pr->flags.has_lpi)
1209 return -EOPNOTSUPP;
1210
1211 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1212 lpi = &pr->power.lpi_states[i];
1213
1214 state = &drv->states[i];
1215 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1216 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1217 state->exit_latency = lpi->wake_latency;
1218 state->target_residency = lpi->min_residency;
1219 if (lpi->arch_flags)
1220 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1221 state->enter = acpi_idle_lpi_enter;
1222 drv->safe_state_index = i;
1223 }
1224
1225 drv->state_count = i;
1226
1227 return 0;
1228 }
1229
1230
1231
1232
1233
1234
1235
1236 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1237 {
1238 int i;
1239 struct cpuidle_driver *drv = &acpi_idle_driver;
1240
1241 if (!pr->flags.power_setup_done || !pr->flags.power)
1242 return -EINVAL;
1243
1244 drv->safe_state_index = -1;
1245 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1246 drv->states[i].name[0] = '\0';
1247 drv->states[i].desc[0] = '\0';
1248 }
1249
1250 if (pr->flags.has_lpi)
1251 return acpi_processor_setup_lpi_states(pr);
1252
1253 return acpi_processor_setup_cstates(pr);
1254 }
1255
1256
1257
1258
1259
1260
1261
1262
1263 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1264 struct cpuidle_device *dev)
1265 {
1266 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1267 return -EINVAL;
1268
1269 dev->cpu = pr->id;
1270 if (pr->flags.has_lpi)
1271 return acpi_processor_ffh_lpi_probe(pr->id);
1272
1273 return acpi_processor_setup_cpuidle_cx(pr, dev);
1274 }
1275
1276 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1277 {
1278 int ret;
1279
1280 ret = acpi_processor_get_lpi_info(pr);
1281 if (ret)
1282 ret = acpi_processor_get_cstate_info(pr);
1283
1284 return ret;
1285 }
1286
1287 int acpi_processor_hotplug(struct acpi_processor *pr)
1288 {
1289 int ret = 0;
1290 struct cpuidle_device *dev;
1291
1292 if (disabled_by_idle_boot_param())
1293 return 0;
1294
1295 if (!pr->flags.power_setup_done)
1296 return -ENODEV;
1297
1298 dev = per_cpu(acpi_cpuidle_device, pr->id);
1299 cpuidle_pause_and_lock();
1300 cpuidle_disable_device(dev);
1301 ret = acpi_processor_get_power_info(pr);
1302 if (!ret && pr->flags.power) {
1303 acpi_processor_setup_cpuidle_dev(pr, dev);
1304 ret = cpuidle_enable_device(dev);
1305 }
1306 cpuidle_resume_and_unlock();
1307
1308 return ret;
1309 }
1310
1311 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1312 {
1313 int cpu;
1314 struct acpi_processor *_pr;
1315 struct cpuidle_device *dev;
1316
1317 if (disabled_by_idle_boot_param())
1318 return 0;
1319
1320 if (!pr->flags.power_setup_done)
1321 return -ENODEV;
1322
1323
1324
1325
1326
1327
1328
1329 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1330
1331
1332 cpus_read_lock();
1333 cpuidle_pause_and_lock();
1334
1335
1336 for_each_online_cpu(cpu) {
1337 _pr = per_cpu(processors, cpu);
1338 if (!_pr || !_pr->flags.power_setup_done)
1339 continue;
1340 dev = per_cpu(acpi_cpuidle_device, cpu);
1341 cpuidle_disable_device(dev);
1342 }
1343
1344
1345 acpi_processor_get_power_info(pr);
1346 acpi_processor_setup_cpuidle_states(pr);
1347
1348
1349 for_each_online_cpu(cpu) {
1350 _pr = per_cpu(processors, cpu);
1351 if (!_pr || !_pr->flags.power_setup_done)
1352 continue;
1353 acpi_processor_get_power_info(_pr);
1354 if (_pr->flags.power) {
1355 dev = per_cpu(acpi_cpuidle_device, cpu);
1356 acpi_processor_setup_cpuidle_dev(_pr, dev);
1357 cpuidle_enable_device(dev);
1358 }
1359 }
1360 cpuidle_resume_and_unlock();
1361 cpus_read_unlock();
1362 }
1363
1364 return 0;
1365 }
1366
1367 static int acpi_processor_registered;
1368
1369 int acpi_processor_power_init(struct acpi_processor *pr)
1370 {
1371 int retval;
1372 struct cpuidle_device *dev;
1373
1374 if (disabled_by_idle_boot_param())
1375 return 0;
1376
1377 acpi_processor_cstate_first_run_checks();
1378
1379 if (!acpi_processor_get_power_info(pr))
1380 pr->flags.power_setup_done = 1;
1381
1382
1383
1384
1385
1386
1387 if (pr->flags.power) {
1388
1389 if (!acpi_processor_registered) {
1390 acpi_processor_setup_cpuidle_states(pr);
1391 retval = cpuidle_register_driver(&acpi_idle_driver);
1392 if (retval)
1393 return retval;
1394 pr_debug("%s registered with cpuidle\n",
1395 acpi_idle_driver.name);
1396 }
1397
1398 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1399 if (!dev)
1400 return -ENOMEM;
1401 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1402
1403 acpi_processor_setup_cpuidle_dev(pr, dev);
1404
1405
1406
1407
1408 retval = cpuidle_register_device(dev);
1409 if (retval) {
1410 if (acpi_processor_registered == 0)
1411 cpuidle_unregister_driver(&acpi_idle_driver);
1412 return retval;
1413 }
1414 acpi_processor_registered++;
1415 }
1416 return 0;
1417 }
1418
1419 int acpi_processor_power_exit(struct acpi_processor *pr)
1420 {
1421 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1422
1423 if (disabled_by_idle_boot_param())
1424 return 0;
1425
1426 if (pr->flags.power) {
1427 cpuidle_unregister_device(dev);
1428 acpi_processor_registered--;
1429 if (acpi_processor_registered == 0)
1430 cpuidle_unregister_driver(&acpi_idle_driver);
1431 }
1432
1433 pr->flags.power_setup_done = 0;
1434 return 0;
1435 }